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CNRS, Aix-Marseille University (AMSE)

Maria Kleshnina
Queensland University of Technology

Manuel Staab
University of Queensland

September 19, 2025

1 Abstract

This paper analyses how inequality in endowments and social structure jointly affect individuals’ ability
to cooperate. Individuals repeatedly invest in a local public good (“cooperation”) in an environment
that is described by a distribution of endowments and a network of beneficiaries. We measure the co-
operativeness of an environment by the minimum discount factor needed to sustain (any) cooperation in
equilibrium. We characterise the endowment distribution that maximises cooperativeness for any given
network and the corresponding minimum discount factor. The latter is shown to be inversely proportional
to the maximal index of the graph describing the network. The corresponding Perron eigenvalue of the
adjacency matrix characterises the most cooperative income distribution. Moreover, we show that if an
environment maximises cooperativeness (over all income distributions and networks of a certain size),
then the network is described by a nested split graphs. We further show that this is the same class of
graphs that maximise welfare for any given discount factor, and yet, the most cooperative graph need not
be equal to the most efficient.

2 Overview

Cooperation in social dilemmas - situations where efficiency requires individuals to overcome an incen-
tive to free-ride - often relies on the threat of mutual defection (so-called ‘trigger strategies’) (Ellison,
1994; Wolitzky, 2013). It is well-understood that for this to be effective, the value placed on future in-
teractions needs to be sufficiently high (Fudenberg and Maskin, 1986). However, asymmetries in who
benefits from an individual’s cooperation, and inequality in the resources individuals can contribute, in-
fluence the effectiveness of such punishment. The focus of this paper is to analyse how asymmetries in
social structure and resources interact. We analyse an indefinitely repeated public goods game played on
a network. Individuals can invest their endowments in the production of a local public good that benefits
their neighbours. Individuals (potentially) differ in network position and endowments. We deliberately
exclude other possible sources of inequality to get a tractable model of the interaction between social
structure and endowment inequality. In particular, individuals have access to the same production and
monitoring technology.1 We focus on two aspects: (i) the cooperativeness of an environment, which we

1Kinateder and Merlino (2017) examine heterogeneity in production technology in endogenous networks and Wolitzky
(2013) analyses (heterogeneous) network monitoring.
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measure by the minium discount factor (or continuation probability) needed to sustain positive contribu-
tions to the public good in a subgame perfect equilibrium. And (ii), the efficiency, meaning the maximum
utilitarian welfare that can be achieved in equilibrium (for a given discount factor).
To gain some intuition, suppose all individuals have an identical number of neighbours, meaning the
network is described by a regular graph. Then individuals are homogeneous in their network position.
We might reasonably conjecture that an endowment distribution that maximises cooperativeness and/or
efficiency must be equally homogeneous. If, however, a network is heterogeneous, cooperativeness and
efficiency might be higher if endowments somehow reflect this heterogeneity. We characterise exactly
how these forms of heterogeneity relate at the optimum: cooperativeness is maximised if endowments
(or contributions) correspond to the eigenvector centrality of players. Even though the benefits from co-
operation are only conferred upon neighbours, this result implies that the properties of the entire network
determine cooperativeness, not just direct relations. A player can have more neighbours than another,
and yet lower centrality. To maximise cooperativeness, players with higher centrality, not (just) higher
degree, should have larger endowments. We use this result to show that both the most cooperative as
well as the most efficient graphs belong to the class of of nested split graphs.2 These graphs have distinct
hierarchy levels with the neighbourhoods Ni and Nj of any two vertices i, j ordered by set inclusion in
the sense that Ni \ {j} ⊂ Nj \ {i}, or Ni \ {j} ⊃ Nj \ {i} (or both). This has important implications
for how inequality in network structure and endowments interact. We show that inequality on both di-
mensions can be strictly beneficial for both cooperativeness and welfare.

Model basics. There are n individuals, described by the set N , who interact repeatedly. In any given
round, an individual i receives an endowment ei ≥ 0 and decides what fraction xi ∈ [0, 1] of the en-
dowment to invest in the production of a local public good (‘level of cooperation’), and what fraction to
consume. The vector e describes the endowments of all i ∈ N . Individuals interact on an undirected
network which characterises who benefits from each investment. It is described by an adjacency matrix
G = (gij)1≤i,j≤n, which is used synonymously with the graph it represents. The production technology
of the local public good is linear and identical across individuals. Each individual receives a (constant)
marginal benefit b from their own investment, as well as all the investments of their neighbours. An
individual i’s payoff in a given round is

πi(x, e, G) = b
(
xiei +

∑
j∈N

gijxjej
)
+ (1− xi)ei.

The interactions recur indefinitely, with a probability δ ∈ (0, 1) that interactions continue after each
round. The network and the endowments are constant across time.
A history of play in a round t, denoted by h(t) = {x(1),x(2), ...,x(t − 1)}, contains the investment
choices of all individuals in the network prior to t. We initially assume that this is common knowledge
among players, meaning monitoring is public and global. Let H(t) denote the set of possible histories in
a round t, and H the set of all possible histories of any length. A (pure) strategy of player i specifies an
investment choice for every element of H. Such a strategy is a (subgame perfect) Nash equilibrium if
for every player i and history h ∈ H, the continuation strategy for player i is optimal given the strategies
of all other players. Given the global monitoring assumption and the structure of the game, it is straight-
forward to show that all individuals are willing to contribute their entire endowment in equilibrium for

2Nested split graphs have, for instance, been shown to emerge in settings where networks form endogenously (Kinateder
and Merlino, 2017; König et al., 2014) and in games on networks with local complementarities (Belhaj et al., 2016).
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at least some strategy if and only if:

δ ≥ (1− b)ei
b
∑

j ̸=i gijej
, ∀i ∈ N. (1)

As we are interested in social dilemmas, we restrict attention to cases where individuals have an incentive
to free-ride, yet investing in the public good is utility maximising between any two individuals, i.e., we
assume 1/2 < b < 1. We define the minimum discount factor needed for (1) to hold for an individual
i in an environment (e, G) as δmin

i (e, G) = (1−b)ei
b
∑

j ̸=i gijej
. The minimum discount factor for which all

individuals are willing to contribute their entire endowment in at least some equilibrium is

δmin(e, G) = max
i∈N

δmin
i (e, G) = max

i∈N

(1− b)ei
b
∑

j ̸=i gijej
. (2)

The smallest δmin across all possible endowment distributions is

δmin(G) = min
e∈int(∆n−1)

δmin(e, G) = min
e∈int(∆n−1)

max
i∈N

(1− b)ei
b
∑

j ̸=i gijej
, (3)

where int(∆n−1) is the interior of the (n − 1)–simplex. We refer to δmin(e, G) as the cooperative-
ness of an environment (e, G). If δmin(e, G) < δmin(e′, G′), then (e, G) allows for full contributions
in equilibrium for a strictly larger range of discount factors. We say (e, G) is more cooperative than
(e′, G′).
Welfare is defined as the sum of individual utilities. For a particular round t, it can be expressed as a
function of contributions, endowments, and the network:

w(x(t), e, G) =
∑
i

πi(x(t), e, G) =
∑
i

ei
(
1 + xi(t)(bdi − 1)

)
.

The (discounted) welfare across all periods is

W ({x(t)}∞t=1, e, G, δ
)
= (1− δ)

∞∑
t=1

δt−1w(x(t), e, G).

We call an equilibrium efficient if its equilibrium (on-path) contribution sequence {x∗(t)}∞t=1 max-
imises discounted welfare, i.e., W ({x∗(t)}∞t=1, e, G, δ) = sup{W ({x(t)}∞t=1, e, G, δ) : {x(t)}∞t=1 ∈
X (e, G, δ)}, with X (e, G, δ) the set of all (on-path) equilibrium contribution sequences given endow-
ments e, network G, and discount factor δ.

Key results.

• The most cooperative endowment distribution e∗ for a network G is such that for every individ-
ual i, their endowment e∗i is proportional to their eigenvector centrality. The vector e∗ is equal
to the Perron eigenvector and the minimum discount factor is δmin(G) = 1−b

b
1

λmax , where λmax is
the Perron eigenvalue of G.

• We show that the most cooperative and most efficient graph among all graphs with a given
number of nodes and links is a nested split graph. For a given δ, the most efficient graph might
differ from the most cooperative one.
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Figure 1: Graphs with 4 vertices and 4 edges. G′ is a nested split graph. It is most cooperative
(δmin(G′) ≈ 0.23 > δmin(G) = 0.25, and most efficient for all δ ≥ δmin(G′).

• We derive an upper bound on the cooperativeness for any network of a given size. For any δ
below this threshold, no positive cooperation is possible for any graph of that size.

• We show that efficiency demands income transfers from the poorest to the richest individuals
relative to the most cooperative environment.

Example. Suppose there are 4 individuals (labelled A-D) and they have a total of 4 connections among
them. Figure 1 shows two different graphs representing such networks. G is regular (the circle), where
each individual has the same degree of 2. The adjacency matrix has a maximal eigenvalue equal to the
degree of each individual. This means the most cooperative endowments are also equal, with e∗i = 1/4,
and δmin(G) = 1−b

(b)
1
2 . G′ has the same number of nodes and links, but there is heterogeneity (A has

degree 3, while D has degree 1). The most cooperative endowments are such that e∗A > e∗b = e∗C > e∗D.
However, G′ is more cooperative that G, meaning δmin(G′) < δmin(G). For instance, if b = 2/3, then
δmin(G′) ≈ 0.23 < δmin(G) = 0.25. While the set of graphs with 4 edges and 4 vertices includes a
regular graph, and even though equal endowments are most cooperative given a regular graph, there exists
a more heterogenous network and unequal endowments distribution that is more cooperative. There is
a positive interaction between network and endowment inequality in terms of cooperativeness. As can
be shown, G′ is not just more cooperative, also achieves (strictly) higher welfare for all δ ≥ δmin(G′).
G′ is also the most efficient network among all networks with 4 nodes and 4 vertices. Efficiency for
δ > δmin(G′) demands even higher endowment inequality: if e† is efficient for some δ > δmin(G′), then
e†A > e∗A > e∗D > e†D. Network and endowment inequality also positively interact in terms of welfare.
Since both the most cooperative and the most efficient graph are nested split graphs, the question arises if
the same graph maximises both. This is, however, not generally the case. To see this, suppose now there
are 5 individuals (A-E) and they have a total of 7 connections among them. Figure 2 shows two different
corresponding nested split graphs. G′′ is similar to G′: it has three different (degree) hierarchy levels.
A,B,C, and D form a clique, but A has an additional link with E, who has no other neighbours. G′′′ has
two hierarchy levels, with A and B are linked to all other individuals, while C,D, and E are not linked to
each other. We can establish that δmin(G′′) = 0.162 < δmin(G′′′) = 0.167. However, for δ > 1/4, G′′′

is more efficient. While the most cooperative and the most efficient graph must be nested split graphs,
for a given δ, the exact type of graph might differ.
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Figure 2: Two graphs with 5 vertices and 7 edges. G′′ is the most cooperative graph, while G′′′ is more
efficient for δ > 0.25.
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