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ABSTRACT

Prompt learning has emerged as an effective and widely-adopted approach for
customizing pre-trained vision language models (VLMs) to user-specific down-
stream tasks. To tackle data shortage and heterogeneity across multiple users,
federated prompt personalization (FPP) has received significant attention as an
effective method to harmonize customized performance and pre-trained model
generalization capability. However, user-specific prompts, as valuable intellectual
assets, face increasing privacy risks such as prompt stealing attacks. Though con-
ventional privacy-preserving techniques such as differential privacy can mitigate
these risks by adding noise masks to prompt parameters, they can incur severe
performance degradation due to prompt sensitivity. In this work, we propose
SecFPP, a secure federated prompt personalization protocol, that reconciles the
trade-off among model generalization, local personalization, and privacy preserva-
tion. SecFPP delivers state-of-the-art performance under severe data heterogene-
ity, while using secure multiparty computation primitives to provide formal pri-
vacy guarantees without utility loss. The proposed protocol employs a decoupled
prompt adaptation strategy by decomposing user prompts into federated and lo-
cal components, thereby improving personalization performance in multi-granular
unbalanced data distributions. We develop a privacy-preserving adaptive cluster-
ing algorithm for federated prompts to capture different domains or dataset het-
erogeneity while using the local prompts to adapt downstream tasks and capture
the class heterogeneity. We validate the security of SecFPP theoretically and em-
pirically. Extensive experiments comparing SecFPP with non-private and privacy-
preserving baselines demonstrate its superior personalization accuracy. Moreover,
comparisons with existing privacy-preserving frameworks highlight that SecFPP
significantly improves the privacy-performance trade-off in FPP, simultaneously
delivering strongest privacy guarantees and enhanced personalization.

1 INTRODUCTION

Multimodal large language models (MLLMs) have received significant attention in recent years due
to their remarkable generalization capabilities and strong performance in downstream tasks across
diverse applications. However, the effectiveness of pre-trained MLLMs in specific downstream
tasks is often limited by task-specific data distributions and the need for localized optimization.
Prompt tuning has emerged as one of the most effective techniques for improving the performance
of pre-trained models Jia et al. (2022); Lester et al. (2021); Liu et al. (2021); Shu et al. (2022).
Subsequent works Zhou et al. (2022b;a); Chen et al. (2023); Lu et al. (2022) extended prompt tuning
to vision-language models (VLMs) by introducing learnable prompt mechanisms, allowing for more
flexible and data-efficient adaptation to downstream tasks. As a lightweight adaptation strategy,
prompt learning enables efficient and effective customization of pre-trained models for user-specific
downstream tasks. To mitigate local data overfitting and preserve data privacy, researchers have
integrated prompt learning into federated learning (FL) frameworks Guo et al. (2023b); Zhao et al.
(2023). This integration allows users to collaboratively train prompt parameters while benefiting
from the global data distribution. Later works progressively developed the concept of federated
prompt personalization (FPP), which has emerged as a promising approach for adapting pre-trained
models to individual user tasks through various personalization techniques Guo et al. (2023a); Li
et al. (2024); Cui et al. (2024); Yang et al. (2023a); Li et al. (2023).
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As in conventional FL, merely keeping data on local devices does not guarantee privacy in FPP.
Numerous studies have demonstrated that gradient information leakage in FL can lead to successful
privacy attacks (e.g., Geiping et al. (2020); Zhu et al. (2019); Zhao et al. (2020); Li et al. (2022b);
Yang et al. (2023b); Petrov et al. (2024); Feng et al. (2024); Du et al. (2024); Zhang et al. (2024);
Vu et al. (2024); Das et al. (2025)), and these threats are equally applicable to FPP. To make matters
worse, learned prompts usually represent high-value assets, as they include both task-specific knowl-
edge and potentially sensitive user information Shen et al. (2024); Wu et al. (2024); Edemacu & Wu
(2024). As in FL (e.g., Dwork (2006); Abadi et al. (2016); Bonawitz et al. (2017); Wei et al. (2020);
Shi et al. (2022); Du et al. (2023); Xiao et al. (2025); Demelius et al. (2025)), the most prevalent
countermeasure against such attacks in FPP is the application of differential privacy (DP). Con-
sequently, recent FPP studies have also adopted DP as a standard privacy-preserving solution Guo
et al. (2023a); Tran et al. (2025). Unfortunately, unlike full machine learning models, the lightweight
nature of prompts makes them especially vulnerable to even minor perturbations introduced by DP
noise. Under stringent privacy constraints, this sensitivity often results in significant performance
degradation. As empirically demonstrated by Tran et al. (2025), DP noise can lead to performance
drops of up to 25% under a strict privacy budget, even under low-rank adaption techniques designed
to mitigate this effect.

To address the fundamental trade-off between prompt personalization performance and data pri-
vacy guarantees, we propose SecFPP, a novel FPP protocol that achieves strong privacy protection
without sacrificing personalization performance. Our protocol leverages a secret-sharing primitive,
Lagrange coded computation (LCC) Yu et al. (2019), and introduces a privacy-preserving prompt
clustering mechanism, SecPC. In SecFPP, each user decomposes their prompt into two components:
a local prompt retained on-device, and a federated prompt collaboratively learned across users. This
decomposition enables granularity-aware prompt adaptation that effectively handles two levels of
data heterogeneity. Specifically, federated prompts capture coarse-grained distribution shifts (e.g.,
cross-domain heterogeneity) that groups of users may have, while local prompts accommodate fine-
grained distribution shifts (e.g., inter-label heterogeneity) unique to individual users.

Our contributions are summarized as follows:

• We propose SecFPP, a privacy-preserving protocol for FPP that achieves user-level adap-
tation through a decoupled prompt structure built upon two key components: LCC and
SecPC. This decoupled prompt strategy utilizes a granularity-aware adaptation scheme that
balances generalization and personalization across the user federation. The granularity-
aware components of the prompt globally adapt to the domain-level heterogeneity while
locally accommodating the class-level heterogeneity.

• We develop SecPC, a novel privacy-preserving adaptive clustering algorithm designed for
prompt clustering, leveraged to enable effective domain-level adaptation in SecFPP.

• We provide both theoretical and empirical security analyses of SecFPP, demonstrating that
the protocol offers strong privacy guarantees with negligible overheads.

• We conduct extensive experiments under diverse data heterogeneity scenarios. Results
show that SecFPP achieves state-of-the-art personalization performance, matching or
even surpassing existing non-private methods, while significantly outperforming privacy-
preserving baselines.

2 RELATED WORKS

2.1 FEDERATED PROMPT PERSONALIZATION (FPP)
First introduced for vision-language models by Zhou et al. (2022a;b), prompt learning is a
lightweight and effective method to enhance the generalization capabilities of foundation models Jia
et al. (2022); Lester et al. (2021); Liu et al. (2021); Shu et al. (2022); Lu et al. (2022); Zhou et al.
(2022a;b); Chen et al. (2023). Rather than relying on manually engineered prompts, prompt learn-
ing introduces parametric prompts, learnable continuous vectors trained on user data. Compared
to computationally intensive full-model fine-tuning, prompt learning offers a more efficient alterna-
tive with notable gains in downstream performance as shown in Table 1. However, prompts trained
solely on local data are prone to overfitting, especially in scenarios with limited or skewed user
data distributions. To mitigate overfitting, users can employ federated collaborative prompt learning
Guo et al. (2023b); Zhao et al. (2023), jointly training prompt parameters while retaining data lo-
cally. The core challenge in this setting is to balance the foundation model’s generalization capacity
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Table 1: Evolution of prompt learning. Hard prompts refer to manually engineered prompts, such as
‘a photo of <class>’. Soft prompts, introduced by CoOp Zhou et al. (2022b;a), are learnable
embeddings that were later integrated with the FL framework by PromptFL Guo et al. (2023b) and
Fed-Prompt Zhao et al. (2023). Federated prompt personalization (FPP) Guo et al. (2023a); Cui
et al. (2024); Li et al. (2024) incorporates personalization techniques to adapt prompts and handle
data heterogeneity. DP-FPL Tran et al. (2025) further enhances the privacy of FPP by introducing
differential privacy. (Numbers represent accuracy percentages.)

Single Dataset Multi-Domain Dataset Privacy Preservation

Hard Prompt 68.2 61.9 ✗
Soft Prompt 91.4 84.2 ✗
FPP 91.6 85.5 ✗
DP-FPL 77.4 65.7 ✓
SecFPP (ours) 91.6 91.2 ✓

with user-specific adaptation. Building on the concept of personalization in FL, recent studies have
incorporated FL personalization techniques into prompt learning to better navigate this generaliza-
tion and localization trade-off Zhao et al. (2023); Guo et al. (2023b;a); Li et al. (2023); Yang et al.
(2023a); Deng et al. (2024); Li et al. (2024); Cui et al. (2024).

Termed federated prompt personalization (FPP), this approach enables efficient and effective local
task adaptation for federated users while maintaining low computational and communication over-
head. FedPrompt Zhao et al. (2023) and PromptFL Guo et al. (2023b) are the first to integrate FL
into prompt learning through different FL paradigms. Subsequent works, such as pFedPrompt Guo
et al. (2023a) and pFedPG Yang et al. (2023a), introduce more practical FPP methods to adapt
frozen pre-trained models to local data heterogeneity. pFedPrompt uses a federated prompt and an
additional texture encoder for personalized attention to improve local task performance. pFedPG ex-
ploits a prompt generator at the server to provide personalized prompts for downstream users. Apart
from textual prompts, Li et al. (2023) proposes visual prompts that are attached to image inputs to
represent local data distribution. Deng et al. (2024) integrates FL model personalization with prompt
selection techniques to resolve data heterogeneity effectively. FedOTP Li et al. (2024) further im-
proves the federated prompt by user consensus knowledge extraction and uses the local prompt for
capturing data features in severe data heterogeneity settings, such as label shifts and domain shifts.
Addressing a similar challenge, FedPGP Cui et al. (2024) adopts a low-rank prompt decomposition
and additional contrastive loss to balance personalization and generalization.

2.2 PRIVACY PRESERVATION IN FPP
A personalized prompt is designed to guide a user’s downstream task to fully exploit the capabil-
ities of a pre-trained model. As user-specific customization becomes increasingly desirable, per-
sonalized prompts for commercially deployed LLMs are now widely recognized as valuable digital
assets on various platforms such as OpenAI GPT Store OpenAI, PromptBase PromptBase, Snack-
Prompt snackprompt. This growing ecosystem of prompt sharing and reuse introduces significant
privacy risks. As high-value assets, customized user prompts for different model architectures have
shown vulnerability to various attacks. Notably, prompt stealing attacks Shen et al. (2024) and mem-
bership inference attacks Wu et al. (2024) have demonstrated the potential threats of unauthorized
prompt usage, reproduction, or even leakage of proprietary or sensitive user data. In FL paradigms, a
series of gradient-based privacy attacks have been demonstrated to successfully threaten user prompt
information in FPP Geiping et al. (2020); Zhu et al. (2019); Yang et al. (2023b); Petrov et al. (2024);
Feng et al. (2024); Du et al. (2024); Zhang et al. (2024); Das et al. (2025).

Although FPP has drawn considerable attention in recent research, its security risks remain rather
under-explored, with only a few works addressing privacy concerns. PromptFL Guo et al. (2023b)
establishes a connection between differential privacy (DP) in FL and prompt learning. However,
it does not effectively adapt DP to the prompt learning task and neglects the need for user-level
personalization. A recent work, DP-FPL Tran et al. (2025), is the first to systematically propose a
DP-based solution in FPP to seek a potential trade-off among personalization, generalization, and
privacy. It implements global and local DP to protect prompts and leverages a low-rank adaption
strategy to mitigate performance degradation induced by DP. Following prior work Cui et al. (2024),
DP-FPL factorizes prompts into low-rank components to accommodate different data distributions
while applying DP noise to low-rank components during training. Nevertheless, empirical results in
Table 1 present significant performance degradation (up to 25% loss in certain cases) when a strict
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Figure 1: Workflow of SecFPP. On the right, users decompose prompts into federated and local
components; the federated prompt adapts to the dataset domain while the local prompt accommo-
dates the local tasks. On the left, the federated prompts are encoded to enable adaptive clustering;
then they are aggregated cluster-wise then distributed for the next round.

privacy budget is in place (e.g., ϵ ≤ 0.01). Additionally, the personalization design of DP-FPL
falls short of adapting to domain-level data heterogeneity, as only the local prompt is factorized for
personalization while the federated prompt is learned universally.

3 PROBLEM OVERVIEW
In this section, we present the problem formulation, followed by the threat model and overview of
the proposed protocol, SecFPP.
3.1 PROBLEM FORMULATION

Let F (·) denote an upstream pre-trained model. In FPP, orchestrated by a central server, n end users
collaboratively train personalized prompts to adapt the pre-trained model to their datasets while
fully utilizing the model’s generalization capacity without overfitting. Denote user local datasets
by {D1,D2, . . . ,Dn}, where user i has a distinct dataset Di. Instead of using pre-defined prompts
(e.g., “a photo of

〈
label

〉
”), users train their own prompts as learnable embeddings (or soft prompts),

Pi ∈ Rd×k, where d is the dimension of the word embedding and k is the number of tokens. We
only keep the learnable parts in prompt and omit the hard prompt tokens with masked label positions
for simplicity in formulations.

Consider different levels of data heterogeneity caused by data domains or an unbalanced category
split within a single domain. We denote personalized prompt of user i by Pi. It is decomposed into
federated prompts and local prompts by Pi = [PF,i, PL,i]. PF,i is trained federatively while PL,i is
kept private by each user. In a downstream task, each user i performs classification by ŷ = F (x,Pi),
for ∀(x, y) ∈ Di. Hence, the optimization objective for each user is given by:

LDi
=

∑
(x,y)∈Di

ℓce(y, F (x,Pi)), (1)

where ℓce stands for the cross entropy loss of the prediction ŷ and y. The overall optimization
problem for user prompts is:

argmin
{Pi|i∈[n]}

∑
i∈[n]

1

|Di|
LDi

, (2)

where [n] denotes the user index set {1, . . . , n} and | · | denotes the set cardinality.
3.2 THREAT MODEL

The server and the users are honest-but-curious, which is commonly used in evaluating the privacy
of FL protocols Geiping et al. (2020); Bonawitz et al. (2017); So et al. (2022); Buyukates et al.
(2024); Tran et al. (2025). That is, all parties in the system follow the prescribed protocol faithfully,
but the curious server and colluding users attempt to reveal private information of prompts, from
both their local states and received messages during the protocol execution. We assume that the
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Algorithm 1: SecFPP: Secure Fed-Prompt Personalization
Data: Local datasets {D1, . . . ,Dn} distributed on n users
Input: Communication round T , learning rate η, decomposition rank k.
Output: Personalized prompts Pi for users

1 Initialize cluster assignment S = {[n]};
2 Initialize personalized prompt parameters P(0)

i =
[
P

(0)
F,s, P

(0)
L,i

]
, s ∈ S;

3 for iteration t← 0 to T − 1 do
4 for user i ∈ [n] in parallel do
5 Compute loss by Eq.1 and calculate gradients as∇G,iL and∇L,iL correspondingly;
6 Update local prompt by p(t+1)

L,i ← p
(t)
L,i − η∇L,iL;

7 Use truncated SVD to reduce dimension for the personalized prompt Pi ← PCA(P
(t+1)
i , k) ;

8 end
9 Perform privacy-preserving adaptive k-means SecPC on reduced personalized prompts,

S ← SecPC(S, {Pi | i ∈ [n]});
10 Use secure aggregation for federated prompt gradients according to cluster assignment, equivalently

as,∇G,sL ← 1
|s|

∑
i∈s∇G,iL, ∀s ∈ S;

11 Update clustered federated prompts by P (t+1)
F,s ← P

(t)
F,s − η∇G,sL, ∀s ∈ S;

12 Users update personalized prompts by P
(t+1)
i ←

[
P

(t+1)

F,s|i∈s, P
(t+1)
L,i

]
, ∀i ∈ [n].

13 end

adversary cannot control both the server and a subset of users simultaneously, as is common in the
secure federated learning literature Bonawitz et al. (2017); So et al. (2020a); Shao et al. (2022).

3.3 SOLUTION OVERVIEW

Prior works in FPP are limited in two aspects: they mostly address a single source of data het-
erogeneity, and whereas they focus on improving personalization but overlook the privacy protec-
tion of user prompts. Existing differentially private FPP works also heavily suffer from model
degradation and poor domain adaptation. For the first aspect, we observe that the source of data
heterogeneity significantly affects the distribution of user prompts. In scenarios with only class
skew, the distribution difference in prompts aligns with the class distribution. In contrast, when
both class skew and data from different domains are present, the disparity in prompt distributions
is predominantly attributed to domain differences, with the effect of class skew becoming relatively
minor. Hence, to address the critical challenges in performance degradation and privacy preserva-
tion in FPP, we propose a secure federated prompt personalization protocol, SecFPP, that integrates
a privacy-preserving adaptive clustering algorithm and decoupled prompt personalization scheme.

In the ensuing sections, we first introduce the cryptographic building blocks including the coding
primitive, LCC, and the privacy-preserving adaptive clustering algorithm, SecPC; then present the
SecFPP workflow in detail; and at last, provide the theoretical analysis for the security of the proto-
col. The overview of SecFPP is presented in Figure 1.

4 PROPOSED SECURE FPP: SECFPP

4.1 CRYPTOGRAPHIC BUILDING BLOCKS

SecFPP involves an innovative privacy-preserving clustering algorithm, SecPC. Both clustering and
aggregation are built upon the coding primitive LCC.

SecPC. We propose a secure adaptive prompt clustering algorithm presented in Algorithm 2, which
is developed upon the well-known k-means clustering algorithm and its adaptive variants MacQueen
(1967); Darken & Moody (1990); Bhatia et al. (2004); Xia et al. (2020). Since the prompt clustering
is agnostic to the overall data distribution, the number of clusters is unknown initially. We build
upon a simple yet effective adaptive k-means algorithm Bhatia et al. (2004) to perform clustering on
user prompts federatively. During this clustering, only the relative distances to the cluster centers are
communicated and revealed to the server, for which we present the security analysis in Section 4.3.
Different from Bhatia et al. (2004), we do not update the centers whenever a data point is assigned.
Instead, SecPC only performs cluster merging and center updating once at the end of each commu-
nication round. In this way, the clustering iterations correspond to the FL communication rounds
(which can be considered as a one-shot clustering).
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Algorithm 2: SecPC: Secure Prompt Clustering
Data: Reduced local prompts Pi of n users, previous round cluster assignment S.
Output: Updated k-cluster assignment S : {s1, . . . , sk}.

1 Server broadcasts previous clustering S ;
2 for user i ∈ [n] in parallel do
3 Slice its reduced local prompt Pi by length ℓ and generate secret shares by LCC sharing scheme,{[

Pi

]
1
, . . . ,

[
Pi

]
n

}
← LCC.Share(Pi);

4 Share
[
Pi

]
j

with user j ∈ [n];
5 end
6 for user j ∈ [n] in parallel do
7 Update local coded center, [µs]j ←

∑
i∈s

[
Pi

]
j
, ∀s ∈ S ;

8 Compute coded distances for all users to each center

[di,s]j ←
∥∥∥[µs]j − |s| ·

[
Pi

]
j

∥∥∥2

2
, ∀(i, s) ∈ [n]× S;

9 Transmit all coded distances to the server;
10 end
11 Server reconstructs each di,s by Reed-Solomon decoding,

di,s ← LCC.recon({[di,s]j | j ∈ [n]}), ∀(i, s) ∈ [n]× S ;
12 Server recovers the real distances by di,s ← di,s

|s|2 , ∀(i, s) ∈ [n]× S;
13 Server performs one-shot adaptive clustering and updates cluster assignment S.

LCC. The key preliminary to achieve secure clustering is the secret-sharing scheme named Lagrange
coded computing (LCC) Yu et al. (2019). LCC is a multi-secret sharing primitive using Lagrange
polynomial interpolation. The decryption of LCC is robust to missing and erroneous computation
results with Reed-Solomon decoding. Compared with Shamir secret sharing Shamir (1979), LCC
reduces the share size and, thus, the load of computation on each party by ℓ times. We denote the
usages of the sharing and reconstruction algorithms by LCC.share(·), LCC.recon(·), respectively.

Secure Aggregation. SecFPP also involves an aggregation step that group-wise aggregates feder-
ated prompt components according to the cluster assignments S. We employ the existing off-the-
shelf secure aggregation technique based on the same primitive of LCC, such as So et al. (2022);
Jahani-Nezhad et al. (2023); Buyukates et al. (2024); Hou et al. (2024).

4.2 SECFPP WORKFLOW
In the proposed SecFPP scheme, we introduce an effective federated prompt personalization pro-
tocol that provides privacy guarantees while addressing multi-level data heterogeneity, presented
in Figure 1. In prior FPP works, various approaches are proposed to balance generality and local
adaptation Li et al. (2024); Cui et al. (2024); Tran et al. (2025), but these methods all adopt a split
structure of personalized prompt comprising a global prompt (shared across clients) and a local
prompt (customized for individual users). In practice, data heterogeneity may come from diverse
sources. It may arise from pathological class distributions within a single dataset but also may fun-
damentally come from distinct types of datasets. Motivated by such split structure, we propose to
use the splitting decomposition to achieve prompt adaptation for multi-source data heterogeneity: a
federated prompt component is dynamically adjusted to domain heterogeneity, and a local prompt
component adapts local heterogeneity while accommodating different user downstream tasks. To
provide privacy preservation to domain-level personalization, we develop SecPC to achieve a sim-
ple yet effective approach to adaptively cluster the federated prompt component.

At the beginning of training, the server initializes a universal prompt with global and local com-
ponents for all users. In each communication round, each user computes the gradients for each
component using loss LDi

measured on the local dataset Di. After finishing local training epochs,
each user updates its local prompt. After updating the personalized prompt Pi by the local prompt,
it performs dimensional reduction on the personalized prompt to result in a prompt summary, us-
ing the truncated SVD or PCA Wold et al. (1987). The dimensional reduction preserves the most
important components of the prompt while greatly reducing the transmitted data. The adaptive clus-
tering, SecPC, is then performed federatively on the reduced Pi and results in a cluster assignment,
denoted by S. According to the cluster assignment, the server invokes a round of secure aggregation
to cluster-wise aggregate the gradients for global components and back-propagates for the federated
prompts. Finally, the federated prompt component is updated into the personalized prompt for the
next round. We summarize the protocol of SecFPP in Algorithm 1.

6
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4.3 THEORETICAL ANALYSIS

As shown in Algorithms 1 and 2, PL,i is always privately kept by users while Pi, PF,s join the
secret-sharing based algorithms. LCC preserves perfect secrecy for the coded information within
the security threshold of shareholders. Hence, we are interested in the theoretical analysis for the
revealed information in the protocol, specifically, the reconstructed distances di,s, cluster assign-
ment S and federated prompts. Cluster assignment is non-parametric and federated prompts are
considered public, hence, we focus on analyzing reconstructed distances on the curious server.

We assume that the prompt vector of each user has independent and identically distributed (i.i.d.)
entries and satisfies a Gaussian distribution of N (µi, σi). Despite its simplicity, this assumption
stands because PCA-reduced prompts exhibit a robust approximately sub-Gaussian distribution in
practice. We denote prompt’s vector space by P . Without loss of generality, we analyze a single
user prompt Pi with one cluster of prompts, {P1, . . . ,Pn}, such that Pj ∼ N d(µj , σj),∀j ∈ [n],
where i may or may not be in [n]. We denote the average over the cluster by Pavg , which is the
cluster center. To quantify the information leakage by the distance to the center, we study the mutual
information between a prompt and the distance in the following theorem.

Theorem 1. Given a cluster of prompts as normal random vectors by Pj ∼ N d(µj , σj), j ∈ [n], the
distance is the ℓ2-norm between a prompt Pi and the cluster center Pavg, i.e.,D2 =

∥∥Pi −Pavg

∥∥2
2
.

The mutual information between Pi and D2 is given by:

MI
(
Pi;D

2) = log 2Γ

(
d

2

)
+

(
1− d

2

)
ψ

(
d

2

)
+
d

2

+

∫
· · ·

∫
P∈P

fPi

(
Pi = p

)
·

{ (
ln(2) + hd

(
τ
2

)
+ c

)
· dP if d ∈ Nodd ,(

ln(2) + gd/2
(
τ
2

)
+ c

)
· dP if d ∈ Neven .

(3)

where Γ, ψ represent gamma function and digamma function, respectively; fPi
is the probability

density function of Pi; c is 2 log
(
n−1
n

)
; hm and gn are families of functions expanded in appendix.

Proof. See Appendix A.3.
Remark 1: For rare edge cases, there is an infinitesimal possibility that one could reconstruct a
user’s entire prompt solely from distance measurements. However, when the prompts are randomly
distributed, such reconstruction becomes statistically infeasible. Our focus is on typical scenarios
and we aim to statistically answer the following question: To what extent can an honest-but-curious
server infer information about a user’s prompt from reconstructed distances? In Theorem 1, we pro-
vide an analytical formulation that characterizes the mutual information between a user’s reduced
prompt representation Pi and the squared distance D2, which quantifies the information leakage
from the distance in a rigorous, statistical sense. Although deriving a tight upper bound on this
mutual information is intractable, the expression serves as a theoretical foundation for analyzing
privacy leakage. For instance, if MI

(
Pi;D

2
)
<< h

(
Pi

)
, the distance provides negligible infor-

mation about the prompt, i.e., observing D2 reduces only an infinitesimal amount of uncertainty in
the prompt. In such cases, the system satisfies information-theoretic privacy guarantees. To demon-
strate that, we present empirical mutual information estimations in Section 5.3.

Remark 2: Equation (3) has two main variables: d and n. MI(Pi;D
2) is dominated by the prompt

dimension d as the degrees of freedom. Though n is a variable in the integral of constant, log n−1
n

approaches zero when n is large. The function family hn and gm exhibits logarithmic character-
istics with strictly increasing monotonicity and is increasingly monotonic in d. In Section 5.3, we
numerically demonstrate these characteristics.

5 EXPERIMENTS

In this section, we evaluate the FPP performance of SecFPP and compare it with private and non-
private baselines under different levels of data heterogeneity. Moreover, we present empirical results
for the mutual information estimations in the security analysis in Section 4.3. Finally, we perform
an evaluation of the computational overheads to demonstrate the cost of privacy in SecFPP.

5.1 EXPERIMENTAL SETTINGS

Following previous works Tran et al. (2025); Cui et al. (2024); Li et al. (2024); Guo et al. (2023a),
we perform the prompt-based image classification tasks on the pre-trained CLIP model Radford
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Table 2: FPP performance with non-private and privacy-preserving protocols (accuracy in %).
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PromptFL 89.0 91.4 82.8 69.8 70.6 42.4 89.1 74.8 84.1 78.3 74.9 65.1 77.2 54.1
FedOTP 89.6 91.6 86.7 66.4 74.8 44.6 89.8 74.7 85.4 79.4 84.1 68.9 78.1 59.3
FedGPG 88.9 91.1 86.8 70.1 72.2 42.6 88.6 74.0 91.4 76.3 75.5 67.8 81.2 57.8

DP-FPL w.o.
privacy 89.3 90.9 84.9 70.2 71.7 41.9 89.2 76.0 85.3 77.6 80.6 67.1 80.8 56.7

DP-FPL w.
loose privacy 88.5 85.6 82.2 66.2 68.9 35.5 83.4 70.6 78.5 74.5 72.5 63.0 75.5 53.1

DP-FPL w.
default privacy 86.1 77.4 77.6 61.2 66.3 32.6 82.9 62.2 73.1 53.1 66.3 45.4 64.0 49.1

DP-FPL w.
strict privacy 82.6 74.7 44.8 27.4 52.2 22.0 71.5 50.8 65.7 56.7 54.9 41.3 35.4 45.4

SecFPP (ours) 89.4 91.6 86.3 70.6 74.7 44.7 90.6 77.8 91.2 79.6 87.6 69.8 82.7 59.4

et al. (2021) using ViT-B/16 as backbone Dosovitskiy et al. (2020). The implementation details can
be found in Appendix A.2.

Datasets. We consider various datasets from different domains to evaluate the FPP tasks. We use
general-domain datasets: CIFAR-10, CIFAR-100 Krizhevsky et al. (2009) and Caltech-101 Li et al.
(2022a); along with specific-domain datasets: Oxford-Pet Parkhi et al. (2012), Oxford-Flowers Nils-
back & Zisserman (2008), Food-101 Bossard et al. (2014), and a texture database DTD Cimpoi et al.
(2014). To comprehensively simulate data heterogeneity, we consider multi-granular heterogeneity
for data distribution. For single dataset allocation, we split the dataset evenly across users by Dirich-
let distribution. Then, we allocate two domains of datasets to each half of the users. Within each
dataset, we also apply Dirichlet distribution as the non-i.i.d. partition. This dual-level heterogeneity
is denoted as datasetA + datasetB in the following section, e.g., Caltech101+OxfordPets.

Baselines. For non-private baselines, we consider PromptFL Guo et al. (2023b), FedOTP Li et al.
(2024), and FedGPG Cui et al. (2024). PromptFL is a federated version of CoOp Zhou et al. (2022a).
FedOTP and FedGPG are the existing state-of-the-art FPP protocols. Regarding privacy-preserving
schemes, DP-enabled PromptFL is not capable of training personalized prompts, resulting in poor
performance. Hence, we consider the only existing privacy-preserving FPP scheme, DP-FPL Tran
et al. (2025), for comparisons.
5.2 FPP PERFORMANCE COMPARISONS

The overall performance is presented in Table 2. In general domain datasets, such as CIFAR-
10, Caltech-101, all baselines have marginal differences. In contrast, for single specific-domain
datasets, FPP-based methods consistently achieve higher accuracy compared to non-personalized
PromptFL. SecFPP also achieves comparably strong accuracy results in all single-domain datasets.
In multi-domain datasets, the three non-private FPP approaches demonstrate distinct advantages on
different dataset combinations while SecFPP presents consistent advantages in accuracy. When the
combined datasets are general (such as CIFAR-10+Caltech-101), all methods demonstrate compa-
rable accuracy levels, although our solution exhibits a marginal but consistent performance advan-
tage. Notably, in scenarios with high domain discrepancy, SecFPP’s advantage becomes particularly
pronounced. While FedOTP demonstrates competitive robustness under severe data heterogeneity
compared to other FPP approaches, SecFPP consistently surpasses all existing FPP solutions in these
challenging scenarios.

On the other hand, for the private FPP baselines, while DP-FPL can achieve comparable perfor-
mance to non-private solutions without DP noise, its accuracy significantly degrades when DP is
applied. Furthermore, under tighter privacy constraints, DP-FPL’s performance deteriorates propor-
tionally. In sharp contrast, our SecFPP provides rigorous privacy guarantees without compromising
any model performance, while demonstrating superior robustness in personalization for both single-
domain and multi-domain heterogeneous data scenarios.
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(a) MI vs. user number (b) MI vs. dimension (c) time vs. user number (d) time vs. dimension
Figure 2: (a)(b) are mutual information comparisons. Legend entries are MI(Pi;D

2),
MI(Pi;Pavg) with prompt inside cluster, MI(Pi;Pavg) with prompt outside cluster, self-
information h(Pi) respectively. (c)(d) are computational cost in seconds per round.
5.3 EMPIRICAL STUDIES FOR SECURITY

In this subsection, we present numerical analysis for mutual information (MI) following the an-
alytical results in Theorem 1. We exploit widely used KSG algorithm Kraskov et al. (2004) for
estimations and refer to previous studies with MI estimation Ross (2014); Gao et al. (2018); Wang
et al. (2021). Recall in Section 4.3, we aim to answer ‘how much information about the prompt an
honest-but-curious server can infer from the reconstructed distances?’. Hence, the distance’s statis-
tical insignificance with respect to any reduced prompt is presented. We consider three variables for
estimating MI as comparisons: entropy of a user prompt (self MI), h(Pi); MI between a user prompt
and cluster center, MI(Pi;Pavg); MI between a user prompt and the distance, MI(Pi;D

2). For
MI(Pi;Pavg), we consider both cases that the prompt is inside or outside the given cluster. As
in Gao et al. (2018), numerical analysis shows that a sample size over 1000 reduces mean squared
residuals to 10−3, ensuring stable estimation. So, we use 1000 as sample size and sample user
prompts as i.i.d. random vectors. Specifically, each prompt has 15 tokens. The reduced dimension
is 8 and original dimension is 512 as default, and (µi, σi)s are simplified to (0, 1). For the distance
as a number, we directly use the deterministic scalar-to-vector mapping (i.e. replicating D2 to span
dimensions) for MI estimation, such that the entropy is preserved by the deterministic function. The
evaluation results are presented in Figure 2 (a), (b).
As demonstrated by the blue trajectory in Figures 2a and 2b, the prompt dimension d is the pre-
dominant factor and exhibits a positive correlation with MI, while the user number n has negligible
influence (where n = |S|). The empirical results align with the analytical result in Equation (3). In
both evaluations, MI(Pi;D

2) between the distance and the prompt (blue) remains exponentially
lower than the prompt information entropy (red). Specifically, given log10

h(Pi)

MI(Pi;D2)
> r with r as

a lower bound, r = 4 is observed such that MI(Pi;D
2) << h(Pi). This substantial gap (r > 2)

provides rigorous information-theoretic constraint on any adversarial attempt. Thus, SecFPP pro-
vides information-theoretic privacy guarantees for user prompts in practical settings.
We also present mutual information MI(Pi;Pavg) between a given prompt and the cluster cen-
ter for further illustrations. When a prompt resides within a cluster and the cluster cardinality
is small, the cluster center exhibits higher statistical dependence on the prompt, inducing larger
MI(Pi;Pavg). The dependency diminishes asymptotically by increasing cluster cardinality |S|
and dimension d. Generally, the observation agrees with the expectation that the cluster center vec-
tor conveys more information than the scalar distance while diluting the original prompt entropy by
averaging over more prompts. Thus, the fact that SecFPP only reveals relative distances, rather than
explicit cluster centers, offers inherently stronger security guarantees, as it significantly limits the
server’s ability to infer sensitive prompt information.
For the additional computation and communication costs of achieving SecFPP with privacy guar-
antees, Figure 2 (c) and (d) present the empirical overheads of performing SecPC in with dominant
factors: n and d, which exhibits a linear trend and remains a low practical cost. The detailed analysis
on SecFPP complexity and overhead breakdowns are presented in Appendix A.4.
6 CONCLUSION
In this paper, we present a novel secure federated prompt personalization protocol, SecFPP, that
addresses data heterogeneity from multiple sources via decoupling prompts and privacy-preserving
adaptive clustering, SecPC. Extensive experiments validate SecFPP’s robust performance across
various data unbalance, demonstrating consistent and superior performance over SOTA baselines.
Moreover, SecFPP theoretically guarantees and empirically validates strong privacy preservation on
the user prompts, bridging a critical gap in the performance-privacy trade-off of FPP schemes.
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A APPENDIX

A.1 ADDITIONAL PRELIMINARIES

In SecFPP, the operations of data sharing and distance computation are carried out in a finite field
Fq , for some large prime q. Hence, for a data point xi from the real field, one needs to first quantize
it onto Fq . We abuse the symbols only in this section.

Data Quantization. The quantization technique in SecFPP has been utilized in So et al. (2020a) So
et al. (2022). To quantize a data point xi, we first scale it by λ, and embed the scaled value onto Fq
such that

x̄i = Q(xi, λ) =

{
⌊λxi⌋, if xi ≥ 0
⌊q + λxi⌋, if xi < 0

. (4)

Here ⌊x⌋ denotes the largest integer less than or equal to x, and the quantization function Q is
applied element-wise. Assuming each element of λxi is within [−η, η) for some η > 0, then on the
range of Q, [0, η) is the image of the positive part, and [q − η, q) is the image of the negative part.
While λ controls the precision loss of quantization, it also needs to be chosen so that overflow does
not occur during computations of SecFPP. A larger η requires a larger finite field size q to avoid
computation overflow, and a smaller η leads to a higher precision loss between xi and x̄i. We can
choose a proper scaling factor λ to preserve enough precision while keeping the field size practical.
To avoid computation overflow, we should choose q such that all the intermediate computation
results on the scaled data λxi are within the range

(
− q

2 ,
q
2

)
. In the worst case, the largest distance

across data points and cluster centers D ≜ max
i∈[m],h∈[k]

∥µh − |Sh| · xi∥22 results in the largest output

value. Therefore, we should choose q that is at least 2λ2D.

Lagrange Coded Computing (LCC). The technique used when each client secret shares its data
with the other clients is Lagrange Coded Computing (LCC). As a result, each client gets a hold of the
entire dataset in a coded manner, thereby being able to compute the secret shares of the distances be-
tween each pair of datapoints and cluster centers. Similar secret-sharing operations between clients
have been widely utilized in FL literature to improve performance, privacy, and robustness (see e.g.,
Shao et al. (2022), Schlegel et al. (2023), So et al. (2020a), Bonawitz et al. (2017), So et al. (2020b)).
In Shao et al. (2022), authors tackle the issue of non-iid data distribution of local client datasets, and
use LCC-based secret sharing of client data to improve the convergence of FL models. In Reference
Schlegel et al. (2023), authors use Shamir’s secret sharing to encode and share their local datasets
with the other clients. The added redundancy in the encoding process helps mitigate stragglers in
FL, without sacrificing local data privacy. In Reference So et al. (2020a), clients exchange secret
shares of their local model updates in a verifiable manner during FL iterations, so that each client can
make sure that others have sent valid secret shares, which are then utilized by the server to decode
the pairwise distances among client models for outlier detection and removal before aggregation.
In Bonawitz et al. (2017), secret shares of the client models are utilized to handle client dropouts
during secure model aggregation. Authors of So et al. (2020b) study the setting of decentralized FL,
and utilize secret shares of private datasets among multiple parties to perform distributed training,
while still preserving privacy.

A.2 IMPLEMENTATION DETAILS

The default number of users, maximum number of epochs, number of local epochs, and learning
rate are 20, 100, 10, and 0.001, respectively. For protocols involving low-rank decomposition, we
set the default rank to 8. In SecFPP, we set the first-k principal components to 8 as well.

For DP-FPL, we choose DP parameter ϵ from {0.0, 0.4, 0.1, 0.01} as no privacy, loose privacy, de-
fault privacy, and strict privacy constraints, respectively. We set the Dirichlet distribution parameter
to β = 0.3.

All experiments are conducted on a machine using Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz,
with 12 cores of 48 threads. The computational capability of a user is constrained to one-quarter of
the server by parallelization.
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A.3 SUPPLEMENTARY TO PROOF

Proof. (Part I) We are given reduced prompts {P1, . . . ,Pn} as d-dimensional continuous ran-
dom vectors in a cluster, with sample mean Pavg = 1

n

∑n
j=1 Pj . As all prompts satisfy Pj ∼

N d(µj , σj), their average is also normally distributed, Pavg ∼ N d(µavg, σavg), where µavg, σ2
avg

are linear combinations of prompts’ µ and σ2. For a prompt Pi inside or outside the given cluster,
the distance between the prompt and the cluster center is D2 =

∥∥Pi −Pavg

∥∥2
2
. We discuss the

inside case in this part of the proof and the outside case in Appendix A.3 as Part II of proof.

Expand the mutual information in the form of differential entropy:

MI
(
Pi;D

2
)
= h

(
D2

)
− h

(
D2 | Pi

)
. (5)

For the entropy h(D2) we make the following observation: D2 is simply a χ2-distribution with
d degrees of freedom, since it is the summation of the squares of all entries with centered normal
distribution. Then:

h(D2) = log 2Γ

(
d

2

)
+

(
1− d

2

)
ψ

(
d

2

)
+
d

2
, (6)

where Γ and ψ represent gamma function and digamma function, respectively. For the conditional
entropy:

h
(
D2 | Pi

)
= h

(∥∥Pi −Pavg

∥∥2
2
| Pi

)
, (7)

when Pavg contains a term of Pi, by isolating it, we have:

h
(
D2 | Pi

)
= h


∥∥∥∥∥∥n− 1

n
Pi −

1

n

n∑
j=1,j ̸=i

Pj

∥∥∥∥∥∥
2

2

| Pi


= h


∥∥∥∥∥∥Pi −

1

n− 1

n∑
j=1,j ̸=i

Pj

∥∥∥∥∥∥
2

2

| Pi

+ 2 log

(
n− 1

n

)
.

(8)

Notice Pi and the normally distributed average, 1
n−1

∑n
j=1,j ̸=iPj , are independent. By taking

the reduced prompt Pi = p as the conditional term, the first term of equation (8) is a non-central
χ2-distribution with d degrees of freedom and the non-centrality parameter τ is related to Pi such
that:

τ ≜
d∑
k=1

ν2k . (9)

We denote each entry of 1
n−1

∑n
j=1,j ̸=iPj as Xk, such that the random variable D2 is:

D2 ≜
d∑
k=1

(Xk + νk)
2
. (10)

Then, D2 is a non-central χ2-distribution with d degrees of freedom and non-centrality parameter
τ . Apply the Theorem 1 in Moser (2020) using two families of function gm(·), hn(·). We can reach
the close form expression by:

h


∥∥∥∥∥∥ 1

n− 1

n∑
j=1,j ̸=i

Pj − p

∥∥∥∥∥∥
2

2

| Pi = p

 = fP
(
Pi = p

)
E[− log f(D2)]

= −fP
(
Pi = p

)
·
{
ln(2) + hd

(
τ
2

)
+ c if d ∈ Nodd ,

ln(2) + gd/2
(
τ
2

)
+ c if d ∈ Neven .

(11)
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Hence, the overall conditional entropy is:

h


∥∥∥∥∥∥ 1

n− 1

n∑
j=1,j ̸=i

Pj −Pi

∥∥∥∥∥∥
2

2

| Pi

 =

∫
· · ·

∫
p∈P

−fPi

(
Pi = p

)
·
{ (

ln(2) + hd
(
τ
2

)
+ c

)
· dP if d ∈ Nodd ,(

ln(2) + gd/2
(
τ
2

)
+ c

)
· dP if d ∈ Neven .

(12)

fPi
(·) is the probability density function of Pi, i.e. a normal distribution; constant c is 2 log

(
n−1
n

)
.

Combining two terms of h
(
D2

)
and h

(
D2 | Pi

)
, we have equation (3). Q.E.D.

(Part II)

In addition to Part I of the proof, we continue to discuss the other case when the prompt is outside of
the given cluster. We continue from equation (5). When prompt Pi is outside of the cluster, h(D2)
is non-central χ2-distribution with d degrees of freedom. The non-centrality parameter τ is defined
by µi. Hence, similar to equation (9), τi = d · µ2

i . Then:

h(D2) =

{
ln(2) + hd

(
τi
2

)
if d ∈ Nodd ,

ln(2) + gd/2
(
τi
2

)
if d ∈ Neven .

(13)

For the other term of h
(
D2 | Pi

)
, different from equation (8), we do not need to isolate Pi. There-

fore, there is no constant term c in the final expression of the conditional entropy. Combining
equation (13) and equation (12) without c yields the counterpart of the theorem. Note that if the
prompt distribution has µi = 0, equation (13) still reduces to the first part of the proof.

Remark: gm(·) and hn(·) are two family of functions introduced in Moser (2020). gm(·) : R+ → R
with m ∈ N, which has the following expression:

gm(ξ) ≜

{
ln(ξ) − Ei(−ξ) +

∑m−1
j=1 (−1)′

[
e−ξ(j − 1)! − (m−1)!

j(m−1−j)!

] (
1
ξ

)′
if ξ > 0,

ψ(m) if ξ = 0.
(14)

where Ei is the exponential integral and ψ is digamma function. hn(·) : R+ → R with n ∈ Nodd,
which has the following expression:

hn(ξ) ≜


−γ − 2 ln(2) + 2ξ · 2F2

(
1, 1; 3

2 , 2;−ξ
)

+
∑n−1

2
j=1 (−1)j−1Γ

(
j − 1

2

)
·
[
√
ξe−ξ erfi(

√
ξ) +

∑j−1
i=1

(−1)iξi

Γ
(
i+1

2

)
](

1
ξ

)j
if ξ > 0,

ψ
(
n
2

)
if ξ = 0.

(15)

where 2F2 is a generalized hypergeometric function and erfi is the imaginary error function. For the
analysis of the function families, please refer to Moser (2020).

A.4 COMPLEXITY EVALUATIONS

We denote the LCC parameters by ℓ and the privacy threshold by t = α · n, where α is a constant
allowing privacy against ⌊α · n⌋ colluding users. The complexity is summarized in Table 3.

Table 3: Communication/Computation Overheads of SecFPP

Communication Computation

User User Server

O(ndℓ + kn) O(dℓn log
2 n+ ndk+nd

ℓ ) O(kn2 log2 n)

User communication. The communication overhead of each user consists of two parts: 1) the
communication cost of secure secret sharing is O(ndℓ ); 2) each client sends O(kn) distance shares
to the server. The total communication cost of each client is O(ndℓ + kn), which is dominated by
nd. Here, k is the number of cluster centers.
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User computation. The computation performed by each user consists of three parts: 1) utilizing
fast polynomial interpolation and evaluation Kedlaya & Umans (2011), each user generates the
secret shares of its local prompt with complexity O(dℓn log

2 n); 2) Within each round, each user
first updates the secret shares of k centers, and computes the distances from each data point to each
center in the finite domain, taking O(ndkℓ ) operations. 3) Secure aggregation by O(ndℓ ) The total
computation complexity of each client is O(dℓn log

2 n+ ndk+nd
ℓ ), which is dominated by nd log2 n.

Server computation. Server’s computation complexity consists of two parts: 1) The decoding of the
actual pair-wise distances takes O(kn2 log2 n) operations; 2) The cost of running cluster assignment
on each prompt is O(kn). Thus, the total computation complexity of the server over s iterations is
O(kn2 log2 n).

Next, we present the empirical overheads of performing SecPC in Figure 2 with dominant factors: n
and d. Privacy threshold α is set to 1/3 consistently and ℓ =

⌊
n−t
2

⌋
accordingly. The large-enough

prime q is sampled in the scale of 1010 and the quantization parameter λ is 103 (see Appendix A.1 for
quantization details). As shown in Figure 2, the computational cost is almost linearly predominated
by nd and the user’s overhead is the primary cost. Though the server computation complexity has
n2 log2 n term, its overhead is negligible in practice. The user’s computation time reaches 0.4s
when the dimension is 4000, however, when executing SecFPP, SecPC uses reduced prompts with
rank less than 10, multiplying the number of tokens, the total dimension is only d = 150. For
communication costs, consider a 4G network with 98 Mbps bandwidth and the largest parameter
settings in experiments. It takes 0.05s for a user to share and less than 10−4s to communicate
distances, which is even faster with networks like LAN or 5G. Overall, the communication and
computation overheads additionally for privacy preservation are negligible.

A.5 REPRODUCIBILITY STATEMENT

The source code is provided in the supplementary material. To ensure reproducibility, please follow
the instructions in the README.md file to set up the environment using requirements.txt, and to
download the necessary pre-trained models and datasets. All experiments can then be reproduced
by executing the provided run.sh script with the specified settings as mentioned in Appendix A.2.

A.6 THE USE OF LLMS

We disclose the strictly limited utilization of GenAI tools exclusively for linguistic parts of originally
human-authored content. No GenAI is employed in the research ideation or creation or modifica-
tion of figures, tables, flowcharts, or any non-textual elements. The implementation adhered to the
following guidelines: authors use DeepSeek and ChatGPT with Prompts like

• Use academic writing to refine the following text:
• Proofread the following text:
• Polish the following text:

All AI-processed contents are sifted by human verification to ensure academic authenticity and
factual accuracy. The authors are fully accountable for all parts of the paper.
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