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Abstract

LLM-based agents have demonstrated great potential in generating and managing
code within complex codebases. In this paper, we introduce WebGen-Bench, a
novel benchmark designed to measure an LLM-based agent’s ability to create multi-
file website codebases from scratch. It contains diverse instructions for website
generation, created through the combined efforts of human annotators and GPT-
4o. These instructions span three major categories and thirteen minor categories,
encompassing nearly all important types of web applications. To assess the quality
of the generated websites, we generate test cases targeting each functionality
described in the instructions. These test cases are then manually filtered, refined,
and organized to ensure accuracy, resulting in a total of 647 test cases. Each test case
specifies an operation to be performed on the website and the expected outcome
of the operation. To automate testing and improve reproducibility, we employ a
powerful web-navigation agent to execute test cases on the generated websites and
determine whether the observed responses align with the expected results. We
evaluate three high-performance code-agent frameworks—Bolt.diy, OpenHands,
and Aider—using multiple proprietary and open-source LLMs as engines. The best-
performing combination, Bolt.diy powered by DeepSeek-R1, achieves only 27.8%
accuracy on the test cases, highlighting the challenging nature of our benchmark.
Additionally, we construct WebGen-Instruct, a training set consisting of 6,667
website-generation instructions. Training Qwen2.5-Coder-32B-Instruct on Bolt.diy
trajectories generated from a subset of the training set achieves an accuracy of
38.2%, surpassing the performance of the best proprietary model. We release our
data-generation, training, and testing code, along with both the datasets and model
weights at https://github.com/mnluzimu/WebGen-Bench.

1 Introduction

Recent developments in large language models (LLMs) have demonstrated increasingly strong
performance. When paired with agent frameworks, they have become much more competent at
solving challenging tasks such as fixing bugs in complex codebases and competing in coding
competitions. Prior works have sought to quantify the software engineering abilities of these LLM-
powered agents by testing them on curated GitHub issues [26, 56] and feature-patching requests [35].
These tasks mainly involve modifications to existing codebases and primarily target expert engineers.
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Table 1: Comparison of WebGen-Bench with other repository-level software engineering benchmarks.
The “Number of Files” and “Lines of Code” represent the average values per sample (∗except for
SWE-Bench Multimodal, where the values are medians). The values for our benchmarks are derived
from the test results of Bolt.diy, OpenHands, and Aider using DeepSeek-V3. The values for the other
benchmarks are obtained from [26],[35], and[56], respectively.

Benchmark From Scratch Training Set Number of Files Lines of Code

WebGen-Bench (ours) ✓ ✓ 8.1 315.3
SWE-Bench × ✓ 1.7 32.8
SWE-Bench Multimodal∗ × × 2 27
SWE-Lancer × × 2 55

On the other hand, there is a growing need for code agents to assist non-experts with little or no
programming background in building applications tailored to their needs and expectations. For
example, Bolt.new4 and Lovable.dev5 are two projects that generate complete websites based on
user requests and have become popular among customers. This task poses significant challenges for
LLM-based agents, as building a fully functional and customized web application from scratch tests a
wide range of capabilities—including high-level planning, organizing complex multi-file codebases,
and implementing nuanced user requirements. However, there is currently a lack of systematic and
reliable evaluation methods for this task. The high demand for such applications, coupled with the
value of assessing agent capabilities, highlights the need for a novel benchmark to evaluate the ability
to generate websites from scratch based on natural language instructions.

To this end, we introduce WebGen-Bench, the first benchmark to systematically evaluate LLM-based
agents’ ability to construct websites that satisfy the functional and appearance requirements specified
in user instructions. As shown in Tab. 1, unlike prior software-engineering benchmarks [26, 35, 56],
which focus on fixing bugs or supplying patches to existing codebases, our benchmark requires
models to build a complex codebase from scratch, assessing agents’ ability to plan, develop, and
manage projects with multi-file structures. There are two critical challenges to address when creating
the benchmark: (1) how to curate diverse instructions covering major web-application categories and
(2) how to accurately evaluate the websites generated from scratch.

To tackle these problems, we introduce a systematic data curation and evaluation pipeline for
assessing website-generation agents. Starting from 20 common categories identified across popular
development platforms, we first manually construct diverse website descriptions and then use GPT-4o
to generate comprehensive instructions and test cases that cover both functionality and appearance.
For evaluation, we leverage WebVoyager for automated functional testing and prompt GPT-4o to rate
design aesthetics on a scale of 1 to 5. Using this framework, we benchmark Bolt.diy, OpenHands, and
Aider, and find that Bolt.diy performs best. Further evaluation across models shows that DeepSeek-R1
achieves the highest functional success rate (27.8%), whereas Claude-3.5-Sonnet leads in appearance
with an average score of 3.0 out of 5.0, indicating substantial room for improvement.

We also construct a training dataset named WebGen-Instruct, which contains 6,667
website-generation instructions. To avoid data contamination, we removed instructions that
are semantically similar to those in WebGen-Bench by applying Jaccard-similarity filtering
and Sentence-Transformers–based deduplication [40], as detailed in Appendix D. Fine-tuning
Qwen2.5-Coder-32B-Instruct on Bolt.diy trajectories—generated from a subset of WebGen-Instruct
by DeepSeek-V3 with rejection sampling raises its accuracy to 38.2%, a substantial improvement
over its original 9.5% and even higher than the performance of DeepSeek-R1. We also fine-tune
Qwen2.5-Coder-7B-Instruct and Qwen2.5-Coder-14B-Instruct on the same training data, and name
the resulting family of website-generation models WebGen-LM.

Our contributions are as follows:

• We introduce WebGen-Bench, the first benchmark designed to test the ability of an LLM-based
agent to generate websites from scratch. It includes diverse instructions for website generation and
corresponding test cases to evaluate website functionalities.

4https://bolt.new
5https://lovable.dev
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Figure 1: The data-curation and automatic-testing pipeline. (a) shows the process for curating
website-generation instructions together with their corresponding test cases; (b) demonstrates the
testing pipeline for verifying whether the generated websites satisfy functionality and design require-
ments with the WebVoyager UI agent. Their aesthetic quality is evaluated using GPT-4o.

• We conduct comprehensive evaluations of three high-performance code-agent frameworks —
Bolt.diy, OpenHands, and Aider — using different proprietary LLMs as engines, demonstrating the
challenging nature of our benchmark.

• We construct WebGen-Instruct, a training set consisting of 6,667 website-generation instructions.
We use this training set to fine-tune Qwen2.5-Coder-Instruct models of sizes 7B, 14B, and 32B,
resulting in a family of LLMs specialized in website generation, named WebGen-LM. WebGen-
LM-32B achieves an accuracy of 38.2% on WebGen-Bench, surpassing DeepSeek-R1.

2 Related Work

Software Engineering Benchmarks. Code generation has long been used as a means to evaluate the
abilities of LLMs [16, 6, 4]. Previous works have collected coding problems from various sources,
such as user queries [63], coding contests [20], model synthesis [65], and expert design [36, 6], to
evaluate LLMs’ performance on single-file, function-level coding tasks. Recently, as stronger models
have reached a plateau on these simpler benchmarks, new benchmarks such as SWE-bench [26,
56] and SWE-Lancer [35] have been constructed by collecting real-world code repositories and
corresponding issue requests to test models’ ability to solve bugs and implement new functionalities.
These benchmarks require models to identify and fix issues [26, 56, 2], perform code completions [29,
60], or provide functionality patches [35] within an existing multi-file codebase. Different from
previous works, our benchmark focuses on creating web applications from scratch based on natural
language instructions, requiring models to generate a complex, multi-file codebase, implement
multiple functionality and appearance requirements, and make independent technical design decisions.

LLM-based Code Agents and Pipelines. Various agent-based [50, 55, 1, 9, 8, 51] and pipeline-
based [52, 44, 64] methods have been proposed to address software engineering problems such as
code completion and GitHub issue resolution. While pipeline-based methods sometimes demonstrate
strong performance on specific tasks with fixed pipelines [26], agent-based methods are generally
more flexible. Code agent frameworks such as OpenHands [50] and SWE-agent [55] interact with
executable environments to obtain feedback from the execution of generated code. To evaluate our
benchmark, we selected three open-source code agents. Among them, OpenHands [50] and Aider [1]
are general-purpose code agent frameworks that we adapted for our benchmark, while Bolt.diy [47]
is a specialized framework for generating web applications. Prior works [38, 34, 32, 53, 33, 21] have
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employed various post-training methods to improve the performance of open-source models. In this
work, we also fine-tune open-source models with generated trajectories.

Automatic Software User-testing. User-testing is a common method in software engineering to
assess the functionality of software with high user-interaction requirements. However, human testing
can be costly and introduce significant management complexities. Various works have employed
agents to test websites [30], graphical user interfaces (GUIs) [10], and games [48, 11]. Similar
to our work, [19, 5, 27] use unit tests to enable automated testing of the outputs generated by
LLMs, though their tests are assertion-based while ours are based on GUI Agent operation results
on the generated LLMs. Among them, UXAgent [30] uses UI agents with pre-defined personas to
simulate user experiences on websites. Our work also utilizes a web navigation UI agent to evaluate
generated websites. Different from prior works, we define atomic test cases targeting functionality
and appearance requirements, enabling the agent to perform operations and observe whether the
website behaves as intended.

3 WebGen-Bench

In this section, we introduce WebGen-Bench, the first benchmark designed to test the ability of
LLM-based agents to generate websites from scratch based on natural language instructions. The
benchmark consists of diverse website-generation instructions and comprehensive test cases that have
been carefully constructed and repeatedly validated. A reliable and cost-effective testing pipeline,
built around a strong web navigation agent, has been developed to ensure efficient evaluation of the
generated websites. The data curation process and testing pipeline are shown in Fig. 1 (a) and (b)
respectively.

3.1 Instruction Curation

Web Development Project Descriptions Collection. To ensure the diversity and practicality
of the instructions, we first carefully browsed several platforms containing website development
project listings, including Upwork6, Freelancer7, and Proginn8. We identified twenty prevalent web
application categories, as outlined in Appendix E. To simulate numerous customized web applications,
we employ a panel of forty computer science student volunteers to conduct brainstorming sessions to
determine various specific web applications belonging to these categories, as well as a brief and clear
list of corresponding functionality and appearance requirements for each application. A customized
application and its corresponding requirements are combined into a project description. We manually
created 10152 project descriptions in total.

Website-Generation Instruction Curation. From the collected project descriptions, we use
one-shot prompting with GPT-4o to generate the corresponding instructions. The prompt template is
shown in Appendix C. Because the total number of generated instructions exceeds the practical limits
of benchmarking code agents—which require substantial computational resources and long inference
trajectories—we sample 2 to 8 representative examples from each category to preserve both coverage
and diversity. This procedure produces a curated test set containing 101 instructions.

Next, we decontaminate the remaining instructions by first filtering those with a 5-gram Jaccard simi-
larity score exceeding 0.6 relative to any testing instruction. We then perform semantic deduplication
by computing cosine similarity between sentence embeddings [40] of the remaining instructions and
the testing set. This process produces a training set of 6,667 website-generation instructions, which
we name WebGen-Instruct. Details of the decontamination process are provided in Appendix D.

Test Set Adjustment and Validation. We refine and validate the selected test instructions to
ensure they exclude unreasonable designs and overly specific technical details. We intentionally
omit technical design specifications because our dataset aims to evaluate code agents in scenarios
where they receive instructions from non-expert users. The agents should autonomously determine
the optimal technical approach. Including tool-specific hints in the instructions would compromise
this objective.

6https://www.upwork.com
7https://www.freelancer.com
8https://www.proginn.com
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Table 2: The number of website-generation instructions in each technical category in WebGen-Bench.
Each main category contains multiple subcategories. A sample may belong to one main category and
multiple subcategories.

Main Categories Sample Number Sub Category Sample Number

Content Presentation 28

Static Page Generation 20
Dynamic Content Rendering 18
Data Visualization 36
Media Display 6

User Interaction 49

Form Systems 40
Authentication 18
Real-time Features 20
E-commerce 22
AI Integration 19

Data Management 24

CRUD Operations 29
API Integration 20
Big Data 12
File Handling 5

Total 101

Technical Classification of the Testing Set. Given the limited number of testing instructions per
application category, analyzing categorical statistics based on the original 20 application categories
would be confusing. To enable higher-level analysis, we reorganize the 101 testing instructions
into three broader technical categories (see Tab. 2): (1) Content Presentation: Static page genera-
tion (e.g., corporate/portfolio sites), dynamic rendering (e.g., blogs/news feeds), data visualization
(e.g., dashboards), and immersive media displays (e.g., 360° product views). (2) User Interaction:
Form systems, authentication flows, real-time collaboration tools, e-commerce transactions, and
AI-enhanced features (e.g., chatbots). (3) Data Management: CRUD operations for content adminis-
tration, third-party API integrations (e.g., payment/social platforms), analytical processing of user
behavior data, and file operations (e.g., cloud synchronization, bulk exports).

3.2 Test Case Construction and Evaluation

Since the websites are generated from scratch based on the instructions, the tested agents have
significant freedom in their implementation choices. To accurately evaluate how well the agents
satisfy the instruction requirements while accommodating diverse implementation approaches, we
construct test cases targeting each and every requirement in the instructions.

Test Case Construction. Each test case consists of an operation verifying a specific functionality
or appearance requirement, paired with its expected outcome. We first generate draft test cases
using GPT-4o with the prompt shown in Appendix F. Two computer science Ph.D. students then
independently review and refine these test cases. After comparing their adjustments, we resolved
discrepancies through discussion, yielding a final set of 647 test cases (4–11 per instruction). This
manual validation process guarantees strict alignment between test cases and instructions, ensuring:
(1) all instruction requirements are covered by test cases, and (2) each test case corresponds to
an instruction requirement. This approach ensures comprehensive evaluation while preserving
implementation flexibility for the tested agents.

UI Agent-based Evaluation. With instructions and test cases prepared, we must determine how
to effectively evaluate the generated websites. Manual testing by human evaluators is costly and
time-consuming, as completing a test case takes at least 60 seconds, and finishing all 647 test cases
would require approximately 10.8 hours at an estimated cost of $377.8 [49]. This slow, labor-intensive
process would hinder rapid iteration during framework development, preventing researchers from
obtaining timely feedback when refining website-generation systems.

To improve testing efficiency, we automate test case evaluation. Inspired by [30], which employs
persona-based agents for web usability testing, we utilize WebVoyager [15], a robust web navigation
UI agent, to execute test operations and verify outcomes. We structure each test case’s operation and
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Figure 2: Distributions of instruction lengths (left) and test case numbers per instruction (right).

Table 3: Statistics for the instruction string lengths and the test case numbers in our dataset.
Statistic Minimum Maximum Median Average

Instruction Length (chars) 324 876 483 496.8
Test Case Number 4 11 6 6.4

expected outcome into a standardized prompt, which directs the agent to simulate user interactions,
analyze action trajectories and screenshots, and return YES, NO, or PARTIAL assessments based on
requirement fulfillment. The process is shown on the right side of Fig. 1 (b). When the agent reaches
its interaction limit, we trigger a decision prompt, inducing the agent to make a final decision. The
prompts are presented in Appendix G. Considering the cost induced by multiple interactions with the
website in evaluating each test case, we employ Qwen2.5-VL-32B-Instruct, an efficient open-source
vision-language model that balances performance and cost-effectiveness, as the agent’s engine.

3.3 Evaluation of Website Appearance

Apart from the fulfillment of the functionality and appearance constraints in the instructions, another
important aspect of website generation is the level of relevance, harmony, and aesthetics of the
webpage. To conduct a quantitative analysis of this aspect, we designed a set of detailed metrics,
ranging from the success of rendering and the relevance of the content to the harmony of the layout
and the modernness of the design. We then place the metrics in a prompt, asking GPT-4o to grade the
appearance of the website with a score ranging from 1 to 5 (the higher the better), as demonstrated
in the middle part of Fig. 1 (b). The prompt is shown in Appendix. H. Examples are presented in
Appendix. M.

3.4 Analysis of Dataset Attributes

We analyze the distribution of instruction lengths and the number of test cases per instruction. The
corresponding plots are shown in Fig.2, and the minimum, maximum, median, and average values
are summarized in Tab.3.

As depicted in Fig. 2 (a), most website-generation instructions contain between 400 and 600 characters,
with a median length of 483 and an average length of 496.8. These relatively long prompts add
considerable complexity, posing a meaningful challenge to the agents under evaluation. Fig. 2 (b)
indicates that most instructions are associated with five to seven test cases. The median and average
numbers of test cases are 6 and 6.4, respectively. Because each test case corresponds to a distinct
requirement in the instruction, these statistics confirm that every instruction encompasses a sufficient
set of functional and appearance requirements.

6



4 Experiments

4.1 Experimental Setup

Frameworks. We evaluate three popular code-agent frameworks: Bolt.diy [47], OpenHands [50], and
Aider [1]. Bolt.diy is the open-source version of Bolt.new9, a browser-based framework for generating
and previewing web applications. It provides a user interface and a Linux-like WebContainer
environment that can execute code. It first prompts the model to decide which frontend and backend
frameworks to use (such as Vite, React, Remix, etc.), then imports the basic template and builds
upon it. OpenHands is a platform for AI-powered software development agents. For OpenHands,
we pair it with CodeActAgent to evaluate it on our benchmark. The adapted instruction is presented
in Appendix I. Aider is a terminal-based AI programming framework that natively supports many
popular programming languages, including Python, JavaScript, PHP, HTML, CSS, and more. Aider
constructs a map of the entire codebase, which helps it function well in larger projects. We use the
adapted instruction in Appendix J to generate websites with Aider.

Models. We first evaluate the three frameworks on DeepSeek-V3 [28], a model that is both performant
and cost-effective. We then evaluate several strong general-purpose proprietary and open-source
LLMs—including Claude-3.5-Sonnet [3], DeepSeek-R1 [12], GPT-4o [18], o3-mini [37], Qwen2.5-
Coder-32B [17], and Qwen2.5-72B-Instruct [54]—on the best-performing framework, Bolt.diy. We
do not test general-purpose models smaller than Qwen2.5-Coder-32B, as we observe that such models
often fail to follow the specified output format and therefore cannot generate valid websites.

Training Details. To validate the effectiveness of our training set, we selectively generated Bolt.diy
trajectories for a subset of 2K instructions from WebGen-Instruct using DeepSeek-V3. Using
rejection sampling [59], we retained only the trajectories whose corresponding websites achieved an
appearance score greater than or equal to 3, resulting in 600 trajectories. This filtering ensures that
the remaining generated websites are relevant to the instructions and do not exhibit major rendering
issues. We then fine-tuned Qwen2.5-Coder-Instruct models of sizes 7B, 14B, and 32B for 2 epochs,
with a learning rate of 4e-5 and a batch size of 32. The 7B, 14B, and 32B models were trained on 8,
16, and 32 A800 GPUs, respectively. This fine-tuning process yields a family of models specialized
in website generation, which we name WebGen-LM.

4.2 Experimental Results

We present the results on the entire WebGen-Bench dataset in Tab.4, and the accuracy for each
category of instructions and test cases in Tab. 5. Accuracy is computed using the formula Accuracy =
NYes+0.5×NPartial

NTotal
× 100%, where NYes and NPartial denote the number of test cases assessed as YES and

PARTIAL, respectively, and NTotal is the total number of test cases.

Main Results. Based on the experimental results, we make the following observations: (1) As
shown in Tab. 5, WebGen-LM-32B achieves the highest accuracy of 38.2%, surpassing the best
proprietary model, DeepSeek-R1, by 10.4%, demonstrating the effectiveness of our training set and
the rejection-sampling process. (2) Bolt.diy with DeepSeek-R1 as the engine achieves the highest
accuracy among general LLMs at 27.8%, closely followed by Claude-3.5-Sonnet with an accuracy of
26.4%. This indicates that the best-performing models are still far from saturating WebGen-Bench,
highlighting that our benchmark remains challenging for current LLMs and agent frameworks. (3)
Smaller general open-source models, such as Qwen2.5-Coder-32B and Qwen2.5-72B-Instruct, show
a significant performance gap compared to proprietary models. (4) In terms of appearance scores,
Bolt.diy with Claude-3.5-Sonnet achieves the best performance of 3.0. The appearance score exhibits
a loose correlation with accuracy, as functional webpages typically do not suffer from major rendering
issues. To better understand the statistical characteristics of the generated websites, we analyzed the
file count and line count in the generated codebases, as detailed in Appendix K.

Categorical Results. Apart from the three main instruction categories (shown in Tab. 2), we also
classify the test cases into three primary categories based on what they are intended to evaluate:
Functional Testing, Data Display Testing, and Design Validation Testing. Detailed definitions and
statistics for these categories are provided in Appendix L. As shown in Tab. 5, among the different
categories of test cases, Design Validation Testing achieves the highest accuracy in most cases,

9https://bolt.new
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Table 4: Evaluation of three powerful code-agent frameworks using different proprietary and open-
source models. Accuracy is computed using a weighted score, where YES samples are weighted by
1 and PARTIAL samples are weighted by 0.5; the total score is then divided by the number of test
cases. The highest accuracy and appearance scores are marked in bold.

Test Name Yes Rate Partial
Rate

No Rate Start
Failed

Accuracy Appearance
Score

Bolt.diy

Claude-3.5-Sonnet 22.6 7.6 64.1 5.7 26.4 3.0
DeepSeek-R1 24.7 6.2 64.3 4.8 27.8 2.5
DeepSeek-V3 18.5 4.5 73.9 3.1 20.8 2.0
GPT-4o 10.4 4.8 64.5 20.4 12.8 1.5
o3-mini 17.9 3.4 40.0 38.6 19.6 1.6
Qwen2.5-Coder-32B 8.2 2.6 81.8 7.4 9.5 1.1
Qwen2.5-72B-Instruct 12.1 3.6 80.7 3.7 13.8 1.4
WebGen-LM-7B 24.9 7.1 68.0 0.0 28.4 2.5
WebGen-LM-14B 25.0 8.7 66.3 0.0 29.4 2.5
WebGen-LM-32B 34.2 8.0 57.8 0.0 38.2 2.8

OpenHands

Claude-3.5-Sonnet 18.1 8.3 58.6 15.0 22.3 2.6
DeepSeek-R1 8.5 3.4 60.4 27.7 10.2 1.4
Deepseek-V3 7.4 3.2 73.9 15.5 9.0 1.5

Aider

Claude-3.5-Sonnet 19.9 5.9 42.0 32.1 22.9 1.9
DeepSeek-R1 23.3 8.7 44.5 23.5 27.7 2.7
Deepseek-V3 12.5 3.1 54.3 30.1 14.1 1.2

Table 7: Comparison of yes rate and accuracy at differ-
ent sample sizes. The base model is Qwen2.5-Coder-
32B-Instruct.

Sample Number Yes Rate Accuracy
150 21.8 25.1
300 28.6 31.9
600 34.2 38.2

Figure 3: Accuracy vs. sample number.

while Functional Testing generally yields lower accuracy. Among instruction categories, Content
Presentation consistently demonstrates the highest accuracies. This indicates that superficial aspects,
such as color themes, are easier to implement than deeper internal functionalities.

4.3 Ablation Studies

Analysis of the Accuracy of UI Agent Testing Results. To analyze the accuracy of the UI agent
testing process, we manually examined three sets of testing results on Bolt.diy. We select the results
of Claude-3.5-Sonnet, DeepSeek-R1, and DeepSeek-V3 as the accuracies of these three models are
high and are close to each other. The manual testing results serve as the ground truth and require
precision; therefore, three human testers independently annotated the results and we assessed the
consistency of their annotations. If the annotations of a test case are inconsistent, a fourth human
tester is tasked with re-examining the test case and the inconsistent annotations to decide on a final
annotation. We present the results of manual testing in Tab. 6. The Alignment Rate is computed with
Alignment Rate =

NManual=Agent

Ntotal
× 100%, where NManual=Agent denotes the number of test cases where

the agent-generated result aligns with the manually-annotated result.

Analysis of Reliability of Appearance Scores. To strengthen the appearance assessment, we
evaluate the bolt.diy results produced by Claude-3.5-Sonnet, DeepSeek-R1, and DeepSeek-V3 with
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Table 5: Category-wise evaluation results. The first three columns represent categories of website-
generation instructions, while the last three represent categories of test cases. The highest score in
each category is marked in bold.

Test Name Instruction Categories Test Case Categories

Content
Presenta-

tion

User In-
teraction

Data
Manage-

ment

Functional
Testing

Data
Display
Testing

Design
Validation

Testing

Bolt.diy

Claude-3.5-Sonnet 35.6 21.2 26.2 17.1 26.3 52.0
DeepSeek-R1 43.7 20.6 24.7 21.1 29.3 44.3
DeepSeek-V3 37.1 16.6 11.2 10.5 28.2 38.1
GPT-4o 26.4 5.9 11.2 4.7 19.6 24.6
o3-mini 28.7 17.7 13.4 11.4 25.5 33.6
Qwen2.5-Coder-32B 17.5 6.9 5.9 1.9 14.5 23.0
Qwen2.5-72B-Instruct 28.2 10.1 5.6 5.8 21.0 25.4
WebGen-LM-7B 27.9 23.8 38.1 22.0 27.7 47.5
WebGen-LM-14B 30.2 27.8 31.6 23.6 26.9 49.2
WebGen-LM-32B 46.6 33.2 38.8 29.1 43.0 56.1

OpenHands

Claude-3.5-Sonnet 32.8 18.4 18.4 12.4 33.9 32.0
DeepSeek-R1 16.4 8.9 5.9 5.0 9.9 25.0
Deepseek-V3 12.6 7.3 8.4 3.8 8.1 25.0

Aider

Claude-3.5-Sonnet 31.9 21.1 16.6 14.9 30.1 34.0
DeepSeek-R1 39.1 28.6 13.4 17.6 35.2 44.3
Deepseek-V3 17.8 12.8 12.5 9.7 19.1 18.4

Table 6: Alignment between the UI agent testing results and human testing results. The alignment
rate denotes the proportion of test cases in which the UI agent’s results match those of human testers.

Model Testing
Method

Yes Rate Partial
Rate

No Rate Accuracy Alignment
Rate

Claude-3.5-Sonnet UI Agent 22.6 7.6 64.1 26.4 90.3
Manual 22.4 7.1 59.0 26.0 –

Deepseek-R1 UI Agent 24.7 6.2 64.3 27.8 86.1
Manual 28.0 4.3 58.1 30.1 –

Deepseek-V3 UI Agent 18.5 4.5 73.9 20.8 94.4
Manual 19.0 4.5 70.3 21.3 –

two additional strong multimodal graders—o3 and Claude-3.5-Sonnet. We also manually grade the
website screenshots to capture human preference. The results are presented in Tab. 8. Although o3
and Claude-3.5-Sonnet assign slightly lower scores than GPT-4o, the relative ordering of the three
results is unchanged (Claude-3.5-Sonnet > DeepSeek-R1 > DeepSeek-V3). Also, for every set of
screenshots, the scores descend in the same order: GPT-4o > o3 > Claude-3.5-Sonnet, showing a
consistency in the models’ grading pattern. The ensemble results of the three grading models and the
human scores both show the same ranking as GPT-4o. These findings indicate that GPT-4o reliably
reflects relative appearance quality and aligns with human preference, making it a suitable choice
under a limited budget.

Analysis of the Number of Training Samples. We analyze the effect of the number of training
samples on the accuracy of the fine-tuned models. Specifically, we fine-tune Qwen2.5-Coder-32B-
Instruct using 150, 300, and 600 samples, respectively. As shown in Fig. 3 and Tab. 7, accuracy
consistently increases with the number of training samples, highlighting the potential of our training
set. We did not sample additional trajectories due to API budget constraints. Nevertheless, the
current sample size already demonstrates the effectiveness of WebGen-Instruct for training website
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Table 8: Average appearance scores obtained when the output of each agent–engine LLM is graded
by different grading methods.

Agent-engine LLM \Grading method GPT-4o o3 Claude-3.5-
Sonnet

Average
(ensemble)

Human

Claude-3.5-Sonnet 3.0 2.7 2.4 2.7 2.8
DeepSeek-R1 2.5 2.3 2.2 2.3 2.3
DeepSeek-V3 2.0 1.9 1.7 1.9 1.9

generation LLMs. Further accuracy improvements through additional data or techniques such as data
augmentation are left for future work.

Figure 4: The distribution of the task errors.

Analysis of Errors in WebGen-Bench Tasks.
We analyze the errors and flaws that occur
in web generation pipelines using mainstream
LLMs such as DeepSeek-V3. A detailed expla-
nation of the error types, along with examples of
erroneous cases, is provided in Appendix N. In
addition, we present statistics on the distribution
of error types for each task in the test set, as
shown in Fig. 4. Currently, more than half of the
task errors are due to failures in launching a web
page or in modifying a template. These results
highlight significant potential for future research
focused on improving the success rate of web
page initialization and template adaptation in
generated websites.

5 Conclusion

In this paper, we introduce WebGen-Bench, a novel benchmark for evaluating the ability of LLM-
based agents to generate websites from scratch. The benchmark requires agents to construct and
organize multi-file codebases while satisfying various functional and visual constraints. We evaluate
three code-agent frameworks using both proprietary and open-source LLMs. The best-performing
combination, Bolt.diy with DeepSeek-R1, achieves an accuracy of only 27.8%, highlighting the
challenging nature of our benchmark. Additionally, we construct a training set of 6,667 website-
generation instructions and fine-tune Qwen2.5-Coder-32B on 600 Bolt.diy trajectories generated by
DeepSeek-V3, resulting in an accuracy of 38.2%—surpassing even the best proprietary model.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As shown in Abstract and Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As shown in Limitations and Future Work.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As detailed in Experiments and the open-source data and code.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We open-source all our code and data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As shown in Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As detailed in Experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: As explained in Ethics Statement in Appendix.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: As explained in Ethics Statement in Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: As explained in Ethics Statement in Appendix.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: As explained in Ethics Statement in Appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: As shown in the released code and data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing in our experiments. We used authors and student
volunteers instead.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our study does not pose any potential risks to the participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: As detailed in Method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Ethics Statement

The WebGen-Bench dataset is entirely composed of synthetically generated instructions and test cases,
curated manually and synthesized using artificial intelligence. While this resource is non-commercial,
we emphasize that its construction process maintains a clear distance from potential ethical or legal
concerns, particularly regarding intellectual property.

Legal compliance. We take great care in our methodology to uphold copyright integrity, utilizing
three protective approaches to safeguard against infringement: (1) all base project descriptions
originate from the creative efforts of the authors and student volunteers; (2) the 20 fundamental
categories are sufficiently abstracted through systematic analysis; and (3) our framework does not
copy content from existing websites or platforms, thereby avoiding copyright infringement risks
associated with specific commercial implementations.

Dataset Intended Usage and License. We document the WebGen-Bench dataset in this paper
and note that both the dataset and the code used for reproducing results are publicly available.
We intend for researchers to use this dataset to better evaluate the ability of LLM-based agents to
generate websites from scratch. We take full responsibility in the event of any rights violations. The
WebGen-Bench dataset and our open-source code are released under the MIT license.

B Limitations and Future Work

Website generation in this work is primarily conducted using TypeScript, JavaScript, CSS, and HTML.
Other languages such as Python, Java, and Go are not used, due to the complexity of integrating
them into the agent framework. Expanding the range of supported languages and tools for automatic
website generation with code agents is a promising direction for future research. Additionally, we
only employed supervised fine-tuning to enhance the performance of open-source LLMs on website
generation, without utilizing other post-training strategies such as reinforcement learning or direct
preference optimization [39]. These methods present valuable opportunities for future exploration.

C Prompt for Deriving Instructions from Website Development Project
Descriptions

Fig. 5 presents the prompt used to derive website-generation instructions from web development
project descriptions created by human annotators. Notably, the model is instructed to exclude any
requirements related to technical implementation details, as the goal is to evaluate the code agents’
ability to make such decisions independently.

D Details of the Decontamination Process

In this section, we introduce the methods we used to decontaminate the training set from the testing
set. We first employ 5-gram Jaccard similarity, removing the instructions in the training set with
a similarity score higher than 0.6 with one of the instructions in the testing set. Then, to remove
the instructions that are semantically similar to those in the testing set, we compute the sentence
embeddings of the instructions using the all-MiniLM-L6-v2 model of Sentence-Transformer [40], and
compute the cosine similarity of the embeddings. We experimented with various threshold settings,
and finally settled on removing the training instructions with a cosine similarity of larger than 0.55.

We then inspect whether the remaining training samples contain instructions that are semantic
duplicates of the instructions in the testing. For each testing instruction, we retrieve the top-3 training
instructions with the highest cosine similarity, and manually inspect them for semantic duplication.
We found that the retrieved training samples are all completely different from the testing samples,
proving that the final training set is not contaminated. The first three samples in WebGen-Bench and
their top matches in the training set are shown in Fig. 7, Fig. 8, and Fig. 9, respectively. The matches
are completely different from the test samples. Fig. 6 shows the distribution of the cosine similarity
between the test set and the training set. The cosine similarity is gathered around 0.2 to 0.3, which is
relatively low.
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Prompt:
<task>
You will be given a piece of text containing the basic information of a web development project. The
information involves a main objective and a list of functional and appearance requirements. You are
requested to convert the information into instructions to build a web application. You should output a
detailed multi-sentence instruction in English explaining in detail the different functions the applications
should have.
</task>

<important>
1. Your output should align with the main objective of the website and expand upon the requirements.
2. You should not specify any technical details in the instructions.
3. You should not refer to any outside applications in your instructions.
4. You should not output any additional comments.
</important>

The following is an example:

<example>

Objective:
A hotel and travel ticket distribution website.
Other requirements:
1. User login
2. Order tickets and hotels
3. Cancel orders
4. Verify orders
5. Browse tickets and hotels
6. Light blue background and dark olive green component

Converted Instruction:

Please implement a distribution website for travel and ticketing that sells products such as tickets and
hotels. The website should have functionalities for placing, canceling, and verifying orders. Users
should be able to log in, browse products like tickets and hotels, place orders for selected products,
cancel selected orders, and verify consumption records. Use light blue in the background layer and dark
olive green for the component layer.
</example>

Objective:
{Objective}
Other requirements:
{Other requirements}

Converted Instruction:

Figure 5: The prompt for deriving instructions from human annotated descriptions.
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Figure 6: The distribution of the cosine similarity between the test set and the training set.

Test Instruction 1: Please implement a website for generating stock reports to provide stock information
and analysis. The website should have the functionality to search and summarize stock information, and
generate customized stock reports based on user requirements. Users should be able to input stock codes
or names, select report formats and content, and the website will automatically generate the corresponding
reports. The reports should include basic stock information, market trends, financial data, and more. Set
the background color to white and the component color to navy.

Match 1: Please implement a website for generating PDF reports that creates PDF files containing
directories, word clouds, logos, and chart displays. The website should have functionalities for uploading
data, selecting templates, customizing content, previewing, and downloading PDFs. Users should be able to
upload relevant data, choose from different templates, customize the report content, preview the generated
PDF file, and download the final PDF report. Specify bisque as the base color and dark salmon for all
components.
Similarity: 0.549

Match 2: Please implement an accounting factory website for enterprise financial management and
statistics. The website should have functionalities for creating service enterprises, setting declaration types,
and extracting statistics by quarter and year. Users should be able to log in, create and manage service
enterprises, set declaration types, view and analyze financial data, and perform WeChat payment and other
operations. Set page background to light beige; color all components with sienna.
Similarity: 0.542

Match 3: Please implement a report frontend website to display vehicle inspection report data. The website
should have functionalities for displaying report templates, inspection report information, and audit status.
Users should be able to log in, browse, and view inspection reports, including report details, inspection
results, and audit status. Use powder blue for container backgrounds and royal blue for component visuals.
Similarity: 0.538

Figure 7: Top semantic matches for the first test instruction in WebGen-Bench with similarity scores.

E Application Categories of WebGen-Instruct and WebGen-Bench.

Tab. 9 lists the 20 application categories manually summarized by the authors through browsing web
development projects on popular platforms that connect programmers with clients seeking custom
website solutions, such as Upwork10, Freelancer11, and Proginn12. These application categories serve
as seed ideas for our human annotators during the brainstorming of new application scenarios.

Detailed definition of each category is as follows:

10https://www.upwork.com
11https://www.freelancer.com
12https://www.proginn.com
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Test Instruction 2: Please implement a web-based neighborhood mapping application for comparing data
across different areas. The application should allow users to compare demographic, economic, and crime
data across different areas. The application should also include data dashboards with interactive charts and
customizable layouts. Use ivory for the background and forest green for components.

Match 1: Please implement a geographic spatial data processing website for handling and analyzing
geographic spatial data. The website should have functionalities for data conversion, file interpolation,
data operation, and data extraction. Users should be able to upload geographic spatial data files, choose
different data formats for conversion, perform data interpolation and operation, and extract the required
data. The website should also provide data visualization functionality, allowing users to view and analyze
geographic spatial data. Assign mint frost as the background color and apply seagreen to all elements.
Similarity: 0.546

Match 2: Please implement a geographic information system website for displaying maps and managing the
backend. The website should have map visualization capabilities to display different types of geographic
information. The backend management platform should be able to manage users, permissions, roles,
menus, and support specific business management, such as setting up construction orders, inspecting and
evaluating drainage facilities, and managing facilities. Users should be able to log in, browse maps, manage
backend data, and perform related operations. Set all pages to have a cream background and dark orange
components.
Similarity: 0.542

Match 3: Please develop a Boundary Hunter app to provide nearby data research services. The app should
have functionalities for data research, report generation, and user management. Users should be able to log
in, browse nearby data research projects, submit research requests, and view reports. The app should also
have automated testing and stress testing capabilities to ensure its stability and performance. Use ghost
white for the outer layout and cadet blue for UI blocks.
Similarity: 0.542

Figure 8: Top semantic matches for the second test instruction in WebGen-Bench with similarity
scores.

• Personal Portfolio Sites: Showcase individual professional projects, achievements, and
skills.

• Company Brochure Sites: Static or minimally interactive websites providing company
information, products, services, and contact details.

• Personal Blog Sites: Regularly updated content sites focusing on personal writing, opinions,
experiences, and sharing of knowledge.

• Social Media Platforms: Applications enabling users to interact socially, share content, and
build networks.

• Discussion Forums: Platforms facilitating conversations, topic-based discussions, threads,
and community interactions.

• E-commerce Web Applications: Online platforms designed for buying and selling goods
and services, handling transactions, inventory, and payments.

• Email Clients: Applications for managing emails, sending, receiving, organizing, and
scheduling email communication.

• Project Management Tools: Platforms aiding in task organization, scheduling, collaboration,
and resource management for projects.

• Streaming and Interactive Platforms: Media-centric platforms for video, audio streaming, or
interactive media consumption.

• CRM Systems: Customer Relationship Management tools designed to manage interactions,
sales, customer data, and marketing.

• ERP Platforms: Enterprise Resource Planning systems integrating core business processes
such as finance, HR, supply chain, and operations.

• Internal Tools: Applications focused on internal company operations, communication, and
collaboration.

• News and Information Sites: Platforms primarily dedicated to delivering news content,
articles, and timely updates.
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Test Instruction 3: Please implement a multi-company dashboard for managing and displaying financial
data from multiple companies. The dashboard should be able to collect and display financial information
from each company, provide consolidated reports, and support cross-company comparisons and reporting.
Users should be able to browse financial data from each company, view consolidated reports, and perform
financial management and reporting. Apply mint cream as the background; style all components with teal.

Match 1: Please implement a multi-lingual accounting website for managing financial accounts. The
website should have functionalities for logging in, registering, recording, querying, and statistical analysis.
Users should be able to log in, create, edit, and delete financial accounts, query historical accounts, and
analyze financial status. The website should support multiple languages to facilitate use by users of
different languages. Configure the background color to spring green, with components using lime green.
Similarity: 0.549

Match 2: Please implement an enterprise resource planning backend management system for managing
internal company data. The system should have user management, permission management, module lists,
add, edit, delete, and display functions. Users should be able to log in to the system, browse and manage
data in different modules, including adding new data, editing existing data, deleting unnecessary data, and
displaying all data. The system should also support Excel import and export functions for convenient batch
data operations. Use alabaster as the screen background and dark cyan for component highlights.
Similarity: 0.542

Match 3: Please implement a data visualization website for a telecommunications company to display
company data. The website should have multiple pages, each with different dynamic effects. The website
should include various charts and maps, with charts having dynamic refresh effects and maps implementing
three-level drill-down functionality. Users should be able to browse different pages and view the company’s
data and statistical information. Use almond as the screen background and sienna for component highlights.
Similarity: 0.540

Figure 9: Top semantic matches for the third test instruction in WebGen-Bench with similarity scores.

Table 9: 20 application categories manually summarized from popular web-development websites.
Application Category Application Category

Productivity Applications Project Management Tools
Internal Tools Company Brochure Sites
E-commerce Web Applications Streaming and Interactive Platforms
Analytics Platforms/Dashboards News and Information Sites
Publishing/Blogging Platforms ERP Platforms
Travel Booking Portals Learning Platforms
CRM Systems Social Media Platforms
Discussion Forums Personal Blog Sites
Email Clients Browser-Based Games
Job Search Platforms Personal Portfolio Sites

• Publishing/Blogging Platforms: Platforms enabling users to publish, edit, and manage
content on a large scale.

• Analytics Platforms/Dashboards: Applications providing insights through data visualization,
including Business Intelligence and Financial Dashboards.

• Browser-Based Games: Interactive, entertainment-focused applications running directly in
web browsers.

• Learning Platforms: Educational platforms providing courses, training materials, quizzes,
and learning management systems.

• Travel Booking Portals: Platforms allowing users to search, compare, and book travel
services like flights, hotels, and car rentals.

• Job Search Platforms: Websites connecting job seekers with employers, allowing job
postings, applications, and resume management.

• Productivity Applications: Tools for productivity tasks like document editing, spreadsheets,
presentations, and collaborative work.
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Prompt:
Act as a testing specialist. Based on the provided prompt below, which was used to generate a website,
create a list of 5-10 actionable instructions to test the website’s functionality, content accuracy, and user
experience. Each instruction must:

1. Direct a UI agent to perform a single, atomic task.
2. Include validation criteria.
3. Align with the goals and features described in the original prompt.
4. Ensure each task is atomic (tests one function at a time) and avoids combining multiple sub-tasks.

Structure each instruction as:

Task: Clear, singular task for the UI agent.
Expected Result: Specific outcome to confirm success.

Original prompt:
{orig prompt}

Focus on testing:
- Core functionalities (e.g., forms, navigation).
- Content relevance to the prompt’s intent.
- Accessibility and responsiveness.
- Appearance requirements.

IMPORTANT: The tasks must directly reflect ALL of the prompt’s requirements and ensure each
instruction is independent and minimal. You must not include tasks that test functions that are not
explicitly required by the original prompt!

Figure 10: The prompt for deriving test cases that covers all the functional and appearance require-
ments in the instruction. The {orig prompt} is replaced with the corresponding website-generation
instruction.

F Prompt for Creating Website Test Cases

Fig. 10 presents the prompt used to construct test cases that evaluate whether the generated website
fulfills the requirements specified in the corresponding instruction. The prompt emphasizes the
importance of ensuring that all functionality and appearance requirements are covered by the generated
test cases. Conversely, every test case should directly reflect an aspect of the instruction. This ensures
that the website is thoroughly evaluated and that all test cases are valid.

G Prompt for Automatic Evaluation of Test Cases Using an UI Agent

Fig. 11 presents the prompt used to instruct the UI agent to perform the operation described in the
test case and respond with YES, NO, or PARTIAL, depending on whether the expected outcome
is achieved. Fig. 12 shows the prompt used to induce the agent to make a final decision when the
maximum number of allowed website interactions has been reached.

H Prompt for Grading Website Appearance

Fig. 13 shows the prompt used to grade the aesthetics of webpage appearances. The grading vision-
language model (GPT-4o in this case) is instructed to consider metrics such as successful rendering,
content relevance, layout harmony, and the modernity and visual appeal of the design, and then output
a grade ranging from 1 to 5 (the higher, the better).

I Prompt for Adapting OpenHands Paired with CodeActAgent for
WebGen-Bench Evaluation

Figure 14 presents the prompt used to evaluate OpenHands in combination with CodeActAgent on
the WebGen-Bench benchmark.

27



Start-Testing Prompt:
Task: {task}
Expected Result: {expected result}

Instructions:
- Attempt the task as a user would, using the UI elements available.
- Make multiple attempts if needed to try and achieve the expected result.
- Observe whether the expected result is fully, partially, or not at all achieved.
- IMPORTANT: You can at most interact with the website 15 times. If the limit is reached, directly
output your answer.

At the end of your testing, answer only with one of the following:
- YES: if the expected result was fully achieved.
- NO: if the expected result could not be achieved at all.
- PARTIAL: if only some aspects of the expected result were achieved.

Figure 11: The prompt for starting the operation of a test case, where {task} is replaced with the
operation to be performed, {expected result} is replaced with the expected state of the website after
the operation is performed.

Limit-reached Prompt:
You have reached the maximum number of allowed interactions with the website.

Please evaluate the outcome of your attempts based on the expected result:

Expected Result: {expected result}

Now, answer with one of the following:

- YES: if the expected result was fully achieved during your interactions.
- NO: if the expected result was not achieved at all.
- PARTIAL: if the expected result was only partially achieved.

Provide your final answer based on your testing experience.

Figure 12: The prompt for inducing an answer when the limit of the number of website interactions
is reached, where {task} is replaced with the operation to be performed, {expected result} is replaced
with the expected state of the website after the operation is performed.

J Prompt for Aider to Generate Websites for WebGen-Bench Evaluation

Fig. 15 shows the prompt used by Aider to generate websites for the WebGen-Bench evaluation.

K Analysis of Average File Count and Average Line Count

Fig. 16 reports the average file and line counts produced by each model, while Fig. 17 (a) and Fig. 17
(b) show the distributions of file and line counts generated specifically by WebGen-LM-32B. As
shown in Fig. 16, GPT-4o, o3-mini, Qwen2.5-72B-Instruct, and Qwen2.5-Coder-32B-Instruct exhibit
high average file counts relative to their average line counts, yet their overall performance remains
relatively low. One plausible explanation is that, although these models create many files, the files are
poorly organized and each contains too little code to support a complete website.

By contrast, the WebGen-LM models generate more lines of code without disproportionately increas-
ing the number of files. Their average line counts all exceed those of DeepSeek-V3, the teacher model
used during distillation—an effect that can partly be attributed to the use of rejection sampling. For
every WebGen-LM variant, both the file count and the line count rise consistently with model size,
indicating that the generated websites become increasingly comprehensive and complex as model
scale grows.
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Appearance-Grading Prompt:
Instruction:
You are tasked with evaluating the functional design of a webpage that had been constructed based on
the following instruction:

{instruction}

Grade the webpage’s appearance on a scale of 1 to 5 (5 being highest), considering the following
criteria:

- Successful Rendering: Does the webpage render correctly without visual errors? Are colors, fonts, and
components displayed as specified?
- Content Relevance: Does the design align with the website’s purpose and user requirements? Are
elements (e.g., search bars, report formats) logically placed and functional?
- Layout Harmony: Is the arrangement of components (text, images, buttons) balanced, intuitive, and
clutter-free?
- Modernness & Beauty: Does the design follow contemporary trends (e.g., minimalism, responsive
layouts)? Are colors, typography, and visual hierarchy aesthetically pleasing?

Grading Scale:

- 1 (Poor): Major rendering issues (e.g., broken layouts, incorrect colors). Content is irrelevant or
missing. Layout is chaotic. Design is outdated or visually unappealing.
- 2 (Below Average): Partial rendering with noticeable errors. Content is partially relevant but poorly
organized. Layout lacks consistency. Design is basic or uninspired.
- 3 (Average): Mostly rendered correctly with minor flaws. Content is relevant but lacks polish. Layout
is functional but unremarkable. Design is clean but lacks modern flair.
- 4 (Good): Rendered well with no major errors. Content is relevant and logically organized. Layout is
harmonious and user-friendly. Design is modern and visually appealing.
- 5 (Excellent): Flawless rendering. Content is highly relevant, intuitive, and tailored to user needs.
Layout is polished, responsive, and innovative. Design is cutting-edge, beautiful, and memorable.

Task:
Review the provided screenshot(s) of the webpage. Provide a detailed analysis and then assign a grade
(1–5) based on your analysis. Highlight strengths, weaknesses, and how well the design adheres to the
specifications.

Your Response Format:

Analysis: [2–4 paragraphs addressing all criteria, referencing the instruction]

Grade: [1–5]

Your Response:

Figure 13: The prompt for grading the appearance of the webpage.

OpenHands Prompt:
Create a website app using typescript, html, and css. Your codebase should be able to be setup using
’npm install’, and the service should be able to be started using ’npm run dev’.

{instruction}

Figure 14: The prompt for testing OpenHands paired with CodeActAgent on WebGen-Bench.
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Aider Prompt:
You are Aider, an expert AI assistant and exceptional senior software developer with vast knowledge
across multiple programming languages, frameworks, and best practices.
<system_constraints>
- You MUST generate the code and files Directly without telling me the implementation plan, just
generate the codes and files.
- No C/C++ compiler, native binaries, or Git
- Prefer Node.js scripts over shell scripts
- Use Vite for web servers and Node.js for backend
- Databases: prefer libsql, sqlite, or non-native solutions
- When for react dont forget to write vite config and index.html to the project
- You MUST generate a complete package.json file with valid package release version.
</system_constraints>

{instruction}

Make sure all the files imported are correctly generated, and a complete package.json file with valid
package release version exists. Generate the remaining files if needed.

Figure 15: The prompt for aider websites generation.
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Figure 16: The average file and line counts of each model using Bolt.diy as the framework.

As shown in Fig. 17, most samples contain between 4 and 10 files, while their line counts are largely
concentrated between 400 and 500. Only two samples include more than 15 files.

L Test Case Categories

Fig. 18 shows the main category distribution of the task cases. Nearly half of the test cases fall under
Functional Testing, around 30% under Data Display Testing, and approximately 20% under Design
Validation Testing. This is a reasonable distribution, as functional testing typically constitutes the
majority of web page evaluations. Additionally, Tab. 10 presents the detailed subcategories along
with their respective frequencies.

Functional testing ensures that all features of an application work as intended. This includes testing
form operations such as submission and validation workflows; verifying authentication flows like
user registration, login, and permission checks; and validating payment functionalities in e-commerce
checkouts or donation processes. It also encompasses search capabilities across various domains such
as stock codes, products, or employees, and filtering data based on specific requirements. Additionally,
functional testing covers generation tasks such as creating reports or files; file operations including
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(b) Line-count distribution.

Figure 17: Distributions of the number of files and lines produced by WebGen-LM-32B.

Figure 18: The distribution of the task case categories.

downloading, uploading, and printing; e-commerce activities such as purchasing or booking items;
and communication features like sending messages or emails.

Data display testing focuses on how data is presented and updated within an application. This involves
ensuring that dynamic content rendering works correctly, including real-time data updates, website
navigation, and page refresh mechanisms. It also includes verifying the accuracy of data visualization
elements such as charts, graphs, and maps. Furthermore, this type of testing checks the functionality
of displaying detailed information when users request more specific data.

Design validation testing focuses on the aesthetic and responsive aspects of an application’s user
interface. It involves verifying UI consistency across the application and ensuring that color schemes,
typography, and spacing are correctly implemented. Responsive behavior is also tested to confirm
that the application adapts properly to different devices and screen sizes. Finally, component styling
is checked to ensure that elements such as buttons, icons, and cards adhere to the intended design
standards.
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Table 10: The number of task cases in each category. There are multiple subcategories under each
main category. A task case can belong to one main category and multiple subcategories.

Main Categories Task Number Sub Category Task Number

Functional Testing 339

Form Operations 134
Authentication Flows 48
Payment 7
Searching 49
Filtering 27
Generation 63
File Operation 23
E-commerce 58
Communication 71

Data Display Testing 186
Dynamic Content Rendering 155
Data Visualization 30
Details Information 91

Design Validation Testing 122
UI Consistency 122
Responsive Behavior 13
Component Styling 9

Total 667

M Examples of Websites with Different Appearance Scores

Fig. 19 presents examples of websites with varying appearance scores. As shown in the figure, the
visual quality of the websites improves as the appearance score increases. At a score of one, the
websites exhibit major rendering errors or contain irrelevant content, whereas at a score of five, the
design appears highly harmonious.

N Examples of Websites with Different errors or flaws

Fig. 20 presents the errors or flaws that a generated website may contain. For example, instances
(a), (b), and (c) illustrate three types of errors related to website loading failures. Instances (d), (e),
and (f) show incomplete websites: instance (d) displays only the background, instance (e) lacks
UI components such as buttons, and instance (f) fails to display an image correctly. Additionally,
instance (g) is a website that only uses a template without customization; instance (h) shows incorrect
placement of webpage content, such as misaligned text; and instance (i) uses an inappropriate
background color.

O Examples of UI Agent Testing Processes

In this section, we present examples of UI agent testing trajectories. Fig. 21, Fig. 22, Fig. 23, Fig. 24,
and Fig. 25 show examples of test cases that output YES, as the outcome of the operation matches
the expected result. Fig. 26, Fig. 27, and Fig. 28 show examples of test cases that output PARTIAL,
as the expected result is only partially achieved. Fig. 29, Fig. 30, and Fig. 31 show examples of test
cases that output NO, as the website’s behavior does not match the expected outcome.
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Appearance Score: 1

Appearance Score: 2

Appearance Score: 3

Appearance Score: 4

Appearance Score: 5

Figure 19: Examples of the screenshots of websites of different appearance scores.
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Figure 20: The examples of errors or flaws that generated webs may include.
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Thought: The current observation shows 
the "Wheel of Fortune" interface, but 
there is no visible option to spin the 
wheel or navigate to the user's winning 
records. I need to locate the spin 
button or any navigation link to 
proceed towards the goal. Action: 
Scroll WINDOW; down

Thought: The "Spin Wheel" button is now 
visible, allowing me to initiate the 
spinning process. After spinning, I need 
to look for a section that displays user 
winning records to update the latest 
prize won with correct details. Action: 
Click [0]

Thought: The wheel is currently 
spinning, indicating that the spinning 
process has been initiated. Once the 
spinning stops, I expect the result to 
be displayed, and I should then look 
for a section to view the user's 
winning records. Action: Wait

Thought: The spinning process appears 
to have completed, as the button now 
reads "Spin Wheel" again. However, 
there is no visible indication of the 
result or a section showing user 
winning records. I need to explore 
further to find where the winning 
records might be displayed. Action: 
Scroll WINDOW; down

Thought: The "Your Wins" section is now 
visible, displaying the latest prize 
won along with the correct date and 
time. This matches the expected result 
of updating the user's winning record. 
Action: ANSWER; YES

Task: Start a New Game
Expected Result: A new game board is initialized with two randomly placed tiles, typically 2s or 4s, and the score is 
reset to zero.

Task: After spinning the wheel, navigate to the section displaying user winning records
Expected Result: The user's winning record is updated to include the latest prize won, with correct details on date 
and prize.

Thought: The current observation shows 
a 2048 game interface with a "New Game" 
button visible. The goal is to start a 
new game, which should initialize the 
board with two random tiles (typically 
2s or 4s) and reset the score to zero. 
The "New Game" button is clearly 
labeled and seems to be the appropriate 
element to interact with to achieve the 
desired outcome. Action: Click [0]

Thought: The current observation shows 
that the game board has been 
successfully initialized with two 
randomly placed tiles (both 2s), and the 
score is reset to zero. This matches the 
expected result of starting a new game. 
Action: ANSWER; YES

Figure 21: The examples of UI agent testing processes resulting in YES.
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Task: Click on the "About Us" page link in the navigation menu.
Expected Result: The "About Us" page loads, providing accurate information about the clinical office, such as its 
history, mission, and team, without any broken links or missing images.

Task: Submit a new question using the question submission form.
Expected Result: The question is successfully posted and appears on the list of submitted questions.

Thought: The webpage provides a clear 
interface for submitting a question. 
There is a textarea labeled with the 
number 0 where the question can be 
typed, and a button labeled with the 
number 1 to submit the question. To 
achieve the goal, I need to type a 
question into the textarea and then 
click the submit button. Action: Type 
[0]; What is the capital of France?

Thought: The question has been 
successfully typed into the textarea. 
The next step is to submit the question 
by clicking the "Submit Question" button, 
which is labeled with the number 1. 
Action: Click [1]

Thought: The question "What is the 
capital of France?" has been 
successfully posted and now appears on 
the list of submitted questions. This 
indicates that the expected result of 
submitting a new question has been 
fully achieved. Action: ANSWER; YES

Thought: The goal is to navigate to the 
"About Us" page. The navigation menu is 
visible at the top of the page, and the 
"About Us" link is clearly labeled with 
the number 1. Clicking this link should 
take me to the desired page. Action: 
Click [1]

Thought: The "About Us" page has loaded 
successfully, displaying information 
about the practice, including its 
mission and team members. There are no 
broken links or missing images visible, 
indicating that the page is functioning 
correctly. Action: ANSWER; YES

Task: Mark a specific task as completed on the to-do list.
Expected Result: The task is visibly marked as completed, often indicated by a strikethrough, checkbox, or similar 
visual cue.

Thought: There are no tasks listed, 
indicating that I need to add a new 
task before marking it as completed. 
The next logical step is to add a task 
by interacting with the input field and 
the "Add" button. Action: Type [0]; New 
Task

Thought: The task has been successfully 
added to the list, as indicated by the 
presence of "New Task" in the list. To 
mark this task as completed, I need to 
interact with the checkbox next to the 
task. Action: Click [6]

Thought: The task "New Task" has been 
successfully marked as completed, as 
indicated by the checked checkbox and 
the visual styling change. This matches 
the expected result of marking a task 
as completed. Action: ANSWER; YES

Figure 22: The examples of UI agent testing processes resulting in YES.
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Task: Test the search feature by searching for a user based on a specific skill.
Expected Result: The search results should display a list of users who have the specified skill in their profiles.

Task: Use the customer management functionality to add a new customer and view their information.
Expected Result: The new customer appears in the customer list with the correct details provided during 
registration and the system confirms a successful addition.

Thought: To add a new customer, I need 
to navigate to the "Customers" section. 
The button labeled "Customers" 
(numerical label 3) seems to be the 
appropriate choice to access the 
customer management functionality. 
Action: Click [3]

Thought: I am now on the Customer 
Management page. To add a new customer, 
I need to fill in the required fields: 
Customer name, Contact info, and Address. 
Then, I should click the "Add Customer" 
button to submit the information. Action: 
Type [5]; John Doe

Thought: I have entered the customer's 
name. Next, I need to fill in the 
contact information and address fields 
before clicking the "Add Customer" 
button to submit the form. Action: Type 
[6]; john.doe@example.com

Thought: I have filled in the 
customer's name and contact information. 
The next step is to enter the address 
before submitting the form. Action: 
Type [7]; 123 Main St, Anytown, USA

Thought: I have filled in all the 
required fields for adding a new 
customer. The next logical step is to 
click the "Add Customer" button to 
submit the form and add the customer to 
the system. Action: Click [8]

Thought: The new customer has been 
successfully added to the customer list 
with the correct details provided 
during registration. The system 
confirms a successful addition by 
displaying the customer's information 
in the table. Action: ANSWER; YES

Thought: The goal is to test the search 
feature by searching for users based on 
a specific skill. The search bar is 
visible and ready for input. I will 
start by entering a skill into the 
search bar to see if the expected 
results are displayed. Action: Type [0]; 
React

Thought: After entering "React" into the 
search bar, the search results show a 
single user, Sarah Johnson, who has 
React listed as a skill. This indicates 
that the search feature is working 
correctly for this specific skill. 
Action: ANSWER; YES

Figure 23: The examples of UI agent testing processes resulting in YES.
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Task: Enter HTML code in the editor and view the live preview of the content.
Expected Result: The live preview immediately updates to accurately display the rendered HTML content as it is 
typed, without delay or errors.

Task: Input an invalid mathematical expression (e.g., "2 ++ 2") and attempt to execute the calculation.
Expected Result: An error message is displayed, indicating that the expression is invalid and guiding the user to 
input a valid expression.

Thought: The interface provides a 
textbox for entering expressions and a 
button to calculate. I will start by 
entering the invalid expression "2 ++ 
2" into the textbox. Action: Type [1]; 
2 ++ 2

Thought: The invalid expression "2 ++ 2" 
has been entered into the textbox. The 
next step is to attempt the calculation 
by clicking the "Calculate" button to 
see if an error message is displayed. 
Action: Click [2]

Thought: The expected result of 
displaying an error message for the 
invalid expression "2 ++ 2" has been 
achieved. The website shows "Error in 
calculation," which indicates that the 
task's objective has been met. Action: 
ANSWER; YES

Thought: The goal is to ensure that any 
changes made in the HTML code are 
reflected instantly in the live preview. 
Since the live preview already shows 
the rendered content of the HTML code, 
I need to test if modifications in the 
code update the preview in real-time.  
Action: Type [5]; <p>This is a new 
paragraph.</p>

Thought: After entering the new HTML 
code `<p>This is a new paragraph.</p>` 
in the editor, the live preview has 
updated correctly to display the 
rendered paragraph. This indicates that 
the live preview functionality is 
working as expected, updating in real-
time without delay or errors. Action: 
ANSWER; YES

Task: Use the search function to look up a specific keyword related to the person's biography (e.g., "Nobel Prize").
Expected Result: The search results should display relevant sections or pages containing the keyword, enabling 
easy access to detailed information.

Thought: The page displays a search bar 
labeled with the number 0, which is 
likely intended for searching within 
the biography. To achieve the task, I 
need to enter the keyword "Nobel Prize" 
into this search box and trigger the 
search function. Action: Type [0]; 
Nobel Prize

Thought: The search for "Nobel Prize" 
has successfully returned relevant 
results, displaying Dr. Eleanor Gray's 
Nobel Prize in Physics achievement. This 
matches the expected result of finding 
sections or pages containing the keyword. 
Action: ANSWER; YES

Figure 24: The examples of UI agent testing processes resulting in YES.
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Task: Access the basic user guide from within the HTML editor interface.
Expected Result: The editor provides access to a basic user guide, which opens correctly and provides 
comprehensive instructions relevant to using the editor's features.

Task: Send a composed email to the selected recipients.
Expected Result: The email is successfully sent, a confirmation message is received, and the email appears in the 
sent emails folder.

Thought: To send a composed email, I 
need to fill in the recipient's address, 
subject, and body of the email, and 
then click the "Send" button. The 
current observation shows the "New 
Email" form where I can enter this 
information. Action: Type [4]; 
test@example.com

Thought: I have entered the recipient's 
email address. Next, I need to fill in 
the subject line and the body of the 
email before sending it. Action: Type 
[5]; Test Subject

Thought: I have filled in the 
recipient's email address and the 
subject line. The next step is to 
compose the body of the email. Action: 
Type [6]; Hello, this is a test email. 
Please disregard.

Thought: I have completed composing the 
email by filling in the recipient's 
address, subject, and body. The next 
logical step is to send the email. 
Action: Click [8]

Thought: The email has been 
successfully sent, as indicated by the 
updated count in the "Sent" section 
showing "Sent (1)." This suggests that 
the email was sent correctly, 
fulfilling part of the task. However, I 
need to verify if a confirmation 
message is received and if the email 
appears in the "Sent" folder. Action: 
Click [1]

Thought: The email appears in the 
"Sent" folder, confirming that it was 
successfully sent. Since the task 
required sending a composed email to 
the selected recipients, and the email 
is now visible in the "Sent" folder, 
the task seems to be fully achieved. 
Action: ANSWER; YES

Thought: The goal is to access the 
basic user guide from within the HTML 
editor interface. Based on the 
observation, there is a button labeled 
"Guide" (numerical label 4), which 
seems to be the most likely candidate 
for accessing the user guide. Clicking 
this button should lead to the desired 
outcome. Action: Click [4]

Thought: The user guide has successfully 
opened, displaying comprehensive 
instructions relevant to using the 
editor's features. This matches the 
expected result of accessing the basic 
user guide. Action: ANSWER; YES

Figure 25: The examples of UI agent testing processes resulting in YES.
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Task: Check the navigation to view open calls
Expected Result: Open calls are displayed in a list format, and the page loads without errors.

Task: Submit a new idea via the share ideas form.
Expected Result: The form submits successfully, the new idea appears in the shared ideas section, and a 
confirmation message is displayed.

Thought: I need to fill out these 
fields and then click the Share button 
to submit the idea. Since this is the 
first step, I'll start by entering 
content into the Idea title field. 
Action: Type [0]; Futuristic Solar 
Panels

Thought: I have successfully entered the 
idea title. Next, I need to fill in the 
description of the idea in the second 
textbox. This will allow me to proceed 
with submitting the form. Action: Type 
[1]; Highly efficient solar panels that 
can generate energy even under low light 
conditions.

Thought: I have filled in the idea 
title and description. The next logical 
step is to enter my name in the third 
textbox so that I can proceed to submit 
the form. Action: Type [2]; InnovatorX

Thought: All required fields in the 
form have been filled out. The next 
step is to submit the form by clicking 
the "Share" button. This should trigger 
the submission process, leading to the 
display of the new idea in the shared 
ideas section and a confirmation 
message. Action: Click [3]

Thought: The form has been submitted 
successfully, as indicated by the reset 
state of the form fields. However, I do 
not see any confirmation message or the 
newly shared idea appearing in the 
shared ideas section. This suggests 
that while the form submission was 
processed, the expected result of 
displaying the new idea and showing a 
confirmation message was not fully 
achieved. Action: ANSWER; PARTIAL

Thought: The goal is to check the 
navigation to view open calls. The 
current observation shows a form for 
creating a new call log, with buttons 
labeled "New," "Open," "Followup," and 
"All." To view open calls, I should 
click the "Open" button, as it likely 
filters the calls to display only those 
that are open. Action: Click [1]

Thought: After clicking the "Open" 
button, the page appears to have loaded 
without any visible content or errors. 
However, since there is no visible list 
of open calls, it might indicate that 
either there are no open calls available 
or the page requires further interaction 
to display the list. Action: Scroll 
WINDOW; down

Thought: After scrolling down, the page 
still does not show any content related 
to open calls. This indicates that 
either there are no open calls available, 
or the page requires additional 
interaction to load the content. Since 
the page has loaded without errors and 
the navigation seems functional, but the 
expected list of open calls is not 
visible, the result is partially 
achieved. Action: ANSWER; PARTIAL

Figure 26: The examples of UI agent testing processes resulting in PARTIAL.
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Task: Verify the poetry browsing functionality.
Expected Result: The user can access a list of poetry, with each entry displaying the title and author clearly.

Task: Test the search feature by searching for a user based on a specific skill.
Expected Result: The search results should display a list of users who have the specified skill in their profiles.

Thought: The goal is to test the search 
feature by searching for users based on 
a specific skill. The current page 
provides options to either join now or 
browse skills. To proceed with the 
search, I should click on the "Browse 
Skills" button, which seems to be the 
entry point for searching users based 
on skills. Action: Click [3]

Thought: The goal is to test the search 
feature by searching for users based on 
a specific skill. The current page shows 
a search bar where I can enter a skill 
or name. To proceed, I should type a 
specific skill into the search bar and 
see if the expected result is achieved. 
Action: Type [3]; Python

Thought: The search term "Python" has 
been entered into the search bar, but 
the results do not yet reflect this 
search. I need to trigger the search 
process to see the updated results. 
Action: Wait

Thought: The search term "Python" has 
been entered, but the results still 
show professionals without Python as a 
listed skill. Since the expected result 
is not achieved, I need to determine if 
further interaction is required or if 
the issue lies with the platform itself. 
Action: Scroll WINDOW; down

Thought: After scrolling, I can see 
that the search results now include a 
user named Sam Wilson, who has "Python" 
listed as one of their skills. However, 
the initial results did not reflect the 
search query, suggesting that the 
search might not be updating 
dynamically or filtering correctly. 
Action: ANSWER; PARTIAL

Thought: The current observation shows 
a webpage titled "Poetry Blog," which 
displays a list of poetry entries. Each 
entry includes the title, author, and a 
snippet of the poem. There is a "Read 
More" button next to each entry, 
suggesting further details can be 
accessed. The goal is to verify the 
poetry browsing functionality, ensuring 
users can view a list of poems with 
titles and authors. Action: Click [6] 
to explore the details of the "Autumn 
Leaves" poem and verify the browsing 
functionality.

Thought: The current observation 
indicates a 404 Not Found error page, 
meaning the requested resource (in this 
case, the poem details) is unavailable. 
This suggests that while the list of 
poetry entries is visible, attempting to 
access detailed information about a 
specific poem leads to an error. This 
impacts the ability to fully verify the 
poetry browsing functionality as 
expected. Action: GoBack

Thought: Upon returning to the main page, 
the poetry browsing functionality 
appears to work partially. The list of 
poetry entries is visible, showing 
titles and authors, which aligns with 
part of the expected result. However, 
attempting to access detailed views of 
individual poems resulted in a 404 error, 
indicating incomplete functionality. 
Action: ANSWER; PARTIAL

Figure 27: The examples of UI agent testing processes resulting in PARTIAL.
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Task: Fill in shipping and payment information on the checkout page and submit the order. 
Expected Result: The system should accept valid credit card information, process the order without errors, and 
provide an order confirmation message.

Task: Navigate to the infrastructure management section and browse through the available information.
Expected Result: User can view detailed and accurate information related to infrastructure management, with 
options to further query specific infrastructure details.

Thought: The goal is to navigate to the 
infrastructure management section. 
Currently, the page is displaying the 
Office Management section. To proceed, 
I need to click on the "Infrastructure" 
tab to access the relevant information. 
Action: Click [1]

Thought: The Infrastructure Management 
section is now visible, showing options 
such as "Report Issue," "View Assets," 
and "Request Maintenance." Since the 
goal is to browse through the available 
information, clicking on any of these 
buttons would provide further details. 
Action: Click [7]

Thought: The Infrastructure Management 
section is currently active, and the 
"View Assets" button has been clicked. 
This should display detailed 
information about the assets under 
infrastructure management. Since the 
goal is to browse through the available 
information, this action aligns well 
with the objective. Action: Click [8]

Thought: The Infrastructure Management 
section is still active, and the 
"Request Maintenance" button has been 
clicked. This option allows users to 
request maintenance services for 
infrastructure assets. Since the goal 
is to browse through the available 
information, interacting with this 
button provides additional 
functionality related to infrastructure 
management. Action: Click [8]

Thought: The Infrastructure Management 
section is still active, and the 
"Request Maintenance" button has been 
clicked again. However, since the goal 
is to browse through the available 
information, and the current state 
shows no new content or changes, it 
seems that the browsing aspect has been 
completed. Action: ANSWER; PARTIAL

Thought: Since the goal is to fill in 
shipping and payment details on the 
checkout page, I need to navigate away 
from the current page. There might be a 
button or link leading to the checkout 
page, but it's not visible in the 
current screenshot. I will attempt to 
scroll to see if the checkout option 
appears. Action: Scroll WINDOW; down

Thought: The current observation shows 
the design page with options for 
selecting the model type, fabric type, 
and entering measurements. At the bottom, 
there is a prominent button labeled 
"Continue to Checkout," which is likely 
the next step to proceed to the checkout 
page where shipping and payment 
information can be entered. Clicking 
this button should take me to the 
desired checkout page. Action: Click [7]

Answer: PARTIAL Explanation: During the 
interactions, I attempted to fill in the 
card details as required. However, due 
to repeated failures in executing the 
action to input the card number, I was 
unable to proceed further to submit the 
order and receive an order confirmation 
message. Therefore, the expected result 
was only partially achieved as the card 
details were not successfully entered.

Figure 28: The examples of UI agent testing processes resulting in PARTIAL.
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Task: Test the display of real-time power consumption data.
Expected Result: The dashboard should present a real-time updating figure or chart that accurately reflects the 
current power consumption levels.

Task: Evaluate the website's form inputs by submitting incomplete or incorrect stock information.
Expected Result: The system displays appropriate error messages and guidance on how to correct the input errors, 
ensuring robust input validation.

Thought: The current observation shows 
a form where users can enter a stock 
symbol and generate a report. To test 
the input validation, I'll start by 
attempting to submit the form without 
entering any stock information. Action: 
Click [8]

Thought: The form was submitted without 
entering any stock information, but 
there doesn't seem to be any visible 
error message or feedback indicating 
that the input was invalid. To further 
test the input validation, I'll attempt 
to enter an incorrect stock symbol and 
submit the form again. Action: Type [3]; 
INVALIDSTOCKSYMBOL

Thought: An incorrect stock symbol has 
been entered into the input field. The 
next step is to submit the form to see 
if the system provides appropriate 
error messages or guidance for 
correcting the input error. Action: 
Click [8]

Thought: The Power Consumption section 
displays "Current Usage" as 2.8 kW and 
"Peak Today" as 5.1 kW. There is also a 
historical data graph below. To test 
the real-time power consumption data, I 
need to observe if the "Current Usage" 
value updates over time. Since this is 
the initial observation, I will wait to 
see if the value changes. Action: Wait

Thought: After waiting, the "Current 
Usage" value in the Power Consumption 
section remains at 2.8 kW, indicating no 
change from the previous observation. To 
determine if the data is updating in 
real-time, I need to continue monitoring 
the value over time. Action: Wait

Thought: After another wait period, the 
"Current Usage" value in the Power 
Consumption section still shows 2.8 kW, 
with no indication of real-time updates. 
Since the value has not changed across 
multiple observations, it suggests that 
the real-time data is not being updated 
as expected. Action: ANSWER; NO

Thought: The form was submitted with an 
incorrect stock symbol, but there is 
still no visible error message or 
feedback indicating that the input was 
invalid. Since no error messages are 
shown, I will attempt another 
submission with a completely empty 
input to see if the system responds 
differently. Action: Click [8]

Thought: The form was submitted with an 
incorrect stock symbol, but there is 
still no visible error message or 
feedback indicating that the input was 
invalid. Since no error messages are 
shown, I will attempt another 
submission with a completely empty 
input to see if the system responds 
differently. Action: Type [3]; ""

Thought: The form was submitted with an 
empty input, but there is still no 
visible error message or feedback 
indicating that the input was invalid. 
Since no error messages are shown even 
with an empty input, I will conclude 
that the expected result of displaying 
appropriate error messages and guidance 
is not being achieved. Action: ANSWER; 
NO

Figure 29: The examples of UI agent testing processes resulting in NO.
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Task: Test the search feature by entering a specific keyword like health.
Expected Result: Search results page displays posts containing the health keyword, and results are relevant to the 
query.

Task: Visit the "Ranking Page" and verify the rank listing of players
Expected Result: The page should display a sorted list of players by rank, with accurate and clear presentation 
relevant to their performance metrics.

Task: Navigate to the pharmacy management section and update the inventory count for a specific medicine.
Expected Result: The inventory count is correctly updated and reflected in the system's current stock records.

Thought: The goal is to navigate to the 
pharmacy management section to update 
the inventory count for a specific 
medicine. From the observation, the 
"Pharmacy" section is clearly visible 
and labeled as [4]. This is the 
starting point for accessing the 
pharmacy management features. Action: 
Click [4]

Thought: The attempt to access the 
pharmacy management section resulted in 
a 404 Not Found error, indicating that 
the requested page does not exist or 
cannot be accessed. Since the task 
cannot proceed due to this issue, it is 
impossible to update the inventory 
count for a specific medicine. Action: 
ANSWER; NO

Thought: The goal is to visit the 
"Ranking Page" and verify the rank 
listing of players. Currently, we are 
on the "Main Base" page. To proceed, I 
need to click on the "Ranking" button, 
which is labeled as [1]. Action: Click 
[1]

Thought: After clicking the "Ranking" 
button, the page appears to be loading 
or has navigated to a blank state. There 
are no visible rankings or player 
details present. Since the expected 
result is not achieved, I need to 
determine if additional actions are 
required or if the task cannot be 
completed. Action: Wait

Thought: After waiting, the page still 
shows no content related to the ranking 
of players. Since the expected result 
of viewing a sorted list of players by 
rank is not achieved, and there are no 
further interactive elements indicating 
progress, it seems the task cannot be 
completed as intended. Action: ANSWER; 
NO

Thought: Since the goal is to test the 
search feature, I need to locate a 
search bar or a way to trigger its 
appearance. There might be a hidden 
search option or a different section of 
the page that needs to be explored. 
Action: Scroll WINDOW; down

Thought: After scrolling down, the page 
still does not display a search bar or 
any interactive elements related to 
searching. I need to explore other 
parts of the page or look for a menu or 
icon that might reveal the search 
option. Action: Scroll WINDOW; down

Thought: Despite multiple attempts to 
scroll, the search bar or any relevant 
search-related elements are still not 
visible. Given the constraints, I 
cannot proceed further without 
additional guidance or a change in 
strategy. Action: ANSWER; NO

Figure 30: The examples of UI agent testing processes resulting in NO.
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Task: Access and fill out the contact form.
Expected Result: The contact form allows the user to submit their name, email, and message, with successful 
submission confirmed by an acknowledgment message.

Task: Test the link addition functionality by adding a new link to the user’s link tree. 
Expected Result: The newly added link appears in the user's link tree with the inputted title and URL.

Thought: The interface shows two input 
fields for the link title and URL, 
followed by an "Add Link" button. I 
need to fill in the input fields with 
appropriate values and then click the 
"Add Link" button to see if the new 
link appears in the link tree. Action: 
Type [0]; Example Link Title

Thought: I have successfully entered the 
link title. Next, I need to enter the 
URL in the second input field to proceed 
with adding the link. Action: Type [1]; 
https://example.com

Thought: Both the link title and URL 
have been entered correctly. The next 
step is to click the "Add Link" button 
to submit the new link and observe if 
it appears in the link tree. Action: 
Click [2]

Thought: To access the contact form, I 
need to click on the "Contact Us" 
button, which is clearly visible on the 
screen. This aligns with the goal of 
filling out the contact form. Action: 
Click [5]

Thought: The application encountered an 
error when attempting to access the 
contact form, indicating that the 
expected result cannot be achieved due 
to this issue. Action: ANSWER; NO

Thought: The "Add Link" button has been 
clicked, indicating that the link 
addition process has been initiated. I 
need to verify if the new link appears 
in the link tree to determine if the 
expected result was achieved. Action: 
Wait

Thought: The "Add Link" button has been 
clicked, but there is no visible 
indication that the new link has been 
added to the link tree. I need to re-
evaluate the process to ensure the 
expected result is achieved. Action: 
Click [2]

Thought: The "Add Link" button has been 
clicked again, but there is still no 
visible indication that the new link 
has been added to the link tree. Since 
the expected result has not been 
achieved, I need to conclude the 
testing process. Action: ANSWER; NO

Figure 31: The examples of UI agent testing processes resulting in NO.
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