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evgenii.nikishin@mila.quebec

Xu Owen He†
MakerMaker AI
owen.hexu@gmail.com

Aaron Courville
Mila & Université de Montréal
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ABSTRACT

An essential component of modern recurrent sequence models is the forget gate.
While Transformers do not have an explicit recurrent form, we show that a
forget gate can be naturally incorporated into Transformers by down-weighting
the unnormalized attention scores in a data-dependent way. We name this at-
tention mechanism Forgetting Attention and the resulting model the Forgetting
Transformer (FoX). We show that FoX outperforms the Transformer on long-
context language modeling, length extrapolation, and short-context downstream
tasks, while performing on par with the Transformer on long-context down-
stream tasks. Moreover, it is compatible with the FlashAttention algorithm and
does not require any positional embeddings. Several analyses, including the
needle-in-the-haystack test, show that FoX also retains the Transformer’s supe-
rior long-context capabilities over recurrent sequence models such as Mamba-
2, HGRN2, and DeltaNet. We also introduce a “Pro” block design that incor-
porates some common architectural components in recurrent sequence models
and find it significantly improves the performance of both FoX and the Trans-
former. Our code is available at https://github.com/zhixuan-lin/
forgetting-transformer.

1 INTRODUCTION

Despite the growing interest in reviving recurrent sequence models (Gu et al., 2021; Peng et al.,
2021; Yang et al., 2023; Gu & Dao, 2023; Sun et al., 2023; De et al., 2024; Qin et al., 2024b; Dao &
Gu, 2024; Peng et al., 2024; Beck et al., 2024; Zhang et al., 2024), these models still underperform
the Transformer (Vaswani et al., 2017) in terms of long-context capabilities (Hsieh et al., 2024;
Waleffe et al., 2024; Shen et al., 2024; Qin et al., 2024a), likely due to their relatively small fixed-
sized hidden states (Jelassi et al., 2024). While the Transformer excels in handling long-context
information, it lacks an explicit mechanism for forgetting past information in a data-dependent way.
Such a mechanism – often implemented as some form of the forget gate (Gers et al., 2000) – is
ubiquitous in recurrent sequence models and has proven critical in their success in short-context
tasks (Greff et al., 2016; Van Der Westhuizen & Lasenby, 2018; Peng et al., 2021; Yang et al., 2023;
Gu & Dao, 2023). A natural question to ask is then: can we have a forget gate in Transformers?

To address this question, we leverage an important fact: many recurrent sequence models with a
forget gate can be written in a parallel linear attention form (Katharopoulos et al., 2020) analogous
to softmax attention (Yang et al., 2023; Dao & Gu, 2024). In this parallel form, the forget gate
mechanism translates into down-weighing the unnormalized attention scores in a data-dependent
way. Our key insight is that this exact mechanism is also applicable to softmax attention. We name
this attention mechanism Forgetting Attention and the resulting model the Forgetting Transformer
(FoX).

∗Correspondence to Zhixuan Lin.
†Work done while at Google DeepMind.
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We show that FoX outperforms the Transformer on long-context language modeling, length ex-
trapolation, and short-context downstream tasks, while performing on par with the Transformer on
long-context downstream tasks. Notably, it does not require any positional embeddings. It also re-
tains Transformers’ long-context retrieval abilities and achieves near-perfect accuracy in the needle-
in-the-haystack test (Kamradt, 2023) within the training context length. In contrast, all the tested
recurrent sequence models fail. We also introduce a “Pro” block design that integrates several archi-
tectural components commonly used in recurrent sequence models, which significantly improves the
performance of FoX and the baseline Transformer. Finally, we show that FoX can be implemented
in a hardware-aware way with a simple modification to the FlashAttention (Dao, 2023) algorithm.

2 BACKGROUND: LINEAR ATTENTION WITH A FORGET GATE

This section introduces the notation used in this work and gives a brief background on linear at-
tention. We also introduce a gated variant of linear attention and discuss its parallel form, which
naturally leads to FoX. Throughout this work, we only consider causal sequence modeling.

2.1 LINEAR ATTENTION

Standard causal softmax attention takes a sequence of input vectors (xi)
L
i=1 and produces a sequence

of output vectors (oi)
L
i=1, where xi;oi 2 Rd; i 2 f1; : : : ; Lg. Each oi is computed as follows:

qi;ki;vi = Wqxi;Wkxi;Wvxi 2 Rd; (1)

oi =

Pi
j=1 kexp(qi;kj)vjPi
j=1 kexp(qi;kj)

=

Pi
j=1 exp(q⊤

i kj)vjPi
j=1 exp(q⊤

i kj)
; (2)

where Wq;Wk;Wv 2 Rd×d are projection matrices and kexp(q;k) = exp(q⊤k) is the exponential
dot product kernel.1

Linear attention (Katharopoulos et al., 2020) replaces the exponential dot product kernel
kexp(q;k) = exp(q⊤k) with a kernel k�(q;k) with some feature representation � : Rd ! (R+)d

0
:

oi =

Pi
j=1 k�(qi;kj)vjPi
j=1 k�(qi;kj)

=

Pi
j=1(�(qi)

⊤�(kj))vjPi
j=1 �(qi)⊤�(kj)

(3)

Following Yang et al. (2023), we call this the parallel form of linear attention as it can be computed
with matrix multiplications. Alternatively, linear attention can be computed in a recurrent form:

St = St−1 + vt�(kt)
⊤ (4)

zt = zt−1 + �(kt) (5)

ot =
St�(qt)

z⊤
t �(qt)

; (6)

where St 2 Rd×d0 ; zt 2 Rd0 ; t 2 f0; : : : ; Lg are computed recurrently, with S0 = 0 and zt = 0.

2.2 LINEAR ATTENTION WITH A FORGET GATE

The recurrent form of linear attention makes it natural to introduce a forget gate. Specifically, we
can compute a scalar forget gate ft = �(w⊤

f xt + bf ) 2 R at each timestep, where � is the sigmoid
function and wf 2 Rd; bf 2 R are learnable parameters. The recurrent computation is then:

St = ftSt−1 + vt�(kt)
⊤ (7)

zt = ftzt−1 + �(kt) (8)

ot =
St�(qt)

z⊤
t �(qt)

: (9)

1Note we omit the 1√
d

scaling factor to reduce visual clutter. In practice we always scale q⊤
i kj by 1√

d
.
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Note that this gated variant of linear attention differs from most models in the literature. In particular,
most gated variants of linear attention models, such as GLA (Yang et al., 2023) and Mamba-2 (Dao
& Gu, 2024), do not have the normalization term (i.e., there is no zt, and the output is just ot =
St�(qt)). We keep the normalization term to maintain similarity with softmax attention.

Crucially, similar to the normalization-free version derived in GLA and Mamba-2, we can show that
this gated variant of linear attention also has a parallel form:

oi =

Pi
j=1 Fij�(qi)

⊤�(kj)vjPi
j=1 Fij�(qi)⊤�(kj)

=

Pi
j=1 Fijk�(qi;kj)vjPi
j=1 Fijk�(qi;kj)

; (10)

where Fij =
Qi
l=j+1 fl, with the convention that Fij = 1 if i = j. Our key observation is that

Equation 10 and the softmax attention in Equation 2 are very similar in form. In fact, if we change
the kernel k� in Equation 10 back to the exponential dot product kernel kexp, we obtain softmax
attention with a forget gate. We introduce this formally in the next section.

3 FORGETTING TRANSFORMER

Our proposed model, the Forgetting Transformer (FoX), features a modified softmax attention
mechanism with a forget gate. We name this attention mechanism Forgetting Attention. Similar
to the gated variant of linear attention introduced in the previous section, we first compute a scalar
forget gate ft = �(w⊤

f xt + bf ) 2 R for each timestep t. The output of the attention is then

oi =

Pi
j=1 Fij exp(q⊤

i kj)vjPi
j=1 Fij exp(q⊤

i kj)
=

Pi
j=1 exp(q⊤

i kj +Dij)vjPi
j=1 exp(q⊤

i kj +Dij)
; (11)

where Fij =
Qi
l=j+1 fl and Dij = logFij =

Pi
l=j+1 log fl. This can be written in matrix form:

D = log F 2 RL×L; (12)

O = softmax(QK⊤ + D)V 2 RL×d; (13)

where F 2 RL×L is a lower triangular matrix whose non-zero entries are Fij , i.e., Fij = Fij
if i � j and 0 otherwise. We adopt the convention that log 0 = �1. Q;K;V ;O 2 RL×d are
matrices containing qi;ki;vi;oi; i 2 f1; : : : ; Lg as the rows. The softmax operation is applied row-
wise. For multi-head attention with H heads, we maintain H instances of forget gate parameters
fw(h)

f gHh=1 and fb(h)
f gHh=1 and compute the forget gate values ff (h)

t gHh=1 separately for each head.

Hardware-aware implementation The logit bias form on the rightmost side of Equation 11 can
be computed with a simple modification to the FlashAttention (Dao, 2023) algorithm. Here we
briefly describe the forward pass. The backward pass follows a similar idea. First, we compute the
cumulative sum ci =

Pi
l=1 log fl for i 2 f1; : : : ; Lg and store it in the high-bandwidth memory

(HBM) of the GPU. This allows us to compute Dij = ci � cj easily later. Whenever we compute
the attention logit q⊤

i kj in the GPU’s fast shared memory (SRAM) (as in FlashAttention), we also
load ci and cj to SRAM, compute Dij , and add it to the attention logit. The rest of the forward pass
remains the same as FlashAttention. This algorithm avoids instantiating the L� L D matrix in the
HBM. We provide a detailed algorithm description in Appendix E. Moreover, since the forget gates
are scalars instead of vectors, the additional computation and parameters introduced are negligible.

Connection to ALiBi Besides its natural connection to gated linear attention, Forgetting Attention
can also be seen as a data-dependent and learnable version of ALiBi (Press et al., 2021). ALiBi
applies a data-independent bias bij = �(i� j)mh to the attention logits, where mh is a fixed slope
specific to each head h. It is easy to show that ALiBi is equivalent to using a fixed, head-specific,
and data-independent forget gate f (h)

t = exp(�mh). In Section 4.5, we verify the superiority of
data-dependent forget gates over ALiBi.

Positional embeddings Though we find that using Rotary Position Embeddings (RoPE) (Su et al.,
2024) sometimes slightly improves the performance of FoX, it is not necessary as it is for the stan-
dard Transformer (see ablations in Section 4.5). For simplicity, we do not use RoPE or any other
positional embeddings for FoX by default.
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Figure 1: Default architecture of FoX. (left) A single FoX block. (right ) A single FoX (Pro) layer.
All RMSNorms on the right are applied independently to each head.� is the sigmoid function.
 is
element-wise multiplication.ShiftLinear implements the computation in Equation 14.

Architecture design We test FoX with two different architectures. First, we replace RoPE in
the LLaMA architecture (Touvron et al., 2023) with forget gates and refer to this model asFoX
(LLaMA). Second, we test an improved “Pro” architecture with output gates2 and output normaliza-
tion (also used in GLA and Mamba-2). We also use QK-norm (Dehghani et al., 2023) and apply a
simpli�ed variant of data-dependent token shift (Peng et al., 2024) to the keys and values (KV-shift).
Concretely, the keys(k i )L

i =1 are computed as follows with additional parametersw k 2 Rd:

~k t = W k x t 2 Rd; � key
t = � (w >

k x t ) 2 R

k t = RMSNorm( � key
t

~k t � 1 + (1 � � key
t )~k t )

(14)

The values(v i )L
i =1 are computed in the same way, but without RMSNorm. The overall architecture

is shown in Figure 1 and detailed in Appendix A. We refer to the resulting model asFoX (Pro).

4 EMPIRICAL STUDY

The advantages of Transformers in long-context abilities over recurrent sequence models have been
veri�ed multiple times (Hsieh et al., 2024; Waleffe et al., 2024; Shen et al., 2024; Qin et al., 2024a).
However, forget gates introduce arecency bias. It is thus natural to ask whether FoX still maintains
this advantage. Therefore, our empirical study places a special focus on long-context capabilities.

4.1 EXPERIMENTAL SETUP

Dataset and baselines We focus on long-context language modeling and train all models on
LongCrawl64 (Buckman, 2024), a long-sequence subset of RedPajama-v2 (Together Computer,
2023) pre-tokenized with the TikToken tokenizer (OpenAI, 2022) for GPT-2 (Radford et al., 2019).
For baselines, we focus on two types of comparisons. First, we compare FoX with the Transformer.
For the Transformer, we also test both the LLaMA and the Pro architecture (referred to asTrans-
former (LLaMA)andTransformer (Pro), respectively). Similar to Xiong et al. (2023), we �nd it
crucial to use a large RoPE angle� for the Transformer for long-context training. Following Xiong
et al. (2023) we use� = 500000. Second, to show the advantage of FoX over recurrent sequence
models in long-context capabilities, we compare it with Mamba-2 (Dao & Gu, 2024), HGRN2 (Qin
et al., 2024a), and DeltaNet (Yang et al., 2024). The implementation of all models is based on the
Flash Linear Attention repository (Yang & Zhang, 2024).

Training setup For our main experiments, we train models with760M (non-embedding) parame-
ters on a45� 230-token (roughly48B tokens) subset of LongCrawl64 with a training context length

2When output gates are used, we reduce the number of parameters in the MLPs so the total number of
parameters remains the same.
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Figure 2: (left) Per-token lossL(i ) at different token positioni . (right ) Validation perplexityP(l)
over different validation context lengthl . The vertical dashed line indicates the training context
length. The per-token loss is smoothed using a moving average sliding window of101tokens.

of 16384tokens. For the validation set, we use a2 � 230-token subset of the LongCrawl64 held-out
set with sequences of65536tokens. We choose a longer validation context length than the training
context length to test the length extrapolation abilities of the models. All models are trained with
AdamW (Loshchilov, 2017) with(� 1; � 2) = (0 :9; 0:95). We use a linear learning rate warmup from
0 to the peak learning rate for the �rst256� 220 tokens and then a cosine decay to0. Each training
batch contains0:5 � 220 tokens. All models use a weight decay of0:1 and gradient clipping of1:0.
We search the learning rate for each model withinf 1 � 10i ; 2 � 10i ; 5 � 10i g for differenti 's until
we identify a locally optimal value. We tune the head dimensions for FoX and the Transformer in
f 64; 128g. We �nd thatFoX often prefers higher learning rates and more heads/smaller head dimen-
sions than the Transformer, and the Pro models often prefer higher learning rates than the LLaMA
models. Details of the hyperparameters and experimental setup can be found in Appendix B.

4.2 LONG-CONTEXT LANGUAGE MODELING

Metrics For our main metric, we useper-tokenloss on the validation set at different token posi-
tions. To be precise, letV be the vocabulary size,y ( j )

i 2 f 0; 1gV be the one-hot vector encoding
the language modeling target for thei -th token in thej -th validation sequence, andp( j )

i 2 RV be
the corresponding output probabilities of the model, then the per-token lossL(i ) at token positioni
is de�ned asL(i ) = 1

M

P M
j =1 � log[(p( j )

i )> y ( j )
i ], whereM is the number of validation sequences.

The per-token loss is particularly meaningful for understanding the long-context capabilities of a
model. Informally, a monotonically decreasingL(i ) with a steep slope indicates the model is using
the full context well. On the other hand, ifL (i ) plateaus after some token positionk, it indicates
the model struggles to use tokens that arek tokens away from the current token position for its
prediction. This correspondence between the slope ofL (i ) and the model's context utilization is
explained in more detail in Appendix C.

Besides per-token loss, we also report perplexity over different context lengths. Concretely, perplex-
ity P(l) over a context lengthl is de�ned asP(l) = exp( 1

l

P l
i =1 L(i )) . We warn the readers that

the slope ofP(l) is less meaningful. SinceP(l) is the exponential of the cumulative average ofL (i ),
even ifL (i ) plateaus after some token positionk, P(l) may still keep decreasing afterk, giving the
wrong impression that the model can make use of the part of the context that isk tokens away.

Results In Figure 2, we show the per-token lossL(i ) at different token indicesi and perplexity
P(l) over different validation context lengthsl . As shown in Figure 2, with either architecture,
FoX outperforms the standard Transformer both within and beyond (i.e., length extrapolation) the

5



Published as a conference paper at ICLR 2025

Figure 3: Visualization of the forget gate weight matrixF and the attention score matrixA from
two heads in different layers. SinceA is very sparse, we only show entries with scores larger than
0:1. These results use FoX (Pro). More examples can be found in Appendix F.10.

training context length. Similar to the Transformer, it maintains a monotonically decreasing per-
token losswithin the training context length, indicating that it utilizes the entire training context for
its prediction. In contrast, the per-token loss curves of all recurrent sequence models start �attening
at around5k tokens and plateau after10k tokens. This indicates that these recurrent models struggle
to use the full context effectively for their prediction. In terms of theabsolutevalues of the loss and
perplexity, FoX (Pro) also clearly outperforms HGRN2, DeltaNet and Mamba-2.

Visualization of forget gate values and attention map In Figure 3, we visualize the forget gate
weight matrixF and the attention scoresA = softmax( QK > +log F ) from two heads in different
layers. The head on the left-hand side exhibits strong decay, and most entries ofF are close to zero;
accordingly, the attention focuses on local entries. The head on the right-hand side has much weaker
decay, and the attention is distributed across the entire context. This shows that FoX can learn to
retain information across long contexts when necessary.

4.3 NEEDLE IN THE HAYSTACK

The needle-in-the-haystack test (Kamradt, 2023) is a popular test for the long-context retrieval abil-
ities of language models. Besides the standard mode where the “needle” only includes the answer to
be retrieved, we also use an “easy mode” (Qin et al., 2024a) where the “needle” placed in the context
includes both the question and the answer. This easy mode is particularly suitable for base models
that have not been instruction-tuned. Full details, including the prompts used, are in Appendix B.3.

In Figure 4, we show the results for different models. HGRN2 performs even worse than Mamba-2
and we leave it to Appendix F.5. As shown in Figure 4, FoX achieves near-perfect needle retrieval
within the training context lengthin all cases. Transformer (Pro) and Transformer (LLaMA) also
have perfect accuracy within the training context length in the easy mode, though they sometimes
fail in the standard mode.3 In contrast, Mamba-2 and DeltaNet (and also HGRN2 in Appendix F.5)
perform poorly even within the training context length. FoX (Pro), FoX (LLaMA), and Transformer
(Pro) also partially extrapolate beyond the training context length. This is expected given their
per-token loss pattern beyond the training context length (see Figure 2). However, we �nd that
the extrapolation behaviors of these models could be hyperparameter-dependent. For example, in
Figure 5, we show that for FoX (Pro), the needle retrieval results and the per-token loss slope beyond
the training context length vary depending on the number of training tokens and learning rates. In
particular, we �nd thatmore training tokens often leads toworseextrapolation, indicating that the
models may be gradually “over�tting” to their training context length during training.

4.4 DOWNSTREAM TASKS

We use two sets of downstream tasks: a set of short-context tasks from LM-evaluation-harness (Gao
et al., 2024) and a set of long-context tasks from LongBench (Bai et al., 2023).

3Note these are small models without instruction-tuning. We expect that with more parameters/training
tokens or instruction-tuning Transformers should also have perfect accuracy within the training context length.
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Figure 4: Needle-in-the-haystack analysis for different models. We show results for the easy mode
on the left and the standard mode on the right. The results are scored on a scale of1 to 10 by GPT-
4o-2024-08-06. The vertical dashed line indicates the training context length.

Figure 5: FoX (Pro) easy mode needle-in-the-haystack results and per-token loss for different num-
bers of training tokens and learning rates. The vertical dashed line indicates the training context
length. More results can be found in Appendix F.7.

Table 1: Evaluation results on LM-eval-harness. All models have roughly760M non-embedding pa-
rameters and are trained on roughly48B tokens on LongCrawl64. “acc-n” means length-normalized
accuracy. Bold and underlined numbers indicate the best and the second best results, respectively.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ Avg
ppl# ppl# acc" acc" acc-n" acc" acc" acc-n" acc" acc-n" acc" acc" "

FoX (Pro) 23.04 14.91 42.75 64.09 38.39 52.33 52.23 26.54 71.0029.80 85.10 46.57 50.88
Transformer (Pro) 24.12 16.16 41.47 64.04 36.60 49.72 51.98 25.26 62.00 29.20 82.80 60.86 50.39
FoX (LLaMA) 26.45 18.27 40.17 63.44 35.17 51.78 49.66 25.09 69.00 28.00 81.90 54.0449.82
Transformer (LLaMA) 28.14 22.34 38.27 63.22 34.20 49.49 47.98 24.49 66.00 29.40 78.90 58.9349.09
Mamba-2 28.20 21.05 36.50 63.17 35.86 50.59 49.96 25.60 71.00 31.00 80.90 57.49 50.21
HGRN2 30.57 20.14 38.60 63.49 34.94 51.78 50.13 25.51 66.00 30.00 75.60 58.41 49.45
DeltaNet 29.17 29.14 34.27 62.73 33.28 50.28 47.39 24.32 70.0029.00 74.30 54.37 47.99
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Table 2: Evalution results on LongBench. All models have roughly760M non-embedding parame-
ters and are trained on roughly48B tokens on LongCrawl64. Bold and underlined numbers indicate
the best and the second-best results, respectively.

Model

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
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QM
Sum

M
ult
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TREC
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aQ
A
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Sum
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C

Rep
oB
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ch

-P

FoX (Pro) 13.38 18.88 28.73 15.27 25.39 6.49 22.71 13.51 12.27 63.5 37.36 22.74 10.9 9.1
Transformer (Pro) 11.42 21.54 22.89 19.58 22.65 6.09 21.92 10.7 8.11 55.0 40.67 30.66 10.79 14.25
FoX (LLaMA) 10.47 14.81 24.71 13.03 21.58 5.25 20.05 10.97 4.86 61.5 34.48 19.13 7.69 8.12
Transformer (LLaMA) 11.11 13.5 21.52 9.42 21.33 4.32 18.53 8.43 10.9951.5 28.41 19.17 8.21 14.06
Mamba-2 10.65 11.26 16.98 11.59 16.69 5.0 9.31 11.22 10.89 28.5 15.6 16.19 12.07 15.17
HGRN2 8.78 10.94 18.66 7.78 15.29 4.32 6.13 12.19 7.83 16.5 14.46 6.3718.17 16.62
DeltaNet 9.36 9.76 16.49 6.57 15.09 2.76 8.19 12.3 7.62 35.5 17.57 18.42 12.24 3.94

Figure 6: Per-token loss given different model sizes, numbers of training tokens, and training context
lengths. At each token indexi , we report the averaged loss over a window of101centered ati . We
only show results within the training context length to reduce visual clutter. See Appendix F.6 for
additional results, including length extrapolation and 125M-parameter model results.

Short-context tasks We use Wikitext (Merity et al., 2016), LAMBADA (Paperno et al., 2016),
PiQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), WinoGrande (Zellers et al., 2019), ARC-
easy, ARC-challenge (Clark et al., 2018), Copa (Roemmele et al., 2011), SciQA (Auer et al., 2023),
OpenbookQA (Mihaylov et al., 2018), and BoolQA (Clark et al., 2019). Following Yang et al.
(2023), we report perplexity for Wikitext and LAMBADA, length-normalized accuracy for Hel-
laSwag, ARC-challenge, and OpenbookQA, and accuracy for all other tasks (we also report accuracy
for LAMBADA). All results are zero-shot. As shown in Table 1, FoX outperforms the Transformer
with either architecture. FoX (Pro) performs the best among all models.

Long-context tasks We use14tasks from LongBench: HotpotQA (Yang et al., 2018), 2WikiMul-
tihopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022), MultiFieldQA-en, NarrativeQA (Ko�cisk�y
et al., 2018), Qasper (Dasigi et al., 2021), GovReport (Huang et al., 2021), QMSum (Zhong et al.,
2021), MultiNews (Fabbri et al., 2019), TriviaQA (Joshi et al., 2017), SAMSum (Gliwa et al., 2019),
TREC (Li & Roth, 2002), LCC (Guo et al., 2023), and RepoBench-P (Liu et al., 2023). We use the
default metrics of LongBench for different tasks, which are either F1, Rough-L, accuracy, or edit
similarity. As shown in Table 2, with either architecture, FoX performs on par with the Transformer
and better than the recurrent sequence models.

4.5 ANALYSES

We present three sets of analyses. First, we study how the advantages of FoX over the Transformer
vary with model size and training context length. Second, we investigate the contribution of each
component in FoX and how RoPE affects performance. Finally, we study the importance of using
a forget gate that is data-dependent. For these experiments, we use either760M-parameter models
trained on roughly16B tokens or360M-parameter models trained on roughly7:5B tokens. Experi-
mental details can be found in Appendix B.
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Table 3: Ablation experiments for FoX. We use360M-parameter models trained on7:5B tokens on
LongCrawl64. The perplexity is measured over a validation context length of16384tokens. For the
bottom half, all addition (+) or removal (-) of components are relative to FoX (Pro).

Model RoPE Forget gate QK-norm Output gate Output norm KV-shift Perplexity

Transformer (LLaMA) w/o RoPE 29.30
Transformer (LLaMA) 3 7.49

3 3 7.19
FoX (LLaMA) 3 7.25

3 3 7.08
3 3 3 6.88
3 3 3 3 6.80

FoX (Pro) 3 3 3 3 3 6.62

- QK-norm 3 3 3 3 6.79
- output gate 3 3 3 3 6.86
- output norm 3 3 3 3 6.69
- KV-shift 3 3 3 3 6.80
+ RoPE 3 3 3 3 3 3 6.63
- forget gate + RoPE (i.e. Transformer (Pro)) 3 3 3 3 3 6.82
- forget gate 3 3 3 3 7.40

Figure 7: Data-dependent forget gate (data-dep) vs. data-independent (data-indep) and �xed forget
gate. (left andmiddle-left) Comparison using the LLaMA architecture. (middle-right andright )
Comparison using the Pro architecture. We use360M-parameter models trained on roughly7:5B
tokens on LongCrawl64. All per-token loss curves are smoothed with a moving average sliding
window of1001tokens. The vertical dashed line indicates the training context length.

Model size and training context length In Figure 6, we show the per-token loss for two different
model sizes (trained on different numbers of tokens) and several training context lengths for FoX
(Pro) and Transformer (Pro). As shown in Figure 6, the advantages of FoX over Transformer (1)
increase as we increase the training context length and (2) decrease as we increase the model size
(and training tokens). This indicates that the advantages of having a forget gate might depend on the
ratio between the model size and the training context length, as larger models can better model long
contexts, and thus forgetting may be less important. We also note that long-context training damages
short-context performance, which is a known effect (Ren et al., 2024; Sun et al., 2024) likely due to
reduced document diversity within training batches.

Component analysis We present both (1) an “incremental” style analysis where we incrementally
add/remove components from Transformer (LLaMA) to obtain the complete FoX (Pro) model and
(2) a “perturbation” style analysis where we add/remove components from FoX (Pro). The results
are shown in Table 3. First, as mentioned previously, adding RoPE to FoX (LLaMA) and FoX (Pro)
results in minor and no improvement, respectively. Second, both types of analyses show that all
components in FoX contribute positively. Also note that models that use neither forget gates nor
RoPE perform poorly (the �rst and the last row of the table).

Data-independent and �xed forget gates To show the importance of using a forget gate that is
data-dependent, we test a data-independentforget gatef (h)

t = � (b(h) ), where the superscript(h)
means for theh-th head. We also test a forget gate that has �xed values (i.e.,f (h)

t = � (b(h) ),
but we do not updateb(h) ). As mentioned in Section 3, using a �xed forget gate is equivalent to
ALiBi. For these data-independent forget gate designs, we �nd it crucial to initializeb(h) properly.
In particular, we intializef b(h) gH

h=1 for theH heads with two hyperparameterTmin andTmax such
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that using �xed forget gates with(Tmin ; Tmax ) is equivalent to ALiBi with a minimum slope 1
Tmax

and a maximum slope1
Tmin

. This initialization method is detailed in Appendix D.

In Figure 7, we show the per-token loss of different forget gate designs with the LLaMA and the Pro
architecture. For the data-independent and the �xed forget gate designs, we setTmin = 2 and test
different values ofTmax . As shown in Figure 7, a data-dependent forget gate always has the best
performance.

5 RELATED WORK

Recurrent sequence models There has been a growing interest in reviving recurrent sequence
models (Katharopoulos et al., 2020; Peng et al., 2021; Gu et al., 2021; Orvieto et al., 2023; Yang
et al., 2023; Gu & Dao, 2023; Katsch, 2023; De et al., 2024; Sun et al., 2024; Peng et al., 2024; Qin
et al., 2024a; Dao & Gu, 2024; Beck et al., 2024; Zhang et al., 2024; Buckman et al., 2024). Many
recent recurrent sequence models feature some form of theforget gate, which has been shown to
be essential in these architectures (Qin et al., 2024b; Gu & Dao, 2023; Yang et al., 2023). Notably,
GLA (Yang et al., 2023) and Mamba-2 (Dao & Gu, 2024) show that gated variants of linear attention
could be written in a form similar to softmax attention, which directly inspired our work. Several
works (Ma et al., 2022; 2024; Ren et al., 2024) combine recurrent layers with quadratic attention.
However, unlike our method – which embeds the forget gate into the attention mechanism – in these
hybrid architectures, the recurrent layers and the quadratic attention layers are independent.

Related improvements and alternatives to softmax attention Several positional embedding
methods (Press et al., 2021; Raffel et al., 2020; Chi et al., 2022a;b) add bias terms to the attention
logits based on the distances between the keys and queries, which can implement data-independent
decay. LAS-attention (Zimerman & Wolf) applies multiplicative exponential decay to the attention
logits. RoPE (Su et al., 2024) also has a similar decay effect that becomes stronger with increas-
ing relative query/key distances. However, all these methods can only achieve data-independent
decay based on the relative distances between the queries and keys. CoPE (Olsson et al., 2022)
and Selective Attention (Leviathan et al., 2024) modify the current timestep's attention logit based
on the sum of transformed logits from some previous timesteps. Our method differs from these in
various aspects. For example, in our approach, there is no need to compute sums of transformed
logits, which may come with several issues such as potential incompatibility with FlashAttention.
Geometric attention (Csordás et al., 2021) and stick-breaking attention (Tan et al., 2024) use a stick-
breaking process to compute the attention scores, which has a similar data-dependent decay effect
to our method. These methods explore in a different direction from ours, as they seek to develop
alternatives to softmax attention while our approach is only an improvement on softmax attention.

6 CONCLUSION

We propose the Forgetting Transformer (FoX), a Transformer variant with a forget gate. Our ex-
periments show that FoX outperforms the Transformer and several recurrent sequence models on
long-context language modeling and various downstream tasks. We also show that our Pro block
design greatly outperforms the basic LLaMA architecture, with or without a forget gate. We there-
fore recommend that future work adopt FoX (Pro) and Transformer (Pro) as baselines in addition to
the commonly used LLaMA architecture.

We discuss several limitations of our work and potential future work. First, due to our limited
computing resources, our main experiments only use models up to 760M parameters, 48B tokens,
and a training context length of16384tokens. Thus, an important direction for future work is to test
FoX at larger scales. Second, we only consider causal sequence modeling in this work. It would
be interesting to extend Forgetting Attention to the non-causal case. Finally, we could potentially
prune computation (e.g., KV-cache eviction) adaptively based on the forget gate values, which may
greatly reduce training and inference costs.
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A DETAILED FOX (PRO) LAYER COMPUTATION

We describe the computation of a FoX (Pro) layer (depicted in Figure 1 right) in detail. Each FoX
layer takes an input sequence(x i )L

i =1 2 Rd and produces an output sequence(y i )L
i =1 2 Rd. We

�rst describe the computation for the single head case with head dimensiondhead. For each time step
t, we �rst compute the keyk t 2 Rdhead, queryqt 2 Rdhead, valuev t 2 Rdhead, forget gatef t 2 R, and
output gategt 2 Rdhead as follows:

qt = RMSNorm( W qx t ) (15)
~k t = W k x t ; � key

t = � (w >
k x t ) 2 R (16)

k t = RMSNorm( � key
t

~k t � 1 + (1 � � key
t )~k t ) (17)

~v t = W v x t ; � value
t = � (w >

v x t ) 2 R (18)

v t = � value
t ~v t � 1 + (1 � � value

t ) ~v t (19)

f t = � (w >
f x t + bf ) 2 R (20)

gt = � (W gx t ): (21)
This is followed by the computation of the attention output:

oi =

P i
j =1 exp(q>

i k j + D ij )v j
P i

j =1 exp(q>
i k j + D ij )

2 Rdhead (22)

whereD ij =
P i

l = j +1 log f l with D ii = 0 for anyi . We then apply the output normalization, output
gate, and the �nal output projection:

y i = W o(RMSNorm(oi ) � gi ) 2 Rd: (23)
For the multi-head case, each headh maintains an independent copy of the parameters and com-
putes its output sequence(y (h)

i )L
i =1 independently. All RMSNorms are also applied independently

to each head.4 y (h)
i 's from different heads are then summed together to obtain the �nal outputy i .

Note that similar to the standard Transformer, even though the computation and parameters of dif-
ferent heads are conceptually independent, most computations can be implemented equivalently by
properly splitting/concatenating the intermediate vectors/weight matrices of different heads.

B EXPERIMENTAL DETAILS

B.1 MODEL AND TRAINING HYPERPARAMETERS

Con�guration nlayers dmodel dhead Peak learning rate

760M params / 48B tokens 24 1536 64 for FoX, 128 for Transformer See Table 5
760M params / 16B tokens 24 1536 64 for FoX, 128 for Transformer1 � 10� 3

360M params / 7.5B tokens 24 1024 64 2 � 10� 3

125M params / 2.7B tokens 12 768 64 2 � 10� 3

Table 4: Hyperparameters for different con�gurations. The head dimensiondhead is only applicable
to FoX and the Transformer. We tunedheadfor the 760M-parameter FoX and Transformer models in
f 64; 128g. nlayer counts the number ofblocks. For example, for the Transformer each block contains
an attention layer and an MLP layer.

We list the hyperparameters for different training con�gurations used in this work in Table 4. For
FoX and Transformer, we follow the HuggingFace LLaMA initialization and initialize all linear
layer weights and embedding parameters withN (0; 0:022). Other hyperparameters are either men-
tioned in the main text (Section 4.1) or follow the default values in the Flash Lienar Attention repos-
itory (Yang & Zhang, 2024)5. Note that our main experiments use the 760M-parameter/48B-token

4For the QK-norm implementation, we accidentally shared a single set ofdhead RMSNorm scaling pa-
rameters across different heads in each layer for our experiments (normally there should be one set ofdhead

parameters foreachhead). We have veri�ed that this has no observable impact on performance.
5Commit1c5937eeeb8b0aa17bed5ee6dae345b353196bd4 .
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Model Learning rate

FoX (Pro) 2 � 10� 3

Transformer (Pro) 1 � 10� 3

FoX (LLaMA) 1 � 10� 3

Transformer (LLaMA) 5 � 10� 4

Mamba-2 2 � 10� 3

HGRN2 2 � 10� 3

DeltaNet 1 � 10� 3

Table 5: Peak learning rates for different models for the 760M-parameter/48B-token main experi-
ments. These are tuned using a gridf 1 � 10i ; 2 � 10i ; 5 � 10i g with different values ofi .

con�guration. The other three con�gurations are for ablation studies and additional analyses. For
the 760M-parameter/48B-token experiments, we tune the learning rate for each model. We also tune
the head dimension for each Transformer and FoX model, along with learning rates. For the other
three con�gurations used for ablation studies and additional analyses, the learning rates are tuned
for Transformer (LLaMA) for the 16k training context length setting and transferred to other models
and training context lengths. The head dimensions for these three settings are tuned for Transformer
(LLaMA) and FoX (LLaMA) for the 16k training context length setting and transferred to Trans-
former (Pro) and FoX (Pro) and other training context lengths. The optimal hyperparameters are
chosen based on the average training loss over the last512 � 220 (or 512M) tokens. Note that
each token is only visited once by the models during training, so there is no fundamental difference
between the training and validation loss.

We donot share the parameters between the embedding layer and the output layer. Following the
original LLaMA architecture, no bias terms are used in linear layers, except for forget gates.6 Weight
decay is not applied to RMSNorm parameters and bias terms in linear layers (again, only used for
forget gates) or convolution layers. We usebfloat16 mixed-precision training for all models.

B.2 MODEL PARAMETERS, ESTIMATED FLOPS, AND THROUGHPUT

We report the number of (non-embedding) parameters, estimated FLOPs, and training throughput
in Table 6. For the recurrent models, we estimate FLOPs using their recurrent form for simplic-
ity. Note that the FlashAttention kernels for FoX (Pro), Transformer (Pro), and FoX (LLaMA)
are implemented in Triton by us on top of Flag Attention (FlagOpen, 2023) without signi�cant
optimization, while Transformer (LLaMA) uses the of�cial FlashAttention implementation (Dao,
2023)) in CUDA. Also, we did not focus on optimizing the ef�ciency of components such as QK-
norm and KV-shift. We expect these four models to have similar throughput if they are properly
optimized. Since we use a long training context length compared to model size, recurrent models
have a signi�cant advantage in theoretical FLOPs due to their linear complexity. Though an exact
FLOPs-matched comparison would be interesting, it will require recalibrating the scaling law for
the long-context setting and is beyond the scope of this work.

Model Params Forward FLOPs/token Formula for FLOPs/token Throughput (tokens/sec)

FoX (Pro) 759M 2:72� 109 2N + 2nlayerdmodelL 27k
Transformer (Pro) 757M 2:72� 109 2N + 2nlayerdmodelL 30k
FoX (LLaMA) 757M 2:72� 109 2N + 2nlayerdmodelL 30k
Transformer (LLaMA) 756M 2:72� 109 2N + 2nlayerdmodelL 38k
Mamba-2 780M 1:65� 109 2N + 20nlayerdmodeldstate 44k
HGRN2 756M 1:54� 109 2N + 5nlayerdmodeldhead 46k
DeltaNet 757M 1:54� 109 2N + 6nlayerdmodeldhead 48k

Table 6: Number of parameters, estimated forward pass FLOPs per token, formulas for FLOPs esti-
mation, and training throughput in tokens per second for different models. Throughput is measured
on 4 NVIDIA L40S GPUs.N is the number of parameters andL is the training context length.

6In preliminary small-scale experiments, we do not �nd bias terms in forget gates to matter for performance
in a statistically signi�cant way. We keep it as it might be useful in some cases.
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B.3 NEEDLE IN THE HAYSTACK DETAILS

Our needle-in-the-haystack test is based on LongAlign (Bai et al., 2024), which is adapted from
the original needle test repositoty (Kamradt, 2023) for HuggingFace7 models. The prompt for the
standard mode has the following structure:

[irrelevant context...]
The best thing to do in San Francisco is eat a sandwich and sit in
Dolores Park on a sunny day.
[irrelevant context...]

There is an important piece of information hidden inside the above
document. Now that you've read the document, I will quiz you about it.
Answer the following question: What is the best thing to do in San
Francisco? Answer: The best thing to do in San Francisco is

The easy mode is the same, except the needle placed within the context also includes the question:

[irrelevant context...]
What is the best thing to do in San Francisco? Answer: The best thing to
do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny
day.
[irrelevant context...]

There is an important piece of information hidden inside the above
document. Now that you've read the document, I will quiz you about it.
Answer the following question: What is the best thing to do in San
Francisco? Answer: The best thing to do in San Francisco is

The results are scored by GPT-4o-2024-08-06 on a scale from1 to 10.

C EXPLANATION ON THE RELATIONSHIP BETWEEN PER-TOKEN-LOSS SLOPE

AND CONTEXT UTILIZATION

To understand the relationship between the slope of the per-token loss and context utilization of
the model, we �rst point out that LongCrawl64 applies the preprocessing of randomly “rolling” the
sequences8 to remove any position bias. This means thatwhen given contexts of the same length,
the dif�culty of predicting tokens at different positions is roughly the same in expectation.9 For
example, in expectation, predicting the100-th token in a sequencegiven only the previous90tokens
as the contextis roughly as dif�cult as predicting the90-th token given the full previous90-token
context. Therefore, ifL (100) < L (90), it indicates that the �rst10 tokens in the context contribute
to the model's predictions for the100-th token; and larger the differenceL(90) � L (100) is, the
more these distant tokens contribute. On the other hand, ifL (100) is roughly the sameL(90) (i.e.,
the graph ofL (i ) plateaus afteri = 100), it means the �rst10tokens do not contribute to the model's
prediction for the100-th token, either because they are inherently not useful for this prediction or
the model are unable to utilize them.

In summary, the slope ofL (i ) at token positioni re�ects how much tokens from roughlyi steps
earlier contribute to the model's prediction at the current token position.

D DATA -INDEPENDENT FORGET GATE INITIALIZATION

To understand our initialization for the �xed forget gate and the data-independent forget gate, we �rst
de�ne a functionT(b) = 1

� log � (b) . This function is de�ned such that� (b)T (b) = 1=eis always true

7https://huggingface.co/
8Concretely, this can be implemented withnp.roll with random shift value.
9Note that even without random rolling, given the same number of previous tokens as the context, the

dif�culty of token prediction at different positions may still remain relatively uniform.
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(i.e.,T(b) is the timesteps needed to achieve a decay of1=e). We then initializeb(h) = b(h)
init such that

T(b(h)
( init) ) = exp(log Tmin +(log Tmax � logTmin ) h� 1

H � 1 ), whereTmin andTmax are hyperparameters
andH is the number of heads. For example, ifh = 4 and(Tmin ; Tmax ) = (2 ; 128), then we have
(T(b(1)

init ); T(b(2)
init ); T(b(3)

init ); T(b(4)
init )) = (2 ; 8; 32; 128). As mentioned in the main text, A �xed forget

gate with(Tmin ; Tmax ) is equivalent to ALiBi with a minimum slope 1
Tmax

and a maximum slope
1

Tmin
. We also tested this initialization for the data-dependent forget gate but did not �nd it useful, so

we simply initializef b(h) gH
h=1 to zero for the data-dependent forget gate. For the data-independent

and �xed forget gate, zero initialization performs extremely poorly.

E HARDWARE-AWARE IMPLEMENTATION OF FORGETTINGATTENTION

Algorithm 1 Forgetting Attention Forward Pass

Require: MatricesQ; K ; V 2 RN � d, vectorc 2 RN in HBM, block sizesBc, B r .

1: Divide Q into Tr =
l

N
B r

m
blocksQ1; : : : ; QTr of sizeB r � d each, and divideK ; V in to

Tc =
l

N
B c

m
blocksK 1; : : : ; K Tc andV1; : : : ; VTc , of sizeBc � d each.

2: Divide the outputO 2 RN � d into Tr blocksO1; : : : ; OTr of sizeB r � d each, and divide the
logsumexpL into Tr blocksL 1; : : : ; L Tr of sizeB r each.

3: Let cq = c. Devidecq into Tr blockscq
1; : : : ; cq

Tr

4: Let ck = c. Devideck into Tc blocksck
1 ; : : : ; ck

Tc

5: for 1 � i � Tr do
6: LoadQ i , cq

i from HBM to on-chip SRAM.

7: On chip, initializeO (0)
i = (0) B r � d 2 RB r � d; ` (0)

i = (0) B r 2 RB r ; m(0)
i = ( �1 )B r 2

RB r .
8: for 1 � j � Tc do
9: LoadK j ; Vj , ck

j from HBM to on-chip SRAM.

10: On chip, computeS ( j )
i = Q i K T

j 2 RB r � B c .

11: On chip, computeD ( j )
i = cq

i 1> � 1(ck
j )> 2 RB r � B c .

12: On chip, computeS ( j )
i = S ( j )

i + D ( j )
i 2 RB r � B c .

13: On chip, computeS ( j )
i = mask(S ( j )

i ; i; j ) 2 RB r � B c .
14: On chip, computem( j )

i = max( m( j � 1)
i ; rowmax(S ( j )

i )) 2 RB r , ~P ( j )
i = exp( S ( j )

i �

m( j )
i ) 2 RB r � B c (pointwise),̀ ( j )

i = em ( j � 1)
i � m ( j )

i ` ( j � 1)
i + rowsum( ~P ( j )

i ) 2 RB r .

15: On chip, computeO ( j )
i = diag( em ( j � 1)

i � m ( j )
i ) � 1O ( j � 1)

i + ~P ( j )
i Vj .

16: end for
17: On chip, computeO i = diag( ` (Tc )

i ) � 1O (Tc )
i .

18: On chip, computeL i = m(Tc )
i + log( ` (Tc )

i ).
19: Write O i to HBM as thei -th block ofO.
20: Write L i to HBM as thei -th block ofL .
21: end for
22: Return the outputO and the logsumexpL.

In Algorithm 1 and 2, we provide the algorithms for computing the forward pass and backward
pass of Forgetting Attention in a hardware-aware way. The algorithm is reproduced from the
FlashAttention-2 paper (Dao, 2023), with the changes needed to implement Forgetting Attention
added and highlighted. In this algorithm, we assume that we pre-computed the cumulative sums
c = cumsum(log f ). Themaskoperation properly sets some entries of its �rst operand to�1 to
satisfy the causality requirement. Note for the backward pass for ease of presentation we combine
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Algorithm 2 Forgetting Attention Backward Pass

Require: MatricesQ; K ; V ; O; dO 2 RN � d in HBM, vectorc; dc 2 RN , vectorL 2 RN in
HBM, block sizesBc, B r .

1: Divide Q into Tr =
l

N
B r

m
blocksQ1; : : : ; QTr of sizeB r � d each, and divideK ; V in to

Tc =
l

N
B c

m
blocksK 1; : : : ; K Tc andV1; : : : ; VTc , of sizeBc � d each.

2: Divide O into Tr blocks O1; : : : ; OTr of size B r � d each, dividedO into Tr blocks
dO1; : : : ; dOTr of sizeB r � d each, and divideL into Tr blocksL i ; : : : ; L Tr of sizeB r each.

3: Initialize dQ = (0) N � d in HBM and divide it intoTr blocksdQ1; : : : ; dQTr
of sizeB r � d

each. DividedK ; dV 2 RN � d in to Tc blocksdK 1; : : : ; dK Tc anddV 1; : : : ; dV Tc , of size
Bc � d each.

4: Let cq = ck = c. Devidecq into Tr blockscq
1; : : : ; cq

Tr
. Devideck into Tc blocksck

1 ; : : : ; ck
Tc

.

5:
Let dcq = dck = (0) N . Devidedcq into Tr blocksdcq

1; : : : ; dcq
Tr

. Devidedck into Tc blocks
dck

1 ; : : : ; dck
Tc

.

6: ComputeD = rowsum( dO � O) 2 Rd (pointwise multiply), writeD to HBM and divide it
into Tr blocksD1; : : : ; DTr of sizeB r each.

7: for 1 � j � Tc do
8: LoadK j ; Vj , ck

j from HBM to on-chip SRAM.

9: Initialize dK j = (0) B c � d; dV j = (0) B c � d on SRAM.
10: for 1 � i � Tr do
11: LoadQ i ; O i ; dO i ; dQ i ; L i ; D i , cq

i from HBM to on-chip SRAM.

12: On chip, computeS ( j )
i = Q i K T

j 2 RB r � B c .

13: On chip, computeD ( j )
i = cq

i 1> � 1(ck
j )> 2 RB r � B c .

14: On chip, computeS ( j )
i = S ( j )

i + D ( j )
i 2 RB r � B c .

15: On chip, computeS ( j )
i = mask(S ( j )

i ; i; j ) 2 RB r � B c .
16: On chip, computeP ( j )

i = exp( Sij � L i ) 2 RB r � B c .
17: On chip, computedV j  dV j + ( P ( j )

i )> dO i 2 RB c � d.
18: On chip, computedP ( j )

i = dO i V >
j 2 RB r � B c .

19: On chip, computedS ( j )
i = P ( j )

i � (dP ( j )
i � D i ) 2 RB r � B c .

20: LoaddQ i from HBM to SRAM, then on chip, updatedQ i  dQ i + dS ( j )
i K j 2 RB r � d,

and write back to HBM.

21: Loaddcq
i from HBM to SRAM, then on chip, updatedcq

i  dcq
i + dS ( j )

i 1 2 RB r , and
write back to HBM.

22: On chip, computedK j  dK j + dS ( j )
i

>
Q i 2 RB c � d.

23: On chip, computedck
j  dck

j � dS ( j )
i

>
1 2 RB c .

24: end for
25: Write dK j ; dV j , dck

j to HBM.

26: end for
27: Computedc = dcq + dck .

28: ReturndQ; dK ; dV , dc .

the computation ofdK ; dV ; dck and the computation ofdQ; dcq in a single algorithm, but in
practice these are computed in two different kernels for implementation simplicity.
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Figure 8: Per-token loss for the incremental-style ablation studies presented in Section 4.5. All
models are roughly360M parameters and are trained on roughly7:5B tokens on LongCrawl64. The
vertical line indicates the training context length.

In practice, we implement Forgetting Attention based on the Triton (OpenAI, 2021) FlashAttention
implementation in Flag Attention (FlagOpen, 2023).

F ADDITIONAL RESULTS

F.1 PER-TOKEN LOSS FOR THE ABLATION STUDIES

In Figure 8 and Figure 9 we show the per-token loss for the ablation studies presented in Table 3
in Section 4.5. Transformer (LLaMA) without RoPE performs extremely poorly and we show it
separately in Figure 10.

F.2 TRANSFORMER(PRO) ABLATION

In Figure 11, we present a small-scale ablation study using Transformer (Pro) in the 125M-
parameter/2.7B-token setting. We start with Transformer (LLaMA) and add one component at a
time. Notably, we �nd that QK-norm seems to be helpful for length extrapolation.

F.3 SHORT-CONTEXT TRAINING ON SLIM PAJAMA

To complement our main results in which we perform long-context training on LongCrawl64, we
have also run short-context training on the more commonly used SlimPajama dataset (Soboleva
et al., 2023). We follow the 340M-parameter/15B-token/2k-context-length setting in Yang et al.
(2024). We also use the same hyperparameters and tokenizer as Yang et al. (2024). We train FoX
and Transformer with both the LLaMA and the Pro architecture. We also test Mamba-2, the strongest
recurrent sequence model in our main results.

We show the per-token loss of tested models in Figure 12 and downstream task evaluation results in
Table 7. We use the same set of tasks as Yang et al. (2024) so our results can be directly compared
to those of Yang et al. (2024). As shown in the results, in this short-context training setting FoX
(LLaMA) does not have an advantage over the Transformer (LLaMA) except for length extrapo-
lation, while FoX (Pro) still outperforms Transformer (Pro) in language modeling loss and down-
stream tasks. Note that these are small-scale experiments without extensive hyperparameter tuning
(e.g., learning rate), so the results might not transfer to larger scales with proper hyperparameter
tuning for each model.
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Figure 9: Per-token loss for the perturbation-style ablation studies presented in Section 4.5. All
models are roughly360M parameters and are trained on roughly7:5B tokens on LongCrawl64. The
vertical line indicates the training context length.

Figure 10: Removing RoPE from Transformer (LLaMA) results in poor performance. All models
are roughly360M parameters and are trained on roughly7:5B tokens on LongCrawl64. The vertical
line indicates the training context length.

Figure 11: Incremental style ablation study for Transformer (Pro). All models are roughly125M
parameters and are trained on roughly2:7B tokens on LongCrawl64. The vertical line indicates the
training context length.
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Figure 12: Results on SlimPajama with a training context length of2048tokens. All models have
roughly 340M non-embedding parameters and are trained on roughly15B tokens on SlimPajama.
The vertical line indicates the training context length.

Table 7: Evaluation results on LM-eval-harness for models trained on SlimPajama with a training
context length of2048tokens. All models have roughly340M non-embedding parameters and are
trained on roughly15B tokens on SlimPajama. “acc-n” means length-normalized accuracy. Bold
and underlined numbers indicate the best and the second best results, respectively. Note the results
for Transformer++ and DeltaNet are from Yang et al. (2024). Note that Transformer++ from Yang
et al. (2024) and Transformer (LLaMA) in our work have exactly the same architecture.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c Avg
ppl# ppl# acc" acc" acc-n" acc" acc" acc-n" "

Transformer++ (Yang et al., 2024) 28.39 42.69 31.00 63.30 34.00 50.40 44.50 24.2041.23
DeltaNet (Yang et al., 2024) 28.24 37.37 32.10 64.80 34.30 52.20 45.80 23.20 42.07

FoX (Pro) 25.69 31.98 35.82 65.61 36.39 51.07 45.79 25.09 43.29
Transformer (Pro) 25.92 31.93 35.01 65.02 36.09 50.51 46.42 23.38 42.74
FoX (LLaMA) 27.86 43.26 32.56 64.80 34.59 50.12 45.12 23.3841.76
Transformer (LLaMA) 27.98 35.25 32.31 63.71 34.89 48.07 45.33 23.7241.34
Mamba-2 27.51 41.32 29.83 65.94 35.95 50.20 45.45 23.72 41.85
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Figure 13: Additional comparison with Samba and Transformer-SWA. (left) Per-token lossL(i ) at
different token positioni . (right ) Validation perplexityP(l) over different validation context length
l . All models have760M parameters and are trained on roughly16B tokens. The vertical dashed
line indicates the training context length. The per-token loss is typically noisy, so we smooth the
curve using a moving average sliding window of101tokens. In this plot1k = 1024.

Table 8: Evaluation results on LM-eval-harness. All models have roughly760M non-embedding pa-
rameters and are trained on roughly16B tokens on LongCrawl64. “acc-n” means length-normalized
accuracy. Bold and underlined numbers indicate the best and the second best results, respectively.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c COPA OBQA SciQA BoolQ Avg
ppl# ppl# acc" acc" acc-n" acc" acc" acc-n" acc" acc-n" acc" acc" "

FoX (Pro) 28.10 23.67 36.93 61.64 33.44 49.72 47.94 23.98 65.00 26.80 80.40 57.49 48.33
Transformer (Pro) 28.17 24.63 36.17 61.53 33.46 50.28 47.81 24.15 67.00 28.40 77.90 55.72 48.24
FoX (LLaMA) 31.03 28.41 34.89 61.21 32.27 50.51 46.68 24.06 67.00 29.60 77.30 61.07 48.46
Transformer (LLaMA) 32.33 34.41 32.41 60.94 31.68 49.96 45.62 23.63 64.00 28.6074.00 60.06 47.09
Samba 31.71 27.78 34.25 60.45 32.88 51.70 49.03 24.32 61.00 28.20 78.80 60.58 48.12
Transformer-SWA (LLaMA) 33.63 33.04 33.15 60.01 31.83 51.14 46.93 23.38 62.00 27.40 76.70 54.6246.72
Mamba-2 33.26 42.38 27.29 60.83 32.03 50.67 46.21 23.55 64.00 28.40 76.70 57.6146.73

F.4 ADDITIONAL COMPARISON WITH SLIDING WINDOW ATTENTION AND SAMBA

In this section, we compare the standard Transformer, FoX, and Mamba-2 with a sliding-window-
attention-based Transformer (Transformer-SWA). We also compare with Samba (Ren et al., 2024),
a hybrid architecture combining sliding window attention and Mamba. Both Transformer-SWA and
Samba use a window size of2048. For these experiments, we use the 760M-parameter/16B-token
con�guration in Table 4. Note that as mentioned in Section B, all models in this con�guration use
the same learning rate that is tuned for Transformer (LLaMA), so the results might not be optimal
for other models. We show the per-token loss, easy-mode needle-in-the-haystack experiment, short-
context downstream task results, and long-context task results in Figure 13, Figure 14, Table 8, and
Table 9, respectively. Though both Transformer-SWA and Samba perform well on short-context
tasks, they show an early plateau in the per-token loss, which indicates that they struggle to utilize
the long context. Accordingly, they perform poorly in the needle-retrieval task.

F.5 ADDITIONAL NEEDLE-IN-THE-HAYSTACK RESULTS

In Figure 15, we show the results of the needle test for HGRN2 in the 760M-parameter/48B-token
setting.
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Table 9: Evalution results on LongBench. All models have roughly760M non-embedding parame-
ters and are trained on roughly16B tokens on LongCrawl64. Bold and underlined numbers indicate
the best and the second best results, respectively.

Model

Single-Document QA Multi-Document QA Summarization Few-shot Learning Code
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FoX (Pro) 10.48 12.98 20.62 6.87 16.2 5.48 27.51 10.15 9.27 63.5 26.97 18.02 6.34 3.4
Transformer (Pro) 8.67 13.92 22.45 9.36 14.21 5.16 19.88 10.66 12.23 52.0 30.18 25.53 8.37 10.72
FoX (LLaMA) 9.48 15.55 17.13 5.26 15.78 3.78 21.95 10.59 8.63 29.0 19.16 10.07 6.93 9.89
Transformer (LLaMA) 8.44 10.08 18.77 6.09 14.47 3.98 11.83 11.52 12.94 23.5 18.46 16.04 8.27 13.5
Samba 6.33 10.89 15.86 5.1 11.28 2.79 9.42 11.39 10.88 28.5 16.07 2.8 11.65 14.26
Transformer-SWA (LLaMA) 8.46 8.59 16.65 6.9 13.84 4.03 7.47 12.87 10.0 12.0 14.92 5.1 16.16 14.22

Figure 14: Easy mode needle-in-the-haystack analysis for FoX, the Transformer, Mamba-2, Samba,
and the Transformer with sliding window attention. These are 760M-parameter models trained on
16B tokens on LongCrawl64. The results are scored on a scale of1 (red) to10 (green) by GPT-4o.
The vertical dashed line indicates the training context length.

Figure 15: Needle-in-the-haystack analysis for HGRN2. The results are scored on a scale of1 (red)
to 10 (green) by GPT-4o. The vertical dashed line indicates the training context length.
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Figure 16: Results with 125M-parameter models trained on roughly 2.7B tokens. (left) Per-token
lossL(i ) at different token positioni . (right ) Validation perplexityP(l) over different validation
context lengthl . The vertical dashed line indicates the training context length. The per-token loss is
typically noisy, so we smooth the curve using a moving average sliding window of101 tokens. In
this plot1k = 1024.

F.6 ADDITIONAL RESULTS WITH 125M-PARAM/2.7B-TOKEN, 360M-PARAM/7.5B-TOKEN,
AND 760M-PARAM/16B-TOKEN TRAINING CONFIGURATIONS

Besides our main results with 760M-parameter model trained on 48B tokens, we also report
per-token loss results with 125M-parameter/2.7B-token, 360M-parameter/7.5B-token, and 760M-
parameter/16B-token training con�gurations in this section. The hyperparameters used are given in
Appendix B and Table 4. Note that, as mentioned in Appendix B, the learning rates for these experi-
ments are tuned for Transformer (LLaMA) for the 16k training context length setting and transferred
to other models and training context lengths, so the reported results may not be optimal for some
models (e.g., FoX typically prefers higher learning rates than the Transformer).

Per-token loss for different models in the main experiment In Figure 16, Figure 17, and Fig-
ure 18, we show the per-token loss for different models given a training context length of 16k tokens
for the 125M-parameter/2.7B-token, 360M-parameter/7.5B-token, and 760M-parameter/16B-token
training con�gurations, respectively. These results are consistent with the 760M-parameter/48B-
token results in Figure 2.

Per-token loss for different training context lengths In Figure 19, Figure 20, and Figure 21, we
show the per-token loss for the FoX and Transformer models given different training context lengths
for the 125M-parameter/2.7B-token, 360M-parameter/7.5B-token, and 760M-parameter/16B-token
training con�gurations, respectively. Consistent with the results in Figure 4.5, we see that the advan-
tages of FoX over the Transformer (1) reduce for larger models and (2) increase for longer training
context lengths.

F.7 SENSITIVITY OF LENGTH EXTRAPOLATION BEHAVIORS TO HYPERPARAMETERS

This section presents more results on the sensitivity of length extrapolation behaviors to hyperpa-
rameters, in addition to our results in Section 4.3 and Figure 5. Figure 22 and Figure 23 show the
easy-mode and standard-mode needle retrieval results for FoX (Pro) and Transformer (Pro) with dif-
ferent numbers of training tokens and learning rates. Figure 24 shows the corresponding per-token
loss curves. As shown in these results, length extrapolation is sensitive to hyperparameters.
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Figure 17: Results with 360M-parameter models trained on roughly 7.5B tokens. (left) Per-token
lossL(i ) at different token positioni . (right ) Validation perplexityP(l) over different validation
context lengthl . The vertical dashed line indicates the training context length. The per-token loss is
typically noisy, so we smooth the curve using a moving average sliding window of101 tokens. In
this plot1k = 1024.

Figure 18: Results with 760M-parameter models trained on roughly 16B tokens. (left) Per-token
lossL(i ) at different token positioni . (right ) Validation perplexityP(l) over different validation
context lengthl . The vertical dashed line indicates the training context length. The per-token loss is
typically noisy, so we smooth the curve using a moving average sliding window of101 tokens. In
this plot1k = 1024.
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Figure 19: Per-token loss given different training context lengths for the 125M-parameter/2.7B-
token setting. (left) Results for the LLaMA models. (right ) Results for the Pro models. At each
token indexi , we report the averaged loss over a window of101centered ati .

Figure 20: Per-token loss given different training context lengths for the 350M-parameter/7.5B-
token setting. (left) Results for the LLaMA models. (right ) Results for the Pro models. At each
token indexi , we report the averaged loss over a window of101centered ati .

Figure 21: Per-token loss given different training context lengths for the 760M-parameter/16B token
setting. (left) Results for the LLaMA models. (right ) Results for the Pro models. At each token
indexi , we report the averaged loss over a window of101centered ati .
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Figure 22: FoX (Pro) and Transformer (Pro) easy mode needle-in-the-haystack results for different
numbers of training tokens and learning rates. The vertical dashed line indicates the training context
length.
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Figure 23: FoX (Pro) and Transformer (Pro) standard mode needle-in-the-haystack results for dif-
ferent numbers of training tokens and learning rates. The vertical dashed line indicates the training
context length.
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