
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FORGETTING TRANSFORMER: SOFTMAX ATTENTION
WITH A FORGET GATE

Anonymous authors
Paper under double-blind review

ABSTRACT

An essential component of modern recurrent sequence models is the forget gate.
While Transformers do not have an explicit recurrent form, we show that a for-
get gate can be naturally incorporated into Transformers by down-weighting the
unnormalized attention scores in a data-dependent way. We name the resulting
model the Forgetting Transformer. We show that the Forgetting Transformer sig-
nificantly outperforms the standard Transformer on long-context language mod-
eling and downstream tasks. Moreover, the Forgetting Transformer does not re-
quire any position embeddings and generalizes beyond the training context length.
Several analyses, including the needle-in-the-haystack experiment, show that the
Forgetting Transformer also retains the standard Transformer’s superior long-
context capabilities over recurrent sequence models such as Mamba-2, HGRN2,
and DeltaNet.

1 INTRODUCTION

Despite the growing interest in reviving recurrent sequence models (Gu et al., 2021; Peng et al.,
2021; Yang et al., 2023; Gu & Dao, 2023; Sun et al., 2023; De et al., 2024; Qin et al., 2024b; Dao &
Gu, 2024; Peng et al., 2024; Beck et al., 2024; Zhang et al., 2024), these models still underperform
the Transformer (Vaswani et al., 2017) in terms of long-context capabilities (Hsieh et al., 2024;
Waleffe et al., 2024; Shen et al., 2024; Qin et al., 2024a), likely due to their relatively small fixed-
sized hidden states (Jelassi et al., 2024). While the Transformer excels in handling long-context
information, it lacks an explicit mechanism for forgetting past information in a data-dependent
way1. Such a mechanism – often implemented as some form of the forget gate (Gers et al., 2000) –
is ubiquitous in recurrent sequence models and has proven critical in their success in short-context
tasks (Greff et al., 2016; Van Der Westhuizen & Lasenby, 2018; Peng et al., 2021; Yang et al., 2023;
Gu & Dao, 2023). A natural question to ask is then: can we have a forget gate in Transformers?

To address this question, we leverage an important fact: many recurrent sequence models with a
forget gate can be written in a parallel linear attention form (Katharopoulos et al., 2020) analogous
to softmax attention (Yang et al., 2023; Dao & Gu, 2024). In this parallel form, the forget gate
mechanism translates into down-weighing the unnormalized attention scores in a data-dependent
way. Our key insight is that this exact mechanism is also applicable to softmax attention. We name
the resulting model the Forgetting Transformer.

We evaluate the Forgetting Transformer on long-context language modeling and downstream tasks
and find it significantly outperforms the standard Transformer. It also combines the strengths of both
recurrent sequence models and the Transformer. Like recurrent sequence models, the Forgetting
Transformer generalizes beyond the training context length, where the standard Transformer fails
completely. At the same time, it retains the ability of the Transformer to perform accurate long-
context retrieval and achieves perfect accuracy within the training context length in a simplified
needle-in-the-haystack test (Kamradt, 2023). In contrast, all the tested recurrent sequence models
fail. The Forgetting Transformer even achieves perfect retrieval up to double the training context
length, demonstrating both accurate long-context retrieval and length generalization. Finally, we

1In principle, the Transformer can ignore previous information by generating keys with low dot-product
values with all previous queries. However, this may not be as effective as an explicit forget gate. Also, certain
methods such as AliBi (Press et al., 2021) achieve data-independent decay, as we will discuss later.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

show that the Forgetting Transformer can be implemented in a hardware-aware way with a modified
Flash Attention (Dao, 2023) algorithm.

2 BACKGROUND: LINEAR ATTENTION WITH A FORGET GATE

This section introduces the notation used in this work and gives a brief background on linear at-
tention. We also introduce a gated variant of linear attention and discuss its parallel form, which
naturally leads to the Forgetting Transformer. Throughout this work, we only consider causal se-
quence modeling. We also mainly consider the single-head case; extension to the multi-head case is
straightforward.

2.1 LINEAR ATTENTION

Standard causal softmax attention takes a sequence of input vectors (xi)
L
i=1 and produces a sequence

of output vectors (oi)
L
i=1, where xi,oi ∈ Rd, i ∈ {1, . . . , L}. Each oi is computed as follows:

qi,ki,vi = Wqxi,Wkxi,Wqxi ∈ Rd, (1)

oi =

∑i
j=1 kexp(qi,kj)vj∑i
j=1 kexp(qi,kj)

=

∑i
j=1 exp(q

⊤
i kj)vj∑i

j=1 exp(q
⊤
i kj)

, (2)

where Wq,Wk,Wv ∈ Rd×d are projection matrices and kexp(q,k) = exp(q⊤k) is the exponential
dot product kernel. Note we omit the 1√

d
scaling factor to reduce visual clutter. In practice we always

scale the dot product q⊤
i kj by 1√

d
.

Linear attention (Katharopoulos et al., 2020) replaces the exponential dot product kernel
kexp(q,k) = exp(q⊤k) with a kernel kϕ(q,k) with some feature representation ϕ : Rd → (R+)d

′
:

oi =

∑i
j=1 kϕ(qi,kj)vj∑i
j=1 kϕ(qi,kj)

=

∑i
j=1(ϕ(qi)

⊤ϕ(kj))vj∑i
j=1 ϕ(qi)

⊤ϕ(kj)

Following Yang et al. (2023), we call the above the parallel form of linear attention as it can be
computed with matrix multiplications. Alternatively, linear attention can be computed in a recurrent
form:

St = St−1 + vtϕ(kt)
⊤

zt = zt−1 + ϕ(kt)

ot =
Stϕ(qt)

z⊤
t ϕ(qt)

,

where St ∈ Rd×d′
, zt ∈ Rd′

, t ∈ {0, . . . , L} are computed recurrently, with S0 = 0 and zt = 0.

2.2 LINEAR ATTENTION WITH A FORGET GATE

The recurrent form of linear attention makes it natural to introduce a forget gate. Specifically, we
can compute a scalar forget gate ft = σ(w⊤

f xt + bf ) ∈ R at each timestep, where σ is the sigmoid
function and wf ∈ Rd, bf ∈ R are learnable parameters. The recurrent computation is then:

St = ftSt−1 + vtϕ(kt)
⊤

zt = ftzt−1 + ϕ(kt)

ot =
Stϕ(qt)

z⊤
t ϕ(qt)

.

Note that this gated variant of linear attention differs from most models in the literature. In particular,
most gated variants of linear attention models such as GLA (Yang et al., 2023) and Mamba-2 (Dao
& Gu, 2024) do not have the normalization term (i.e., there is no zt and the output is just ot =
Stϕ(qt)). We keep the normalization term to maintain similarity with softmax attention. The most

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

similar model is gated-RFA (Peng et al., 2021), with the only difference being the lack of a (1− ft)
term in the recurrence.

Crucially, similar to the normalization-free version derived in GLA and Mamba-2, we can show that
this gated variant of linear attention also has a parallel form:

oi =

∑i
j=1 Fijϕ(qi)

⊤ϕ(kj)vj∑i
j=1 Fijϕ(qi)⊤ϕ(kj)

=

∑i
j=1 Fijkϕ(qi,kj)vj∑i
j=1 Fijkϕ(qi,kj)

, (3)

where Fij =
∏i

l=j+1 fl.
2

Our key observation is that Equation 3 and the softmax attention in Equation 2 are very similar in
form. In fact, if we just change the kernel kϕ in Equation 3 back to the exponential dot product
kernel kexp, we obtain the softmax attention with a forget gate. We introduce this formally in the
next section.

3 FORGETTING TRANSFORMER

Our proposed model, the Forgetting Transformer (abbreviated as ForT in figures and tables), features
a modified softmax attention mechanism with a forget gate. We name this attention mechanism the
Forgetting Attention.

Forgetting Attention modifies the computation of the attention scores in softmax attention. Similar
to the gated variant of linear attention introduced in the previous section, we compute a scalar forget
gate ft = σ(w⊤

f xt + bf ) ∈ R for each timestep t. The output of the attention is then

oi =

∑i
j=1 Fij exp(q

⊤
i kj)vj∑i

j=1 Fij exp(q⊤
i kj)

=

∑i
j=1 exp(q

⊤
i kj + dij)vj∑i

j=1 exp(q
⊤
i kj + dij)

(4)

where Fij =
∏i

l=j+1 fl and dij = logFij . This can be written in matrix form:

D = logF ∈ RL×L, (5)

O = softmax(QK⊤ +D)V ∈ RL×d, (6)

where F ∈ RL×L is a lower triangular matrix whose non-zero entries are Fij , i.e., Fij = Fij if
i ≥ j and 0 otherwise. We adopt the convention that log 0 = −∞. Q,K,V ,O ∈ RL×d are
matrices containing qi,ki,vi,oi, i ∈ {1, . . . , L} as the rows. The softmax operation is applied
row-wise.

The above describes the single-head case. For multi-head attention with h heads, we maintain h

instances of forget gate parameters (w(i)
f )hi=1 and (b

(i)
f )hi=1 and compute the forget gates separately

for each head.

Hardware-aware implementation Directly computing the attention output according to Equa-
tion 6 requires instantiating several L × L matrices in the slow high-bandwidth memory (HBM)
of GPUs, which is extremely inefficient. Fortunately, the logit bias form on the rightmost side of
Equation 4 allows the Forgetting Attention to be computed with a simple modification to the Flash
Attention (Dao, 2023) algorithm.

Here we briefly describe the forward pass. The backward pass follows a similar idea. First, we
compute the cumulative sum ci =

∑i
l=1 log fl for i ∈ {1, . . . , L} and store it in HBM. Note that

this allows us to compute dij = ci−cj easily later. Whenever we compute the attention logit via the
dot product q⊤

i kj in the GPU’s fast shared memory (SRAM) (as in Flash Attention), we also load
ci and cj to SRAM, compute dij , and add the bias to the attention logit. The rest of the forward pass
remains the same as Flash Attention.

This algorithm avoids instantiating the L × L dij entries on HBM. We provide a detailed algo-
rithm description in Appendix C. Moreover, since the forget gates are scalars instead of vectors, the
additional computation and parameter count introduced are negligible.

2We adopt the convention that Fij = 1 if i = j.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Connection to ALiBi Besides its natural connection to gated linear attention, the Forgetting At-
tention can also be seen as a data-dependent and learnable version of ALiBi (Press et al., 2021).
ALiBi applies a data-independent bias bij = −(i− j)mh to the attention logits, where mh is a fixed
slope specific to each head h. It is easy to show that ALiBi is equivalent to Forgetting Attention with
a fixed, head-specific, and data-independent forget gate ft = exp(−mh). In Section 4.5, we verify
the superiority of Forgetting Attention over ALiBi-based attention.

Position embeddings Though we find that using Rotary Position Embeddings (RoPE) (Su et al.,
2024) improves the performance of the Forgetting Transformer within the training context length, it
is not necessary as it is for the standard Transformer. More importantly, we find that RoPE damages
generalization beyond the training context length. Therefore, we do not use RoPE or any other
position embeddings for the Forgetting Transformer by default. This topic is studied in more detail
in Section 4.5.

Architecture design Forgetting Attention can be used as a drop-in replacement for standard soft-
max attention in any Transformer architecture. Since architecture design is not the focus of this
work, our Forgetting Transformer models use the same architecture as LLaMA (Touvron et al.,
2023), except that we replace standard attention with Forgetting Attention and we do not use
RoPE. However, similar to the findings in Dehghani et al. (2023), we find it helpful to apply RM-
SNorm (Zhang & Sennrich, 2019) to the queries and keys (i.e., QK-norm) in some tasks, so we also
include results with QK-norm. Whether QK-norm is used in each result will be clearly stated.

4 EMPIRICAL STUDY

The advantage of Transformers in long-context capabilities over recurrent sequence models have
been demonstrated multiple times (Hsieh et al., 2024; Waleffe et al., 2024; Shen et al., 2024; Qin
et al., 2024a). However, a forget gate introduces a recency bias. It is thus natural to ask whether
the Forgetting Transformer still maintains this advantage. Therefore, our empirical study places a
special focus on long-context capabilities.

4.1 EXPERIMENTAL SETUP

Dataset We focus on long-context language modeling and train all models on
LongCrawl64 (Buckman, 2024). LongCrawl64 is a filtered long-sequence subset of RedPajama-
v2 (Together Computer, 2023). It consists of pre-tokenized sequences truncated to exactly 64
kibitokens (KiT).3 The sequences are tokenized with the TikToken tokenizer (OpenAI, 2022) for
GPT-2 (Radford et al., 2019).

Baselines We are interested in two types of comparisons. First, to understand the benefits of forget
gates, we compare our proposed model with the standard Transformer. Both the Transformer and
the Forgetting Transformer use the LLaMA architecture, except that the Forgetting Transformer
does not use RoPE. Similar to Xiong et al. (2023), we find it crucial to use a large RoPE angle θ
for the standard Transformer. Following Xiong et al. (2023) we use θ = 500000. As mentioned in
Section 3, we test the Forgetting Transformer both with and without QK-norm. Note the comparison
between the standard Transformer and the Forgetting Transformer (without QK-norm) is strictly
controlled in that they only differ in whether they use the Fij factors or RoPE.

Second, to demonstrate the advantage of the Forgetting Transformer over recurrent sequence mod-
els in long-context capabilities, we compare with Mamba-2 (Dao & Gu, 2024), HGRN2 (Qin et al.,
2024a), and DeltaNet (Yang et al., 2024). These models are representative of various design choices
in recurrent sequence models. Notably, all of them have reported better performance over the Trans-
former in terms of language modeling perplexity and mostly short-context downstream tasks. The
implementation of all models is based on the Flash Linear Attention repository (Yang & Zhang,
2024).

3The binary prefix “kibi” or “Ki” means 210 = 1024. So 64 KiT means 65536 tokens. In the following we
also use “mebi” or “Mi” for 220 and “gibi” or “Gi” for 230.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0 20000 40000 60000
Token index i

1.7

1.8

1.9

2.0

Lo
ss

 L
(i

)

ForT (w/ QK-norm)
ForT (w/o QK-norm)
Transformer
Mamba-2
HGRN2
DeltaNet

0 20000 40000 60000
Validation context length l

5.5

6.0

6.5

7.0

7.5

8.0

Pe
rp

le
xi

ty
 P

(l
)

ForT (w/ QK-norm)
ForT (w/o QK-norm)
Transformer
Mamba-2
HGRN2
DeltaNet

Figure 1: (left) Per-token loss L(i) at different token position i. (right) Validation perplexity P (l)
over different validation context length l. The vertical dashed line indicates the training context
length. The per-token loss is typically noisy, so we smooth the curve using a moving average sliding
window of 101 tokens.

Training setup Due to limited compute resources, for our main experiments, we train models
with 760M non-embedding parameters on a 15-GiT (roughly 16B tokens) subset of LongCrawl64
with a training context length of 16384 tokens. This roughly matches the compute-optimal model
size/data ratio in Chinchilla scaling law (Hoffmann et al., 2022). For the validation set, we use a
2-GiT (roughly 2.1B tokens) subset of the LongCrawl64 held-out set consisting of sequences of
65536 tokens. We choose a much longer validation context length than the training context length
to test the length generalization capabilities of the models.

All models are trained with AdamW (Loshchilov, 2017) with (β1, β2) = (0.9, 0.95). We use a
linear learning rate warmup from 0 to 1.25 × 10−3 for the first 256 MiT and then a cosine decay
schedule to 1.25× 10−4. All models use a weight decay of 0.1 and gradient clipping of 1.0. We use
bfloat16 mixed-precision training for all models. More details of the experimental setup can be
found in Appendix A.

4.2 LONG-CONTEXT LANGUAGE MODELING

Metrics Before we present our results, it is important to understand one of our main metrics: per-
token loss on the validation set at different token positions. To be precise, let V be the vocabulary
size, y(j)

i ∈ {0, 1}V be the one-hot vector encoding the language modeling target for the i-th token
in the j-th validation sequence, and p

(j)
i ∈ RV be the corresponding output probabilities of the

model, then the per-token loss L(i) at token position i is simply

L(i) =
1

M

M∑
j=1

− log[(p
(j)
i )⊤y

(j)
i ], (7)

where M is the number of validation sequences.

The per-token loss is particularly meaningful for understanding the long-context capabilities of a
model. Informally, a monotonically decreasing L(i) with a steep slope indicates the model is using
the full context well. On the other hand, if L(i) plateaus after some token position k, it indicates
the model is incapable of using tokens that are k tokens away from the current token position for
its prediction. This correspondence between the slope of L(i) and the model’s context utilization is
explained in more detail in Appendix B.

Besides per-token loss, we also report perplexity over different validation context lengths P (l).
Specifically, perplexity over a context length l is defined as P (l) = exp(1l

∑l
i=1 L(i)). We warn the

readers that the slope of P (l) is less meaningful. Since P (l) is just the exponential of the cumulative
average of L(i), even if L(i) plateaus after some token position k, P (l) will still monotonically
decrease after k, giving the wrong impression that the model can make use of the part of the context
that is k tokens away.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0 5000 10000 15000
Key Positions

0

5000

10000

15000
Q

ue
ry

 P
os

iti
on

s

Layer 24, Head 3, F

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000
Key Positions

0

5000

10000

15000

Q
ue

ry
 P

os
iti

on
s

Layer 24, Head 3, A

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000
Key Positions

0

5000

10000

15000

Q
ue

ry
 P

os
iti

on
s

Layer 16, Head 2, F

0.0

0.2

0.4

0.6

0.8

1.0

0 5000 10000 15000
Key Positions

0

5000

10000

15000

Q
ue

ry
 P

os
iti

on
s

Layer 16, Head 2, A

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Visualization of the forget gate weight matrix F (top row) and the attention score matrix
A (bottom row) from two heads in different layers. Since A is very sparse, we only show entries
with scores larger than 0.5. These results use a Forgetting Transformer without QK-norm.

Results In Figure 1, we show the per-token loss L(i) at different token indices i and perplexity
P (l) over different validation context lengths l. As shown in Figure 1, with or without QK-norm,
the Forgetting Transformer (shown as ForT) significantly outperforms the standard Transformer.
Similarly to the standard Transformer, it also maintains a monotonic decreasing per-token loss within
the training context length, indicating that it utilizes the entire training context for its prediction. In
contrast, the per-token loss curves of all recurrent sequence models start flattening at around 5k
tokens and completely plateau after 10k tokens. This indicates that these recurrent sequence models
struggle to use the full context effectively for their prediction.

The Forgetting Transformer also generalizes beyond the training context length, where the standard
Transformer fails completely. In terms of the absolute values of the loss, the Forgetting Transformer
also clearly outperforms HGRN2 and DeltaNet, and outperforms Mamba-2 at later tokens when
QK-norm is used.

Visualization of forget gate values and attention map In Figure 2, we visualize the forget gate
weight matrix F and the attention scores A = softmax(QK⊤+logF ) from two heads in different
layers. The head on the left-hand side exhibits strong decay, and most entries of F are close to zero;
accordingly, the attention focuses on local entries. The head on the right-hand side has much weaker
decay, and the attention is distributed across the entire context. This shows that the Forgetting
Transformer can learn to retain information across long contexts when necessary.

4.3 NEEDLE IN THE HAYSTACK

The needle-in-the-haystack analysis (Kamradt, 2023) (referred to as the “needle test” in the follow-
ing) is a popular test for the long-context retrieval abilities of language models. Following Qin et al.
(2024a), we use an “easy mode” of the needle test, where the “needle” placed within the context
includes both the question and the answer. This easy mode is particularly suitable for base models
that have not been instruction-tuned. Full details, including the prompts used, are in Appendix A.2.

In Figure 3, we show the results of the needle test for the Transformer, the Forgetting Transformer
(with and without QK-norm), and Mamba2. DeltaNet and HGRN2’s results are even worse than
Mamba-2, so we leave them to Appendix D.2. We use sequences of up to 32000 tokens for the test,
which is almost double the training context length 16384. As shown in Figure 3, both the Forgetting
Transformer and the Transformer achieve near-perfect needle retrieval within the training context

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

10
00

41
00

72
00

10
30

0
13

40
0

16
50

0
19

60
0

22
70

0
25

80
0

28
90

0
32

00
0

Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

D
ep

th
 P

er
ce

nt

Forgetting Transformer (w/ QK-norm)

2

4

6

8

10

Sc
or

e

10
00

41
00

72
00

10
30

0
13

40
0

16
50

0
19

60
0

22
70

0
25

80
0

28
90

0
32

00
0

Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

D
ep

th
 P

er
ce

nt

Transformer

2

4

6

8

10

Sc
or

e

10
00

41
00

72
00

10
30

0
13

40
0

16
50

0
19

60
0

22
70

0
25

80
0

28
90

0
32

00
0

Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

D
ep

th
 P

er
ce

nt

Forgetting Transformer (w/o QK-norm)

2

4

6

8

10

Sc
or

e

10
00

41
00

72
00

10
30

0
13

40
0

16
50

0
19

60
0

22
70

0
25

80
0

28
90

0
32

00
0

Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

D
ep

th
 P

er
ce

nt

Mamba-2

2

4

6

8

10

Sc
or

e

Figure 3: Needle-in-the-haystack analysis for different models. The results are scored on a scale of
1 (red) to 10 (green) by GPT-4o. The vertical dashed line indicates the training context length.

length. Interestingly, with QK-norm, the Forgetting Transformer even achieves perfect retrieval up
to double the training context length4, while the standard Transformer fails. In contrast, Mamba2
(and also HGRN2 and DeltaNet in Appendix D.2) fails even within the training context length,
except when the needle is placed right at the end of the text. These results are consistent with the
previous analysis of the slope of per-token loss curves in Section 4.2.

4.4 DOWNSTREAM TASKS

We evaluate the models on two sets of downstream tasks: a set of short-context tasks from LM-
evaluation-harness (Gao et al., 2024) and a set of long-context tasks from LongBench (Bai et al.,
2023).

Short-context tasks We use Wikitext (Merity et al., 2016), LAMBADA (Paperno et al., 2016),
PiQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Zellers et al., 2019), ARC-
easy, ARC-challenge (Clark et al., 2018), Copa (Roemmele et al., 2011), SciQA (Auer et al., 2023),
OpenbookQA (Mihaylov et al., 2018), and BoolQA (Clark et al., 2019). Following Yang et al.
(2023), we report perplexity for Wikitext and LAMBADA, length-normalized accuracy for Hel-
laSwag, ARC-challenge, and OpenbookQA, and accuracy for all other tasks (we also report accu-
racy for LAMBADA). All results are zero-shot.

As shown in Table 1, the Forgetting Transformer outperforms the standard Transformer on almost
all the tasks, with or without QK-norm. This demonstrates the effectiveness of a forget gate in the
attention layer. The inclusion of a forget gate also allows the Forgetting Transformer to outperform
DeltaNet and HGRN2, and performs on par with Mamba-2 on these short-context tasks.

Long-context tasks We use 14 tasks from LongBench: HotpotQA (Yang et al., 2018), 2WikiMul-
tihopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022), MultiFieldQA-en, NarrativeQA (Kočiskỳ
et al., 2018), Qasper (Dasigi et al., 2021), GovReport (Huang et al., 2021), QMSum (Zhong et al.,
2021), MultiNews (Fabbri et al., 2019), TriviaQA (Joshi et al., 2017), SAMSum (Gliwa et al., 2019),
TREC (Li & Roth, 2002), LCC (Guo et al., 2023), and RepoBench-P (Liu et al., 2023). These are all
generation-based tasks with average lengths ranging from roughly 1k words to up to 18k words. We

4The reason for the effectiveness of QK-norm in this case in unclear. We leave it for a future investigation.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Evaluation results on LM-eval-harness. All models have roughly 760M non-embedding pa-
rameters and are trained on roughly 16B tokens on LongCrawl64. “acc-n” means length-normalized
accuracy. Bold and underlined numbers indicate the best and the second best results, respectively.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ Avg
ppl↓ ppl↓ acc↑ acc↑ acc-n↑ acc↑ acc↑ acc-n↑ acc↑ acc-n↑ acc↑ acc↑ ↑

ForT (w/o QK-norm) 32.89 29.25 35.67 60.28 31.89 51.85 44.87 24.91 64.00 29.80 75.90 61.50 48.07
ForT (w/ QK-norm) 31.91 29.65 35.47 61.21 32.16 50.75 45.54 24.06 62.00 25.80 75.60 58.04 47.06
Transformer 37.47 50.15 29.83 60.34 29.86 50.28 44.65 23.63 61.00 28.60 71.70 61.80 46.17
Mamba-2 33.11 42.74 26.80 60.77 32.74 51.46 45.71 23.29 69.00 28.40 76.30 60.80 47.53
HGRN2 39.27 31.87 33.46 60.12 31.56 49.96 47.60 23.55 63.00 27.20 73.70 42.97 45.31
DeltaNet 35.12 47.49 28.24 60.07 30.83 51.07 46.30 25.26 65.00 28.00 71.40 50.80 45.69

Table 2: Evalution results on LongBench. All models have roughly 760M non-embedding parame-
ters and are trained on roughly 16B tokens on LongCrawl64. Bold and underlined numbers indicate
the best and the second best results, respectively.

Model

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code

Narr
ati

ve
QA

Qasp
er

M
FQA

Hotp
otQ

A

2W
iki

M
QA

M
us

iqu
e

Gov
Rep

ort

QM
Sum

M
ult

iN
ew

s

TREC

Triv
iaQ

A

Sam
Sum

LCC

Rep
oB

en
ch

-P

ForT (w/o QK-norm) 9.42 12.38 18.85 7.6 11.57 4.34 23.38 9.47 8.56 47.0 17.04 6.39 11.13 14.78
ForT (w/ QK-norm) 6.69 11.64 19.38 5.56 9.32 5.37 21.39 9.04 8.04 39.0 19.08 11.5 10.41 14.2
Transformer 7.41 10.94 17.64 6.2 15.84 3.34 10.79 9.38 12.53 18.5 9.47 2.4 11.23 17.36
Mamba-2 6.63 8.93 16.93 6.39 17.01 3.43 6.89 13.07 7.64 11.5 11.64 1.44 15.72 10.38
HGRN2 6.09 7.98 13.26 4.9 12.23 3.06 6.64 9.76 7.54 17.5 12.46 1.06 11.19 16.28
DeltaNet 6.6 7.57 15.25 5.13 12.88 3.21 6.94 10.49 7.9 13.5 13.6 6.04 17.52 18.43

use the default metrics of LongBench for different tasks, which are either F1, Rough-L, accuracy, or
edit similarity.

The results are shown in Table 2. With or without QK-norm, the Forgetting Transformer obtains
the best or the second-best results on the majority of the tasks, verifying its superior long-context
capabilities.

4.5 ABLATIONS

We present two sets of ablation studies. First, we investigate the effects of RoPE, particularly its
influence on length generalization. Second, we study the importance of using a forget gate that is
data-dependent. For these experiments, we use smaller models with 125M parameters trained on
roughly 2.6B tokens. To ensure that the experiments are strictly controlled, we do not use QK-norm
in any of the experiments.

0 20000 40000 60000
Token index i

2.3

2.4

2.5

2.6

2.7

Lo
ss

 L
(i

)

ForT (w/o RoPE)
ForT (w/ RoPE)
Transformer (w/ RoPE)

0 20000 40000 60000
Token index i

2.3

2.4

2.5

2.6

2.7

Lo
ss

 L
(i

)

data-dep
fixed, Tmax = 256

fixed, Tmax = 2048

fixed, Tmax = 16384

0 20000 40000 60000
Token index i

2.3

2.4

2.5

2.6

2.7

Lo
ss

 L
(i

)

data-dep
data-indep, Tmax = 256

data-indep, Tmax = 2048

data-indep, Tmax = 16384

Figure 4: (left) Effect of adding RoPE. (middle) Data-dependent forget gate vs. fixed forget gate
(i.e., ALiBI) (right) Data-dependent forget gate vs. data-independent forget gate. All per-token loss
curves are smoothed by a moving average sliding window of 1001 tokens. The vertical dashed line
indicates the training context length.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Effects of RoPE In Figure 4 (left) we show the per-token loss curve of three models: Transformer
with RoPE, Forgetting Transformer without RoPE, and Forgetting Transformer with RoPE. We omit
the Transformer without RoPE since it performs poorly (loss larger than 3.0). As shown in Figure 4,
even though RoPE improves the performance of the Forgetting Transformer within the training
context length, it damages length generalization beyond the training context length.

Data independent and fixed forget gates To show the importance of using a forget gate that is
data-dependent, we test a data-independent forget gate f

(h)
t = σ(b(h)), where the superscript (h)

means for the h-th head. We also test a forget gate that has fixed values (i.e., f (h)
t = σ(b(h)), but we

do not update b(h) during training). As discussed in Section 3, using a fixed forget gate is equivalent
to ALiBi.

For these data-independent forget gate designs, we find it important to initialize b(h) properly. To
understand the initialization, we first define a function T (b) = 1

− log σ(b) . This function is defined

such that σ(b)T (b) = 1/e is always true. We then initialize b(h) = b
(h)
init such that T (b(h)(init)) =

exp(log Tmin + (log Tmax − log Tmin)
h−1
H−1 ), where Tmin and Tmax are hyperparameters and H

is the number of heads. It can be shown that ALiBi with a maximum slope 1
2 and a minimum

slope 1
256 (the default values in Press et al. (2021)) is equivalent using a fixed forget gate with

(Tmin, Tmax) = (2, 256). We refer to this initialization as long-init. In the following experiments,
we always set Tmin = 2. We also tested long-init for the data-dependent forget gate in Appendix D.1
but did not find it useful.

In Figure 4, we show the per-token loss of the Forgetting Transformer with a fixed forget gate
(middle, shown as “fixed”) and a data-independent forget gate (right, shown as “data-indep”). We
also show the results with a data-dependent forget gate (shown as “data-dep”) for comparison. As
shown in Figure 4, a data-dependent forget gate works the best both within and beyond the training
context length.

5 RELATED WORK

Recurrent sequence models While the Transformer has become the de facto standard architec-
ture for sequence modeling, there has been a growing interest in reviving recurrent sequence mod-
els (Katharopoulos et al., 2020; Peng et al., 2021; Gu et al., 2021; Orvieto et al., 2023; Yang et al.,
2023; Gu & Dao, 2023; Katsch, 2023; De et al., 2024; Sun et al., 2024; Peng et al., 2024; Qin et al.,
2024a; Dao & Gu, 2024; Beck et al., 2024; Zhang et al., 2024; Buckman et al., 2024). Unlike tra-
ditional non-linear RNNs such as LSTMs (Beck et al., 2024) and GRUs (Chung et al., 2014), these
models feature linear recurrence in the form ht = g(xt)ht−1 + f(xt), where xt is the input, ht

is the (potentially matrix-valued) hidden state, and g, f are arbitrary functions. Besides its poten-
tial advantage for learning long-term dependencies (Orvieto et al., 2023), linear recurrence is also
amenable to parallel computation (Martin & Cundy, 2017; Gu et al., 2021; Smith et al., 2022; Yang
et al., 2023; Dao & Gu, 2024). Many recent recurrent sequence models feature some form of the
forget gate, which has been shown to be essential in these architectures (Qin et al., 2024b; Gu &
Dao, 2023; Yang et al., 2023). Notably, GLA (Yang et al., 2023) and Mamba-2 (Dao & Gu, 2024)
show that gated variants of linear attention could be written in a form similar to softmax attention,
which directly inspired our work.

Data-indepedent decay via position embeddings Several position embedding methods for
Transformers achieve data-independent decay. ALiBi (Press et al., 2021), T5’s RPE (Raffel et al.,
2020), Kerple (Chi et al., 2022a), and Sandwich (Chi et al., 2022b) add bias to the attention logits
depending on the distances between the keys and queries. When the bias is negative, this is equiv-
alent to down-weighting previous timesteps. Though less explicit, RoPE (Su et al., 2024) also has
a similar decay effect that becomes stronger with increasing relative query/key distances. However,
all these methods can only achieve data-independent decay based on the relative distances of the
queries and keys.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 CONCLUSION

We propose the Forgetting Transformer, a Transformer variant with a forget gate. Our experiments
show that the Forgetting Transformer outperforms the standard Transformers on both long-context
and short-context tasks. The Forgetting Transformer also shows length generalization abilities be-
yond the training context length. We also propose a hardware-aware algorithm for Forgetting Trans-
former based on Flash Attention.

Our work has several limitations that present opportunities for future work. First, due to our limited
computing resources, we can only perform experiments on models up to 760M parameters. Thus,
an important future work is to extend the Forgetting Transformer to larger scales. Second, we do
not investigate architectural design variations of the models (e.g., output gating and normalization
as in Mamba-2), so there is likely still a large room for improvement in terms of performance.
Finally, we only consider causal sequence modeling. It would be interesting to extend the Forgetting
Transformer to the non-causal case.

REFERENCES

Sören Auer, Dante AC Barone, Cassiano Bartz, Eduardo G Cortes, Mohamad Yaser Jaradeh, Oliver
Karras, Manolis Koubarakis, Dmitry Mouromtsev, Dmitrii Pliukhin, Daniil Radyush, et al. The
sciqa scientific question answering benchmark for scholarly knowledge. Scientific Reports, 13
(1):7240, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Jacob Buckman. Longcrawl64: A Long-Context Natural-Language Dataset, 2024. URL https:
//manifestai.com/articles/longcrawl64.

Jacob Buckman, Carles Gelada, and Sean Zhang. Symmetric Power Transformers, 2024.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized rel-
ative positional embedding for length extrapolation. Advances in Neural Information Processing
Systems, 35:8386–8399, 2022a.

Ta-Chung Chi, Ting-Han Fan, Alexander I Rudnicky, and Peter J Ramadge. Dissecting transformer
length extrapolation via the lens of receptive field analysis. arXiv preprint arXiv:2212.10356,
2022b.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

10

https://manifestai.com/articles/longcrawl64
https://manifestai.com/articles/longcrawl64


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Tri Dao and Albert Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Al-
bert Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mix-
ing gated linear recurrences with local attention for efficient language models. arXiv preprint
arXiv:2402.19427, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019.

FlagOpen, 2023. URL https://github.com/FlagOpen/FlagAttention.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual prediction
with lstm. Neural computation, 12(10):2451–2471, 2000.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Klaus Greff, Rupesh K Srivastava, Jan Koutnı́k, Bas R Steunebrink, and Jürgen Schmidhuber. Lstm:
A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10):
2222–2232, 2016.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

11

https://github.com/FlagOpen/FlagAttention
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. arXiv preprint arXiv:2104.02112, 2021.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Gregory Kamradt, 2023. URL https://github.com/gkamradt/LLMTest_
NeedleInAHaystack/blob/main/README.md.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Tobias Katsch. Gateloop: Fully data-controlled linear recurrence for sequence modeling. arXiv
preprint arXiv:2311.01927, 2023.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Eric Martin and Chris Cundy. Parallelizing linear recurrent neural nets over sequence length. arXiv
preprint arXiv:1709.04057, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

OpenAI, 2021. URL https://github.com/triton-lang/triton.

OpenAI, 2022. URL https://github.com/openai/tiktoken.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Teddy Ferdinan, Haowen Hou, Przemysław Kazienko, et al. Eagle and finch: Rwkv with
matrix-valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah A Smith, and Lingpeng Kong.
Random feature attention. arXiv preprint arXiv:2103.02143, 2021.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Zhen Qin, Songlin Yang, Weixuan Sun, Xuyang Shen, Dong Li, Weigao Sun, and Yiran Zhong.
Hgrn2: Gated linear rnns with state expansion. arXiv preprint arXiv:2404.07904, 2024a.

12

https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/README.md
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/blob/main/README.md
https://github.com/triton-lang/triton
https://github.com/openai/tiktoken


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhen Qin, Songlin Yang, and Yiran Zhong. Hierarchically gated recurrent neural network for se-
quence modeling. Advances in Neural Information Processing Systems, 36, 2024b.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

Xuyang Shen, Dong Li, Ruitao Leng, Zhen Qin, Weigao Sun, and Yiran Zhong. Scaling laws for
linear complexity language models. arXiv preprint arXiv:2406.16690, 2024.

Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. Simplified state space layers for
sequence modeling. arXiv preprint arXiv:2208.04933, 2022.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Together Computer. Redpajama: an open dataset for training large language models, 2023. URL
https://github.com/togethercomputer/RedPajama-Data.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Jos Van Der Westhuizen and Joan Lasenby. The unreasonable effectiveness of the forget gate. arXiv
preprint arXiv:1804.04849, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert
Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, et al. An empirical study of mamba-
based language models. arXiv preprint arXiv:2406.07887, 2024.

Wenhan Xiong, Jingyu Liu, Igor Molybog, Hejia Zhang, Prajjwal Bhargava, Rui Hou, Louis Martin,
Rashi Rungta, Karthik Abinav Sankararaman, Barlas Oguz, et al. Effective long-context scaling
of foundation models. arXiv preprint arXiv:2309.16039, 2023.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations of
linear attention mechanism, January 2024. URL https://github.com/sustcsonglin/
flash-linear-attention.

13

https://github.com/togethercomputer/RedPajama-Data
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://github.com/sustcsonglin/flash-linear-attention
https://github.com/sustcsonglin/flash-linear-attention


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training. arXiv preprint arXiv:2312.06635, 2023.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. arXiv preprint arXiv:2406.06484, 2024.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Jiajie Zhang Yuze He Ji Qi Lei Hou Jie Tang Yuxiao Dong Juanzi Li Yushi Bai, Xin Lv. Longalign:
A recipe for long context alignment of large language models. arXiv preprint arXiv:2401.18058,
2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Yu Zhang, Songlin Yang, Ruijie Zhu, Yue Zhang, Leyang Cui, Yiqiao Wang, Bolun Wang, Freda
Shi, Bailin Wang, Wei Bi, et al. Gated slot attention for efficient linear-time sequence modeling.
arXiv preprint arXiv:2409.07146, 2024.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based
multi-domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

A.1 MODEL AND TRAINING HYPERPARAMETERS

All models in the main experiment have roughly 760M non-embedding parameters. We do not share
the embedding parameters with the last linear layer. All models have a hidden dimension of 1536
and a head dimension of 128. As mentioned in the main text, we use θ = 500000 for RoPE. For
other hyperparameters, we use the default values in Flash Linear Attention (Yang & Zhang, 2024).

For the ablation experiments in Section 4.5, all models have roughly 125M non-embedding parame-
ters. The hidden dimension is 768 and the head dimension is 64. For other model hyperparameters,
we use the default values in Flash Linear Attention (Yang & Zhang, 2024). We use a linear learning
rate warmup from 0 to 3× 10−3 for the first 256 MiT and then a cosine decay schedule to 3× 10−4.
Other training related hyperparameters are the same as the 760M-parameter setting.

A.2 NEEDLE IN THE HAYSTACK DETAILS

We use the needle test in the LongAlign (Yushi Bai, 2024), which is adapted from the original needle
test reposiroty (Kamradt, 2023) for HuggingFace5 models. The prompt has the following structure:

[irrelevant context...]
What is the best thing to do in San Francisco? Answer: The best thing to
do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny
day.
[irrelevant context...]

There is an important piece of information hidden inside the above
document. Now that you’ve read the document, I will quiz you about it.
Answer the following question: What is the best thing to do in San
Francisco? Answer:

The results are scored by GPT-4o on a scale from 1 to 10.

B EXPLANATION ON THE RELATIONSHIP BETWEEN PER-TOKEN-LOSS SLOPE
AND CONTEXT UTILIZATION

To understand the relationship between the slope of the per-token loss and context utilization of
the model, we first point out that LongCrawl64 applies the preprocessing of randomly “rolling” the
sequences6 to remove any position bias. This means that when given contexts of the same length, the
difficulty of predicting tokens at different positions is roughly the same on average. For example,
predicting the 100-th tokens in the sequences only given the previous 90 tokens is roughly as difficult
as predicting the 90-th tokens when given the full previous 90-token context. Therefore, if L(100) <
L(90), it indicates that the first 10 tokens in the context contribute to the model’s predictions for the
100-th token; and larger the difference L(90)− L(100) is, the more these distant tokens contribute.
On the other hand, if L(100) is roughly the same L(90) (i.e., the graph of L(i) plateaus after i =
100), it means the first 10 tokens do not contribute to the model’s prediction for the 100-th token,
either because they are inherently not useful for this prediction or the model are unable to utilize
them.

In summary, the slope of L(i) at token position i reflects how much tokens from roughly i steps
earlier contribute to the model’s prediction at the current token position.

C HARDWARE-AWARE IMPLEMENTATION OF FORGETTING ATTENTION

In Algorithm 1, we provide the algorithm for computing the forward pass of Forgetting Attention
in a hardware-aware way. The algorithm is reproduced from Flash Attention 2 (Dao, 2023), with

5https://huggingface.co/
6Concretely, this can be implemented with np.roll with random shift value

15

https://huggingface.co/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the changes needed to implement Forgetting Attention added and highlighted. In this algorithm, we
assume that we pre-computed the cumulative sum c = cumsum(f), where f ∈ RN is a vector
that stacks the N forget gates values across the sequence dimension N . In practice, we implement
Forgetting Attention based on the Triton (OpenAI, 2021) Flash Attention implementation in Flag
Attention (FlagOpen, 2023).

We omit the backward pass since the changes involved are basically the same as the forward passes,
except that we also need to compute the gradients for c and then f .

Algorithm 1 Forgetting Attention forward pass

Require: Matrices Q,K,V ∈ RN×d, vector c ∈ RN in HBM, block sizes Bc, Br.

1: Divide Q into Tr =
⌈

N
Br

⌉
blocks Q1, . . . ,QTr of size Br × d each, and divide K,V in to

Tc =
⌈

N
Bc

⌉
blocks K1, . . . ,KTc and V1, . . . ,VTc , of size Bc × d each.

2: Divide the output O ∈ RN×d into Tr blocks Oi, . . . ,OTr
of size Br × d each, and divide the

logsumexp L into Tr blocks Li, . . . , LTr
of size Br each.

3: Let cq = c. Devide cq into Tr blocks cq1, . . . , c
q
Tr

4: Let ck = c. Devide ck into Tc blocks ck1 , . . . , c
k
Tr

5: for 1 ≤ i ≤ Tr do
6: Load Qi, cqi from HBM to on-chip SRAM.

7: On chip, initialize O
(0)
i = (0)Br×d ∈ RBr×d, ℓ

(0)
i = (0)Br

∈ RBr ,m
(0)
i = (−∞)Br

∈
RBr .

8: for 1 ≤ j ≤ Tc do
9: Load Kj ,Vj , ckj from HBM to on-chip SRAM.

10: On chip, compute S
(j)
i = QiK

T
j ∈ RBr×Bc .

11: On chip, compute D
(j)
i = cqi1

⊤ − 1(ckj )
⊤ ∈ RBr×Bc .

12: On chip, compute S
(j)
i = S

(j)
i +D

(j)
i ∈ RBr×Bc .

13: On chip, compute m
(j)
i = max(m

(j−1)
i , rowmax(S

(j)
i )) ∈ RBr , ∓̃(j)

i = exp(S
(j)
i −

m
(j)
i ) ∈ RBr×Bc (pointwise), ℓ(j)i = em

j−1
i −m

(j)
i ℓ

(j−1)
i + rowsum(∓̃(j)

i ) ∈ RBr .
14: On chip, compute O

(j)
i = init(em

(j−1)
i −m

(j)
i )−1O

(j−1)
i + ∓̃(j)

i Vj .
15: end for
16: On chip, compute Oi = init(ℓ

(Tc)
i )−1O

(Tc)
i .

17: On chip, compute Li = m
(Tc)
i + log(ℓ

(Tc)
i ).

18: Write Oi to HBM as the i-th block of O.
19: Write Li to HBM as the i-th block of L.
20: end for
21: Return the output O and the logsumexp L.

D ADDITIONAL RESULTS

D.1 LONG-INIT FOR DATA-DEPENDENT FORGET GATE

In Figure 5, we show the effect of using long-init for the data-dependent forget gate. As shown in
the figure, long-init even damages performance.

D.2 ADDITIONAL NEEDLE-IN-THE-HAYSTACK RESULT

In Figure 6, we show the results of the needle test for HGRN2 and DeltaNet. Note they perform
even worse than Mamba-2 shown in the main text.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 20000 40000 60000
Token index i

2.3

2.4

2.5

2.6

2.7

Lo
ss

 L
(i

)

data-dep
data-dep, Tmax = 256

data-dep, Tmax = 2048

data-dep, Tmax = 16384

Figure 5: Using long-init for data-dependent forget gate. The per-token loss curve is smoothed with
a moving average sliding window of 1001 tokens. The vertical dashed line indicates the training
context length.

10
00

41
00

72
00

10
30

0
13

40
0

16
50

0
19

60
0

22
70

0
25

80
0

28
90

0
32

00
0

Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

D
ep

th
 P

er
ce

nt

HGRN2

2

4

6

8

10

Sc
or

e

10
00

41
00

72
00

10
30

0
13

40
0

16
50

0
19

60
0

22
70

0
25

80
0

28
90

0
32

00
0

Token Limit

0.0
10.0
20.0
30.0
40.0
50.0
60.0
70.0
80.0
90.0

100.0

D
ep

th
 P

er
ce

nt

DeltaNet

2

4

6

8

10

Sc
or

e

Figure 6: Needle-in-the-haystack analysis for HGRN2 and DeltaNet. The results are scored on a
scale of 1 (red) to 10 (green). The vertical dashed line indicates the training context length.

17


	Introduction
	Background: Linear attention with a forget gate
	Linear Attention
	Linear Attention with a forget gate

	Forgetting Transformer
	Empirical study
	Experimental setup
	Long-context language modeling
	Needle in the Haystack
	Downstream tasks
	Ablations

	Related work
	Conclusion
	Experimental details
	Model and training hyperparameters
	Needle in the haystack details

	Explanation on the relationship between per-token-loss slope and context utilization
	Hardware-aware implementation of Forgetting Attention
	Additional results
	Long-init for data-dependent forget gate
	Additional needle-in-the-haystack result


