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Abstract

Humans understand new combinations of
words encountered if they are combinations
of words recognized from different contexts,
an ability called Compositional Generalization.
The COGS benchmark (Kim and Linzen, 2020)
reports 0% accuracy for Transformer models on
some structural generalizations. We use (Weiss
et al., 2021)’s Restricted Access Sequence Pro-
cessing (RASP), a Transformer-equivalent pro-
gramming language, to prove by construction
that a Transformer encoder-decoder can per-
form the semantically equivalent ReCOGS_pos
(Wu et al., 2023) variant of COGS systemati-
cally and compositionally: Our RASP model
attains 100% semantic exact match! on the
ReCOGS test set and 100% SEM on all general-
ization splits except obj_pp_to_subj_pp which
gets 92%. Furthermore, our RASP model
shows the ReCOGS_pos task does not require a
hierarchical or tree-structured solution: we use
word-level tokens with an "embedding" layer
that tags with possible part of speech?, apply-
ing just once per encoder pass 19 attention-head
compatible flat pattern-matching rules, shown
using grammar coverage (Zeller et al., 2023) to
be learnable from the training data, plus general
prepositional phrase (pp) handling and senten-
tial complement (cp) handling logic, and output
the next logical form (LF) token (repeating un-
til the LF is complete). The model does not ap-
ply recursive, tree-structured rules like ‘np_det
pp np -> np_pp -> np*, but scores 100% seman-
tic and string exact match on pp recursion, cp
recursion using the decoder loop.

1 Introduction

It was long argued that connectionist models (i.e.
neural networks) were somehow structurally inca-
pable of compositional generalization (Fodor and

'and 100% string exact match

2per (Tenney et al., 2019) by layer 0 the part-of-speech
could be predicted for most words in Transformers trained
on a masked language modeling objective, so we assume an
equivalent embedding is learnable.

Pylyshyn, 1988).3 However, large language mod-
els based on the Transformer architecture (Vaswani
et al., 2017) compose seemingly fluent and novel
text and are excellent few or zero shot learners
(Brown et al., 2020).

Some observations do contradict that Trans-
formers learn systematic, compositional solu-
tions to problems that generalize*, for example
structural generalizations in the COGS task and
ReCOGS(Wu et al., 2023) variant of the COGS
task (Kim and Linzen, 2020) , a benchmark based
on extracting semantics (logical form) from the syn-
tax (grammatical form) of synthetic sentences in
a simplified subset of English grammar, requiring
models trained only on certain grammar examples
to generalize to sentences with unseen grammar
built up / recombined from parts present in the
training examples.

We use (Weiss et al., 2021)’s Restricted Access
Sequence Processing (RASP) language that can
be compiled to concrete Transformer weights to
prove by construction that a Transformer encoder-
decoder’ can perform ReCOGS_pos® over the vo-
cabulary and grammar of that task in a system-
atic, compositional way (length and recursion depth
limited) as a rigorous starting point to investigat-
ing when Transformers might learn or not actually
learn such compositional/systematic solutions. We
find a flat, not hierarchical/tree-structured model
which lacks any handling for the recursive rules
in the grammar (for prepositional phrase recur-
sion and sentential complement recursion) can

3 More specific versions of this debate continue, for ex-
ample re: syntax, one can read (van Schijndel et al., 2019) vs
(Goldberg, 2019) or re: hierarchical generalization by Trans-
formers, (Petty and Frank, 2021) vs (Murty et al., 2023a).

*See "Appendix: Composition and Learning” (9.13)

SWe follow (Zhou et al., 2024) who used RASP to ana-
lyze auto-regressive decoder-loop cases, not just Transformer
encoders as done by RASP author (Weiss et al., 2021).

Sofficial variant, closer to COGS than non-positional
ReCOGS, as COGS is also positional, and means we can also
measure string exact match, not just semantic exact match
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Figure 1: Introducing parse trees, logical form, and semantic
graphs. Two semantically identical but syntactically distinct
(i) sentences (a) "a boy painted the girl" and (b) "the girl was
painted by a boy" are shown with (ii) their distinct parse tree
(parsed into COGS input grammar), (iii) the string form of
their semantics (ReCOGS logical form; differs in indices and
ordering), and (c) the graph representation of their logical
form (semantic graph’, not different at all between the two
examples). Note the (iii) logical forms (LFs) differ by String
Exact Match but not (Wu et al., 2023)’s Semantic Exact Match
(order and indices do not match but nouns, normalized verbs,
and relationships between nouns and verbs are same). Note
the "agent", "theme" order in the logical form string is not
required to match for Semantic Exact Match. COGS and
ReCOGS tasks require extracting the semantics/meaning (c)
encoded in LFs (iii) of sentences (i).

perform the task at high accuracy, but requires
a special rule for avoiding "attraction" errors’
where inserted prepositional phrase nouns replace
agent/theme/recipient nouns in the logical form by
accident. This is our main result and suggests that
the ReCOGS task can be performed with high accu-
racy by Transformers, turning efforts to learnability,
and also adds to the literature a caveat on interpret-
ing success on ReCOGS (and COGS?) by noting a
hierarchical or tree-structured representation is not
necessarily required (contrary to (Kim and Linzen,
2020) and assumption of (Murty et al., 2023b)).
Finally, we predict that these "attraction" errors we
had to specifically avoid in our RASP model are
contributing to the high error rate of the (Wu et al.,
2023) baseline Transformer trained from scratch
and confirm this is the case.

"These attraction errors are similar to those discussed else-
where in NLP and psycholinguistics literature on hierarchical
vs linear processing by language models and humans, see
"Appendix: Attraction errors" (9.6).

8semantically equivalent and see also

https://anonymous.4open.science/r/RASP-for-COGS-102F
°As a convention, in converting ReCOGS logical forms

2 Prior Literature

(Kim and Linzen, 2020) introduce the COmposi-
tional Generalization Challenge based on Semantic
Interpretation (COGS) benchmark!® and argue that
Transformers have low accuracy on the general-
ization splits (35% overall), especially structural
generalization splits where near 0% accuracy is
reported, using a 2-layer Encoder-Decoder Trans-
former (2 layers for Encoder, 2 layers for Decoder).

For another example, (Lake and Baroni, 2023)
use a "meta-learning for compositionality" ap-
proach with a 3-layer Encoder-Decoder Trans-
former architecture and achieve what they call
"human-like systematic generalization", achieving
high scores on everything in the COGS benchmark
(>99% on lexical generalizations) EXCEPT the
structural generalization splits where they also still
score 0% accuracy. However, one notices these
networks are shallow compared with those used
in successful large-pretrained Transformer models
(e.g. 24-layer BERT where compositional parse
trees seem to be encoded in its vector space rep-
resentation (Hewitt and Manning, 2019)), and it
is claimed, by e.g. (Csordés et al., 2022) that for
compositional operations, like parsing, the depth
of the network must be at least the maximum num-
ber of compositional operations, e.g. the height
of the parse tree for grammar dependent problems.
Remarkably, (Petty et al., 2024) finds that increas-
ing the layer depth of the Transformer models (up
to 32 layers) does not improve the near 0% accu-
racy on COGS structural generalization splits like
prepositional phrase modification of subject when
the network has only seen it on the object during
training and also input length/depth generalizations
(like pp/cp recursion), perhaps surprising as for
the simpler logical inferences problem in (Clark
et al., 2020) they observed successful logical in-
ference depth generalization even by Encoder-only
Transformers.

Thankfully, (Wu et al., 2023) are able to begin
to get traction (low but nonzero accuracy) for the
shallow Encoder-Decoder Transformer models on
structural generalizations in a modified but seman-

to Semantic Graphs we use the logical form (source, target)
index order for directed semantic graph edges (from verb to
related entity) EXCEPT for the agent relationship which is
from the agent of a verb to the verb (opposite direction from
logical form in that case), which gives our semantic graphs
of ReCOGS sentences an unambiguous starting point (layout
starts from agent) without affecting comparison of the graphs
(generated by a consistent rule), see also Figure 3.
10See Figure 1.


https://anonymous.4open.science/r/RASP-for-COGS-102F

tically equivalent form of the COGS task they call
ReCOGS, which we analyze here. They remove
redundant symbols, and use Semantic Exact Match
instead of Exact Match (see Figure 1).

(Zhou et al., 2024) apply (Weiss et al., 2021)’s
RASP language to explain some inconsistent find-
ings regarding generalization and use RASP to pre-
dict exactly which cases of generalization come
easily to Transformers and which do not. (Zhou
et al., 2024) seem to reveal (Weiss et al., 2021) has
provided the framework we seek by demonstrating
how to apply RASP to Transformer decoders with
intermediate steps, and even use it to learn how
to modify difficult-to-learn tasks like Parity!' and
long addition in seemingly incidental ways based
on RASP analysis to make them readily learnable
by Transformers in a compositional, length gener-
alizing way!

Thus we apply techniques similar to (Zhou et al.,
2024) and (Weiss et al., 2021) to ReCOGS to (1)
argue Transformers should be capable of perform-
ing the task, including the structural generalization
splits, with high accuracy, and that the problem is
learning not capability and (2) try to understand the
prepositional phrase modification related general-
ization errors (Wu et al., 2023)’s baseline Encoder-
Decoder Transformers are making.

3 Data

The ReCOGS (Wu et al., 2023) dataset (ReCOGS
with positional indexing variant) based on COGS
(Kim and Linzen, 2020) (input sentences/grammar
are the same but logical form output are differ-
ent) was used'?, with special attention on the struc-
tural generalization splits (especially prepositional
phrase Object-to-Subject generalization).

The grammar and vocabulary description for
COGS English input sentences provided in the util-
ities associated with the IBM CPG project (Klinger
et al., 2024)'3 were used in designing our RASP

!See (Strobl et al., 2024) for context from formal language
theory, computational complexity, circuit complexity theory,
and experimental papers together, providing robust lower and
upper bounds on what Transformers can do, including dis-
cussion of under what conditions Parity can be solved by
Transformers and how whether it can be learned by randomly
initialized Transformers under simple training schemes is a
different question (general feed-forward neural networks can
learn to solve Parity per (Rumelhart et al., 1988)). (Deletang
et al., 2023) also. See "Appendix: Zhou et al 2024 relevance
of their long addition experiment to language modeling and
note on the Parity task and Transformers" (9.12)

Phttps://github.com/frankaging/ReCOGS

Bhttps://github.com/IBM/cpg/blob/

solution and analyzing the ways in which this task
could be learned (we did not actually use their
grammar though, and our RASP solution is flat
and non-hierarchical unlike their description of the
COGS probabilistic context-free grammar which
is hierarchical and recursive). See Figure 1.

4 Model

We used the RASP interpreter of (Weiss et al.,
2021). For RASP model design and details see Ap-
pendix 9.2. We use word-level tokens for all RASP
model results in this paper,'* with an "embedding"
layer that tags with possible part of speech!”, and
apply just once per encoder pass 19 attention-head
compatible flat pattern-matching rules (Figures 2,
5, 6), shown using grammar coverage (Zeller et al.,
2023) to be learnable from the training data'®, plus
general pp/cp handling logic. Each pattern han-
dles "det common_noun" and "proper_noun" iden-
tically, a symmetry which is evident in the training
data. The model does NOT apply recursive, tree-
structured rules like ‘np_det pp np -> np_pp ->

3

np‘.
Consistent with (Zhou et al., 2024) we use
(Weiss et al., 2021)’s RASP originally used for
modeling Transformer encoders to model an
encoder-decoder in a causal way by feeding the
autoregressive output back into the program.!”
For training Transformers from scratch with ran-

c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L.523

14We believe any solution at the word-level can be converted
to a character-level token solution (see Appendix 9.3 for proof
of concept details on a character level solution not used here).

5Note we follow the (Klinger et al., 2024) description
of COGS and include in our RASP vocabulary (part-
of-speech or verb-type embedding/mapping) all words
occurring anywhere in the upstream (Re)COGS "train.tsv".
We also include two words in our vocab/embedding as
common nouns accidentally left out of train.tsv vocab-
ulary by the COGS author: "monastery" and "gardner"
(only included in their train_100.tsv and dev.tsv not
also in train.tsv, but present in test/gen), a decision af-
fecting just 22 or 0.1% of generalization examples so
would not affect any conclusions qualitatively. See also
the discussion on COGS Github with the COGS author at
https://github.com/najoungkim/COGS/issues/2#issuecomment-
976216841 .

16Specific training examples for each rule are in Table 2 the
end of "Appendix: Grammar Coverage analysis to develop and
justify Restricted Access Sequence Processing model design"
9.11)

"We only have aggregations with non-causal masks when
that aggregation (or without loss of generality just before the
aggregation product is used to avoid multiplying everywhere)
is masked by an input mask restricting it to the sequence
corresponding to the input.


https://github.com/frankaging/ReCOGS
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841

domly initialized weights, we use scripts derived
from those provided by (Wu et al., 2023)'%. See
"Appendix: Model Detail" (9.4).

5 Methods

We use the RASP (Weiss et al., 2021) interpreter!®
to evaluate our RASP programs?’. Logical forms
(LFs) generated by the models were scored by Se-
mantic Exact Match?! against ground truth.

We also measure grammar coverage (Zeller et al.,
2023) (more detail in Appendix 9.10) by input ex-
amples supported by our RASP model against the
full grammar of COGS/ReCOGS input sentences
provided in the utilities of the IBM CPG project
(Klinger et al., 2024)%2. See "Appendix: Meth-
ods Detail" (9.5). See also "Appendix: Results
Notebook links by section" (9.1) for notebooks
documenting results and giving steps to reproduce.

6 Results

Restricted Access Sequence Processing - gram-
mar coverage using a flat pattern matching ap-
proach (not tree-based and not recursive) and

autoregressive decoder loop

Figures 2, 5, and 6. See "Appendix: Gram-
mar Coverage Analysis for Design of Restricted
Access Sequence Processing Model" (9.11) for
more details. We generated 21 sentences based
on rules present in the training examples which

cover 100% of the COGS input grammar?3 (lexical
differences ignored, under the context-free gram-
mar, tree-based assumption which is violated for
our non-tree non-recursive model for prepositional
phrases, requiring an additional rule to avoid "at-
traction errors", Figure 7) per (Zeller et al., 2023).

"®https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py

and

https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5td2fb284a7d470998af5083beb
/model/encoder_decoder_hf.py

Yprovided at https://github.com/tech-srl/RASP/

Phttps://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
with a demo at https://anonymous.4open.science/r/learning-
rasp-F7C2/recogs_examples_in_rasp.py

2Using the official scripts at
https://github.com/frankaging/ReCOGS/blob/

Ibbeca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py

and
https://github.com/frankaging/ReCOGS/blob/

1bbeca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py

Zhttps://github.com/IBM/cpg/blob/
¢3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L.523

ReCOGS has same input grammar/vocabulary as COGS,
only logical form output is different

Attention-head compatible flat patterns/rules were
derived from those examples (detail in Table 2):

# 19 flat patterns for non-recursive grammar rules
((det common) |proper) was v_trans_omissible_pp_p1
((det common) |proper) v_trans_omissible_p1
((det common) [proper) v_trans_omissible_p2
((det common) |proper)
((det common) |proper) was v_trans_omissible_pp_p2
by ((det common)|proper)
((det common) |proper) v_trans_not_omissible
((det common) |proper)
((det common) |proper) was v_trans_not_omissible_pp_p1
((det common) |proper) was v_trans_not_omissible_pp_p2
by ((det common) |proper)
((det common) |proper) v_unacc_p1
((det common) |proper)
((det common) |proper) was v_unacc_pp_p]1
((det common) |proper) was v_unacc_pp_p2
by ((det common)|proper)
((det common) |proper) v_inf_taking to v_inf
((det common) |proper) v_unerg
((det common) |proper) v_unacc_p2
((det common) |proper) v_dat_p1
((det common) |proper) to ((det common) |proper)
((det common) |proper) v_dat_p2
((det common) |proper) ((det common) |proper)
((det common) |proper) was v_dat_pp_p3
((det common) |proper)
((det common) |proper) was v_dat_pp_p4
((det common) |proper)
by ((det common) |proper)
((det common) |proper) was v_dat_pp_p2
to ((det common)|proper) by ((det common) |proper)
((det common) |proper) was v_dat_pp_p1
to ((det common) |proper)
# 2 examples for recursive grammar rules
# 1 prepositional phrase example
# (flat rule: mask out "pp ((det common)|proper)”
# except when outputting noun and nmod)
((det common) |proper) v_trans_omissible_p2
((det common) [proper) pp ((det common) |proper)
# 1 sentential complement example
# (flat rule: mask out cp prefix except
# when outputting that part of LF)
((det common) |proper) v_cp_taking that
((det common) |proper)
v_trans_omissible_p2 ((det common) |proper)

The first 19 of those patterns are present in our
RASP program code?* and each correspond to a
set of RASP operations corresponding to attention
operations in a Transformer to match a template
corresponding to that sentence type>. To handle
prepositional phrases in a flat solution, we find it
necessary on the training data to add a rule that
ignores "det common_noun" or "proper noun" pre-
ceded by a preposition when searching for noun
indexes to report in relationships (agent, theme, re-
cipient, etc) and as if we did that during pattern
matching by using before/after matches instead of
strict relative indexing. Considering how a model
without this rule would behave led us to be able
to predict 96% of a certain category of errors a
baseline Encoder-Decoder Transformer makes (see
baseline attraction error results page 6).

Restricted Access Sequence Processing - test
set and generalization set performance

The Restricted Access Sequence Processing pro-
gram scored 100% Semantic Exact Match and
String Exact Match (no missed examples) (95%

Zhttps://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-
loop.rasp#L.574

Bsee also "Appendix: Restricted Access Sequence Process-
ing word-level token program/model design" (9.2)
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https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/tech-srl/RASP/
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
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https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
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= 1

v_trans_omissible_pp: 10
v_trans_not_omissible: 11
v_trans_not_omissible_pp: 12
v_cp_taking: 13

v_inf_taking: 14

np_after_seq

(A) = (np_det_left_seq & np_two_before_seq)=[0, 0,0, 1,0, 0, 0]
(B) = (np_prop_seq & np_before_seq) = [0, 0, 0, 0, 0, 0, 0]
np_np_seq =(AorB)=[0,0,0,1,0,0,0]
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x_l,:;e:% 16 & np_before_seq & np_np_any_before_seq
_inf: =[0,0,1,0,0,0,0]
v_dat: 18
v_dat_pp: 19
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Figure 2: Example RASP model flat grammar pattern match-
ing, for np v_dat_p2 np np, for a matching sentence. See
Figure 5 and 6 in the Appendix for matching a sentence with

*COGS official training data uses "lended", instead of "lent"

middle-noun pp modification and non-matching cases.

ReCOGS_pos Split

Semantic Exact Match %

(95% CI)

ReCOGS_pos test set (held out, in-distribution)

100.00% (99.88-100.00%)

Generalization splits (held out, out-of-distribution) (be-

low)

active_to_passive

do_dative_to_pp_dative
obj_omitted_transitive_to_transitive
obj_pp_to_subj_pp

obj_to_subj_common

obj_to_subj_proper
only_seen_as_transitive_subj_as_unacc_subj
only_seen_as_unacc_subj_as_obj_omitted_transitive_subj
only_seen_as_unacc_subj_as_unerg_subj
passive_to_active

pp_dative_to_do_dative

prim_to_inf_arg

prim_to_obj_common

prim_to_obj_proper

prim_to_subj_common
prim_to_subj_proper

subj_to_obj_common

subj_to_obj_proper

unacc_to_transitive

100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
92.20% (90.36-93.79%)

100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)
100.00% (99.63-100.00%)

100.00% (99.63-100.00%)

all gen splits (19K examples, aggregate)

99.59% (99.49-99.68%)

Table 1: ReCOGS_pos test set performance (n=3000) and
non-recursive out-of-distribution generalization split perfor-
mance for Restricted Access Sequence Processing (RASP)
Encoder-Decoder Transformer-compatible model (n=1000
per gen split).

confidence interval (Beta dist / Clopper-Pearson)
of 99.88% to 100%, n=3000) on the ReCOGS_pos
test set. The RASP model scored 99.59% semantic
exact match on all non-recursive out-of-distribution
generalization splits (18922 out of 19000 (95% con-
fidence interval: 99.49% to 99.68%)). See Table 1.
Recursion splits are reported below.

Restricted Access Sequence Processing -
prepositional phrase and sentential complement
recursion (tail recursive) with a non-tree, non-
recursive approach using the decoder loop®°

Our RASP model’s ReCOGS pp_recursion AND
cp_recursion gen split scores were both 100% se-
mantic exact match AND string exact match (95%
confidence interval (Beta dist/Clopper-Pearson):
99.63% to 100.0%, n=1000 for each). See Table 1.

(Wu et al., 2023) Encoder-Decoder Trans-
former from scratch baselines (ReCOGS_pos)

(Wu et al., 2023)’s baseline Encoder-Decoder
Transformer on ReCOGS_pos had an overall score
of 88.55% +/- 1.87% Semantic Exact Match accu-
racy (sample +/- std, n=20) with a 95% confidence
interval for the sample mean when n=20 of 87.73%
to 89.37%.

(Wu et al., 2023)’s baseline Encoder-Decoder
Transformer’s Semantic Exact Match score on
the extremely difficult obj_pp_to_subj_pp split of
ReCOGS_pos was 19.7% +/- 6.1% Semantic Exact
Match accuracy (sample +/- std, n=20) with 95%
confidence interval for the sample mean with n=20
of 17.0% to 22.4% .

(Wu et al., 2023)’s baseline Encoder-Decoder
Transformer’s Semantic Exact Match score on the
pp_recursion split of ReCOGS_pos was 40.18%
+/- 2.07% Semantic Exact Match accuracy (sample
+/- std, n=20) with 95% confidence interval for
the sample mean with n=20 of 36.13 to 44.24%.
(Wu et al., 2023)’s baseline Encoder-Decoder
Transformer’s Semantic Exact Match score on the

The grammar includes two (tail) recursive aspects, prepo-
sitional phrase and sentential complement recursion.

The prepositional phrase recursion comes from the follow-
ing COGS input grammar rules: ‘np -> np_det | np_prop |
np_pp‘ and ‘np_pp -> np_det pp np°.

Thus np can be expanded in an unbounded way as follows:
‘np -> (np_det pp np) -> np_det pp (np_det pp np) -> np_det
pp np_det pp (np_det pp np)‘ and so on.

However, one sees this is tail recursion and can be handled
by a loop that just appends ‘np_det pp‘ until the final ‘np‘ is
not ‘np_pp°.

sentential complement recursion arises from ‘np
v_cp_taking that start*, which can recursively expand as ‘np
v_cp_taking that start -> np v_cp_taking that (np v_cp_taking
that start)‘, and so on until the nonterminal start expands to
some other non sentential complement related nonterminal.



cp_recursion split of ReCOGS_pos was 52.40% +/-
1.38% Semantic Exact Match accuracy (sample +/-
std, n=20) with 95% confidence interval for the
sample mean with n=20 of 51.80 to 53.01%.

(Wu et al., 2023) Encoder-Decoder baseline
2-layer Transformer does not improve on the
obj_pp_to_subj_pp split when adding 1 or 2 ad-
ditional layers (even allowing parameter count
to increase)?’

3-layer (Wu et al., 2023) Encoder-Decoder on
ReCOGS_pos obj_pp_to_subj_pp split: 16.2% +/-
2.7% Semantic Exact Match (sample mean +/- std,
n=10) with 95% confidence interval for sample
mean (n=10) of 14.6% to 17.9% . 4-layer (Wu
et al., 2023) Encoder-Decoder on ReCOGS_pos
obj_pp_to_subj_pp split: 19.3% +/- 4.1% Semantic
Exact Match (sample mean +/- std, n=10) with
95% confidence interval for sample mean (n=10)
of 16.8% to 21.8%.

Attraction Error Analysis for (Wu et al.,
2023) baseline Encoder-Decoder Transformer
on obj_pp_to_subj_pp split

(For additional methods detail see Appendix
(9.8).) Of the obj_pp_to_subj_pp split single
part errors in single verb sentences made by the
(Wu et al., 2023) baseline Encoder-Decoder Trans-
former where the agent was to the left of the verb®,
across n=10 models®’, 765 out of 767 (99.74%;
95% confidence interval 99.06 to 99.97%) were in
the agent part of the logical form (the predicted
position for the error).

Critically across all n=10 (Wu et al., 2023) mod-
els, for 96.73% (740 out of the previously men-
tioned 765 above; 95% confidence interval (Beta
dist / Clopper-Pearson) 95.21 to 97.87%) of the
single point errors in logical forms for single verb
sentences where the agent was on the left, modified
by a prepositional phrase, and the error was in

27 Since no improvement was observed, we did not run the
costly experiments to increase the layers while controlling the
parameter count (which would be a follow up to distinguish if
the improvement was from the layer increase or the parameter
increase).

20ur hypothesis is in terms of nouns with a logical form re-
lationship to a verb or other noun, where the relationship could
be agent, theme, or recipient. Since the obj_pp_to_subj_pp
split is in terms of subject vs object prepositional modification
(instead of agent, recipient, or theme), we use the subset of
sentences within this split where the agent is to the left of the
verb and pp-modified as it corresponds to the subject in that
case.

»0n a per model basis (n=10), the fraction of agent-left
single point errors where it was the agent relationship in the
logical form that was broken were: [0.985, 1.0, 1.0, 1.0, 1.0,
0.990, 1.0, 1.0, 1.0, 1.0].

the agent part, the error in the logical form was
that the agent index was accidentally assigned to
the specific expected prepositional phrase noun
(the one closest to the verb on the left side) in-
stead of the original agent noun. (Figure 7) This
does not vary much from randomly initialized and
trained model to model, with the model-level aver-
age at 97.07% of such errors exactly as predicted
(stderr=2.23% (n=10)), with 7 of 10 models having
100% of these errors exactly as predicted by our
hypothesis®’. The attraction to the nearest noun hy-
pothesis predicts that the offset in the agent index
varies with prepositional phrase recursion depth (as
at depth > 1, there are multiple attractor preposi-
tional nouns to choose from). 3!

We report that for all (n=22) single logical form
part errors observed (from running n=10 separate
Transformer models over the 1000 sentences in
the split) where in the input the agent is left of
the verb and has a depth=2 prepositional phrase
modification in this split, in 100% (95% confidence
interval (Beta dist / Clopper-Pearson) 84.6 to 100%;
n=22) of those sentences the error in the agent right-
index matched our prediction.

(Wu et al., 2023) Encoder-Decoder Trans-
former on new v_dat_p2 pp moved to recipient
(from theme) split - as hard as hardest previous
generalization split

See Figure 3 . As the RASP model predicted the
‘np v_dat_p2 np pp np np**? prepositional phrase
modification (which involves the recipient instead
of the subject so is a distinct check of our hypoth-
esis) would require learning to ignore the distrac-
tor "pp det common_noun" and "pp proper_noun"
same as required for the obj_pp_to_subj_pp split,
we predicted that a new split we introduce
"v_dat_p2_pp_moved_to_recipient” would also be
difficult for the Transformer. To test this, (Wu et al.,
2023)’s baseline Encoder-Decoder Transformer
was trained with default data (ReCOGS_pos
train.tsv) and tested on modified v_dat_p2 pp train-
ing examples where only the word order was
changed to move the prepositional phrase from
the theme to the recipient (logical form prop-
erly updated see Appendix 9.9 for all examples).
The baseline (Wu et al., 2023) Encoder-Decoder

OFraction for each model as predicted: [0.970, 0.761, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 0.976, 1.0]).

3See "Appendix: Attraction errors” (9.6) for examples of
different pp recursion depths.

32Strictly speaking we only do ‘np v_dat_p2 np_det pp np
np°‘ as per the grammar ‘np_prop* cannot precede a preposi-
tional phrase



Transformer was only able to achieve a Seman-
tic Exact Match (sample mean +/- sample std)
of 13% +/- 15.6% (n=10 Transformers trained
from scratch with randomly initialized weights
and data shuffling) with a 95% confidence inter-
val for the sample mean when n=10 of 4% to
23%. Thus, this new split we introduce here as
v_dat_p2_pp_moved_to_recipient is as difficult or
perhaps more difficult than the previous reported
"hardest split" obj_pp_to_subj_pp.

(Wu et al., 2023) Encoder-Decoder Trans-
former trained with data augmented with
v_dat_p2 pp moved to recipient (from theme)
does NOT improve obj_pp_to_subj_pp perfor-
mance

(Wu et al., 2023)’s baseline Encoder-Decoder
Transformer was trained with default data
(ReCOGS_pos train.tsv) but with additionally the
same modified v_dat_p2 pp training examples used
for the "v_dat_p2_pp_moved_to_recipient" split
(non-subject recipient modified with prepositional
phrase, so nonoverlapping with subj_pp, Figure 3
(b) and (d)) above on which it performed poorly,
then tested on the standard prepositional modifi-
cation generalization split "obj_pp_to_subj_pp",
after which it achieved 22% +/- 6.7% Semantic
Exact Match (sample mean +/- std, n=10) with
95% confidence interval for sample mean n=10 of
17.9% to 26.1% (not significantly different than
(Wu et al., 2023)’s baseline by one-tailed Welch’s
unequal variances t-test).

7 Analysis

Our RASP model of a Transformer Encoder De-
coder, without tree-based or recursive aspects
scored 100% in semantic exact match accuracy
on the (Wu et al., 2023) test set (n=3000), and
on the generalization data scored 100% in all but
one category (see above) without explicit rules
in the RASP program to handle them. This in-
cludes 100% semantic exact match accuracy on
the prepositional phrase recursion and sentential
complement recursion generalization splits up to
depth 12 (n=1000 examples each), without any
hardcoded prepositional phrase or sentential com-
plement expansion shortcuts added??. The RASP
program only made a significant number of errors
on obj_pp_to_subj_pp which scored only 92.20%
Semantic Exact Match (95% confidence interval

334 single rule applies to all depths; the only limit on length

generalization is the RASP interpreter and a simple to extend
positional encoding which only handles sentences up to a limit

(Beta dist / Clopper-Pearson): 90.36% to 93.79%)
Semantic Exact Match accuracy, much better than
(Wu et al., 2023) baseline Encoder-Decoder Trans-
formers which only scored 19.7% +/- 6.1% Se-
mantic Exact Match (sample mean +/- std) with
95% confidence interval for the sample mean with
n=20 of 17.0% to 22.4% (n=20 separately trained
models with different random seeds for weight
initialization and training data ordering; n=1000
examples used to test each of the n=20 models).
Thus, we demonstrated by construction using
the Restricted Access Sequence Processing lan-
guage which can be compiled to concrete Trans-
former weights that theoretically a Transformer
Encoder-Decoder can solve the COGS input to
ReCOGS_pos logical form translation in a sys-
tematic, compositional, and length generalizing
way.

Recall we found a single flat pattern match-
ing rule we originally added to fit training exam-
ples, to ignore "pp det common_noun" and "pp
proper_noun" when matching nouns for the agent,
theme, recipient right indices, was sufficient to
avoid structural generalization errors due to pp
modification in novel positions.

Interestingly, we imagined ablating that single
rule and hypothesized attraction to the nearest noun
(Figure 7 and "Appendix: Attraction Errors" (9.6))
in its absence and found this predicted the exact
error (the nearest noun to the verb on the expected
side is mistaken for the agent of the verb) in 96%
of the single relationship errors the (Wu et al.,
2023) baseline Transformers make on the obj-pp-
to-subj-pp split>* when the agent is left of the verb
in single verb sentences (suggesting perhaps that
the baseline (Wu et al., 2023) Transformer trained
from scratch is also not learning a hierarchical,
tree-structured representation.)® Our explanation
could have been refuted by other single relation-
ship errors occurring as frequently as the agent,
indicating general model confusion (independently
getting incorrect agent and theme, not just agent
relationships) and/or when making an agent error,
the model could have simply put nonsense indices
or referred to any other position other than the clos-
est pp noun position to the verb (which does vary
and depends on pp depth) to refute our hypothesis.

*overall, their semantic exact match on the split is mea-
sured by us at 19.7%, consistent with their Figure 5

3We found (Li et al., 2023) also observe this stating "For
instance, in sentences like *A cat on the mat froze’, models
often misinterpret the closer NP the mat as the subject."



The flat/non-tree structured hypothesis for the
baseline Transformer can also be checked by mak-
ing a prediction on a completely different syntax
affected by the same issue: the ‘np v_dat_p2 np pp
np np‘ prepositional phrase modification (which in-
volves the recipient relationship being modified
instead of the subject and/or agent so is a dis-
tinct check of our hypothesis)*® and we indeed
found that this was as hard or harder than the
previous most difficult split analyzed above, the
‘obj_pp_to_subj_pp° split (Figure 3).

Maybe (Wu et al., 2023) baseline Encoder-
Decoder is depth-constrained to learn a non-
hierarchical, flat, non-tree model with these charac-
teristic errors and with more layers it would learn
to recursively combine ‘np_det pp np -> np_pp ->
np‘ (to some fixed depth at least, probably limited
by the number of Transformer blocks) and perform
better on prepositional phrase related splits>”. How-
ever, training a (Wu et al., 2023) baseline Encoder-
Decoder Transformer from scratch we found no
benefit to 3 or 4 layers instead of 2 on the ReCOGS
obj_pp_to_subj_pp split, consistent with (Petty
et al., 2024)’s finding on COGS.

Taken together, these results and the grammar
coverage analysis suggest we may interpret the
poor performance on generalizing on unseen prepo-
sitional phrase related modification related splits
as arising from the baseline 2 to 4 layer Encoder-
Decoder Transformers learning a non-tree, non-
recursive representation that cannot leverage the
grammar rule ‘np_det pp np -> np_pp -> np‘ dur-
ing learning and which requires them to instead
actually observe more of the various prepositional
phrase substitutions to learn them.®

8 Conclusion

Implementing our task in Restricted Access Se-
quence Processing immediately helped us dis-
cover additional failure modes (e.g. new
"v_dat_p2_pp_moved_to_recipient" split39) of

3See Appendix 9.9

37(Csorda’ls et al., 2022): "the network should be sufficiently
deep, at least as deep as the deepest data dependency in the
computational graph built from elementary operations (e.g.,
in the case of a parse tree, this is the depth of the tree)". (This
is not a very scalable approach, as we must make the network
deeper to handle increased pp depths instead of just looping
or at least reusing weights each layer.)

38See "Appendix: Composition and Learning" (9.13)

3 After this paper was written we found our predicted split
"v_dat_p2_pp_moved_to_recipient" has also been added to
an extended separate (SLOG) version of COGS (upstream of
ReCOGS) recently in (Li et al., 2023) see their section 2.2.1

COGS training example:
2 /@ "A scientist lended a cat a donut beside a computer"

Prepositional modification on theme noun (in tail).

©

Gy Cmmn >
G

Vp._cxternal?

Modified COGS training example:
/@ "A scientist lended a cat beside a computer a donut"
Prepositional modification on recipient noun

(not in tail).

b,

[

Train on extracting meaning of (a)
and other grammar patterns excluding (b)

scientist (1); cat (4); donut (6); computer (9); lend (2) AND
29Nt (2, 1)AND recipient (2, 4) AND theme (2, 6) AND nmod . beside (6,9)

Cannot generalize to extracting meaning of (b)

scientist (1); cat(4); computer (7); donut(9);lend (2)AND
agent (2, 1) AND recipient (2, 4) AND theme (2, 9) AND nmod . beside (4, 7)

Figure 3: (Wu et al., 2023) Encoder-Decoder Transformer
trained from scratch generalizing to new v_dat_p2 pp moved
to recipient (from theme) split is as hard as the previously re-
ported hardest generalization split consistent with the flat/non-
recursive/non-tree representation hypothesis ((d) rejects Ho).
Figure 5 shows how a flat RASP model can recognize (b).

(Wu et al., 2023)’s baseline Encoder-Decoder
Transformer, predict errors in detail made
in the logical forms, and demonstrated that
tree-structured/recursive representations are not
needed to cover the recursive aspects of the
COGS/ReCOGS grammar*’. We recommend oth-
ers to consider RASP to understand Transformer
behavior even for more complicated tasks like
ReCOGS. We predict that Transformers should be
able to perform the ReCOGS task (even structural
generalization splits) with high accuracy and that
the problem is just of getting the Transformer to
learn the appropriate rules*!, turning attention to
data augmentation*?, curriculum learning (Bengio
et al., 2009), reinforcement learning (Ranzato et al.,
2016), training objectives (Ahuja et al., 2024), and
other approaches (Csordas et al., 2021) (Ontanon
et al., 2022).
indirect object modification (4), confirmed difficult

“input grammar for COGS/ReCOGS are the same

“le.g.  to ignore "pp det common_noun" and "pp
proper_noun" when finding nouns in relationships with verbs,
which allows the RASP model to get 100% on the ReCOGS
test set, and 100% two of the three structural generalizations,
and 92% on the obj-pp-to-subj-pp split

“We tried one augmentation, see Results and Appendix
9.9, but there are many other possibilities.



Known Project Limitations

The Restricted Access Sequence Processing code is
not optimized. Cannot yet predict attention heads
and layers required from the select and aggregate
operations performed like the RASP authors (Weiss
et al., 2021) were able to do with their problems.

Grammar coverage (Zeller et al., 2023) is only
valid when the expansions are rules your model can
learn.*> We specifically made use of this limitation
in this paper but still caution anyone about it who
might just take the grammar coverage metric away
by itself.

The attraction error analysis of the (Wu et al.,
2023) baseline Encoder-Decoder Transformer on
the obj_pp_to_subj_pp split does not yet attempt
to explain the common case of multiple errors in
the logical form.**

We only provide and discuss a RASP solution
for ReCOGS (Wu et al., 2023) here, not the se-
mantically equivalent COGS* (Kim and Linzen,
2020), though as this goes to publication we have
just separately released a RASP model for COGS
at https://anonymous.4open.science/r/RASP-for-
COGS-102F*, which is undergoing evaluation
with preliminary data supporting the same conclu-
sions for that task (can also be solved by a non-tree
structured, non-hierarchical Transformer compat-
ible model, despite using Exact Match instead of
Semantic Exact Match, with same RASP for the
Encoder as used here for ReCOGS_pos but a dif-
ferent Decoder).

Much deeper Transformer networks may be
learning a tree-based grammar representation*’ and

If for example, as with our flat RASP model by design or
as we hypothesize for (Wu et al., 2023)’s baseline Encoder-
Decoder Transformer, the model cannot or will not learn the
rule ‘np_det pp np -> np_pp -> np‘ which recursively replaces
noun phrases modified by prepositional phrases with a noun
phrase, then grammar coverage will assume any prepositional
phrase exposure is sufficient, which is evidently not true given
the errors on prepositional phrase modification generalization
splits reported here and by (Wu et al., 2023), (Kim and Linzen,
2020).

#e.g. agent index may be replaced by prepositional phrase
noun but also a spurious theme relationship is added or the
theme index is also corrupted

“nor the recently introduced extended version SLOG (Li
et al., 2023)

46RASP-for-COGS also supports case-sensitive string exact
match and ignoring out-of-vocabulary words, features not
supported in RASP-for-ReCOGS

*TNothing explored here rules that out and there is plenty of
evidence outside the COGS task-related literature suggesting
this will be the case: (Tenney et al., 2019) show the 24-layer
BERT model seems to handle "POS tagging, parsing, NER, se-
mantic roles, then coreference"; (Hewitt and Manning, 2019)

not suffer from the predicted generalization issues
observed in (Wu et al., 2023)’s baseline 2-layer
Transformer and predicted by our intentionally non-
tree RASP model (if compensating rules to avoid at-
traction errors in a flat model are not also learned).

As stated elsewhere in the paper, we are focused
on the structural generalizations that Transform-
ers currently struggle with (prepositional phrase
recursion (pp recursion), sentential complement
(cp) recursion, object-pp to subj-pp modification
generalization (obj-pp-to-subj-pp)) and not lexical
generalizations (which Transformers are demon-
strated to do well on by others). Thus, as noted
elsewhere, our model assumes the embedding can
map words to their possible part-of-speech and
verb-type and does not address the learnability of
this mapping (number of exposures required, etc).

The ReCOGS task is English specific and our
findings on compositional generalization may not
necessarily apply (or apply differently) to other lan-
guages. Our description of "attraction errors" for
example does not appear specific to subject-verb-
object ordering in English but a similar analysis
should be conducted in other languages and we
used the obj-pp-to-subj-pp split in our detailed er-
ror analysis which is subject-verb-object ordering
sensitive.

The RASP-for-ReCOGS model applied to un-
intended use WILL give invalid results or halt -
we have NOT provided a general language model,
we have provided a simulation of how a Trans-
former could perform a specific task. The RASP-
for-ReCOGS model/simulation as provided is for
research purposes only to prove feasibility of the
ReCOGS task by Transformers and is not appropri-
ate for ANY other uses whatsoever without modifi-
cation. For one, an actual Transformer performing
the equivalent operations would run orders of mag-
nitude faster, which should be reason enough to not
want to use the RASP simulation for actual input-

"provid[e] evidence that entire syntax trees are embedded
implicitly in deep models’ [including BERT’s] vector geome-
try", and (Goldberg, 2019) shows BERT excels at subject-verb
agreement, "which [is] traditionally taken as evidence for the
existence [of] hierarchical structure" (though e.g. in this work
we see that ignoring distractor nouns in long-term dependen-
cies does not require hierarchy or a deep understanding of
syntax but simple rules like ignore "pp det common_noun"
and "pp proper_noun" for finding noun-verb relationships in
the logical form can allow for handling of such long-range
dependencies). On the other hand, (Petty et al., 2024) argue
specifically for the COGS benchmark (semantically equivalent
to ReCOGS which is derived from it) that increasing depth
does not allow their Transformers to make progress on the
structural generalization splits, even at depths up to 32 layers.


https://anonymous.4open.science/r/RASP-for-COGS-102F
https://anonymous.4open.science/r/RASP-for-COGS-102F
https://anonymous.4open.science/r/RASP-for-COGS-102F

output tasks outside of a research setting. However,
there is also no "tokenizer" provided for the RASP
model to handle out-of-vocabulary inputs and fall-
back paths for out-of-grammar examples are not
provided so the RASP model will halt on most
inputs and can only run on the in-distribution (non-
augmented) training data, and the dev, test, and
gen sets of ReCOGS, though such aspects could
be added. We provide the code for reproducing
the results of this study and for researchers who
are capable of writing RASP themselves to build
upon the work and/or more easily apply RASP to
their own problems given our examples, not for
immediate application to any other tasks without
appropriate modification.

See also "Appendix: Potential Risks" (9.14) and
"Appendix: Scientific Artifacts - Is Our Use Consis-
tent with Authors’ Intention and Licensing" (9.15)
for other potential concerns.
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9 Appendix

9.1 Results Notebook links by section

9.1.1 ReCOGS RASP model on test set
For steps to reproduce and results, see the RASP model ReCOGS test set notebook (link)*®.

9.1.2 ReCOGS RASP model on generalization set (all splits)
For steps to reproduce and results, see the RASP model ReCOGS generalization set notebook (link)*.

9.1.3 (Wu et al., 2023) Encoder-Decoder Transformer from scratch baselines (ReCOGS_pos)

See the Encoder-Decoder Transformer from scratch baselines notebook (link)™°
for (Wu et al., 2023) script execution and analysis code.

9.1.4 (Wu et al., 2023) Encoder-Decoder baseline 2-layer Transformer does not improve on the
obj_pp_to_subj_pp split when adding 1 or 2 additional layers

3 and 4 layer results can also be found in that same notebook, which is also the baseline Encoder-Decoder
Transformer 3 or 4 layer variation results notebook (link)>! (scroll down).

9.1.5 Attraction Error Analysis for (Wu et al., 2023) baseline Encoder-Decoder Transformer on
obj_pp_to_subj_pp split
See Attraction Error Analysis on baseline Encoder-Decoder Transformer notebook (link)>? .

9.1.6 (Wu et al., 2023) baseline Encoder-Decoder Transformer on v_dat_p2 generalization to
recipient pp modification after training on theme pp modification (both right of verb)

See v_dat_p2 generalization to middle np/recipient pp modification on baseline Encoder-Decoder Trans-
former notebook (link)™3 .

“Full URL for printed copies:

https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ RASP_model_for_ReCOGS_eval_test
_set_(multiday_run_on_dedicated_VM) _(PR_7_contents_on_TEST_set_incl_complement_phrase_support)_(public).ipynb

*Full URL for printed copies:

https://anonymous.4open.science/t/RASP-for-ReCOGS-16B9/supplemental_data/ RASP_model_for_ReCOGS_eval_on_gen
_set_(multiday_run_on_dedicated_VM) _(PR_7_contents_on_GEN_set_incl_complement_phrase_support)_(public).ipynb

Full URL for printed copies:

https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/ supplemental_data/RASP_for_ ReCOGS_(no_RASP_in_this
_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing
_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb

TFull URL for printed copies:

https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/ supplemental_data/RASP_for_ ReCOGS_(no_RASP_in_this
_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing
_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb

S2Fyll URL for printed copies:

https://anonymous.4open.science/t/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline
_non_RASP_Transformer_ReCOGS_error_prediction _with_n=10_Transformers_trained_from_scratch_(predicting_the_details
_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb

33Full URL for printed copies:

https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer
_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp _modification_on_the_theme_(right_most_np),
_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
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https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
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https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
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https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
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9.2 Restricted Access Sequence Processing
word-level token program/model design

For overall model descriptions, first see Model De-
tail 9.4. For a description of the Restricted Access
Sequence Processing (RASP) language, which is
theoretically compilable to Transformer neural net-
work weights, see (Weiss et al., 2021).

You can run a demo of our RASP model and see
the autoregressive output
# no longer cloneable with this command after blinding for review
# (but can use download zip tool there)

git clone https://anonymous.4open.science/r/learning-rasp-F7C2/
python recogs_examples_in_rasp.py

The script will show performance on (Wu
et al., 2023) ReCOGS_pos data by default, run
with "—use_dev_split", "—use_gen_split" , or "—
use_test_split" to see it run on those and give a
running score every row.

For ReCOGS, intending to perform well on Se-
mantic Exact Match, we took a simple, flat, non-
tree, non-recursive approach which was able to
get 100% semantic exact match (and string exact
match) on the full test set, and 99.6% semantic ex-
act match on the out-of-distribution generalization
set of the real ReCOGS dataset>*.

We use word-level tokens for all RASP model
results in this paper.”>>. We took the RASP native
sequence tokens at the word-level, and first did a
Transformer learned-embedding compatible opera-
tion and created 1 part-of-speech and 4 extra verb-
type sequences (because each word in the COGS
vocabulary may actually serve multiple POS roles;
up to four different verb types as in the case of
"liked"

which can serve as v_trans_not_omissible,
v_trans_not_omissible_pp_pl,
v_trans_not_omissible_pp_p2, and v_cp_taking
types).

The five extra sequences serve to associate each
word with one or more of the following part-of-

speech/verb type roles:

det: 1
pp: 2
was: 3
by: 4
to: 5
that: 6
common_noun: 7
proper_noun: 8
v_trans_omissible: 9
v_trans_omissible_pp: 10
v_trans_not_omissible: 11
v_trans_not_omissible_pp: 12
3word-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
35We believe any solution at the word-level can be converted
to a character-level token solution and that is not the focus of

our investigation here (see Appendix 9.3 for proof of concept
details on a character level solution not used here).
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Figure 4: Example RASP model flat grammar pattern match-
ing, for np v_dat_p2 np np, for a matching sentence.

v_cp_taking: 13

v_inf_taking: 14

v_unacc: 15

v_unerg: 16

v_inf: 17

v_dat: 18

v_dat_pp: 19

v_unacc_pp: 20

# v_normalized_in_output: 21 # only used in decoder loop
#, represents stemmed verbs where type is not important

For those used to multidimensional representa-
tions, one can think of these as one-hot vectors of
dimension 20° and replace equality checks with
vector dot product (and a check for either com-
mon_noun or proper_noun would be a dot product
with the sum of one-hot 20 dimensional vectors
given by (common_noun + proper_noun)) but we
keep it simple for human reading here and use these
scalars in 1d as is easily supported by RASP.

Each of the five sequences comes from a separate
map, since in RASP a map could only have a single
value per key, and since individual words had up to
four different verb roles (as in "liked" which had
4).

%621d in decoder only for v_normalized_in_output

1
0 0 00
<

(A) = (np_det_left_seq & np_two_before_seq) = [0, 0, 0, 1, 0, 0, 0]

*COGS official training data uses "lended", instead of "lent"


https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
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Figure 5: Example RASP model flat grammar pattern match-
ing, for np v_dat_p2 np np, for a matching sentence, despite
pp modification of middle recipient noun. This is in the en-

coder. See also Figure 7 for how the RASP model avoids

attraction errors in assigning agents, recipients, themes due to

prepositional phrase modification in the decoder.

Upon these five parallel, aligned, sequences we
used a series of attention head compatible opera-
tions to recognize multi-token patterns (see below)
corresponding to grammatical forms (listed below).

np_det_mask = select(7, pos_tokens, ==) \
and select(pos_tokens, 1, ==) \

and select(indices+1, indices, ==);
np_prop_mask = select(8, pos_tokens, ==) and \
select(indices, indices, ==);

np_det_sequence = aggregate(np_det_mask, 1);
np_prop_sequence = aggregate(np_prop_mask, 1);
np_det_after = select(np_det_sequence, 1, ==) and \

select(indices+1, indices, ==);
np_prop_after = select(np_prop_sequence, 1, ==) and \
select(indices+1, indices, ==);

np_after_mask = np_det_after or np_prop_after;
np_after_sequence = aggregate(np_after_mask, 1);

np_after_mask = select(np_after_sequence, 1, ==) and \
select(indices,indices, ==);
# ...

# np v_unerg
#e.g. [1,7,16]

set example ["the”, "guest”, "smiled"]
v_unerg_mask = select(16, pos_tokens_vmapl, ==) and \
select(indices, indices, ==);

np_v_unerg = aggregate(np_after_mask and v_unerg_mask, 1);
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Prepositional modification

of the recipient noun (cat)
does not disrupt detection of
the grammar pattern

(neither does tail pp modification
which is more obviously true)
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Figure 6: Example RASP model flat grammar pattern match-
ing, for the pattern np v_dat_p2 np np, for a non-matching
sentence.
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These patterns are not causal because their
use/input/output is masked to the input section
of the sequence, so would take part in the En-
coder of the Encoder-Decoder only (all opera-
tions outside the input mask in the word-level
token RASP solution used in this paper are di-
rectly or indirectly causally masked and we built
symbol by symbol in a causal autoregressive way).
We could have added an explicit causal mask
to each operation but for efficiency and simplic-
ity of the code omitted it when we are doing it
implicitly by taking only the last sequence po-
sition (we also acausally aggregate so that all
sequence positions have the same value as the
last sequence position to make it easier to read
the output — RASP interpreter will just print it
as one position if they are all equal and we only
take one position).

Also, the author thinks many of these RASP
steps could be consolidated. The goal here was
to first prove by construction that a non-recursive,
flat RASP program could get approximately 100%
Semantic Exact Match on all the ReCOGS gen-
eralization splits (we only missed one split, obj-
pp-to-subj-pp by a little (see results), which we
believe was due to a mistake made rushing due to
two week time constraint for original model im-
plementation, not a fundamental limitation of the
RASP approach).

Introduction of variables at the beginning of the
ReCOGS logical form (e.g. in the logical form for
"a boy painted the girl", we have "boy (1) ; * girl
(4);paint (2 ) AND agent (2, 1) AND theme (
2,4)", the variable introduction is "boy (1) ; *
girl (4) ; paint ( 2 )" before the "AND"). We took
a simple approach and sorted the input sequence
with nouns before verbs and determiners, fillers
last (with determiners and fillers not having any
corresponding entry in the output sequence). We
then count nouns and verbs in the input and count
nouns and verbs in the output and determine if we
have introduced all the nouns and verbs.

See code for full details>” (for simplicity this de-
scription was written without discussing sentential

complement (CP) handling).

Example counting how many nouns and verbs
we have output (introduced as variables) so far (to
determine what we need to output for next token):

nv_in_output_sequence = \
OUTPUT_MASK* (indicator(pos_tokens == 7 or pos_tokens == 8) + \

STword-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

17

indicator(pos_tokens_vmapl == 9 or pos_tokens_vmap2 == 10 or \
pos_tokens_vmap1 == 11 or pos_tokens_vmap2 == 12 or \
pos_tokens_vmap3 == 13 or pos_tokens_vmap4 == 14 or \
pos_tokens_vmapl == 15 or pos_tokens_vmapl == 16 or \
pos_tokens_vmapl == 17 or pos_tokens_vmapl == 18 or \
pos_tokens_vmap2 == 19 or pos_tokens_vmap2 == 20 or \

pos_tokens_vmap1==21));
nv_in_output_count = selector_width(select(nv_in_output_sequence, 1, ==));
# causal operation as we use only last sequence position

How variables are introduced with their index
(omitted sorting of input and other operations that

can be read in the code and are less important;
anything acausal is restricted to input sequence
section (Encoder)): (only value at last sequence
position is used; causal)

# introducing variables

output = "";

# definite article word handling
before_target_word_index = \
aggregate(select(indices, nv_in_output_count, ==), \
input_indices_sorted)-1;

has_star =\

aggregate(select(indices, before_target_word_index, ==), \
tokens) == "the";

last_output_is_star = \

aggregate(select(indices, length-1, ==), \

tokens) == "*";

input_nv_sorted_by_type = \
input_tokens_sorted_by_type * \
(input_noun_mask_sorted + input_verb_mask_sorted);
target_word_token = \

aggregate(select(indices, nv_in_output_count, ==), \
normalize_nv(input_nv_sorted_by_type)) \

if (not has_star or last_output_is_star) else "x";

# subtract 1 when matching

# for producing the index

# because we just output the additional word by then
target_word_index = \

aggregate(select(indices, nv_in_output_count-1,
input_indices_sorted);

==), \

output = \

target_word_token \

if ((num_tokens_in_output_excluding_asterisks %
else \

output;

output = \

TN

if ((num_tokens_in_output_excluding_asterisks %
else output;

output = \

target_word_index \

if ((num_tokens_in_output_excluding_asterisks %
else output;

output = \

"y

if ((num_tokens_in_output_excluding_asterisks %
else output;

# note that

# when nv_in_output_count == nv_in_input_count,

# we will add AND instead of ";"

output = \

N\

5) ==0) \

5) == 1)\
5) == 2) \

5) = 3) \

FA
if \
N\
5 % nv_in_input_count - 1 > \
num_tokens_in_output_excluding_asterisks \
)\
else "AND" \
>\
if (num_tokens_in_output_excluding_asterisks % 5 == 4) \
else output;

# if we didn’t have an input/output separator

# that needs to be output

output = \

"|" if num_pipes_in_output == @ else output;

# note that the output/next token prediction above will be overridden

# with later decoder variables

# (e.g. verb relationship or noun modifier logical form tokens, see below)

# if noun/verb introduction is complete, that is if the decoder detects
# that all nouns/verbs in input have been output in the logical form.

Note that "normalize_nv" is a lookup into a map
that has no effect unless the word is a verb in which
case it normalizes it to a standard suffix ("ate" to
"eat" , "painted” to "paint", etc).


https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
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As you can see above, if we have not intro-
duced all the variables, we determine our index
into the sorted list of nouns and verbs (nouns be-
fore verbs), and using a MLP modeling modulus,
compute index mod 5 (alternatively, number of to-
kens since last separator) and condition on that to
output that noun/verb or parentheses or index as
prediction for next token at last sequence position
(all other sequence positions are ignored). Since
we do ReCOGS_pos (semantically identical to ran-
dom indices but avoid requiring random numbers)
the index we use is the index of the original noun
or verb in the original sequence. If we are still
introducing variables, that is the end and we have
our prediction for the next token.

If we are done introducing variables at that point
in the Decoder loop, we move on, and use templates
that the attention head compatible operations in the
Encoder recognized for us in the five parallel part-
of-speech / verb-type per location sequences for
"v_trans_omissible_p1", "v_trans_omissible_p2",
"v_trans_omissible_pp_pl1",
"v_trans_omissible_pp_p2",
"v_trans_not_omissible",
"v_trans_not_omissible_pp_p1",
"v_trans_not_omissible_pp_p2", "v_cp_taking",
"v_inf_taking", "v_unacc_pl", "v_unacc_p2",
"v_unacc_pp_pl", "v_unacc_pp_p2", "v_unerg",
"v_dat_p2", ‘"v_dat_pp_pl", "v_dat_pp_p2",
"v_dat_pp_p3", "v_dat_pp_p4".

To be clear, we always compute all vari-
ables (noun and verb introduction, verb relation-
ships, nmods) but depending on the number of
nouns/verbs, verb relationships, nmods detected in
the output so far, variables from "completed" or
"premature” phases are discarded and the next pre-
dicted token is given by variables associated with
the appropriate phase, here the verb relationship

phase.

Here are a couple of examples of patterns the En-
coder recognizes, to see how it looks if we support
1 verb pattern per input (no sentential complement
recursion; which can be easily handled how we
handle other things we loop over, looping over cur-
rent phrase and masking and processing), which is
sufficient to get approximately 100% on all entries
that do not use sentential complements (e.g. "the
girl noticed that a boy painted” is not supported in
this example but "a boy painted" is):

# define the pattern

# ...\

# (just showing one example,

# np_prop_mask and

# np_before_mask

# are attention masks defined earlier)

# np v_dat_p2 np np

#e.g. [8,18,1,7,1,7]

set example ["ella”,”sold”,"”a","customer”,"a","car"]

np_np_sequence = \
aggregate((np_prop_mask and np_before_mask) or \
(np_det_left_mask and np_two_before_mask), 1);
# would not support prepositional phrase modification on middle NP
#np_np_before_mask = \

# select(np_np_sequence, 1, ==) and select(indices-1, indices, ==);
np_np_any_before_mask = \
select(np_np_sequence, 1, ==) and select(indices, indices, >);

# acausal is ok
# in INPUT sequence (encoder part, not decoder), \
# would mask further if we wanted to do multiple templates per input or
# something outside the supported grammar (COGS without sentential complement
# recursion is supported here)
np_np_any_before_sequence = \

aggregate(np_np_any_before_mask, 1);
np_np_any_before_mask = \

select(np_np_any_before_sequence, 1, ==) and \

select(indices, indices, ==);
np_v_dat_p_np_np = \
aggregate(np_after_mask and v_dat_mask and \

np_before_mask \

and np_np_any_before_mask, 1);
Example: np_v_dat_p_np_np(\
[’ella’, ’sold’, ’a’, ’customer’,
= [0, 1, 0, 0, 0, 0] (ints)
Example: np_v_dat_p_np_np(\

[8, 18, 1, 7, 1, 7D \

= [0, 1, 0, 0, 0, 0] (ints)

,

a’, ’car’]) \

* o3 o o o

# ...

# check the pattern and set the template name
any_np_v_trans_omissible = \

aggregate(select(np_v_trans_omissible, 1, ==), 1);
template_name = "v_trans_omissible_p1” \
if (any_np_v_trans_omissible == 1) else template_name;

# ...

any_v_dat_p2 = aggregate(select(np_v_dat_p_np_np, 1, ==), 1);
template_name = \
"v_dat_p2" if (any_v_dat_p2 == 1) else template_name;

# ...

any_v_dat_pp_p4 = \
aggregate(select(np_was_v_dat_pp_np_by_np, 1, ==), 1);
template_name = \
"v_dat_pp_p4" if (any_v_dat_pp_p4 == 1) else template_name;

# must be checked after P4
any_v_dat_pp_p2 = \
aggregate(select(np_was_v_dat_pp_to_np_by_np, 1, ==), 1);
template_name = \
"v_dat_pp_p2" if (any_v_dat_pp_p2 == 1) else template_name;

# template name is used to lookup

# the number of verb relationships to output
# and what they are for each index

# e.g. ["theme"”, "agent"]

# vs. ["agent”, "recipient”, "theme"] etc



The rest of this applies to just values used from >= nv_in_input_count else 0;
the last sequence location (output is prediction for

next symbol).

Based on the template recognized, we lookup the
template size for number of relationships (theme,
recipient, agent) for that verb type:

def template_size(template_name) {
# number of items to output in verb relationship phase
# after noun and verb introduction phase
# (special exception is 2-verb v_inf)
template_sizes = {
"o,
"v_trans_omissible_p1”: 1,
"v_trans_omissible_p2": 2,
"v_trans_omissible_pp_p1": 1,
"v_trans_omissible_pp_p2": 2,
"v_trans_not_omissible": 2,
"v_trans_not_omissible_pp_p1”: 1,
"v_trans_not_omissible_pp_p2": 2,
"v_cp_taking": 2,
(NOTE: comments within the map should be removed)
v_inf_taking is a special 2-verb case, 5 items
after noun introduction
(verb 1, agent 1, xcomp verb 1 to verb 2, verb 2, agent 2)
if first verb were included
in introduction phase for v_inf,
then it would be 4
indeed the last map used is template_mapping4
"v_inf_taking": 5,
n.b. if we output out of order
(as allowed by Semantic Exact Match)
and put both verbs in beginning
(verb 1, verb 2, agent 1, xcomp verb 1 to verb 2, agent 2)
then the count would be 3
as we could do normal combined noun and verb intro
but if doing String Exact Match, ReCOGS LF has
verb 2 after the xcomp for v_inf_taking
v_unacc_p1": 2,
v_unacc_p2": 1,

PRI e T Y

I

v_unacc_pp_p1":
v_unacc_pp_p2": 2,
"v_unerg”": 1,
# "v_inf": 1,
"v_dat_p1": 3,
"v_dat_p2": 3,
"v_dat_pp_p1": 2
"v_dat_pp_p2": 3,
2
3

"v_dat_pp_p3":
"v_dat_pp_p4":

return template_sizes[template_namel;

}

Details are in the learning-rasp GitHub RASP
code’®, but we compute at the last sequence posi-
tion (in parallel) the number of relationships output
for the verb so far, and for the current relationship
which token within that multi-token process (e.g.
the word "agent" or the open parenthesis "(" or
the left index, or the comma, or right index, close

parenthesis ")", "AND", etc) we are on.

Like we computed at the last sequence position
the number of nouns and verbs in the output once
we are finished introducing nouns and verbs (this
would be a little different with sentential comple-
ments (see actual code for CP support)), we com-
pute the number of agent,theme,recipient,xcomp
entries in the output:

atrx_in_output_sequence = OUTPUT_MASK*(indicator(tokens == "agent” \

or tokens == "theme" \

or tokens=="recipient” \

or tokens=="xcomp"));

# agent_theme_recipient_xcomp_output_count is the number of relationships we have output

agent_theme_recipient_xcomp_output_count = \

selector_width(select(atrx_in_output_sequence, 1, ==));

after_intro_idx = \

(nv_in_output_count - nv_in_input_count + (1 if any_v_inf_taking == 1 else 0) \

+ agent_theme_recipient_xcomp_output_count) \
if nv_in_output_count + (1 if any_v_inf_taking == 1 else @) \

38word-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
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We use all those different values which are com-
puted independently from the input sequence and

so do not add depth/layer requirements as many of
the ones which involve accessing the sequence can
be done in parallel. We then use the verb-type and
relationship index to the relationship into a map to
get the current relationship to output (as some verb
types output agent first, some output theme, etc):

template_mappingl = {

,
"v_trans_omissible_p1”: "agent",

"v_trans_omissible_p2": "agent",
"v_trans_omissible_pp_p1": "theme",
"v_trans_omissible_pp_p2": "theme",
"v_trans_not_omissible”: "agent",
"v_trans_not_omissible_pp_p1”: "theme",
"v_trans_not_omissible_pp_p2": "theme",

"v_cp_taking": "agent”,
"v_inf_taking": "agent”,
"v_unacc_pl1": "agent",
"v_unacc_p2": "theme",
"v_unacc_pp_p1": "theme",
"v_unacc_pp_p2": "theme”,
"v_unerg”: "agent",
"v_inf": "agent”,
"v_dat_p1": "agent",
"v_dat_p2": "agent",
"v_dat_pp_p1": "theme”,
"v_dat_pp_p2": "theme",
"v_dat_pp_p3": "recipient”,
"v_dat_pp_p4": "recipient”
i

Outputting the verb relationships we must skip
over any "pp np" as possible agents, themes, or re-
cipients to avoid getting confused by noun phrases
added by prepositional modification (believed by
the author to be a cause of the issue with obj pp
to subj pp generalization by (Wu et al., 2023)’s
Transformer).

pp_sequence = indicator(pos_tokens == 2);

pp_one_after_mask = select(pp_sequence, 1, ==) and \
select(indices+1, indices, ==);

pp_one_after_sequence = aggregate(pp_one_after_mask, 1);

pp_one_after_mask = select(pp_one_after_sequence, 1, ==) and \
select(indices, indices, ==);

pp_two_after_mask = select(pp_sequence, 1, ==) and \

select(indices+2, indices, ==);
pp_two_after_sequence = aggregate(pp_two_after_mask, 1);
pp_two_after_mask = select(pp_two_after_sequence, 1, ==) and \
select(indices, indices, ==);

np_det_diag_mask = select(aggregate(np_det_mask, 1), 1, ==) and \
select(indices, indices, ==);

np_prop_diag_mask = select(aggregate(np_prop_mask, 1), 1, ==) and \
select(indices, indices, ==);

no_pp_np_mask = \
1 - aggregate((pp_one_after_mask and np_prop_diag_mask) or \
(pp_two_after_mask and np_det_diag_mask), 1);

# here we compute left_idx and right_idx
# for verb relationships, like "agent ( [left_idx] , [right_idx] )"

# one-based index

nps_without_pp_prefix_indices = \

selector_width(select (NOUN_MASK*no_pp_np_mask, 1, ==) and \
select(indices, indices, <=))*NOUN_MASK*no_pp_np_mask;

# the one verb (except v_inf_taking cases)
left_idx_in_nvs_zero_based = nv_in_input_count-1;

right_idx = \
aggregate(select(nps_without_pp_prefix_indices, 1, ==), indices) \
if (template_name == "v_inf_taking” and after_intro_idx == 4) else right_idx;

# we have computed left_idx and right_idx
# for verb relationships, like "agent ( [left_idx] , [right_idx] )"

# note, the offset since the last separator in the output,
# instead of a modulus, could have been used here
# see actual RASP file in GitHub for computation

# relationship ( idx , idx ) AND
# 0 12 3 4 5 6
after_intro_target_token = "";

# "agent”, "theme", "recipient”, etc
# depending on relationship index and flat-matched template (in Encoder)
template_mapping_output = \

get_template_mapping(template_name, after_intro_idx);

# see code in Github for definition of

# after_intro_num_tokens_in_output_excluding_asterisks

# and use of an offset that depends on v_inf or not

# out of scope for this simplified example

after_intro_target_token = template_mapping_output \
if ((after_intro_num_tokens_in_output_excluding_asterisks) % 7 == @) \
else after_intro_target_token;

after_intro_target_token = "(" \
if ((after_intro_num_tokens_in_output_excluding_asterisks) % 7 == 1) \

else after_intro_target_token;

after_intro_target_token = left_idx \

if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 2) \
else after_intro_target_token;

after_intro_target_token = "," \

if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 3) \

else after_intro_target_token;

after_intro_target_token = right_idx \
if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 4) \
else after_intro_target_token;

after_intro_target_token = ")" \
if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 5) \
else after_intro_target_token;

after_intro_target_token = "AND" \

if \

(after_intro_num_tokens_in_output_excluding_asterisks % 7 == 6 \
and \

not (template_mapping_output == "")) \

else after_intro_target_token;
# ...

# the next token predicted ("output”) is

# overridden with after_intro_target_token

# ONLY if the decoder detects that verb relationships

# are the appropriate output phase

# by counting how many nouns/verbs/relationships are already in the output

# (after sentential complements, not covered in this example, see actual code via link above)

# need to also subtract the index in ReCOGS for the 2nd verb if it is v_inf_taking

left_idx_in_nvs_zero_based = (left_idx_in_nvs_zero_based-1) \

if (template_name == "v_inf_taking” and after_intro_idx <= 2) else left_idx_in_nvs_zero_based;
left_idx = aggregate(select(indices, left_idx_in_nvs_zero_based, ==), input_indices_sorted);

# avoids attractor nouns

right_idx = aggregate(select(nps_without_pp_prefix_indices, after_intro_idx, ==), indices);

# points to 2nd verb for xcomp for v_inf_taking_v_inf

# note, this simplified example ignores sentential complement (CP) handling
# (ideally this would be verb specific,

# we simplify here to reuse variables available in this example)

right_idx = aggregate(select(indices, nv_in_output_count, ==), input_indices_sorted) \

if (template_name == "v_inf_taking” and after_intro_idx == 2) else right_idx;

# points to 1st noun for 2nd v_inf agent in v_inf_taking_v_inf



After outputting all verb relationships, we con-
sider whether we have prepositional phrase noun
modifiers to record in the logical form. That is to
say, if the current output sequence already includes
the verb relationships expected for the input (the
count matches), then those Decoder variables dis-
cussed earlier for verb relationships are still com-
puted, but discarded, and the next token predicted
will be overridden with a prepositional phrase noun
modifier related output given by a RASP path simi-
lar to that below.

For outputting prepositional relationships
("nmod . in", "nmod . on", "nmod . beside"),
we do a similar approach, counting prepositional
phrases in the input, counting how many nmods
we have output, figuring out which one is currently
being output:

pps_in_input_sequence = INPUT_MASK*(indicator(pos_tokens == 2));
pps_in_input_count = selector_width(select(pps_in_input_sequence, 1, ==));

For all steps only the RASP outputs aligned with
the input sequence (Encoder part of derived Trans-
former) or the very last sequence output (for next
token in autoregressive generation) were used. For
convenience of reading the aggregate operator was
usually used acausally to assign all sequence out-
puts before the last one to the same value as the
last (so only one value would be displayed).

You can run a demo and see the autoregressive
output

# no longer cloneable with this command after blinding for review
# (but can use download zip tool there)

git clone https://anonymous.4open.science/r/learning-rasp-F7C2/
python recogs_examples_in_rasp.py

pps_index = pps_in_input_sequencexselector_width(select(pps_in_input_sequence, 1, ==) \

and select(indices,indices, <=));
nmods_and_pps_in_output_sequence = \

OUTPUT_MASK* (indicator(tokens == "nmod . in"” or tokens == "nmod . beside” or tokens=="nmod . on"));

nmods_and_pps_in_output_count = \
selector_width(select(nmods_and_pps_in_output_sequence, 1, ==));

current_pp = \
aggregate(select(pps_index, nmods_and_pps_in_output_count+1, ==), tokens)
if pps_in_input_count > @ else ""

current_pp = "" if current_pp == @ else current_pp;

current_nmod_token = \

\

("nmod . " + current_pp) if (pps_in_input_count > @ and not (current_pp ==0) \

and after_intro_num_tokens_in_output_excluding_asterisks % 7 == @) else "";
current_nmod_token = \

"(" if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 1 else current_nmod_token;

current_nmod_token = \

(aggregate(select(pps_index, nmods_and_pps_in_output_count,
and after_intro_num_tokens_in_output_excluding_asterisks % 7
current_nmod_token = "," \

==), indices)-1) if pps_in_input_count > @ \
== 2 else current_nmod_token;

if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 3 else current_nmod_token;

after_nmod_idx = \

aggregate(select(pps_index, nmods_and_pps_in_output_count, ==), indices)+1;

token_at_after_nmod_idx = \
aggregate(select(indices, after_nmod_idx, ==), tokens);
after_nmod_idx = \

(after_nmod_idx + 1) \

if (token_at_after_nmod_idx == "the" or token_at_after_nmod_idx == "a") else after_nmod_idx;

current_nmod_token = (after_nmod_idx) \
if pps_in_input_count > @ \

and after_intro_num_tokens_in_output_excluding_asterisks % 7 == 4 else current_nmod_token;

current_nmod_token = ")" \

if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 5 \
else current_nmod_token;

current_nmod_token =\

("AND" if nmods_and_pps_in_output_count < pps_in_input_count else "
if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 6 \
else current_nmod_token;

after_intro_and_relationships_nmod_token = \

5

current_nmod_token if nmods_and_pps_in_output_count <= pps_in_input_count else "";

num_tokens_in_nmod_section = \

after_intro_num_tokens_in_output_excluding_asterisks - template_size(template_name)*7 + 1;

# the decision of whether the nmod output dominates the current decoder next predicted token

# is computed similarly to the following (see GitHub for actual)

# we have not included the computation of "offset” and "after_intro_num_tokens_in_output_excluding_asterisks”

output = after_intro_and_relationships_nmod_token \
if (template_mapping_output == "" and \
after_intro_num_tokens_in_output_excluding_asterisks >= \
template_size(template_name)*7+offset - 1 and \

num_tokens_in_nmod_section < 7*pps_in_input_count and pps_in_input_count > @ \

) else output;

Again, see the code for full details® (for sim-
plicity this description was also written without
discussing sentential complement handling).

word-level token Restricted Access Sequence Processing
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9.3 Note on a Restricted Access Sequence
Processing character-level token program
/ model design (NOT what is used in this
paper but feasible)

Note, a proof of concept character level Restricted
Access Sequence Processing model was done with
a decoder loop (unlike word-level solution above,
it was a sketch so did not limit to strictly causal
operations which just require more careful index-
ing — using the value at the separator or the end
of a word instead of pooling the same value to all
letters in a word for example). Note that this one
did not cover translating sentences in general into
ReCOGS unlike the word-level solution as it is te-
dious and redundant but the core operations are
possible and the author believes any solution at the
word level can be mapped to a solution in character
level tokens (out of scope for this paper to prove
it).

Since it is a separate problem and adds a lot of
complexity without bringing anything to bear on
the main questions of the paper, I left a full im-
plementation to the word-level tokens which were
simpler and ran faster. The difference is one uses
a similar approach started at ® to assign all the
letters in each word an index.

Word indices can be assigned using RASP to
count separators occurring prior to each sequence
location like:

(we also zero out the word index for the separa-
tors themselves)

word_indices = \
(1+selector_width(select(tokens, " ", ==) \
and select(indices, indices, <=))) \

*(0 if indicator(tokens == " ") else 1);

Then one can do an aggregation of the letters
grouping by word index (this, which is NOT part
of the techniques used in this paper for the word-
level tokens solution, requires additional work (te-
dious not challenging) to do causally outside the
input (in the decoder), one must sum forward so the
word representation is always at the last letter of
the word or separator instead of at all letters of the
word, and that step is left out of the character-level
demo and this discussion; whereas the word-level
solution described above has a clear Encoder De-
coder separation. This can be done so that the value
which is then the same for all letters in each word,
is unique to each word in the dictionary and can
be looked up in a map to get word level attributes

https://anonymous.4open.science/r/learning-rasp-

F7C2/other-examples/decoder-loop-example-parse-into-
recogs-style-variables.rasp#L.2
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like part-of-speech and get back to the solution
in the word-level tokens in Appendix 9.2 which
was fully implemented. A simple approach (not
necessarily recommended but works for proof of
concept) that would work for small vocabularies
(easily extended) is to use a map to lookup each
letter of the alphabet to a log prime. Then the sum
of the letters in a word (grouped by the word index
which is the count of spaces/separators prior) is
the sum of the log primes indexed by the alphabet
index. Since the sum of logarithms of numbers is
the same as the logarithm of the product of those
numbers, this is equivalent to the logarithm of the
product of a series of primes. Each prime in the
product corresponds 1-to-1 to a letter in the alpha-
bet, with the number of occurrences in the product
corresponding to the number of times that letter
occurs in the word. By uniqueness of prime num-
ber factorization this would map each multiset of
letters to a single unique sum of log primes. Thus if
you do not have words which are anagrams, all the
letters in each word would be assigned a number
that uniquely represented that word in the vocab-
ulary. If you have anagrams you can do this step
and then take the first and last letter and compute
a separate number from that and add it to all the
letters in the word.

Example lookup table for letters before aggregat-
ing by word index (not recommended but for proof
of concept that one can go from character level
tokens to word-specific numbers which can then
be looked up as in the word-level token solution in
Appendix 9.2 used throughout the paper):


https://anonymous.4open.science/r/learning-rasp-F7C2/other-examples/decoder-loop-example-parse-into-recogs-style-variables.rasp#L2
https://anonymous.4open.science/r/learning-rasp-F7C2/other-examples/decoder-loop-example-parse-into-recogs-style-variables.rasp#L2
https://anonymous.4open.science/r/learning-rasp-F7C2/other-examples/decoder-loop-example-parse-into-recogs-style-variables.rasp#L2

def as_num_for_letter_multiset_word_pooling(t) {

# To be multiset unique, need logarithm of prime so that the sum aggregation

# used in RASP corresponds to prime number factorization (sum of logs of primes is same as log of product of primes)
# (we can do sum aggregation instead of mean by multiplying by length)

# However RASP does not appear to support logarithms (underlying multilayer
# perceptron can learn to approximate logarithms)

#letter_to_prime_for_multiset_word_pooling = {"a": 2, "b": "d": 7
#"e": 11, "f": 13, "g": 17, "h": 19, "i": 23, "j": 29, "k": 37,
#"m": 41, "n": ": 47, "p": 53, "g": 59, "r": 61, "s": 7,
#"u": 73, " "w": 83, "x": 89, "y": 97, "z": 101, "

# "0, "M

map_letter_to_log_prime_for_pooling = {"a": ©0.6931471805599453, "b": 1.0986122886681098,
"c": 1.6094379124341003, "d": 1.9459101490553132, "e": 2.3978952727983707,
B ' 2.833213344056216, "h": 2.9444389791664403,
3.367295829986474, "k": 3.4339872044851463,

"
.3, " e
: 3.6109179126442243, " 3.713572066704308, "n": 3.7612001156935624,

"0": 3.8501476017100584, "p": 3.970291913552122, "q": 4.07753744390572,

"r": 4.110873864173311, "s": 4.204692619390966, "t": 4.2626798770413155,

"u": 4.290459441148391, "v": 4.3694478524670215, "w":
"x": 4.48863636973214, "y": 4.574710978503383, "z": 4.61512051684126,
# we zero out tokens we want not to affect the identity of the word

, B I G D R I R R
"4": -1, "5 =1, U6": -1, M7 -1, "8M: -1, "9 -1, Miti -1,

return map_letter_to_log_prime_for_pooling[t];

Pooling by word can then be done with:

pseudoembeddedwords = \
aggregate(select(word_indices, word_indices, ==), \
as_num_for_letter_multiset_word_pooling(tokens))*word_lengths;

(Per-character token example is not causally
masked, we do causal strict-decoder-compatible
solution for anything outside input sequence in the
full word-level solution above just leaving out of
this character-level sketch, which is NOT used in
this paper. For the causal character level solution
one would use the summed value at the end of the
word or the separator instead, indexing relative to
separators.)

Those values could then be looked up in a dictio-
nary like in the completed word-level token solu-
tion to get part-of-speech, verb-type, etc, to derive
a separate sequence which can be used for template
matching as we successfully did with word-level
tokens (see Appendix 9.2).
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9.4 Model Detail

For our Restricted Access Sequence Processing
ReCOGS program, we used the RASP interpreter
of (Weiss et al., 2021) to run our program. For
RASP model design and details see Appendix 9.2.
We use word-level tokens for all RASP model re-
sults in this paper.®! Consistent with (Zhou et al.,
2024) we use (Weiss et al., 2021)’s RASP origi-
nally used for modeling Transformer encoders to
model an encoder-decoder in a causal way by feed-
ing the autoregressive output back into the program.
We only have aggregations with non-causal masks
when that aggregation (or without loss of generality
just before the aggregation product is used to avoid
multiplying everywhere) is masked by an input
mask restricting it to the sequence corresponding
to the input.®?

We used RASP maps to map word level tokens
to part-of-speech and verb-type which is consis-
tent with what can be learned in embeddings or
the earliest layer of a Transformer (Tenney et al.,
2019)% and then did 19 different attention-head
based template matches on that flat sequence®* (no
tree-based parsing, no recursive combination of
terminals/non-terminals.) Those 19 templates were
constructed using grammar coverage (Zeller et al.,
2023) to cover the ReCOGS/COGS input gram-
mar as demonstrated in the training data (see "Ap-

IWe believe any solution at the word-level can be converted
to a character-level token solution and that is not the focus of
our investigation here (see Appendix 9.3 for proof of concept
details on a character level solution not used here).

©2An example the author has prepared of this is
available at https://anonymous.4open.science/r/learning-rasp-
F7C2/recogs_examples_in_rasp.py .

(Tenney et al., 2019) report part-of-speech information
is already tagged in layer O (post-embedding) of the 24-
layer BERT large pre-trained language model, trained us-
ing a masked language modeling objective. Though models
for COGS/ReCOGS are usually trained using a sequence-to-
sequence (seq2seq) objective (whether that objective biases
the Transformer to learn the same representation on this task
is not known to our knowledge), one could also use a lan-
guage modeling objective to model the COGS input text and
its associated logical form output (not just the output condi-
tioned on the input). See (Ahuja et al., 2024) for examples
of solving the same language tasks using seq2seq vs various
language modeling objectives - they indeed find better gen-
eralization performance on their problems when using the
language modeling objective (training to model both the input
and the output).

A flat/non-tree solution was pursued because it was
simple and given the failure documented in (Wu et al.,
2023) of the baseline Encoder-Decoder to generalize from
obj_pp_to_subj_pp and other evidence we give below we shall
see it is hard to argue a tree-based solution which includes the
rule ‘np_det pp np -> np_pp -> np°‘ is learned by (Wu et al.,
2023)’s baseline Encoder-Decoder Transformer.
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pendix: Restricted Access Sequence Processing
word-level token program/model design" (9.2), and
see Table 2 for patterns and equivalent ReCOGS
training examples).5.

For the vocabulary we used the (Klinger et al.,
2024) description of COGS in their utilities®®
(same input as ReCOGS) (NOT using their CPG
solution or model anywhere) in constructing our
RASP vocabulary and part-of-speech or verb-type
embedding/mapping.

We are focused on structural, not lexical gen-
eralizations, so same as in (Klinger et al., 2024)
we include all words occurring anywhere in the
upstream (Re)COGS "train.tsv" (including "expo-
sure" rows, though would not change results qual-
itatively to omit the very few words only occur-
ring in exposure examples). We also include two
words in our vocab/embedding as common nouns
accidentally left out of train.tsv vocabulary by the
COGS author: "monastery" and "gardner” (only
included in their train_100.tsv and dev.tsv not also
in train.tsv, but present in test/gen), a decision af-
fecting just 22 or 0.1% of generalization examples
so would not affect any conclusions qualitatively.
See also the discussion on COGS Github with
the COGS author at https://github.com/najoungkim
/COGS/issues/2#issuecomment-976216841 .

For training the baseline Transformers from
scratch with randomly initialized weights using
gradient descent for comparison with RASP predic-
tions, we use scripts derived from those provided
by (Wu et al., 2023)%.

The baseline (Wu et al., 2023) Encoder-Decoder
Transformer was by default 2-layers with 4344077
parameters, except for the layer variation experi-
ments which had 6046701 parameters for the 3-
layer , and 7749325 parameters for the 4-layer vari-
ations. We did not control the parameter count as
discussed earlier as even allowing it to increase,

8To handle prepositional phrases in a flat solution, we find
it necessary on the training data to add a rule that ignores "det
common_noun" or "proper noun" preceded by a preposition
when searching for noun indexes to report in relationships
(agent, theme, recipient, etc) and as if we did that during
pattern matching by using before/after matches instead of
strict relative indexing.

https://github.com/IBM/cpg/blob/
c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#1.523

7https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py

and

https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2tb284a7d470998af5083beb
/model/encoder_decoder_hf.py
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the additional layers did not result in improved
performance on the obj-pp-to-subj-pp split (see
results at "(Wu et al., 2023) Encoder-Decoder base-
line 2-layer Transformer does not improve on the
obj_pp_to_subj_pp split when adding 1 or 2 addi-
tional layers" (6)). If there had been an improve-
ment, we would have run additional experiments

to increase depth while matching parameter count.
For ease of reference, the model architecture gen-
erated by the (Wu et al., 2023) baseline Encoder-
Decoder Transformer script (trained from scratch,
not pretrained) is as follows with N BertLayers set
to 2 per (Wu et al., 2023) for all baseline experi-
ments except the layer variation experiments:

For Wu et al 2023 Encoder-Decoder Transformer baselines
(we predict and analyze errors made by these
in the paper using what we learned about how Transformers
can perform the task from the
Restricted Access Sequence Processing model),
we use the official scripts provided at
https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run\_cogs.py
and
https://github.com/frankaging/ReC0GS/blob/
1b6eca8ffadca5fd2fb284a7d470998af5083beb/
model/encoder\_decoder\_hf.py
where the architecture generated is as follows
EncoderDecoderModel (
(encoder): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(762, 300, padding_idx=0)
(position_embeddings): Embedding(512, 300)
(token_type_embeddings): Embedding(2, 300)
(LayerNorm): LayerNorm((300,), eps=le-12
elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
# substitute N=2 for all baseline experiments
# per Wu et al 2023 paper;
# N can be 3 or 4 in our layer variation
# experiments only.
(0-(N-1)): N x BertLayer(
(attention): BertAttention(
(self): BertSdpaSelfAttention(
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(query):
Linear(in_features=300, out_features=300, bias=True)
(key):
Linear(in_features=300, out_features=300, bias=True)
(value):
Linear(in_features=300, out_features=300, bias=True)
(dropout): Dropout(p=0.1, inplace=False)

)

(output): BertSelfOutput(
(dense) :
Linear(in_features=300, out_features=300, bias=True)
(LayerNorm) :

LayerNorm((300,), eps=le-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense):
Linear(in_features=300, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense):
Linear(in_features=512, out_features=300, bias=True)
(LayerNorm) :
LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense):
Linear(in_features=300, out_features=300, bias=True)
(activation): Tanh()
)
)
(decoder): BertLMHeadModel (
(bert): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(729, 300, padding_idx=0)
(position_embeddings): Embedding(512, 300)
(token_type_embeddings): Embedding(2, 300)
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(LayerNorm) :
LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
# substitute N=2 for all baseline experiments
# per Wu et al 2023 paper;
# N can be 3 or 4 in our layer variation
# experiments only.
(0-(N-1)): N x BertLayer(
(attention): BertAttention(
(self): BertSdpaSelfAttention(
(query):
Linear(in_features=300, out_features=300, bias=True)
(key):
Linear(in_features=300, out_features=300, bias=True)
(value):
Linear(in_features=300, out_features=300, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense):
Linear(in_features=300, out_features=300, bias=True)
(LayerNorm) :
LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(crossattention): BertAttention(
(self): BertSdpaSelfAttention(

(query):
Linear(in_features=300, out_features=300, bias=True)
(key):
Linear(in_features=300, out_features=300, bias=True)
(value):
Linear(in_features=300, out_features=300, bias=True)
(dropout): Dropout(p=0.1, inplace=False)

)

(output): BertSelfOutput(
(dense):
Linear(in_features=300, out_features=300, bias=True)
(LayerNorm) :

LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense):
Linear(in_features=300, out_features=512, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense):
Linear(in_features=512, out_features=300, bias=True)
(LayerNorm) :
LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
)
(cls): BertOnlyMLMHead(
(predictions): BertLMPredictionHead(
(transform): BertPredictionHeadTransform(
(dense):
Linear(in_features=300, out_features=300, bias=True)
(transform_act_fn): GELUActivation()
(LayerNorm) :
LayerNorm((300,), eps=l1e-12, elementwise_affine=True)
)
(decoder): Linear(in_features=300, out_features=729
bias=True)
)
)
)
)

For the (Wu et al., 2023) baseline Encoder-
Decoder Transformer layer variation experiments,
when we say e.g. 3 or 4 layers, we refer to 3 or 4 x
BertLayer in the Encoder and Decoder, setting (3 or
4 Transformer blocks). (This is intended because
only once per block, during cross/self-attention
is information exchanged between sequence posi-
tions, and (Csordas et al., 2022) hypothesize that
the number of such blocks must be at least the
depth of the parse tree in a compositional solution,
as in a grammar parse tree at each level symbols are



combined which requires transferring information
between sequence positions).

9.5 Methods Detail

We use the RASP (Weiss et al., 2021) interpreter®®
69

to evaluate our RASP programs®.

We implement in RASP the transformation of
COGS input sentences into ReCOGS_pos’’. log-
ical forms (LFs) which are scored by Semantic
Exact Match’! against ground truth.

In the training data only, any ReCOGS training
augmentations like preposing or "um" sprinkles
are excluded when evaluating the RASP model on
the train data (it does not learn directly from the
examples and these augmentations are outside of
the grammar).

We also measure grammar coverage of input ex-
amples supported by our RASP model against the
full grammar of COGS/ReCOGS input sentences
provided in the utilities of the IBM CPG project
(Klinger et al., 2024)"?

When computing grammar coverage (Zeller
et al., 2023), we collapse all vocabulary terminals
(leaves) to a single terminal (leaf), ignoring purely
lexical differences (see "Appendix: Computing
Grammar Coverage" (9.10) for details and moti-
vation).

The overall Semantic Exact Match performance
is reported as well as the performance on the spe-
cific structural generalization splits where Trans-
formers are reported to struggle, even in ReCOGS,
specifically Object Prepositional Phrase to Subject

®provided at https://github.com/tech-srl/RASP/

https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

with a demo at

https://anonymous.4open.science/r/learning-rasp-
F7C2/recogs_examples_in_rasp.py

""We use the ReCOGS positional index data (rather than
default ReCOGS with randomized indices) as it has consistent
position based indices that allow us to perform well on Exact
Match (like the original COGS task) as well as Semantic Exact
Match (which ignores absolute values of indices).

See ReCOGS_pos dataset at

https://github.com/frankaging/ReCOGS/tree/
1b6eca8ft4dca5td2fb284a7d470998af5083beb
/recogs_positional_index

" https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/
train_utils.py

and

https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dcas5fd2fb284a7d470998af5083beb/
utils/compgen.py

"https://github.com/IBM/cpg/blob/
¢3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L.523
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Prepositional Phrase (obj_pp_to_subj_pp), Prepo-
sitional Phrase (pp_recursion) are highlighted and
discussed in depth for all models.

For the RASP program’s Semantic Exact Match
results which are based on the outcome of a deter-
ministic program (so cannot randomly reinitialize
weights and retrain, rerun), we can use the Beta
distribution to model the uncertainty and generate
confidence intervals (Clopper-Pearson intervals’?)
as each Semantic Exact Match is a binary outcome
(0 or 1 for each example). Unlike bootstrapping
this also supports the common case for our RASP
program of 100% accuracy, which occurs in all but
one split, where resampling would not help us es-
timate uncertainty in bootstrapping, but using the
Beta distribution gives us confidence bounds that
depend on the sample size.

In developing our RASP program’#, when we
find the right index of a verb relation (like agent,
theme, or recipient), we found it was necessary to
skip any noun phrases preceded by a preposition

"in", "on", "beside")”3.76

Since in the RASP program both this and subject
prepositional phrase modification require the same
rule ignoring the "pp np" when finding right index
candidates for agent, theme, recipient outputs, we
hypothesized two things.

Bsee e.g. https://en.wikipedia.org/w/index.php?title= Bi-
nomial_proportion_confidence_interval&oldid=1252517214
#Clopper %E2%80%93Pearson_interval and
https://arxiv.org/abs/1303.1288

"https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-
loop.rasp#L.776

PRASP code in "Appendix: RASP for relation right index
ignoring attractor "pp np’" (9.7)

"®Qtherwise, when modifying a simple sentence like "The
cake burned" with a preposition to "The cake on the plate
burned" we would switch the theme from the cake to the plate
by accident. This cake example is the infamous obj pp to
subj pp example, where training a Transformer successfully to
represent the semantics of sentences like "John ate the cake on
the plate" leads to a model that won’t immediately generalize
to being able to represent the meaning of "The cake on the
plate burned" in logical form. In writing our RASP program
this was observed as nothing to do with subjects or objects but
just modifying noun phrases to the left of the part of speech
(say a verb) they have a relationship with, instead of on the
right side. For example, this also occurs in v_dat_p2 sentences
like "Emma gave a friend a cookie" (agent, recipient, theme
nps). It is obvious that modification of the theme with prepo-
sitional phrases is not going to disrupt parsing the sentence:
"Emma gave a friend a cookie (modification modification ...)",
whereas modifying the recipient, on the left, due to the asym-
metry of prepositional phrases adding to the right, disrupts the
sentence, rendering it unreadable in the limit of too many pps:

"Emma gave a friend (modification modification ...) a
cookie" , in the limit of more modification, "a friend" can-
not be associated with "a cookie".
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One, that ‘np v_dat_p2 np pp np*’’ general-
ization after training on ‘np v_dat_p2 np np pp
np‘ would be difficult like (Wu et al., 2023)’s
obj_pp_to_subj_pp split.

Two, that augmenting the training data with
v_dat_p2 recipient modified sentences like "Emma
gave a friend in a house a cookie" might lead to
crossover improved performance on the subject pp
generalization (e.g. "The friend in a house smiled";
without adding any example of subjects with pp
modification).

Thus we additionally train (Wu et al., 2023) base-
line Transformers from scratch in two separate ex-
periments to test these.

For one, ‘np v_dat_p2 np pp np np‘’® generaliza-
tion after training on ‘np v_dat_p2 np np pp np‘ we
train (Wu et al., 2023) Transformers with default
configuration and default training data, then we
add a new generalization split derived from (Wu
et al., 2023)’s ‘train.tsv‘ of 328 existing training
examples where we have transferred the preposi-
tional phrase from the theme to the recipient’” in
the ‘v_dat_p2° sentence form with one preposi-
tional phrase (see Appendix 9.9 for details and link
to actual data sample).

For two, to see if augmenting the training data
with v_dat_p2 recipient modified sentences has
crossover benefit, we train separate default (Wu
et al., 2023) Transformer but with their existing
train.csv plus the additional theme-modified sen-
tences mentioned above, same as those used for
generalization testing in the other experiment; we
confirm it does not know them, and separately on
fresh runs we try training on them to see if that
can benefit other splits by teaching the Encoder-
Decoder a general prepositional phrase handling
rule (like ignore "pp np"). We then test on (Wu
et al., 2023)’s normal test and generalization splits.

(Wu et al., 2023) baseline Encoder-Decoder
Transformers trained from scratch are trained with
random weight initialization multiple times with
at least 10 different random seeds with all perfor-
mance metrics averaged across runs with sample
mean, sample size, and unbiased sample standard
deviation reported. Statistical significance of com-

""Being precise we only do ‘np v_dat_p2 np_det pp np np°
as per the grammar ‘np_prop* cannot precede a prepositional
phrase

"8Restricted to ‘np v_dat_p2 np_det pp np np* as per the
grammar ‘np_prop‘ cannot precede a prepositional phrase

When the recipient is np_det, not np_prop; and we con-
firm it is within the grammar by reparsing with the Lark parser
on the original grammar rules.
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parisons between any Transformers performance
sample means are checked with Welch’s unequal
variance t-test with p-values greater than 0.05 defi-
nitely rejected, though stricter thresholds may be
used where applicable. Confidence intervals are
reported using 1.96 standard errors of the sample
mean as the 95% confidence interval for sample
means with that N unless specified otherwise.

See also "Appendix: Results Notebook links by
section” (9.1) for notebooks documenting results
and giving steps to reproduce.

See also "Appendix: Scientific Artifacts - Is Our
Use Consistent with Authors’ Intention and Licens-
ing" (9.15).

9.6 Attraction errors

See Figure 7.

In this paper we predict and confirm the exis-
tence of errors on prepositional modification splits
where putting one or more new prepositional phrase
nouns between a noun of interest and a verb it is re-
lated to causes the relation to inappropriately jump
to one of the new nearer "attractor" nouns.

For overall attraction error results by the
baseline Transformer see results section ''At-
traction Error Analysis for (Wu et al., 2023)
baseline Encoder-Decoder Transformer on
obj_pp_to_subj_pp split'" (6).

For lack of a better term I am referring to this
as an "attraction” error following (Jespersen, 1954)
section 6.72 "Attraction" in the context of subject-
verb agreement, describing a similar "error" made
by humans:

"Very frequently in speech, and not infrequently
in literature, the number of the verb is determined
by that part of the subject which is nearest to
the verb, even if a stricter sense of grammar would
make the verb agree with the main part of the sub-
ject. This kind of attraction naturally occurs the
more easily, the greater the distance is between
the nominative and the verb."

The term attraction error continues to be used
to describe those errors by psycholinguists, e.g.
(Franck et al., 2006) who in the context of subject-
verb agreement, define attraction errors as "incor-
rect agreement with a word that is not the subject
of the sentence". Those attraction errors are also
used to study hierarchical vs linear language pro-
cessing (in humans, see (Franck et al., 2006) and
also (Vigliocco and Nicol, 1998); in language mod-
els as we discuss here, see also (Goldberg, 2019)
who states that successful subject-verb agreement



in the presence of attractor nouns "[is] traditionally
taken as evidence for the existence [of] hierarchical
structure"), similar to our investigation here. But
we are not investigating or explaining grammati-
cal attraction in general here, just predicting and
documenting a particular error the baseline Trans-
formers make as a prediction of a non-hierarchical,
non-tree structured approach without a rule for ig-
noring intervening prepositional phrase nouns.

We specifically hypothesized attraction to the
nearest noun (when there is more than one "attrac-
tor" noun unrelated to the verb added in-between
the related noun and the verb), but the relation-
ship jumping to any of those new "attractor" nouns
would be an "attraction" error in this terminology.

Here are two real examples made by the (Wu
et al., 2023) baseline Encoder-Decoder Trans-
former with different prepositional recursion
depths.

e.g. for pp depth 1, the mistake (as we expect
from attraction to the nearest noun hypothesis) is
to put e.g. agent index 4 here instead of 1:

input: The baby beside a valve painted the cake .

actual: * baby (1) ; valve (4); *cake (7);
nmod . beside (1,4 ) AND paint (5 ) AND agent
(5,4)AND theme (5,7)

expected: * baby (1) ; valve (4); *cake (7);
nmod . beside (1,4 ) AND paint ( 5 ) AND agent
(5,1)AND theme (5,7)

whereas e.g. for pp depth 2 on the agent left of
the verb, as expected the mistake is to put agent
index 7 instead of 1 below (the pp noun closest to
the verb steals it, not the other pp noun at index 4):

input: A girl on the stool on the table drew a frog

actual: girl (1) ; * stool (4 ) ; * table (7)) ; frog
(10);nmod.on(1,4)ANDnmod.on(4,7)
AND draw ( 8 ) AND agent (8,7 ) AND theme (
8,10)

expected: girl (1) ; * stool (4); * table (7);
frog (10) ;nmod . on (1,4 ) AND nmod . on (
4,7)AND draw ( 8 ) AND agent (8, 1) AND
theme (8, 10)

We went looking for this hypothesizing that the
(Wu et al., 2023) Transformer may be using flat
attention-head compatible verb-centered pattern
matching as we are in our RASP model, and with-
out learning the the single rule in our RASP pro-
gram to ignore "pp det common_noun" and "pp
proper_noun" were not learned by the Transformer
(as our RASP model has "attraction" errors without
it). Without the rule for avoiding "attraction" errors,
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we supposed the actual attention-head compatible
verb-centered pattern matched noun (closer to the
verb than the actual agent) for a grammar pattern
would labeled the agent or theme instead of the
appropriate one.

Note that (van Schijndel et al., 2019) also see
"attraction" errors by Transformers/RNNs (again
in the context of subject-verb agreement) where
a long-range dependency competes with attrac-
tors/distractors, finding "accuracy decrease[d] in
the presence of distracting nouns intervening be-
tween the head of the subject and the verb".

The "attraction" errors we report here where
attractor/distractor prepositional phrase nouns re-
place the actual agent/subject in the ReCOGS log-
ical form generated by (Wu et al., 2023) baseline
Transformers are NOT due to their presence in pre-
training or training data, as the ReCOGS/COGS
training data is synthetic and syntactically perfect
and for this benchmark the Transformer is trained
from scratch, so it a genuine new error made by
the neural network itself (and we predict a mech-
anism using RASP). But in general, humans do
also exhibit these "attraction" errors, e.g. again
as discussed in human subject-verb agreement per
(Jespersen, 1954) (see quote earlier in this section),
so pre-trained models trained on human-generated
text may have the additional problem of learning
those errors from the training data itself. Language
model tendencies to commit subject-verb agree-
ment attraction errors were previously analyzed by
a co-author of the RASP language in an earlier pa-
per on BERT Transformers in (Goldberg, 2019),
by a COGS benchmark co-author in (van Schijn-
del et al., 2019), and by both together regarding
RNNSs in (Linzen et al., 2016) (whose reference to
(Zwicky, 2008) led me to (Jespersen, 1954)).



np v_trans_omissible_p2 np
attention head compatible
linear matcher

[ H Vv Hnj
A boy painted a girl

Base sentence

[hH Vv Hnj
A boy painted a girl in a room

Tail pp modification
(ok)

A v Hidlez
Middle pp modification A boy in a room painted a girl _
(attraction or other error) Cagefit) o e g M,

In middle ppf
pp noun is an attractor noun

. . v Hnl@aem
Double middle pp A boy in aroom in a house painted a girl
i Attraction error nmod . in
(attraction to nearest Cagerit) , Mraction error | m
or In m|dd|e dOUble pp T from linear processing |

other non-attraction error) 2nd, nearest pp noun
is the attractor noun

Our RASP model: Cn theme -
ignore A boy painted a girl ' @ @

"pp det common_noun"

and "pp proper_noun" when matching agent/theme/recipient relationships.
Found via non-subj-pp examples in training, but fixes the obj-pp-to-subj-pp gen split.
We expect the baseline Wu et al. 2024 Transformer can learn this rule

but have not uncovered how to encourage it to learn such approaches yet.

nmod . in

S CD

Figure 7: Non-hierarchical/non-tree structured linear gram-
mar pattern matching without explicitly ignoring prepositional
phrase nouns is expected to give rise to attraction errors, which
we confirmed are contributing to the high error rate of the base-
line (Wu et al., 2023) Transformer on the obj-pp-to-subj-pp
generalization split. Our RASP model avoids these errors by
ignoring "pp det common_noun" and "pp proper_noun" when
matching for agent/theme/recipient relationships (a behavior
added based on non-subj-pp examples in training behavior
but shown here to generalize to those examples). Note that
we also predict such errors for the non-subj-pp case of pp-
modifying the right-of-verb recipient noun in "np v_dat_p2
np np" and confirmed (see Figure 3) that such a generalization
is as hard as the previously reported hardest obj-pp-to-subj-pp
generalization.
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9.7 RASP for relation right index ignoring
attractor ''pp np"

pp_sequence = \

indicator(pos_tokens == 2);
pp_one_after_mask = \
select(pp_sequence, 1, ==) and \
select(indices+1, indices, ==);

pp_one_after_sequence = \
aggregate(pp_one_after_mask, 1);
pp_one_after_mask = \
select(pp_one_after_sequence, 1, ==) and \
select(indices, indices, ==);

pp_two_after_mask = \
select(pp_sequence, 1, ==) and \
select(indices+2, indices, ==);

pp_two_after_sequence = \
aggregate(pp_two_after_mask, 1);
pp_two_after_mask = \
select(pp_two_after_sequence, 1, ==) and \
select(indices, indices, ==);

np_det_diag_mask = \
select(aggregate(np_det_mask, 1), 1, ==) and \
select(indices, indices,

np_prop_diag_mask = \
select(aggregate(np_prop_mask, 1), 1, ==) and \
select(indices, indices, ==);

no_pp_np_mask = \
1 - aggregate((pp_one_after_mask and np_prop_diag_mask) or \
(pp_two_after_mask and np_det_diag_mask), 1);

nps_without_pp_prefix_indices = \
selector_width(select (NOUN_MASK*no_pp_np_mask, 1, ==) and \
select(indices, indices, <=))*NOUN_MASK*no_pp_np_mask;

right_idx = \
aggregate(select(nps_without_pp_prefix_indices, after_intro_idx, ==), indices);
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9.8 Methods detail for Attraction Error
Analysis for (Wu et al., 2023) baseline
Transformer: parsing sentences with Lark
and tagging sentences as agent left-of-verb
or not

For results, see results section (6).

Our hypothesis is in terms of nouns with a logi-
cal form relationship to a verb or other noun, where
the relationship could be agent, theme, or recipi-
ent. We chose to analyze the agent relationship
since it is the most common relationship type for
the subject noun. Since the obj_pp_to_subj_pp
split is in terms of subject vs object preposi-
tional modification (instead of agent, recipient,
or theme), we use the subset of sentences within
this split where the agent is to the left of the
verb and modified by a prepositional phrase
as it corresponds to the subject in that case.
Note that for the input grammar of (Re)COGS,
agent-left-of-verb sentences only have one non-
prepositional phrase noun to the left of the verb,
so without explicitly considering the theme side,
requiring the agent to be on the left already
intentionally excludes cases like v_unacc_p2
where the subject is the theme, not the agent.

The errors from n=10 fresh training and evalua-
tion runs of the baseline (Wu et al., 2023) Encoder-
Decoder Transformer on their ReCOGS_pos
train.tsv and tested on their unmodified gen.tsv
were analyzed for the obj_pp_to_subj_pp split. All
the input sentences and output logical forms as well
as the ground truth logical forms were logged dur-
ing the run. The input sentences were parsed by
the Lark parser®” against the COGS input grammar
which allowed categorizing each sentence by its
verb type 3. The author manually inspected each
of verb type patterns and categorized them by the
position of the agent relative to the verb (see code
below) and used Lark to assign agent sides based
on the verb type using that mapping.

To focus the analysis, we considered only sin-
gle verb cases and ignored sentences with senten-
tial complements. Then, of the sentences with the
model generating an invalid logical form assessed

8https://github.com/lark-parser/lark

81Code to analyze the errors is at:

https://anonymous.4open.science/r/RASP-
for-ReCOGS-16B9/supplemental_data/
ReCOGS_Baseline_non_RASP_Transformer
_ReCOGS_error_prediction
_with_n=10_Transformers_trained_from_scratch _(pre-
dicting_the_details_of _error_in_logical_form_on_obj
_pp_to_subj_pp_split).ipynb .
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by Semantic Exact Match, we focused on exam-
ples with a single error in one of the logical form
parts (e.g. agent, theme, recipient, or nmod rela-
tionships).5?

# used the description of the (Re)COGS grammar

# referenced in

# Appendix: Methods Detail for categorizing

# input sentences for error analysis.
parser = Lark(grammar, start=’start’)

1st NP agent verbs (non CP)
"v_trans_omissible_p1"”: "agent",
"v_trans_omissible_p2": "agent",
"v_trans_not_omissible”: "agent",
"v_cp_taking”: "agent”,

"y

unacc_pl1": "
"v_unerg”: "agent",

"v_inf": "agent”,

"v_dat_p1": "agent”,

# "v_dat_p2": "agent”,
agent_left_of_verb_verb_type_set = \

B I I I

set(["v_trans_omissible_p1”, "v_trans_omissible_p2",
"v_trans_not_omissible”, "v_cp_taking”, "v_inf_taking",
"v_unacc_p1”, "v_unerg”, "v_inf", "v_dat_p1", "v_dat_p2"])

# simpler get_verbs function referenced by get_agent_side
# (returns verbs starting from end of sentence,
# opposite of
# get_verbs_with_pps_before_and_last_noun_before_first_verb_index )
# not appropriate for use with sentential complement prefix sentences
# that have pp modification in the cp prefix
def get_verbs(lark_tree_root):
nodes = [lark_tree_root]
verbs = []
while len(nodes) > 0:
node = nodes[-1]
nodes = nodes[:-1]
node_type = node.datal:]
if node_type[:2] == ’v_’:
verbs.append(node_type)
for child in node.children:
# it is a tree, no need to check for revisits
nodes. append(child)
return verbs
def get_agent_side(lark_tree_root):
verb_type = get_verbs(lark_tree_root)[0]
if verb_type != None and
verb_type not in agent_left_of_verb_verb_type_set:
return "right or middle”
elif verb_type in agent_left_of_verb_verb_type_set:
return "left”
return None

# more complicated version
# for enforcing during the check of our hypothesis
# a stricter expectation that the closest prepositional noun
# to the left of the verb is the misassigned agent
# (not just any prepositional noun)
def \
get_verbs_with_pps_before_and_\
last_noun_before_first_verb_index(lark_tree_root):
nodes = [lark_tree_root]
verbs = []
terminals_before_count = @
pps_before_counts = []
pps_before_count = @
last_noun_before_first_verb_index = None
while len(nodes) > 0:
node = nodes[-1]
nodes = nodes[:-1]
node_type = node.data[:]
if node_type[:2] == ’v_’:
pps_before_counts. append(pps_before_count)
verbs.append(node_type)
children = []
for child in node.children:
# it is a tree, no need to check for revisits
children.append(child)
need to visit in a particular order to not just get verbs
but pp before count,
and the last noun before the first verb
in the one verb case this does not matter
children.reverse()
# but we may want to return verbs in the order
# they appear in the sentence

B

820f the single relationship errors, we categorized them
by a description of the position of both the agent relative to
the verb in that sentence (agent was considered to be either
left OR "right or middle") and what relationship had the error.
Sentential complement examples were excluded to focus on
predicting the form of the error on simpler examples.


https://github.com/lark-parser/lark
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb

for node in children:
nodes. append(node)
if node_typel[:] in ["common_noun”,
"proper_noun"] and len(verbs) ==
# no need to subtract 1 here as before incrementing below
last_noun_before_first_verb_index = \
terminals_before_count
# only increment on terminals
if len(children) == 0:
terminals_before_count += 1
if node_type[:] == "pp":
pps_before_count += 1
return verbs, pps_before_counts,
last_noun_before_first_verb_index
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9.9 v_dat_p2 recipient pp-modification for
generalization assessment and data
augmentation attempt

We test generalization by the (Wu et al., 2023)’s
default Transformer which has been trained on ‘np
v_dat_p2 np np pp np°‘ but not ‘np v_dat_p2 np pp
np np° prepositional modifications. The following
328 examples were derived®® from the existing

https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dcaSfd2tb284a7d470998af5083beb
/recogs_positional_index/train.tsv,

by modifying 328 existing single-pp v_dat_p2
lines in train.tsv to simply move the prepositional
phrase from the 3rd NP (theme) in the ‘np v_dat_p2
np np° (agent, recipient, theme) to the 2nd NP
(recipient), e.g. copying and modifying the line
"Liam gave the monkey a chalk in the container ."
to "Liam gave the monkey in the container a chalk

So all the words and the grammar are oth-
erwise familiar. This is similar to the exist-
ing ‘obj_pp_to_subj_pp* generalization (Wu et al.,
2023) reports on. All modified rows available in
the notebook link in the footnote.

8 Notebook: https://anonymous.4open.science/r/RASP-for-
ReCOGS-16B9/supplemental_data/np_v_dat_p2_np_np_modifications_data_prep_script_notebook.ipynb
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https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/np_v_dat_p2_np_np_modifications_data_prep_script_notebook.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/np_v_dat_p2_np_np_modifications_data_prep_script_notebook.ipynb

9.10 Computing Grammar Coverage

First we use the grammar as it was generated as
a probablistic context free grammar per (Kim and
Linzen, 2020) using the full details put in Lark
format by (Klinger et al., 2024) and converting it
ourselves to a format compatible with (Zeller et al.,
2023).

Note this starting point is not the grammar we
claim the our Restricted Access Sequence Process-
ing model implements or the Transformer actually
learns as we argue the Transformer is learning a
flat, non-tree solution to this simple grammar (not
actually learning to collapse "np_det pp np" into
"np" for example). First we compute grammar cov-
erage relative to the PCFG approach that generated
it, which mostly aligns with our RASP model. We
also ignore terminals in this assessment of cover-
age, as stated earlier, when computing grammar
coverage, we will report the grammar coverage
over expansions that collapse all vocabulary leaves
to a single leaf (for example not requiring that ev-
ery particular proper noun or common noun be
observed in a particular pattern, so long as one
has and we can confirm the code treats them as
equivalent; e.g. having tested "Liam drew the cat"
and proven that "Liam" and "Noah" are treated
as interchangeable proper nouns, and that "cat"
and "dog" are treated as interchangeable common
nouns by the RASP solution — not something one
can assume for neural network solutions in general
— means that confirming our solution produces the
correct logical form for "Liam drew the cat" suf-
fices to prove the RASP solution can handle "Noah
drew the dog", which saves us a lot of work so
long as we make sure to write our RASP solution
such that noah/liam and cat/dog are indeed treated
identically).

Non-terminals only version of

https://github.com/IBM/cpg/blame/
€3626b4e@3bfc681be2c2a5b23dadb48abe6570
/src/model/cogs_data.py#L529

NOTE WE DO NOT ACTUALLY USE THIS GRAMMAR IN OUR MODEL,

IT IS FOR UNDERSTANDING THE GRAMMAR WE ARE TRYING TO LEARN/MODEL

L S

COGS_INPUT_GRAMMAR_NO_TERMINALS = {

"<start>": ["<s1>", "<s2>", "<s3>", "<s4>", "<vp_internal>"],
"<s1>": ["<np> <vp_external>"],

"<s2>": ["<np> <vp_passive>"],

"<s3>": ["<np> <vp_passive_dat>"],

"<s4>": ["<np> <vp_external4>"],

"<vp_external>": ["<v_unerg>", "<v_trans_omissible_p1>",
"<vp_external1>", "<vp_external2>", "<vp_external3>",
"<vp_external5>", "<vp_external6>", "<vp_external7>"],
"<vp_externall> '<v_unacc_p1> <np>"],

"<vp_external2> "<v_trans_omissible_p2> <np>"1,
"<vp_external3>": ["<v_trans_not_omissible> <np>"],
"<vp_external4>": ["<v_inf_taking> <to> <v_inf>"],
"<vp_external5>": ["<v_cp_taking> <that> <start>"],
"<vp_external6>": ["<v_dat_p1> <np> <pp_iobj>"1,
"<vp_external7>": ["<v_dat_p2> <np> <np>"],
"<yp_internal>": ["<np> <v_unacc_p2>"],

"<vp_passive>": ["<vp_passivel>", "<vp_passive2>",
"<vp_passive3>", "<vp_passive4>", "<vp_passive5>",
"<vp_passive6>", "<vp_passive7>", "<vp_passive8>"],
"<yp_passivel>": ["<was> <v_trans_not_omissible_pp_p1>"],

"<vp_passive2>":

["<was> <v_trans_not_omissible_pp_p2> <by> <np>"],
"<vp_passive3>": ["<was> <v_trans_omissible_pp_p1>"],
"<vp_passive4>":

["<was> <v_trans_omissible_pp_p2> <by> <np>"],
"<vp_passive5>": ["<was> <v_unacc_pp_p1>"],
"<vp_passive6>": ["<was> <v_unacc_pp_p2> <by> <np>"],
"<vp_passive7>": ["<was> <v_dat_pp_p1> <pp_iobj>"1,
"<vp_passive8>": ["<was> <v_dat_pp_p2> <pp_iobj> <by> <np>"],
"<vp_passive_dat>":

["<vp_passive_dat1>", "<vp_passive_dat2>"],
"<vp_passive_dat1>": ["<was> <v_dat_pp_p3> <np>"1,
"<vp_passive_dat2>":

["<was> <v_dat_pp_p4> <np> <by> <np>"],

"<np>": ["<np_prop>","<np_det>", "<np_pp>"],

"<np_prop>": ["<proper_noun>"],

"<np_det>": ["<det> <common_noun>"J,

"<np_pp>": ["<np_det> <pp> <np>"],

"<pp_iobj>": ["<to> <np>"1,

"<det>": [],

"<pp>": [1,

"<was>": [],

"<by>": [1,

"<to>": [1,

"<that>": [],

"<common_noun>": [],

"<proper_noun>": [],

"<v_trans_omissible_p1>": [1],

"<v_trans_omissible_p2>": [1],
"<v_trans_omissible_pp_p1>": [],
"<v_trans_omissible_pp_p2>": [],
"<v_trans_not_omissible>": [],
"<v_trans_not_omissible_pp_p1>": [1,
"<v_trans_not_omissible_pp_p2>": [1,
"<v_cp_taking>": [1,
"<v_inf_taking>": [1,

"<v_unacc_p1>": [J,

"<v_unacc_p2>": [J,

"<v_unacc_pp_p1>": [],

"<v_unacc_pp_p2>": [],

"<v_unerg>": [1,

"<yv_inf>": [],

"<v_dat_p1>": [],

"<v_dat_p2>": [],

"<v_dat_pp_p1>": [1,

"<v_dat_pp_p2>": [],

"<v_dat_pp_p3>": [1,
"<v_dat_pp_p4>": [1,

After parsing a sentence with the Lark parser,
we can compute the expansions it covers with the
following Python:

def generate_set_of_expansion_keys_for_lark_parse_tree(tree):
nodes = [tree]
expansions_observed = set()
for node in nodes:
current_node_label = node.datal:]
children = node.children
expansion = f"<{current_node_label}> ->"
for child in children:
# add expansion for current -> child
child_node_label = child.data[:]
expansion += f" <{child_node_label}>"
# also process expansions from child
nodes. append(child)
if len(children) > @:
#print(f"{expansion}")
expansions_observed.add(expansion)
return expansions_observed

For example, for the sentence "the girl noticed

that a boy painted the girl",
we get

sentence = "the girl noticed that a boy painted the girl”
tree = parser.parse(sentence)

expansions_observed = \
generate_set_of_expansion_keys_for_lark_parse_tree(tree)
<start> -> <sl1>

<s1> -> <np> <vp_external>

<np> -> <np_det>

<vp_external> -> <vp_external5>

<np_det> -> <det> <common_noun>

<vp_external5> -> <v_cp_taking> <that> <start>
<start> -> <sl1>

<s1> -> <np> <vp_external>

<np> -> <np_det>

<vp_external> -> <vp_external2>

<np_det> -> <det> <common_noun>

<vp_external2> -> <v_trans_omissible_p2> <np>

<np> -> <np_det>

<np_det> -> <det> <common_noun>

At first we use TrackingGrammarCoverage-
Fuzzer (from (Zeller et al., 2023)) to compute the
set of all possible grammar expansions:

+

B T T T



cogs_simplified_input_grammar_fuzzer = \
TrackingGrammarCoverageFuzzer (COGS_INPUT_GRAMMAR_SIMPLIFIED)

expected_expansions = \
cogs_simplified_input_grammar_fuzzer.max_expansion_coverage()

One can use this to get a sense of what it is pos-
sible to learn about the grammar from a particular
set of examples

and what examples need to be seen at a minimum
for any model to learn the task from scratch and
could possibly help one design a minimum length
dataset with low redundancy. Note for a Trans-
former model learning word embeddings / map-
ping to part-of-speech for each word, one would
need to use the grammar with terminals to com-
pute coverage. Here we want to argue something
about our RASP model where we can ensure via
implementation that all terminals in a category are
treated identically (and we observe 100% semantic
exact match for the related generalization splits for

swapping words within a part of speech).

We can ask what % of the grammar without
terminals is covered by the first 21 sentences from
the COGS training set?

# https://raw.githubusercontent.com/frankaging/ReC0GS/

# 1b6eca8ff4dca5fd2fb284a7d470998af5083beb/cogs/train. tsv

nonsense_example_sentences = [

"A rose was helped by a dog”,

"The sailor dusted a boy”,

"Emma rolled a teacher”,

"Evelyn rolled the girl”,

"A cake was forwarded to Levi by Charlotte”,

"The captain ate”,

"The girl needed to cook”,

"A cake rolled”,

"The cookie was passed to Emma"”,

"Emma ate the ring beside a bed"”,

"A horse gave the cake beside a table to the mouse”,

"Amelia gave Emma a strawberry”,

"A cat disintegrated a girl”,

"Eleanor sold Evelyn the cake",

"The book was lended to Benjamin by a cat”,

"The cake was frozen by the giraffe”,

"The donut was studied”,

"Isabella forwarded a box on a tree to Emma"”,

"A cake was stabbed by Scarlett”,

"A pencil was fed to Liam by the deer”,

"The cake was eaten by Olivia”

]

all_expansions_observed_across_examples = set()

for sentence in nonsense_example_sentences:
single_example_expansions = \
generate_set_of_expansion_keys_for_lark_parse_tree\
(parser.parse(sentence.lower()))
all_expansions_observed_across_examples = \
all_expansions_observed_across_examples.union\
(single_example_expansions)

1 - len(set(expansions_expected) \

- all_expansions_observed_across_examples) / len(expansions_expected)
# 0.7115384615384616

Those 21 COGS input sentences cover 71% of the
grammar. (Continued on next page.)

We can compare the first 21 sentences of COGS
that to the 19 sentences used in developing the
RASP program (then add one to cover basic prepo-
sitional phrases, and one more to cover sentential
complements):5*

84(see
https://anonymous.4open.science/r/learning-rasp-

35

(note each of these sentences has multiple equiv-
alent examples in the ReCOGS training set, as
shown in Table 2 in Appendix 9.11)

handpicked_example_sentences = [

# non-recursive grammar rule examples only
# no prepositional phrases or sentential complements
# see link above all these examples

# each correspond to distinct rules in the code
"the girl was painted”,

"a boy painted”,

"a boy painted the girl”,

"the girl was painted by a boy”,

"a boy respected the girl”,

"the girl was respected”,

"the girl was respected by a boy",

"the boy grew the flower”,

"the flower was grown”,

"the flower was grown by a boy",

"the scientist wanted to read”,

"the guest smiled”,

"the flower grew",

"ella sold a car to the customer”,

"ella sold a customer a car”,

"the customer was sold a car”,

"the customer was sold a car by ella”,

"the car was sold to the customer by ella”,
"the car was sold to the customer”,

]
all_expansions_observed_across_examples = set()

for sentence in handpicked_example_sentences:

single_example_expansions = \

generate_set_of_expansion_keys_for_lark_parse_tree(
parser.parse(sentence.lower())

)

all_expansions_observed_across_examples = \

all_expansions_observed_across_examples.union(
single_example_expansions)

- len(set(expansions_expected) \
all_expansions_observed_across_examples)
/ len(expansions_expected)
0.9230769230769231

#*

# Those 19 rules cover 92.3% of the COGS input grammar

# (not necessarily 92.3% of examples as the examples

# are not evenly distributed across grammar rules).

# Let’s see what rules are still missing:

set(expansions_expected) -
all_expansions_observed_across_examples

# tells us we need a prepositional phrase example!

#{’<np> -> <np_pp>’,

# tell us we need prepositional phrase examples

’<np_pp> -> <np_det> <pp> <np>’,

tells us we need sentential complement examples

’<vp_external5> -> <v_cp_taking> <that> <start>’,

tells us we need sentential complement examples

#
#
#
#
# ’<vp_external> -> <vp_external5>’}

F7C2/word-level-pos-tokens-recogs-style-decoder-
loop.rasp#L574

for the full list and associated rules in the code as the RASP
does not learn from examples but hand-coded rules coded as a
sequence of parts of speech / verb types)
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We got to 92.3% grammar coverage in our 19
examples instead of COGS 71% in 21 examples.

And, it is telling us we are missing an example
with prepositional phrases and sentential comple-

ments (see next examples)
Let us add a simple prepositional phrase example
and sentential complement example:

handpicked_example_sentences = \
handpicked_example_sentences + \

["a boy painted the girl in a house”] + \

["the girl noticed that a boy painted the girl”]

handpicked_example_sentences

# [’the girl was painted’,

# ’a boy painted’,

# ’a boy painted the girl’,

# ’the girl was painted by a boy’,
# ’a boy respected the girl’,

# ’the girl was respected’,

# ’the girl was respected by a boy’,
# ’the boy grew the flower’,

# ’the flower was grown’,

# ’the flower was grown by a boy’,

# ’the scientist wanted to read’,

# ’the guest smiled’,

# ’the flower grew’,

# ’ella sold a car to the customer’

# ’ella sold a customer a car’,

# ’the customer was sold a car’

# ’the customer was sold a car by ella’,

# ’the car was sold to the customer by ella’,

# ’the car was sold to the customer’,

# ’a boy painted the girl in a house’,

# ’the girl noticed that a boy painted the girl
#]

all_expansions_observed_across_examples = set()

for sentence in handpicked_example_sentences:
single_example_expansions = \
generate_set_of_expansion_keys_for_lark_parse_tree(parser.parse(sentence.lower()))
all_expansions_observed_across_examples = \
all_expansions_observed_across_examples.union(single_example_expansions)

1 - len(set(expansions_expected) - \
all_expansions_observed_across_examples) / len(expansions_expected)
#1.0

set(expansions_expected) - all_expansions_observed_across_examples
# set()

(continued below)
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Thus in 19 intentionally crafted sentences (Table
2) (each is in the RASP code with a corresponding
rule) cover 92.3% of the grammar, using the cov-
erage we can what we did not cover yet, and thus
add two sentences to fill the reported gap and get
to 100% .

However these coverage metrics are misleading
when it comes to prepositional phrases as it would
not suggest to include prepositional phrases in all
positions, assuming they could be collapsed by the
model back to ‘np°‘ using ‘np -> np_pp -> np_det pp
np‘ while our experiments on the (Wu et al., 2023)
baseline Encoder-Decoder model and experience
designing our RASP model suggest it is either nec-
essary to train with prepositional phrases explicitly
in the different positions of the grammar patterns
or learn an alternative approach (as in our RASP
model) of ignoring "pp det common_noun" and
"pp proper_noun" except when outputting noun
modifier information in the logical form.

That is, we believe that the only recursion
learned is tail recursion in the decoder loop and
that ‘np -> np_det | np_prop | np_pp* and ‘np_pp
-> np_det pp np° is not actually performed as if
the Encoder-Decoder Transformer were to learn a
tree-based or recursive representation. If the Trans-
former had a tree based representation, it is pre-
dicted that the "v_dat_p2_pp_moved_to_recipient"
would not be any harder than when the pp modifica-
tion is on the theme, as ‘np v_dat_p2 np_det pp np
np‘ can be transformed by the recursive grammar
rule ‘np_det pp np -> np_pp ->np° to ‘np v_dat_p2
np np‘ on which it is already trained and has
good performance, but instead it fails completely
(see Figure 3), and see also "Error Analysis for
(Wu et al., 2023) baseline Encoder-Decoder Trans-
former on obj_pp_to_subj_pp split" and where we
observe that prepositional modification of a noun
to the left of a verb it is the agent of causes the
new prepositional phrase noun that becomes the
closest noun to be mistaken for the agent, which is
in contradiction to the model collapsing ‘np_det pp
np‘ to ‘np‘ before matching the overall grammar
pattern (see Figure 7).

That said with a couple of simple rules that
were not tree we were able to get 100% on the
pp_recursion split (up to depth 12) and 92.20%
(90.36-93.79% 95% CI) of the obj_pp_to_subj_pp
split.

Modifying the grammar coverage to model this
non-tree representation would be exciting to ad-
dress in future work.
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See also "Appendix: Grammar Coverage anal-
ysis to develop and justify Restricted Access Se-
quence Processing model design” (9.11).

9.11 Grammar Coverage analysis to develop
and justify Restricted Access Sequence
Processing model design

See "Appendix: Computing Grammar Coverage"
(9.10) for how the grammar coverage is computed.

If we ignore lexical differences, by the first
55 examples of the ReCOGS training set (un-
shuffled, no augmentations) or 77 (median; 95%
confidence interval, n=1000 random shuffles:
39 to 161) examples of the ReCOGS training
set (shuffled, no augmentations), 100% gram-
mar coverage is reached®(lexical differences
ignored) (Zeller et al., 2023) (noting that if
the model is not capable of learning certain
expansions in the grammar such as ‘np_det pp
np -> np_pp -> np‘, it may need to see more
variations to memorize individual cases instead ):

% ReCOGS grammar coverage by # of examples in ReCOGS train set
(lexical differences ignored
as we show with Restricted Access Sequence Processing

the model can be built to treat all common nouns identically, all proper nouns identically, etc)

median with 95% confidence interval dashed

100 4

80

601

40

0 25 50

That shows if one already knows parts of speech
and verb types for words one needs much less data.

Thus, we can be more efficient than using the
ReCOGS training set for our RASP model built by
hand since our solution uses a manual embedding
via a dictionary mapping words to part-of-speech
and verb-type, that ensures all words within a part
of speech are treated identically. In general, pre-
training®® or using an embedding like GloVe (Pen-
nington et al., 2014) would ensure this type of infor-

8Given the COGS input sentences were generated as a
probablistic context free grammar per (Kim and Linzen, 2020)
using the full details put in Lark format by (Klinger et al.,
2024) and converting it ourselves to a format compatible with
(Zeller et al., 2023) (see "Appendix: Computing Grammar
Coverage" (9.10)) , we use their TrackingGrammarCoverage-
Fuzzer to generate the set of all expansions of the COGS
grammar.

86 (Tenney et al., 2019) confirm BERT, a Transformer model
pretrained using a language modeling objective, in wide use,
has part-of-speech information available at the earliest layers.



mation was available in the embedding; when train-
ing from scratch for COGS/ReCOGS we expect
the act of modeling the input sentences to be able
to result in embeddings with part-of-speech and
verb type information, to facilitate this one might
consider also to adjust the training objective as dis-
cussed in (Ahuja et al., 2024) to explicitly predict
the input sentences by treating the seq2seq problem
as a language modeling problem for the input con-
catenated with output instead of as a seq2seq. We
are focused on ReCOGS (and COGYS) structural
generalizations (which Transformer models per-
form poorly on), not lexical generalizations in this
paper (Transformers already known to perform rel-
atively well), so do not study the learning of word
level representations (embeddings) here, only how
those words are combined once they are mapped
to their possible part-of-speech and possible verb-
types.

See Table 2 below for the 19 part-of-speech/verb
type patterns and example sentences that cover
the non-recursive grammar at non-terminal (post-
embedding level), as well as the training-
compatible prepositional phrase and sentential com-
plement examples used for the RASP model de-
sign.
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RASP-for-ReCOGS
grammar pattern

example

Actual part-of-speech/verb-type sequence used in RASP model

COGS/ReCOGS input
training example

the girl was painted

a boy painted

a boy painted the girl

the girl was painted by a
boy

a boy respected the girl
the girl was respected
the girl was respected by
a boy

the boy grew the flower
the flower was grown

the flower was grown by
a boy

the scientist wanted to
read

the guest smiled

the flower grew

ella sold a car to the cus-
tomer

ella sold a customer a car

the customer was sold a
car

the customer was sold a
car by ella

the car was sold to the cus-
tomer by ella

the car was sold to the cus-

det common_noun was v_trans_omissible_pp_pl

det common_noun v_trans_omissible_p1

det common_noun v_trans_omissible_p2 det common_noun

det common_noun was v_trans_omissible_pp_p2 by det com-
mon_noun

det common_noun v_trans_not_omissible det common_noun

det common_noun was v_trans_not_omissible_pp_p1

det common_noun was v_trans_not_omissible_pp_p2 by det com-
mon_noun

det common_noun v_unacc_pl det common_noun

det common_noun was v_unacc_pp_pl

det common_noun was v_unacc_pp_p2 by det common_noun

det common_noun v_inf_taking to v_inf

det common_noun v_unerg
det common_noun v_unacc_p2

proper_noun v_dat_p1 det common_noun to det common_noun

proper_noun v_dat_p2 det common_noun det common_noun

det common_noun was v_dat_pp_p3 det common_noun

det common_noun was v_dat_pp_p4 det common_noun by
proper_noun
det common_noun was v_dat_pp_p2 to det common_noun by
proper_noun

det common_noun was v_dat_pp_pl to det common_noun

The donut was studied .
The captain ate .

The sailor dusted a boy .
A drink was eaten by a
child .

A girl liked the raisin .
The pen was helped .

A rose was helped by a
dog .

A cat disintegrated a girl .
A box was inflated .

The cake was frozen by
the giraffe .

The girl needed to cook .

The sailor laughed .

A cake rolled .

Emma passed a cake to
the girl .

Liam forwarded the girl
the donut .

A girl was sold the cake .

The girl was lended the
balloon by Harper .
The pen was offered to
the girl by Emma .
The melon was lended to

tomer a girl .

Prepositional phrase part-of-speech/verb-type sequence (used example for develop- COGS/ReCOGS input
and sentential com- ment) training example
plement examples

mentioned in paper

a boy painted the girl in a
house

the girl noticed that a boy
painted the girl

det common_noun v_trans_omissible_p2 det common_noun pp det
common_noun

det common_noun v_cp_taking that det common_noun

v_trans_omissible_p2 det common_noun

A frog ate a sweetcorn in
apile .
A girl said that a crocodile

ate the rose .

Table 2: Additional justification of the specific examples we generated and used for our RASP model design by matching them
to COGS/ReCOGS training examples. Note that our RASP model collapses "a" and "the" to "det" (coded as 1) so we do as well
here. All but the last example are from the first 119 training examples. Ignoring lexical differences, full coverage of the grammar
occurs by training example 55 in the PCFG sense (see "Appendix: Computing Grammar Coverage" (9.10)) when read in order

but the specific sentences we used (one of multiple ways to cover the grammar) occur by example 119 in the order given in the

train.tsv file, except for the specific sentential complement example we gave by modifying one of our existing examples with a

sentential complement ("the girl noticed that a boy painted the girl") which does not have an exactly matching counterpart until
the 4,186th example (other equivalent-for-these-purposes sentential complement examples are demonstrated earlier, e.g. within
55 examples in default ordering). Note the prepositional phrase and sentential complement examples are not actually pattern

matched (the 19 pattern matches plus a general cp/pp rule are used) and so do not exist in the RASP code, but are just given for

reference.
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9.12 Zhou et al 2024 relevance of their long
addition experiment to language
modeling and note on the Parity task and

Transformers

(Zhou et al., 2024) adds index hints to the long ad-
dition task based on a RASP-grounded analysis of
what is preventing the Transformer from learning
it, allowing the model to learn to pair digits from
each number being added more easily. They also
observe that if multi-digit carries are not part of
the training set one can still get generalization by
making the carry causal for the causal autoregres-
sive Transformer decoder mode by reversing the
digits (least significant digit first), and prove this
resolves the issue. Causality issues like trying to
output a long addition digit by digit starting with
the most significant digit in a long addition before
computing the sums of the less significant digits
that come later, and failing if there is a carry at any
point, are not limited to math, nor limited to lan-
guage models, for just one example from English
grammar concerning human language processing,
(Jespersen, 1954) explains "Concord of the verb"
errors made by humans especially in speech when
the verb is on the left due to needing to agree with a
noun not explicitly selected yet: "The general rule,
which needs no exemplification, is for the verb to
be in the singular with a singular subject, and in the
plural with a plural subject. Occasionally, however,
the verb will be put in the [singular], even if the
subject is plural; this will especially happen when
the verb precedes the subject, because the speaker
has not yet made up his mind, when pronouncing
the verb, what words are to follow."

(Zhou et al., 2024) also use RASP-L to analyze
and then modify the Parity task so that it can be
learned by a Transformer. Some useful context is
that e.g. (Chiang and Cholak, 2022) confirm ex-
perimentally that a Transformer cannot learn the
basic Parity task even though Transformers can be
shown to be able to solve it, (Chiang and Cholak,
2022) themselves in fact artifically construct a soft
attention Transformer that can just barely solve
it with confidence that is O(1/n) where n is the
input length. This is perhaps surprising since ba-
sic non-Transformer feedforward neural networks
have been known to be able to learn Parity from
randomly initialized weights per (Rumelhart et al.,
1988).
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9.13 Composition and Learning

Composition is important in learning. Consider a
single nonterminal grammar expansion®’ , ‘(noun
phrase) (verb dative p2) (noun phrase) (noun
phrase)‘, with three noun phrases all already ex-
panded to np_det ("a" or "the" and "common
noun") and a single verb. A possible substitution
of terminals would be "a teacher gave the child a
book", as would be "the teacher gave a child the
book" (change of determiners), as would be "the
manager sold a customer the car" (change of nouns
and verb) and it would require 23V,2V,, examples
where V,, is the vocab size for eligible common
nouns and V,, is the vocab size for eligible verbs to
see all the possible terminal substitutions . If the
qualifying vocabulary is say of order of magnitude
100 words for the nouns and 10 for the verbs®
that would come out order of magnitude 100 mil-
lion examples. By contrast, if parts-of-speech and
verb types are already known®” it might take as few
as one example to learn the new grammar pattern
‘(noun phrase) (verb dative p2) (noun phrase) (noun
phrase)*."

Note in this paper that having an or condition
everywhere in our model for "det common_noun",

87COGS input sentences were actually generated by a prob-
abilistic context-free grammar and this is a grammar expansion
in their grammar. Words used in the example are within their
vocabulary.

8n COGS the number of common nouns is over 400 and
qualifying verbs in this case over 20

8that is if determiners ("a", "the") are understood to be
equivalent, common nouns are already known ("teacher",
"manager", "child", "customer", "book", "car") separately,
qualifying verb dative verbs are already known ("gave",
"sold"). Note (Tenney et al., 2019) report part-of-speech in-
formation is already tagged in the very earliest layers of the
24-layer BERT large pre-trained language model.

P Composing further, in a tree-structured or hierarchical
way, allows for efficient handling of recursive grammar forms
like nested prepositional phrases, so that learning the recursive
combination rule ‘np_det pp np -> np* for example allows the
model in a single rule to understand how to handle preposi-
tional phrase modification of any noun phrase in any sentence
possible in the grammar, generally. There is some evidence
in humans that during language production we start with a
simplified form and expand it in hierarchically/tree-structured
way into the final sentence, e.g. from attraction/proximity
concord errors in subject-verb agreement that seem to depend
on syntactic tree distance rather than linear distance in the
sentence(Franck et al., 2006)(Vigliocco and Nicol, 1998). In
this paper we demonstrate a model (our RASP model, see
below) which is not tree-structured in that it does not have
the recursive rules in the COGS grammar (e.g. ‘np_det pp
np ->np°), yet performs with high accuracy. Omitting one of
its rules for avoiding attraction errors leads to a prediction of
linear distance (non-hierarchical) attraction errors, which is
observed for the baseline (Wu et al., 2023) Transformer (see
results and discussions).



"proper_noun" , such that they are treated the same,
without adjusting the sequence length or further
combining any non-terminals, is not referred to
as tree-structured or hierarchical - we consider a
model that stops at this level of structure which
per the discussion above already provides a lot of
representational power as flat/non-hierarchical/non-
tree-structured.

We see in the results, Appendix 9.11, and Table
2 quantitatively how few (training) sentence exam-
ples (and if recursive or looping rules are omitted,
equivalently how many flat-pattern rules’'), it actu-
ally takes to cover a grammar in the sense of (Zeller
etal., 2023), and use this to design our Transformer-
equivalent model by hand to translate sentences in
a particular subset of the English grammar into
their corresponding logical forms.

9.14 Potential Risks

There is a definite risk of the RASP-for-ReCOGS
model as provided being misused, as unintended
use WILL give invalid results or halt - we have
NOT provided a general language model, we
have provided a simulation of how a Trans-
former could perform a specific task. The RASP
model/simulation as provided is for research pur-
poses only to prove feasibility of the ReCOGS task
by Transformers and is not appropriate for ANY
other uses whatsoever without modification. For
one, an actual Transformer performing the equiv-
alent operations would run orders of magnitude
faster, which should be reason enough to not want
to use the RASP simulation for actual input-output
tasks outside of a research setting. However, there
is also no "tokenizer" provided for the RASP model
to handle out-of-vocabulary inputs and fallback
paths for out-of-grammar examples are not pro-
vided so the RASP model will halt on most in-
puts and can only run on the in-distribution (non-
augmented) training data, and the dev, test, and
gen sets of ReCOGS, though such aspects could
be added. We provide the code for reproducing
the results of this study and for researchers who
are capable of writing RASP themselves to build
upon the work and/or more easily apply RASP to
their own problems given our examples, not for
immediate application to any other tasks without
appropriate modification.

This paper supporting that vanilla Transform-

°lif we ignore terminals and stop at part-of-speech and verb
type sequences, for example, which we can map word level
tokens to by an embedding layer
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ers should be able to perform ReCOGS with high
accuracy including the currently challenging struc-
tural generalizations may unintentionally discour-
age some researchers from exploring potentially su-
perior architectures and overinvest in research into
training Transformers to learn solutions that gener-
alize (when possibly other architectures may have
better inductive biases and Transformers (with-
out scratchpad, reasoning steps) are not Turing-
complete (Merrill and Sabharwal, 2024) (Deletang
et al., 2023) (Strobl et al., 2024) unlike other archi-
tectures, e.g. Universal Transformers (Dehghani
et al., 2019) or many others that could be explored
instead).

The suggestion that an embedding that tags pos-
sible part-of-speech and verb-type is especially use-
ful (we reduced the input to such a representation,
a sequence of possible parts of speech and verb
types, to solve this task) and pointing out examples
of Transformers with a language modeling objec-
tive learning this (Tenney et al., 2019) then citing
the finding of (Ahuja et al., 2024) that reframing
sequence-to-sequence problems as language mod-
eling problems (predicting both input and output
autoregressively) leads to better hierarchical gener-
alization could lead to some wasteful misdirection
of research effort if such a change of learning objec-
tive does not turn out to usefully affect the represen-
tation learned (though since COGS/ReCOGS input
sentences are English sentences it seems reasonable
to think it may lead to more similar embeddings as
models trained on English corpora with a language
modeling objective to explicitly predict the input
sentences in addition to the logical forms).

The finding that a recursive, hierarchical, or tree-
structured model/representation is not necessarily
required to solve the structural generalizations in-
cluding the up to depth 12 prepositional phrase (pp)
recursion and sentential complement (cp) recursion
splits may be misinterpreted to unintentionally dis-
courage potentially fruitful research into hierarchi-
cal generalization using tree-structured approaches.

While the author expects many of the find-
ings here to hold for the upstream COGS dataset
and has released separate code that is currently
under evaluation to perform the COGS bench-
mark in RASP, and the COGS and ReCOGS in-
put grammar/vocabulary and input sentences for
dev/test/gen are identical (only the output format
for logical form differ), until that work is published,
one should not assume all conclusions here about
feasibility extend to COGS.



There is a risk that the results could be misin-
terpreted to reduce future investigation into the
ReCOGS and COGS datasets (the opposite of
this author’s intention) or as a criticism of the
ReCOGS paper’s baseline Encoder-Decoder Trans-
former (the opposite of this author’s intention)
which undergoes error analysis in this work.

9.15 Scientific Artifacts - Is Our Use
Consistent with Authors’ Intention and
Licensing

COGS (Kim and Linzen, 2020)
https://aclanthology.org/2020.emnlp-main.731/
) and ReCOGS (Wu et al, 2023) (
https://aclanthology.org/2023.tacl-1.96/ ) pa-
pers and examples are licensed Creative
Commons Attribution 4.0 International License (
https://creativecommons.org/licenses/by/4.0/ ) as
hosted by the ACL Anthology with the intention of
providing datasets for others to perform research
upon.

GitHub hosted artifacts for COGS (
https://github.com/najoungkim/COGS ) and
ReCOGS ( https://github.com/frankaging/recogs )
including the training, development, and general-
ization set examples are MIT licensed, are intended
for research use, and were used in a research
context for this paper. We specifically use the
ReCOGS authors’ provided python scripts to run
their baselines, with their chosen hyperparameters
and obtain results compared to and consistent
with those they publish in their paper (e.g. we
compare our reported performance of their
baseline on the obj-pp-to-subj-pp generalization
(of ReCOGS_pos), measured by us as 19.7% +/-
6.1% Semantic Exact Match (sample mean +/- std)
with 95% confidence interval for the sample mean
with n=20 of 17.0% to 22.4% (n=20 separately
trained models with different random seeds for
weight initialization and training data ordering;
n=1000 examples used to test each of the n=20
models) with their Figure 5 (ReCOGS_pos)).

The RASP (Weiss et al., 2021) interpreter
(hosted at https://github.com/tech-srl/rasp ) is MIT
licensed and we do not reproduce their code or
any substantial part of their actual work within this
publication (our code when executed retrieves a
fresh copy from the source and their interpreter is
not bundled with it), though we use the language
they define and provide code samples written in
that language. We are studying how a Transformer
could perform the ReCOGS task (an approximation

(
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of interpreting the meaning of a subset of English
sentences), which is consistent with their intended
research use for the language. We are not deploy-
ing any RASP programs in a customer/user facing
or online use case and using in an offline research
context only.

Klinger’s description of the COGS in-
put  probabilistic  context-free =~ grammar
(PCFG) from within their CPG project
(from https://github.com/IBM/cpg/blob/
c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L523 , note we
are not using CPG itself) is Apache v2 li-
censed (  https://github.com/IBM/cpg/blob/
c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/LICENSE ) and we do not substantially reproduce
it within our work but do use their labels for
parts of speech and verb types in a few examples
(it may be copied from the code they received
from Kim and Linzen as they acknowledge Kim
and Linzen for providing their COGS generator
code). We believe that "Derivative Works shall
not include works that remain separable from, or
merely link (or bind by name) to the interfaces
of, the Work and Derivative Works thereof”
to our use of the names. As far as use for the
intended purpose we are studying the same input
(ReCOGS uses COGS input, except in training
where augmentations are added) as Klinger and
are using the description of the COGS input PCFG
for a similar purpose (though we are studying
how COGS/ReCOGS input can be interpreted by
Transformers, while they are proposing an alterna-
tive to Transformer-like approaches). Specifically,
Klinger’s Lark-compatible description of the
COGS input grammar was used for analyzing
COGS/ReCOGS input sentences to understand
how many flat pattern rules would be required
to cover the diversity of training input sentences,
categorize sentences for different types of error
analysis, and study how many in-distribution non-
augment training examples would be required for a
model that could learn the underlying probabilistic
context-free grammar to see all expansions. We
independently checked that all the words were
present in either the train.tsv, train_100.tsv, or
dev.tsv and that words in Klinger’s description
were not leaked from test or generalization sets.
We do keep "monastery” and "gardner" as Klinger
do (only included in their train_100.tsv and dev.tsv
not also in train.tsv) , see relevant discussion
on COGS Github with the COGS author at


https://aclanthology.org/2020.emnlp-main.731/
https://aclanthology.org/2023.tacl-1.96/
https://creativecommons.org/licenses/by/4.0/
https://github.com/najoungkim/COGS
https://github.com/frankaging/recogs
https://github.com/tech-srl/rasp
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE

https://github.com/najoungkim/COGS/issues/
2#issuecomment-976216841. We similarly
checked all grammar patterns that Klinger describe
were demonstrated in the training examples
(ignoring lexical differences - though note that
we do NOT use their description of grammar in
our actual RASP model, though it is included in
comments for comparison, as our RASP model is
NOT even a PCFG but a flat pattern matcher for 19
patterns (plus 2 masking rules) for which we give
explicit ReCOGS training examples see Table 2).

The Lark tool ( https://github.com/lark-
parser/lark , MIT licensed ) was used for planning
and analysis (NOT by our RASP model) to parse
the COGS/ReCOGS input examples into the
COGS PCFG grammar as described by Klinger
(not used by the model when actually performing
the task, completely separate analysis to look
at which examples demonstrate which rules or
require which rules to perform and how many
rules are required to cover the grammar). The Lark
tool is frequently used in research so this use is
consistent with the author’s intention.

For grammar coverage analyses the Track-
ingGrammarCoverageFuzzer from (Zeller et al.,
2023) was used (we do NOT reproduce/copy their
work outside invoking by name within our paper
or shared code, though it is MIT licensed) (see
e.g. https://github.com/uds-se/fuzzingbook/blob/
c675e20c92f1514692067f01b7654d7e78ab0a97
/docs/code/GrammarCoverageFuzzer.py, where
the "source code that is part of the content,
as well as the source code used to format and
display that content is licensed under the MIT
License"). The authors (Zeller et al., 2023) provide
their book as a resource for software developers
working on software testing among other things
( https://github.com/uds-se/fuzzingbook/blob/
c675e20c92£1514692067f01b7654d7e78ab0a97
/README.md?plain=1#L59 ).

Software versions for packages installed are also
typically logged for each experiment in the note-
book for each experiment see Section 9.1 for links.

For styling and formatting this paper, we
used the Association for Computational Lin-
guistics conference paper templates linked from
https://github.com/acl-org/acl-style-files/blob/
40bd374c5610aal7a96e3e4f0b5834ba90febe98
/README.md?plain=1#L13
and hosted at Overleaf, see
https://web.archive.org/web/ 20250131174713/
https://www.overleaf.com/latex/templates/
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association-for-computational-linguistics-
acl-conference/jvxskxpnznfj ~ which is  li-
censed Creative Commons CC BY 4.0 (
https://creativecommons.org/licenses/by/4.0/
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