
Exploring Compositional Generalization (in ReCOGS_pos) by
Transformers using Restricted Access Sequence Processing (RASP)

Anonymous ACL submission

Abstract001

Humans understand new combinations of002
words encountered if they are combinations003
of words recognized from different contexts,004
an ability called Compositional Generalization.005
The COGS benchmark (Kim and Linzen, 2020)006
reports 0% accuracy for Transformer models on007
some structural generalizations. We use (Weiss008
et al., 2021)’s Restricted Access Sequence Pro-009
cessing (RASP), a Transformer-equivalent pro-010
gramming language, to prove by construction011
that a Transformer encoder-decoder can per-012
form the semantically equivalent ReCOGS_pos013
(Wu et al., 2023) variant of COGS systemati-014
cally and compositionally: Our RASP model015
attains 100% semantic exact match1 on the016
ReCOGS test set and 100% SEM on all general-017
ization splits except obj_pp_to_subj_pp which018
gets 92%. Furthermore, our RASP model019
shows the ReCOGS_pos task does not require a020
hierarchical or tree-structured solution: we use021
word-level tokens with an "embedding" layer022
that tags with possible part of speech2, apply-023
ing just once per encoder pass 19 attention-head024
compatible flat pattern-matching rules, shown025
using grammar coverage (Zeller et al., 2023) to026
be learnable from the training data, plus general027
prepositional phrase (pp) handling and senten-028
tial complement (cp) handling logic, and output029
the next logical form (LF) token (repeating un-030
til the LF is complete). The model does not ap-031
ply recursive, tree-structured rules like ‘np_det032
pp np -> np_pp -> np‘, but scores 100% seman-033
tic and string exact match on pp recursion, cp034
recursion using the decoder loop.035

1 Introduction036

It was long argued that connectionist models (i.e.037

neural networks) were somehow structurally inca-038

pable of compositional generalization (Fodor and039

1and 100% string exact match
2per (Tenney et al., 2019) by layer 0 the part-of-speech

could be predicted for most words in Transformers trained
on a masked language modeling objective, so we assume an
equivalent embedding is learnable.

Pylyshyn, 1988).3 However, large language mod- 040

els based on the Transformer architecture (Vaswani 041

et al., 2017) compose seemingly fluent and novel 042

text and are excellent few or zero shot learners 043

(Brown et al., 2020). 044

Some observations do contradict that Trans- 045

formers learn systematic, compositional solu- 046

tions to problems that generalize4, for example 047

structural generalizations in the COGS task and 048

ReCOGS(Wu et al., 2023) variant of the COGS 049

task (Kim and Linzen, 2020) , a benchmark based 050

on extracting semantics (logical form) from the syn- 051

tax (grammatical form) of synthetic sentences in 052

a simplified subset of English grammar, requiring 053

models trained only on certain grammar examples 054

to generalize to sentences with unseen grammar 055

built up / recombined from parts present in the 056

training examples. 057

We use (Weiss et al., 2021)’s Restricted Access 058

Sequence Processing (RASP) language that can 059

be compiled to concrete Transformer weights to 060

prove by construction that a Transformer encoder- 061

decoder5 can perform ReCOGS_pos6 over the vo- 062

cabulary and grammar of that task in a system- 063

atic, compositional way (length and recursion depth 064

limited) as a rigorous starting point to investigat- 065

ing when Transformers might learn or not actually 066

learn such compositional/systematic solutions. We 067

find a flat, not hierarchical/tree-structured model 068

which lacks any handling for the recursive rules 069

in the grammar (for prepositional phrase recur- 070

sion and sentential complement recursion) can 071

3 More specific versions of this debate continue, for ex-
ample re: syntax, one can read (van Schijndel et al., 2019) vs
(Goldberg, 2019) or re: hierarchical generalization by Trans-
formers, (Petty and Frank, 2021) vs (Murty et al., 2023a).

4See "Appendix: Composition and Learning" (9.13)
5We follow (Zhou et al., 2024) who used RASP to ana-

lyze auto-regressive decoder-loop cases, not just Transformer
encoders as done by RASP author (Weiss et al., 2021).

6official variant, closer to COGS than non-positional
ReCOGS, as COGS is also positional, and means we can also
measure string exact match, not just semantic exact match

1

a.

b.

c. d.

 0 1 2 3 4

 0 1 2 3 4 5 6

Logical forms describing the same
Semantic Graph are equivalent by
Semantic Exact Match.

det

common_nounnp_detnp

v_trans_omissible_p2

det

common_noun

np_detnp

vp_external2vp_external

s1start

det

common_nounnp_det
np

was

v_trans_omissible_pp_p2

by

det

common_noun

np_detnp

vp_passive4

vp_passive

s2start

 a boy painted the girl

the girl was painted by a boy

 LF
boy (1) ; * girl (4) ; paint (2)
AND agent (2 , 1) AND theme (2 , 4)

 LF
* girl (1) ; boy (6) ; paint (3)
AND theme (3 , 1) AND agent (3 , 6)

boy paint
agent

the girl
theme

(i)

(ii)

(iii)

(i)

(ii)

(iii)

Figure 1: Introducing parse trees, logical form, and semantic
graphs. Two semantically identical but syntactically distinct
(i) sentences (a) "a boy painted the girl" and (b) "the girl was
painted by a boy" are shown with (ii) their distinct parse tree
(parsed into COGS input grammar), (iii) the string form of
their semantics (ReCOGS logical form; differs in indices and
ordering), and (c) the graph representation of their logical
form (semantic graph9, not different at all between the two
examples). Note the (iii) logical forms (LFs) differ by String
Exact Match but not (Wu et al., 2023)’s Semantic Exact Match
(order and indices do not match but nouns, normalized verbs,
and relationships between nouns and verbs are same). Note
the "agent", "theme" order in the logical form string is not
required to match for Semantic Exact Match. COGS and
ReCOGS tasks require extracting the semantics/meaning (c)
encoded in LFs (iii) of sentences (i).

perform the task at high accuracy, but requires072

a special rule for avoiding "attraction" errors7073

where inserted prepositional phrase nouns replace074

agent/theme/recipient nouns in the logical form by075

accident. This is our main result and suggests that076

the ReCOGS task can be performed with high accu-077

racy by Transformers, turning efforts to learnability,078

and also adds to the literature a caveat on interpret-079

ing success on ReCOGS (and COGS8) by noting a080

hierarchical or tree-structured representation is not081

necessarily required (contrary to (Kim and Linzen,082

2020) and assumption of (Murty et al., 2023b)).083

Finally, we predict that these "attraction" errors we084

had to specifically avoid in our RASP model are085

contributing to the high error rate of the (Wu et al.,086

2023) baseline Transformer trained from scratch087

and confirm this is the case.088

7These attraction errors are similar to those discussed else-
where in NLP and psycholinguistics literature on hierarchical
vs linear processing by language models and humans, see
"Appendix: Attraction errors" (9.6).

8semantically equivalent and see also
https://anonymous.4open.science/r/RASP-for-COGS-102F

9As a convention, in converting ReCOGS logical forms

2 Prior Literature 089

(Kim and Linzen, 2020) introduce the COmposi- 090

tional Generalization Challenge based on Semantic 091

Interpretation (COGS) benchmark10 and argue that 092

Transformers have low accuracy on the general- 093

ization splits (35% overall), especially structural 094

generalization splits where near 0% accuracy is 095

reported, using a 2-layer Encoder-Decoder Trans- 096

former (2 layers for Encoder, 2 layers for Decoder). 097

For another example, (Lake and Baroni, 2023) 098

use a "meta-learning for compositionality" ap- 099

proach with a 3-layer Encoder-Decoder Trans- 100

former architecture and achieve what they call 101

"human-like systematic generalization", achieving 102

high scores on everything in the COGS benchmark 103

(>99% on lexical generalizations) EXCEPT the 104

structural generalization splits where they also still 105

score 0% accuracy. However, one notices these 106

networks are shallow compared with those used 107

in successful large-pretrained Transformer models 108

(e.g. 24-layer BERT where compositional parse 109

trees seem to be encoded in its vector space rep- 110

resentation (Hewitt and Manning, 2019)), and it 111

is claimed, by e.g. (Csordás et al., 2022) that for 112

compositional operations, like parsing, the depth 113

of the network must be at least the maximum num- 114

ber of compositional operations, e.g. the height 115

of the parse tree for grammar dependent problems. 116

Remarkably, (Petty et al., 2024) finds that increas- 117

ing the layer depth of the Transformer models (up 118

to 32 layers) does not improve the near 0% accu- 119

racy on COGS structural generalization splits like 120

prepositional phrase modification of subject when 121

the network has only seen it on the object during 122

training and also input length/depth generalizations 123

(like pp/cp recursion), perhaps surprising as for 124

the simpler logical inferences problem in (Clark 125

et al., 2020) they observed successful logical in- 126

ference depth generalization even by Encoder-only 127

Transformers. 128

Thankfully, (Wu et al., 2023) are able to begin 129

to get traction (low but nonzero accuracy) for the 130

shallow Encoder-Decoder Transformer models on 131

structural generalizations in a modified but seman- 132

to Semantic Graphs we use the logical form (source, target)
index order for directed semantic graph edges (from verb to
related entity) EXCEPT for the agent relationship which is
from the agent of a verb to the verb (opposite direction from
logical form in that case), which gives our semantic graphs
of ReCOGS sentences an unambiguous starting point (layout
starts from agent) without affecting comparison of the graphs
(generated by a consistent rule), see also Figure 3.

10See Figure 1.

2

https://anonymous.4open.science/r/RASP-for-COGS-102F

tically equivalent form of the COGS task they call133

ReCOGS, which we analyze here. They remove134

redundant symbols, and use Semantic Exact Match135

instead of Exact Match (see Figure 1).136

(Zhou et al., 2024) apply (Weiss et al., 2021)’s137

RASP language to explain some inconsistent find-138

ings regarding generalization and use RASP to pre-139

dict exactly which cases of generalization come140

easily to Transformers and which do not. (Zhou141

et al., 2024) seem to reveal (Weiss et al., 2021) has142

provided the framework we seek by demonstrating143

how to apply RASP to Transformer decoders with144

intermediate steps, and even use it to learn how145

to modify difficult-to-learn tasks like Parity11 and146

long addition in seemingly incidental ways based147

on RASP analysis to make them readily learnable148

by Transformers in a compositional, length gener-149

alizing way!150

Thus we apply techniques similar to (Zhou et al.,151

2024) and (Weiss et al., 2021) to ReCOGS to (1)152

argue Transformers should be capable of perform-153

ing the task, including the structural generalization154

splits, with high accuracy, and that the problem is155

learning not capability and (2) try to understand the156

prepositional phrase modification related general-157

ization errors (Wu et al., 2023)’s baseline Encoder-158

Decoder Transformers are making.159

3 Data160

The ReCOGS (Wu et al., 2023) dataset (ReCOGS161

with positional indexing variant) based on COGS162

(Kim and Linzen, 2020) (input sentences/grammar163

are the same but logical form output are differ-164

ent) was used12, with special attention on the struc-165

tural generalization splits (especially prepositional166

phrase Object-to-Subject generalization).167

The grammar and vocabulary description for168

COGS English input sentences provided in the util-169

ities associated with the IBM CPG project (Klinger170

et al., 2024)13 were used in designing our RASP171

11See (Strobl et al., 2024) for context from formal language
theory, computational complexity, circuit complexity theory,
and experimental papers together, providing robust lower and
upper bounds on what Transformers can do, including dis-
cussion of under what conditions Parity can be solved by
Transformers and how whether it can be learned by randomly
initialized Transformers under simple training schemes is a
different question (general feed-forward neural networks can
learn to solve Parity per (Rumelhart et al., 1988)). (Deletang
et al., 2023) also. See "Appendix: Zhou et al 2024 relevance
of their long addition experiment to language modeling and
note on the Parity task and Transformers" (9.12)

12https://github.com/frankaging/ReCOGS
13https://github.com/IBM/cpg/blob/

solution and analyzing the ways in which this task 172

could be learned (we did not actually use their 173

grammar though, and our RASP solution is flat 174

and non-hierarchical unlike their description of the 175

COGS probabilistic context-free grammar which 176

is hierarchical and recursive). See Figure 1. 177

4 Model 178

We used the RASP interpreter of (Weiss et al., 179

2021). For RASP model design and details see Ap- 180

pendix 9.2. We use word-level tokens for all RASP 181

model results in this paper,14 with an "embedding" 182

layer that tags with possible part of speech15, and 183

apply just once per encoder pass 19 attention-head 184

compatible flat pattern-matching rules (Figures 2, 185

5, 6), shown using grammar coverage (Zeller et al., 186

2023) to be learnable from the training data16, plus 187

general pp/cp handling logic. Each pattern han- 188

dles "det common_noun" and "proper_noun" iden- 189

tically, a symmetry which is evident in the training 190

data. The model does NOT apply recursive, tree- 191

structured rules like ‘np_det pp np -> np_pp -> 192

np‘. 193

Consistent with (Zhou et al., 2024) we use 194

(Weiss et al., 2021)’s RASP originally used for 195

modeling Transformer encoders to model an 196

encoder-decoder in a causal way by feeding the 197

autoregressive output back into the program.17 198

For training Transformers from scratch with ran- 199

c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L523

14We believe any solution at the word-level can be converted
to a character-level token solution (see Appendix 9.3 for proof
of concept details on a character level solution not used here).

15Note we follow the (Klinger et al., 2024) description
of COGS and include in our RASP vocabulary (part-
of-speech or verb-type embedding/mapping) all words
occurring anywhere in the upstream (Re)COGS "train.tsv".
We also include two words in our vocab/embedding as
common nouns accidentally left out of train.tsv vocab-
ulary by the COGS author: "monastery" and "gardner"
(only included in their train_100.tsv and dev.tsv not
also in train.tsv, but present in test/gen), a decision af-
fecting just 22 or 0.1% of generalization examples so
would not affect any conclusions qualitatively. See also
the discussion on COGS Github with the COGS author at
https://github.com/najoungkim/COGS/issues/2#issuecomment-
976216841 .

16Specific training examples for each rule are in Table 2 the
end of "Appendix: Grammar Coverage analysis to develop and
justify Restricted Access Sequence Processing model design"
(9.11)

17We only have aggregations with non-causal masks when
that aggregation (or without loss of generality just before the
aggregation product is used to avoid multiplying everywhere)
is masked by an input mask restricting it to the sequence
corresponding to the input.

3

https://github.com/frankaging/ReCOGS
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841

domly initialized weights, we use scripts derived200

from those provided by (Wu et al., 2023)18. See201

"Appendix: Model Detail" (9.4).202

5 Methods203

We use the RASP (Weiss et al., 2021) interpreter19204

to evaluate our RASP programs20. Logical forms205

(LFs) generated by the models were scored by Se-206

mantic Exact Match21 against ground truth.207

We also measure grammar coverage (Zeller et al.,208

2023) (more detail in Appendix 9.10) by input ex-209

amples supported by our RASP model against the210

full grammar of COGS/ReCOGS input sentences211

provided in the utilities of the IBM CPG project212

(Klinger et al., 2024)22. See "Appendix: Meth-213

ods Detail" (9.5). See also "Appendix: Results214

Notebook links by section" (9.1) for notebooks215

documenting results and giving steps to reproduce.216

6 Results217

Restricted Access Sequence Processing - gram-218

mar coverage using a flat pattern matching ap-219

proach (not tree-based and not recursive) and220

autoregressive decoder loop221
Figures 2, 5, and 6. See "Appendix: Gram-222

mar Coverage Analysis for Design of Restricted223
Access Sequence Processing Model" (9.11) for224
more details. We generated 21 sentences based225
on rules present in the training examples which226

cover 100% of the COGS input grammar23(lexical227
differences ignored, under the context-free gram-228
mar, tree-based assumption which is violated for229
our non-tree non-recursive model for prepositional230
phrases, requiring an additional rule to avoid "at-231
traction errors", Figure 7) per (Zeller et al., 2023).232

18https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py

and
https://github.com/frankaging/ReCOGS/blob/

1b6eca8ff4dca5fd2fb284a7d470998af5083beb
/model/encoder_decoder_hf.py

19provided at https://github.com/tech-srl/RASP/
20https://anonymous.4open.science/r/learning-rasp-

F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
with a demo at https://anonymous.4open.science/r/learning-
rasp-F7C2/recogs_examples_in_rasp.py

21Using the official scripts at
https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py

and
https://github.com/frankaging/ReCOGS/blob/

1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py

22https://github.com/IBM/cpg/blob/
c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L523

23ReCOGS has same input grammar/vocabulary as COGS,
only logical form output is different

Attention-head compatible flat patterns/rules were 233
derived from those examples (detail in Table 2): 234
19 flat patterns for non-recursive grammar rules 235
((det common)|proper) was v_trans_omissible_pp_p1 236
((det common)|proper) v_trans_omissible_p1 237
((det common)|proper) v_trans_omissible_p2 238
((det common)|proper) 239

((det common)|proper) was v_trans_omissible_pp_p2 240
by ((det common)|proper) 241

((det common)|proper) v_trans_not_omissible 242
((det common)|proper) 243

((det common)|proper) was v_trans_not_omissible_pp_p1 244
((det common)|proper) was v_trans_not_omissible_pp_p2 245
by ((det common)|proper) 246

((det common)|proper) v_unacc_p1 247
((det common)|proper) 248

((det common)|proper) was v_unacc_pp_p1 249
((det common)|proper) was v_unacc_pp_p2 250
by ((det common)|proper) 251

((det common)|proper) v_inf_taking to v_inf 252
((det common)|proper) v_unerg 253
((det common)|proper) v_unacc_p2 254
((det common)|proper) v_dat_p1 255
((det common)|proper) to ((det common)|proper) 256

((det common)|proper) v_dat_p2 257
((det common)|proper) ((det common)|proper) 258

((det common)|proper) was v_dat_pp_p3 259
((det common)|proper) 260

((det common)|proper) was v_dat_pp_p4 261
((det common)|proper) 262
by ((det common)|proper) 263

((det common)|proper) was v_dat_pp_p2 264
to ((det common)|proper) by ((det common)|proper) 265

((det common)|proper) was v_dat_pp_p1 266
to ((det common)|proper) 267

2 examples for recursive grammar rules 268
1 prepositional phrase example 269
(flat rule: mask out "pp ((det common)|proper)" 270
except when outputting noun and nmod) 271
((det common)|proper) v_trans_omissible_p2 272
((det common)|proper) pp ((det common)|proper) 273

1 sentential complement example 274
(flat rule: mask out cp prefix except 275
when outputting that part of LF) 276
((det common)|proper) v_cp_taking that 277
((det common)|proper) 278
v_trans_omissible_p2 ((det common)|proper) 279

The first 19 of those patterns are present in our 280

RASP program code24 and each correspond to a 281

set of RASP operations corresponding to attention 282

operations in a Transformer to match a template 283

corresponding to that sentence type25. To handle 284

prepositional phrases in a flat solution, we find it 285

necessary on the training data to add a rule that 286

ignores "det common_noun" or "proper noun" pre- 287

ceded by a preposition when searching for noun 288

indexes to report in relationships (agent, theme, re- 289

cipient, etc) and as if we did that during pattern 290

matching by using before/after matches instead of 291

strict relative indexing. Considering how a model 292

without this rule would behave led us to be able 293

to predict 96% of a certain category of errors a 294

baseline Encoder-Decoder Transformer makes (see 295

baseline attraction error results page 6). 296

Restricted Access Sequence Processing - test 297

set and generalization set performance 298

The Restricted Access Sequence Processing pro- 299

gram scored 100% Semantic Exact Match and 300

String Exact Match (no missed examples) (95% 301

24https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-
loop.rasp#L574

25see also "Appendix: Restricted Access Sequence Process-
ing word-level token program/model design" (9.2)

4

https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/tech-srl/RASP/
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/recogs_examples_in_rasp.py
https://anonymous.4open.science/r/learning-rasp-F7C2/recogs_examples_in_rasp.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574

1

A scientist lended a cat a donut *

det: 1
pp: 2
was: 3
by: 4
to: 5
that: 6
common_noun: 7
proper_noun: 8
v_trans_omissible: 9
v_trans_omissible_pp: 10
v_trans_not_omissible: 11
v_trans_not_omissible_pp: 12
v_cp_taking: 13
v_inf_taking: 14
v_unacc: 15
v_unerg: 16
v_inf: 17
v_dat: 18
v_dat_pp: 19
v_unacc_pp: 20

1 7 18 1 7 1 7

1 7 18 1 7 1 71 7 18 1 7 1 7

1 7 18 1 1

np_det_seq = [0, 1, 0, 0, 1, 0, 1]
np_prop_seq = [0, 0, 0, 0, 0, 0, 0]
v_dat_seq = [0, 0, 1, 0, 0, 0, 0]
np_det_left_seq = [1, 0, 0, 1, 0, 1, 0]
np_two_before_seq = [0, 1, 0, 1, 0, 0, 0]
np_before_seq = [0, 0, 1, 0, 1, 0, 0]
np_after_seq = [0, 0, 1, 0, 0, 1, 0]

(A) = (np_det_left_seq & np_two_before_seq) = [0, 0, 0, 1, 0, 0, 0]
(B) = (np_prop_seq & np_before_seq) = [0, 0, 0, 0, 0, 0, 0]
np_np_seq = (A or B) = [0, 0, 0, 1, 0, 0, 0]
np_np_any_before_seq = [1, 1, 1, 0, 0, 0, 0]
np_v_dat_p_np_np = np_after_seq & v_dat_seq
& np_before_seq & np_np_any_before_seq
 = [0, 0, 1, 0, 0, 0, 0]

7 7

1 7 18 1 17 7

1 7 18 1 17 7

1 7 18 17 7

1 7 18 1 17 7

1 7 18 1 17 7

1 7 18 1 17 7

 &

np + np

<

np - 2

np det left

1 7 18 1 7 1 7

1 7 18 1 7 1 7

before np

after np

&

&

&

np v_dat_p2 np np

*COGS official training data uses "lended", instead of "lent"

In bidirectional Encoder
of
Encoder-Decoder
Transformer
equivalent model

0 0 0 0 01 1
0 0 0 1

0 0 0 00 01
0 0 0 00 01

1 1 0 00 01

0 0 0 00 01

0 0 1 00 00

0 1 1 00 00

1 1 10 000
01 0

verb

embed to
part-of-speech
and verb-type

{

Figure 2: Example RASP model flat grammar pattern match-
ing, for np v_dat_p2 np np, for a matching sentence. See
Figure 5 and 6 in the Appendix for matching a sentence with
middle-noun pp modification and non-matching cases.

ReCOGS_pos Split Semantic Exact Match %

(95% CI)

ReCOGS_pos test set (held out, in-distribution) 100.00% (99.88-100.00%)

Generalization splits (held out, out-of-distribution) (be-

low)

active_to_passive 100.00% (99.63-100.00%)

do_dative_to_pp_dative 100.00% (99.63-100.00%)

obj_omitted_transitive_to_transitive 100.00% (99.63-100.00%)

obj_pp_to_subj_pp 92.20% (90.36-93.79%)

obj_to_subj_common 100.00% (99.63-100.00%)

obj_to_subj_proper 100.00% (99.63-100.00%)

only_seen_as_transitive_subj_as_unacc_subj 100.00% (99.63-100.00%)

only_seen_as_unacc_subj_as_obj_omitted_transitive_subj 100.00% (99.63-100.00%)

only_seen_as_unacc_subj_as_unerg_subj 100.00% (99.63-100.00%)

passive_to_active 100.00% (99.63-100.00%)

pp_dative_to_do_dative 100.00% (99.63-100.00%)

prim_to_inf_arg 100.00% (99.63-100.00%)

prim_to_obj_common 100.00% (99.63-100.00%)

prim_to_obj_proper 100.00% (99.63-100.00%)

prim_to_subj_common 100.00% (99.63-100.00%)

prim_to_subj_proper 100.00% (99.63-100.00%)

subj_to_obj_common 100.00% (99.63-100.00%)

subj_to_obj_proper 100.00% (99.63-100.00%)

unacc_to_transitive 100.00% (99.63-100.00%)

all gen splits (19K examples, aggregate) 99.59% (99.49-99.68%)

Table 1: ReCOGS_pos test set performance (n=3000) and
non-recursive out-of-distribution generalization split perfor-
mance for Restricted Access Sequence Processing (RASP)
Encoder-Decoder Transformer-compatible model (n=1000
per gen split).

confidence interval (Beta dist / Clopper-Pearson) 302

of 99.88% to 100%, n=3000) on the ReCOGS_pos 303

test set. The RASP model scored 99.59% semantic 304

exact match on all non-recursive out-of-distribution 305

generalization splits (18922 out of 19000 (95% con- 306

fidence interval: 99.49% to 99.68%)). See Table 1. 307

Recursion splits are reported below. 308

Restricted Access Sequence Processing - 309

prepositional phrase and sentential complement 310

recursion (tail recursive) with a non-tree, non- 311

recursive approach using the decoder loop26 312

Our RASP model’s ReCOGS pp_recursion AND 313

cp_recursion gen split scores were both 100% se- 314

mantic exact match AND string exact match (95% 315

confidence interval (Beta dist/Clopper-Pearson): 316

99.63% to 100.0%; n=1000 for each). See Table 1. 317

(Wu et al., 2023) Encoder-Decoder Trans- 318

former from scratch baselines (ReCOGS_pos) 319

(Wu et al., 2023)’s baseline Encoder-Decoder 320

Transformer on ReCOGS_pos had an overall score 321

of 88.55% +/- 1.87% Semantic Exact Match accu- 322

racy (sample +/- std, n=20) with a 95% confidence 323

interval for the sample mean when n=20 of 87.73% 324

to 89.37%. 325

(Wu et al., 2023)’s baseline Encoder-Decoder 326

Transformer’s Semantic Exact Match score on 327

the extremely difficult obj_pp_to_subj_pp split of 328

ReCOGS_pos was 19.7% +/- 6.1% Semantic Exact 329

Match accuracy (sample +/- std, n=20) with 95% 330

confidence interval for the sample mean with n=20 331

of 17.0% to 22.4% . 332

(Wu et al., 2023)’s baseline Encoder-Decoder 333

Transformer’s Semantic Exact Match score on the 334

pp_recursion split of ReCOGS_pos was 40.18% 335

+/- 2.07% Semantic Exact Match accuracy (sample 336

+/- std, n=20) with 95% confidence interval for 337

the sample mean with n=20 of 36.13 to 44.24%. 338

(Wu et al., 2023)’s baseline Encoder-Decoder 339

Transformer’s Semantic Exact Match score on the 340

26The grammar includes two (tail) recursive aspects, prepo-
sitional phrase and sentential complement recursion.

The prepositional phrase recursion comes from the follow-
ing COGS input grammar rules: ‘np -> np_det | np_prop |
np_pp‘ and ‘np_pp -> np_det pp np‘.

Thus np can be expanded in an unbounded way as follows:
‘np -> (np_det pp np) -> np_det pp (np_det pp np) -> np_det
pp np_det pp (np_det pp np)‘ and so on.

However, one sees this is tail recursion and can be handled
by a loop that just appends ‘np_det pp‘ until the final ‘np‘ is
not ‘np_pp‘.

sentential complement recursion arises from ‘np
v_cp_taking that start‘, which can recursively expand as ‘np
v_cp_taking that start -> np v_cp_taking that (np v_cp_taking
that start)‘, and so on until the nonterminal start expands to
some other non sentential complement related nonterminal.

5

cp_recursion split of ReCOGS_pos was 52.40% +/-341

1.38% Semantic Exact Match accuracy (sample +/-342

std, n=20) with 95% confidence interval for the343

sample mean with n=20 of 51.80 to 53.01%.344

(Wu et al., 2023) Encoder-Decoder baseline345

2-layer Transformer does not improve on the346

obj_pp_to_subj_pp split when adding 1 or 2 ad-347

ditional layers (even allowing parameter count348

to increase)27349

3-layer (Wu et al., 2023) Encoder-Decoder on350

ReCOGS_pos obj_pp_to_subj_pp split: 16.2% +/-351

2.7% Semantic Exact Match (sample mean +/- std,352

n=10) with 95% confidence interval for sample353

mean (n=10) of 14.6% to 17.9% . 4-layer (Wu354

et al., 2023) Encoder-Decoder on ReCOGS_pos355

obj_pp_to_subj_pp split: 19.3% +/- 4.1% Semantic356

Exact Match (sample mean +/- std, n=10) with357

95% confidence interval for sample mean (n=10)358

of 16.8% to 21.8%.359

Attraction Error Analysis for (Wu et al.,360

2023) baseline Encoder-Decoder Transformer361

on obj_pp_to_subj_pp split362

(For additional methods detail see Appendix363

(9.8).) Of the obj_pp_to_subj_pp split single364

part errors in single verb sentences made by the365

(Wu et al., 2023) baseline Encoder-Decoder Trans-366

former where the agent was to the left of the verb28,367

across n=10 models29, 765 out of 767 (99.74%;368

95% confidence interval 99.06 to 99.97%) were in369

the agent part of the logical form (the predicted370

position for the error).371

Critically across all n=10 (Wu et al., 2023) mod-372

els, for 96.73% (740 out of the previously men-373

tioned 765 above; 95% confidence interval (Beta374

dist / Clopper-Pearson) 95.21 to 97.87%) of the375

single point errors in logical forms for single verb376

sentences where the agent was on the left, modified377

by a prepositional phrase, and the error was in378

27 Since no improvement was observed, we did not run the
costly experiments to increase the layers while controlling the
parameter count (which would be a follow up to distinguish if
the improvement was from the layer increase or the parameter
increase).

28Our hypothesis is in terms of nouns with a logical form re-
lationship to a verb or other noun, where the relationship could
be agent, theme, or recipient. Since the obj_pp_to_subj_pp
split is in terms of subject vs object prepositional modification
(instead of agent, recipient, or theme), we use the subset of
sentences within this split where the agent is to the left of the
verb and pp-modified as it corresponds to the subject in that
case.

29On a per model basis (n=10), the fraction of agent-left
single point errors where it was the agent relationship in the
logical form that was broken were: [0.985, 1.0, 1.0, 1.0, 1.0,
0.990, 1.0, 1.0, 1.0, 1.0].

the agent part, the error in the logical form was 379

that the agent index was accidentally assigned to 380

the specific expected prepositional phrase noun 381

(the one closest to the verb on the left side) in- 382

stead of the original agent noun. (Figure 7) This 383

does not vary much from randomly initialized and 384

trained model to model, with the model-level aver- 385

age at 97.07% of such errors exactly as predicted 386

(stderr=2.23% (n=10)), with 7 of 10 models having 387

100% of these errors exactly as predicted by our 388

hypothesis30. The attraction to the nearest noun hy- 389

pothesis predicts that the offset in the agent index 390

varies with prepositional phrase recursion depth (as 391

at depth > 1, there are multiple attractor preposi- 392

tional nouns to choose from). 31 393

We report that for all (n=22) single logical form 394

part errors observed (from running n=10 separate 395

Transformer models over the 1000 sentences in 396

the split) where in the input the agent is left of 397

the verb and has a depth=2 prepositional phrase 398

modification in this split, in 100% (95% confidence 399

interval (Beta dist / Clopper-Pearson) 84.6 to 100%; 400

n=22) of those sentences the error in the agent right- 401

index matched our prediction. 402

(Wu et al., 2023) Encoder-Decoder Trans- 403

former on new v_dat_p2 pp moved to recipient 404

(from theme) split - as hard as hardest previous 405

generalization split 406

See Figure 3 . As the RASP model predicted the 407

‘np v_dat_p2 np pp np np‘32 prepositional phrase 408

modification (which involves the recipient instead 409

of the subject so is a distinct check of our hypoth- 410

esis) would require learning to ignore the distrac- 411

tor "pp det common_noun" and "pp proper_noun" 412

same as required for the obj_pp_to_subj_pp split, 413

we predicted that a new split we introduce 414

"v_dat_p2_pp_moved_to_recipient" would also be 415

difficult for the Transformer. To test this, (Wu et al., 416

2023)’s baseline Encoder-Decoder Transformer 417

was trained with default data (ReCOGS_pos 418

train.tsv) and tested on modified v_dat_p2 pp train- 419

ing examples where only the word order was 420

changed to move the prepositional phrase from 421

the theme to the recipient (logical form prop- 422

erly updated see Appendix 9.9 for all examples). 423

The baseline (Wu et al., 2023) Encoder-Decoder 424

30Fraction for each model as predicted: [0.970, 0.761, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0, 0.976, 1.0]).

31See "Appendix: Attraction errors" (9.6) for examples of
different pp recursion depths.

32Strictly speaking we only do ‘np v_dat_p2 np_det pp np
np‘ as per the grammar ‘np_prop‘ cannot precede a preposi-
tional phrase

6

Transformer was only able to achieve a Seman-425

tic Exact Match (sample mean +/- sample std)426

of 13% +/- 15.6% (n=10 Transformers trained427

from scratch with randomly initialized weights428

and data shuffling) with a 95% confidence inter-429

val for the sample mean when n=10 of 4% to430

23%. Thus, this new split we introduce here as431

v_dat_p2_pp_moved_to_recipient is as difficult or432

perhaps more difficult than the previous reported433

"hardest split" obj_pp_to_subj_pp.434

(Wu et al., 2023) Encoder-Decoder Trans-435

former trained with data augmented with436

v_dat_p2 pp moved to recipient (from theme)437

does NOT improve obj_pp_to_subj_pp perfor-438

mance439

(Wu et al., 2023)’s baseline Encoder-Decoder440

Transformer was trained with default data441

(ReCOGS_pos train.tsv) but with additionally the442

same modified v_dat_p2 pp training examples used443

for the "v_dat_p2_pp_moved_to_recipient" split444

(non-subject recipient modified with prepositional445

phrase, so nonoverlapping with subj_pp, Figure 3446

(b) and (d)) above on which it performed poorly,447

then tested on the standard prepositional modifi-448

cation generalization split "obj_pp_to_subj_pp",449

after which it achieved 22% +/- 6.7% Semantic450

Exact Match (sample mean +/- std, n=10) with451

95% confidence interval for sample mean n=10 of452

17.9% to 26.1% (not significantly different than453

(Wu et al., 2023)’s baseline by one-tailed Welch’s454

unequal variances t-test).455

7 Analysis456

Our RASP model of a Transformer Encoder De-457

coder, without tree-based or recursive aspects458

scored 100% in semantic exact match accuracy459

on the (Wu et al., 2023) test set (n=3000), and460

on the generalization data scored 100% in all but461

one category (see above) without explicit rules462

in the RASP program to handle them. This in-463

cludes 100% semantic exact match accuracy on464

the prepositional phrase recursion and sentential465

complement recursion generalization splits up to466

depth 12 (n=1000 examples each), without any467

hardcoded prepositional phrase or sentential com-468

plement expansion shortcuts added33. The RASP469

program only made a significant number of errors470

on obj_pp_to_subj_pp which scored only 92.20%471

Semantic Exact Match (95% confidence interval472

33a single rule applies to all depths; the only limit on length
generalization is the RASP interpreter and a simple to extend
positional encoding which only handles sentences up to a limit

(Beta dist / Clopper-Pearson): 90.36% to 93.79%) 473

Semantic Exact Match accuracy, much better than 474

(Wu et al., 2023) baseline Encoder-Decoder Trans- 475

formers which only scored 19.7% +/- 6.1% Se- 476

mantic Exact Match (sample mean +/- std) with 477

95% confidence interval for the sample mean with 478

n=20 of 17.0% to 22.4% (n=20 separately trained 479

models with different random seeds for weight 480

initialization and training data ordering; n=1000 481

examples used to test each of the n=20 models). 482

Thus, we demonstrated by construction using 483

the Restricted Access Sequence Processing lan- 484

guage which can be compiled to concrete Trans- 485

former weights that theoretically a Transformer 486

Encoder-Decoder can solve the COGS input to 487

ReCOGS_pos logical form translation in a sys- 488

tematic, compositional, and length generalizing 489

way. 490

Recall we found a single flat pattern match- 491

ing rule we originally added to fit training exam- 492

ples, to ignore "pp det common_noun" and "pp 493

proper_noun" when matching nouns for the agent, 494

theme, recipient right indices, was sufficient to 495

avoid structural generalization errors due to pp 496

modification in novel positions. 497

Interestingly, we imagined ablating that single 498

rule and hypothesized attraction to the nearest noun 499

(Figure 7 and "Appendix: Attraction Errors" (9.6)) 500

in its absence and found this predicted the exact 501

error (the nearest noun to the verb on the expected 502

side is mistaken for the agent of the verb) in 96% 503

of the single relationship errors the (Wu et al., 504

2023) baseline Transformers make on the obj-pp- 505

to-subj-pp split34 when the agent is left of the verb 506

in single verb sentences (suggesting perhaps that 507

the baseline (Wu et al., 2023) Transformer trained 508

from scratch is also not learning a hierarchical, 509

tree-structured representation.)35 Our explanation 510

could have been refuted by other single relation- 511

ship errors occurring as frequently as the agent, 512

indicating general model confusion (independently 513

getting incorrect agent and theme, not just agent 514

relationships) and/or when making an agent error, 515

the model could have simply put nonsense indices 516

or referred to any other position other than the clos- 517

est pp noun position to the verb (which does vary 518

and depends on pp depth) to refute our hypothesis. 519

34overall, their semantic exact match on the split is mea-
sured by us at 19.7%, consistent with their Figure 5

35We found (Li et al., 2023) also observe this stating "For
instance, in sentences like ’A cat on the mat froze’, models
often misinterpret the closer NP the mat as the subject."

7

The flat/non-tree structured hypothesis for the520

baseline Transformer can also be checked by mak-521

ing a prediction on a completely different syntax522

affected by the same issue: the ‘np v_dat_p2 np pp523

np np‘ prepositional phrase modification (which in-524

volves the recipient relationship being modified525

instead of the subject and/or agent so is a dis-526

tinct check of our hypothesis)36 and we indeed527

found that this was as hard or harder than the528

previous most difficult split analyzed above, the529

‘obj_pp_to_subj_pp‘ split (Figure 3).530

Maybe (Wu et al., 2023) baseline Encoder-531

Decoder is depth-constrained to learn a non-532

hierarchical, flat, non-tree model with these charac-533

teristic errors and with more layers it would learn534

to recursively combine ‘np_det pp np -> np_pp ->535

np‘ (to some fixed depth at least, probably limited536

by the number of Transformer blocks) and perform537

better on prepositional phrase related splits37. How-538

ever, training a (Wu et al., 2023) baseline Encoder-539

Decoder Transformer from scratch we found no540

benefit to 3 or 4 layers instead of 2 on the ReCOGS541

obj_pp_to_subj_pp split, consistent with (Petty542

et al., 2024)’s finding on COGS.543

Taken together, these results and the grammar544

coverage analysis suggest we may interpret the545

poor performance on generalizing on unseen prepo-546

sitional phrase related modification related splits547

as arising from the baseline 2 to 4 layer Encoder-548

Decoder Transformers learning a non-tree, non-549

recursive representation that cannot leverage the550

grammar rule ‘np_det pp np -> np_pp -> np‘ dur-551

ing learning and which requires them to instead552

actually observe more of the various prepositional553

phrase substitutions to learn them.38554

8 Conclusion555

Implementing our task in Restricted Access Se-556

quence Processing immediately helped us dis-557

cover additional failure modes (e.g. new558

"v_dat_p2_pp_moved_to_recipient" split39) of559

36See Appendix 9.9
37(Csordás et al., 2022): "the network should be sufficiently

deep, at least as deep as the deepest data dependency in the
computational graph built from elementary operations (e.g.,
in the case of a parse tree, this is the depth of the tree)". (This
is not a very scalable approach, as we must make the network
deeper to handle increased pp depths instead of just looping
or at least reusing weights each layer.)

38See "Appendix: Composition and Learning" (9.13)
39After this paper was written we found our predicted split

"v_dat_p2_pp_moved_to_recipient" has also been added to
an extended separate (SLOG) version of COGS (upstream of
ReCOGS) recently in (Li et al., 2023) see their section 2.2.1

det

common_nounnp_det

v_dat_p2
det

common_nounnp_det
np

det

common_noun

np_det

pp

det

common_noun

np_detnp

np_ppnp

vp_external7

det

common_nounnp_det

v_dat_p2

det

common_noun

np_det

pp

det

common_noun

np_detnp

np_ppnp

det

common_noun

np_detnp

vp_external7

COGS training example:
"A scientist lended a cat a donut beside a computer"
Prepositional modification on theme noun (in tail).

d.

= Modified COGS training example:
"A scientist lended a cat beside a computer a donut"
Prepositional modification on recipient noun
(not in tail).

a.

b.

c.

scientist lendagent
cat

donut computernmod . beside

recipient

theme

scientist lendagent

cat computernmod . beside

donut

recipient

theme

Train on extracting meaning of (a)
and other grammar patterns excluding (b)

Cannot generalize to extracting meaning of (b)

scientist (1) ; cat (4) ; donut (6) ; computer (9) ; lend (2) AND
agent (2 , 1) AND recipient (2 , 4) AND theme (2 , 6) AND nmod . beside (6 , 9)

scientist (1) ; cat (4) ; computer (7) ; donut (9) ; lend (2) AND
agent (2 , 1) AND recipient (2 , 4) AND theme (2 , 9) AND nmod . beside (4 , 7)

Figure 3: (Wu et al., 2023) Encoder-Decoder Transformer
trained from scratch generalizing to new v_dat_p2 pp moved
to recipient (from theme) split is as hard as the previously re-
ported hardest generalization split consistent with the flat/non-
recursive/non-tree representation hypothesis ((d) rejects H0).
Figure 5 shows how a flat RASP model can recognize (b).

(Wu et al., 2023)’s baseline Encoder-Decoder 560

Transformer, predict errors in detail made 561

in the logical forms, and demonstrated that 562

tree-structured/recursive representations are not 563

needed to cover the recursive aspects of the 564

COGS/ReCOGS grammar40. We recommend oth- 565

ers to consider RASP to understand Transformer 566

behavior even for more complicated tasks like 567

ReCOGS. We predict that Transformers should be 568

able to perform the ReCOGS task (even structural 569

generalization splits) with high accuracy and that 570

the problem is just of getting the Transformer to 571

learn the appropriate rules41, turning attention to 572

data augmentation42, curriculum learning (Bengio 573

et al., 2009), reinforcement learning (Ranzato et al., 574

2016), training objectives (Ahuja et al., 2024), and 575

other approaches (Csordás et al., 2021) (Ontanon 576

et al., 2022). 577

indirect object modification (4), confirmed difficult
40input grammar for COGS/ReCOGS are the same
41e.g. to ignore "pp det common_noun" and "pp

proper_noun" when finding nouns in relationships with verbs,
which allows the RASP model to get 100% on the ReCOGS
test set, and 100% two of the three structural generalizations,
and 92% on the obj-pp-to-subj-pp split

42We tried one augmentation, see Results and Appendix
9.9, but there are many other possibilities.

8

Known Project Limitations578

The Restricted Access Sequence Processing code is579

not optimized. Cannot yet predict attention heads580

and layers required from the select and aggregate581

operations performed like the RASP authors (Weiss582

et al., 2021) were able to do with their problems.583

Grammar coverage (Zeller et al., 2023) is only584

valid when the expansions are rules your model can585

learn.43 We specifically made use of this limitation586

in this paper but still caution anyone about it who587

might just take the grammar coverage metric away588

by itself.589

The attraction error analysis of the (Wu et al.,590

2023) baseline Encoder-Decoder Transformer on591

the obj_pp_to_subj_pp split does not yet attempt592

to explain the common case of multiple errors in593

the logical form.44594

We only provide and discuss a RASP solution595

for ReCOGS (Wu et al., 2023) here, not the se-596

mantically equivalent COGS45 (Kim and Linzen,597

2020), though as this goes to publication we have598

just separately released a RASP model for COGS599

at https://anonymous.4open.science/r/RASP-for-600

COGS-102F46, which is undergoing evaluation601

with preliminary data supporting the same conclu-602

sions for that task (can also be solved by a non-tree603

structured, non-hierarchical Transformer compat-604

ible model, despite using Exact Match instead of605

Semantic Exact Match, with same RASP for the606

Encoder as used here for ReCOGS_pos but a dif-607

ferent Decoder).608

Much deeper Transformer networks may be609

learning a tree-based grammar representation47 and610

43If for example, as with our flat RASP model by design or
as we hypothesize for (Wu et al., 2023)’s baseline Encoder-
Decoder Transformer, the model cannot or will not learn the
rule ‘np_det pp np -> np_pp -> np‘ which recursively replaces
noun phrases modified by prepositional phrases with a noun
phrase, then grammar coverage will assume any prepositional
phrase exposure is sufficient, which is evidently not true given
the errors on prepositional phrase modification generalization
splits reported here and by (Wu et al., 2023), (Kim and Linzen,
2020).

44e.g. agent index may be replaced by prepositional phrase
noun but also a spurious theme relationship is added or the
theme index is also corrupted

45nor the recently introduced extended version SLOG (Li
et al., 2023)

46RASP-for-COGS also supports case-sensitive string exact
match and ignoring out-of-vocabulary words, features not
supported in RASP-for-ReCOGS

47Nothing explored here rules that out and there is plenty of
evidence outside the COGS task-related literature suggesting
this will be the case: (Tenney et al., 2019) show the 24-layer
BERT model seems to handle "POS tagging, parsing, NER, se-
mantic roles, then coreference"; (Hewitt and Manning, 2019)

not suffer from the predicted generalization issues 611

observed in (Wu et al., 2023)’s baseline 2-layer 612

Transformer and predicted by our intentionally non- 613

tree RASP model (if compensating rules to avoid at- 614

traction errors in a flat model are not also learned). 615

As stated elsewhere in the paper, we are focused 616

on the structural generalizations that Transform- 617

ers currently struggle with (prepositional phrase 618

recursion (pp recursion), sentential complement 619

(cp) recursion, object-pp to subj-pp modification 620

generalization (obj-pp-to-subj-pp)) and not lexical 621

generalizations (which Transformers are demon- 622

strated to do well on by others). Thus, as noted 623

elsewhere, our model assumes the embedding can 624

map words to their possible part-of-speech and 625

verb-type and does not address the learnability of 626

this mapping (number of exposures required, etc). 627

The ReCOGS task is English specific and our 628

findings on compositional generalization may not 629

necessarily apply (or apply differently) to other lan- 630

guages. Our description of "attraction errors" for 631

example does not appear specific to subject-verb- 632

object ordering in English but a similar analysis 633

should be conducted in other languages and we 634

used the obj-pp-to-subj-pp split in our detailed er- 635

ror analysis which is subject-verb-object ordering 636

sensitive. 637

The RASP-for-ReCOGS model applied to un- 638

intended use WILL give invalid results or halt - 639

we have NOT provided a general language model, 640

we have provided a simulation of how a Trans- 641

former could perform a specific task. The RASP- 642

for-ReCOGS model/simulation as provided is for 643

research purposes only to prove feasibility of the 644

ReCOGS task by Transformers and is not appropri- 645

ate for ANY other uses whatsoever without modifi- 646

cation. For one, an actual Transformer performing 647

the equivalent operations would run orders of mag- 648

nitude faster, which should be reason enough to not 649

want to use the RASP simulation for actual input- 650

"provid[e] evidence that entire syntax trees are embedded
implicitly in deep models’ [including BERT’s] vector geome-
try", and (Goldberg, 2019) shows BERT excels at subject-verb
agreement, "which [is] traditionally taken as evidence for the
existence [of] hierarchical structure" (though e.g. in this work
we see that ignoring distractor nouns in long-term dependen-
cies does not require hierarchy or a deep understanding of
syntax but simple rules like ignore "pp det common_noun"
and "pp proper_noun" for finding noun-verb relationships in
the logical form can allow for handling of such long-range
dependencies). On the other hand, (Petty et al., 2024) argue
specifically for the COGS benchmark (semantically equivalent
to ReCOGS which is derived from it) that increasing depth
does not allow their Transformers to make progress on the
structural generalization splits, even at depths up to 32 layers.

9

https://anonymous.4open.science/r/RASP-for-COGS-102F
https://anonymous.4open.science/r/RASP-for-COGS-102F
https://anonymous.4open.science/r/RASP-for-COGS-102F

output tasks outside of a research setting. However,651

there is also no "tokenizer" provided for the RASP652

model to handle out-of-vocabulary inputs and fall-653

back paths for out-of-grammar examples are not654

provided so the RASP model will halt on most655

inputs and can only run on the in-distribution (non-656

augmented) training data, and the dev, test, and657

gen sets of ReCOGS, though such aspects could658

be added. We provide the code for reproducing659

the results of this study and for researchers who660

are capable of writing RASP themselves to build661

upon the work and/or more easily apply RASP to662

their own problems given our examples, not for663

immediate application to any other tasks without664

appropriate modification.665

See also "Appendix: Potential Risks" (9.14) and666

"Appendix: Scientific Artifacts - Is Our Use Consis-667

tent with Authors’ Intention and Licensing" (9.15)668

for other potential concerns.669

References670

Kabir Ahuja, Vidhisha Balachandran, Madhur Panwar,671
Tianxing He, Noah A. Smith, Navin Goyal, and Yulia672
Tsvetkov. 2024. Learning syntax without planting673
trees: Understanding hierarchical generalization in674
transformers. Transactions of the Association for675
Computational Linguistics, 13:121–141.676

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,677
and Jason Weston. 2009. Curriculum learning. In678
Proceedings of the 26th Annual International Confer-679
ence on Machine Learning, ICML ’09, page 41–48,680
New York, NY, USA. Association for Computing681
Machinery.682

Tom Brown, Benjamin Mann, Nick Ryder, Melanie683
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind684
Neelakantan, Pranav Shyam, Girish Sastry, Amanda685
Askell, Sandhini Agarwal, Ariel Herbert-Voss,686
Gretchen Krueger, Tom Henighan, Rewon Child,687
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens688
Winter, and 12 others. 2020. Language models are689
few-shot learners. In Advances in Neural Information690
Processing Systems, volume 33, pages 1877–1901.691
Curran Associates, Inc.692

David Chiang and Peter Cholak. 2022. Overcoming a693
theoretical limitation of self-attention. In Proceed-694
ings of the 60th Annual Meeting of the Association695
for Computational Linguistics (Volume 1: Long Pa-696
pers), pages 7654–7664, Dublin, Ireland. Association697
for Computational Linguistics.698

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.699
Transformers as soft reasoners over language. In Pro-700
ceedings of the Twenty-Ninth International Joint Con-701
ference on Artificial Intelligence, IJCAI-20, pages702
3882–3890. International Joint Conferences on Arti-703
ficial Intelligence Organization. Main track.704

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. 705
2021. The devil is in the detail: Simple tricks im- 706
prove systematic generalization of transformers. In 707
Proceedings of the 2021 Conference on Empirical 708
Methods in Natural Language Processing, pages 619– 709
634, Online and Punta Cana, Dominican Republic. 710
Association for Computational Linguistics. 711

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. 712
2022. The neural data router: Adaptive control flow 713
in transformers improves systematic generalization. 714
In International Conference on Learning Representa- 715
tions. 716

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, 717
Jakob Uszkoreit, and Lukasz Kaiser. 2019. Universal 718
transformers. In International Conference on Learn- 719
ing Representations. 720

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim 721
Genewein, Li Kevin Wenliang, Elliot Catt, Chris 722
Cundy, Marcus Hutter, Shane Legg, Joel Veness, and 723
Pedro A Ortega. 2023. Neural networks and the 724
chomsky hierarchy. In The Eleventh International 725
Conference on Learning Representations. 726

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec- 727
tionism and cognitive architecture: A critical analysis. 728
Cognition, 28(1):3–71. 729

Julie Franck, Glenda Lassi, Ulrich H. Frauenfelder, and 730
Luigi Rizzi. 2006. Agreement and movement: A syn- 731
tactic analysis of attraction. Cognition, 101(1):173– 732
216. 733

Yoav Goldberg. 2019. Assessing bert’s syntactic abili- 734
ties. Preprint, arXiv:1901.05287. 735

John Hewitt and Christopher D. Manning. 2019. A 736
structural probe for finding syntax in word represen- 737
tations. In Proceedings of the 2019 Conference of 738
the North American Chapter of the Association for 739
Computational Linguistics: Human Language Tech- 740
nologies, Volume 1 (Long and Short Papers), pages 741
4129–4138, Minneapolis, Minnesota. Association for 742
Computational Linguistics. 743

O. Jespersen. 1954. A Modern English Grammar on 744
Historical Principles: Volume 2, Syntax (first vol- 745
ume). Otto Jespersen. Bradford and Dickens. 746

Najoung Kim and Tal Linzen. 2020. COGS: A compo- 747
sitional generalization challenge based on semantic 748
interpretation. In Proceedings of the 2020 Confer- 749
ence on Empirical Methods in Natural Language 750
Processing (EMNLP), pages 9087–9105, Online. As- 751
sociation for Computational Linguistics. 752

Tim Klinger, Luke Liu, Soham Dan, Maxwell Crouse, 753
Parikshit Ram, and Alexander Gray. 2024. Compo- 754
sitional program generation for few-shot systematic 755
generalization. Preprint, arXiv:2309.16467. 756

Brenden M Lake and Marco Baroni. 2023. Human-like 757
systematic generalization through a meta-learning 758
neural network. Nature, 623(7985):115–121. 759

10

https://doi.org/10.1162/tacl_a_00733
https://doi.org/10.1162/tacl_a_00733
https://doi.org/10.1162/tacl_a_00733
https://doi.org/10.1162/tacl_a_00733
https://doi.org/10.1162/tacl_a_00733
https://doi.org/10.1145/1553374.1553380
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.24963/ijcai.2020/537
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=KBQP4A_J1K
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://openreview.net/forum?id=WbxHAzkeQcn
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/0010-0277(88)90031-5
https://doi.org/10.1016/j.cognition.2005.10.003
https://doi.org/10.1016/j.cognition.2005.10.003
https://doi.org/10.1016/j.cognition.2005.10.003
https://arxiv.org/abs/1901.05287
https://arxiv.org/abs/1901.05287
https://arxiv.org/abs/1901.05287
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://arxiv.org/abs/2309.16467
https://arxiv.org/abs/2309.16467
https://arxiv.org/abs/2309.16467
https://arxiv.org/abs/2309.16467
https://arxiv.org/abs/2309.16467

Bingzhi Li, Lucia Donatelli, Alexander Koller, Tal760
Linzen, Yuekun Yao, and Najoung Kim. 2023.761
SLOG: A structural generalization benchmark for762
semantic parsing. In Proceedings of the 2023 Con-763
ference on Empirical Methods in Natural Language764
Processing, pages 3213–3232, Singapore. Associa-765
tion for Computational Linguistics.766

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.767
2016. Assessing the ability of lstms to learn syntax-768
sensitive dependencies. Transactions of the Associa-769
tion for Computational Linguistics, 4:521–535.770

William Merrill and Ashish Sabharwal. 2024. The ex-771
pressive power of transformers with chain of thought.772
In The Twelfth International Conference on Learning773
Representations.774

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and775
Christopher Manning. 2023a. Grokking of hierarchi-776
cal structure in vanilla transformers. In Proceedings777
of the 61st Annual Meeting of the Association for778
Computational Linguistics (Volume 2: Short Papers),779
pages 439–448, Toronto, Canada. Association for780
Computational Linguistics.781

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and782
Christopher D Manning. 2023b. Characterizing in-783
trinsic compositionality in transformers with tree pro-784
jections. In The Eleventh International Conference785
on Learning Representations.786

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and787
Vaclav Cvicek. 2022. Making transformers solve788
compositional tasks. In Proceedings of the 60th An-789
nual Meeting of the Association for Computational790
Linguistics (Volume 1: Long Papers), pages 3591–791
3607. Association for Computational Linguistics.792

Jeffrey Pennington, Richard Socher, and Christopher793
Manning. 2014. GloVe: Global vectors for word794
representation. In Proceedings of the 2014 Confer-795
ence on Empirical Methods in Natural Language Pro-796
cessing (EMNLP), pages 1532–1543, Doha, Qatar.797
Association for Computational Linguistics.798

Jackson Petty and Robert Frank. 2021. Transformers799
generalize linearly. Preprint, arXiv:2109.12036.800

Jackson Petty, Sjoerd Steenkiste, Ishita Dasgupta, Fei801
Sha, Dan Garrette, and Tal Linzen. 2024. The impact802
of depth on compositional generalization in trans-803
former language models. In Proceedings of the 2024804
Conference of the North American Chapter of the805
Association for Computational Linguistics: Human806
Language Technologies (Volume 1: Long Papers),807
pages 7239–7252, Mexico City, Mexico. Association808
for Computational Linguistics.809

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,810
and Wojciech Zaremba. 2016. Sequence level train-811
ing with recurrent neural networks. In 4th Inter-812
national Conference on Learning Representations,813
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,814
Conference Track Proceedings.815

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. 816
Williams. 1988. (1986) d. e. rumelhart, g. e. hinton, 817
and r. j. williams, "learning internal representations 818
by error propagation," parallel distributed processing: 819
Explorations in the microstructures of cognition, vol. 820
i, d. e. rumelhart and j. l. mcclelland (eds.) cambridge, 821
ma: Mit press, pp. 318-362. In Neurocomputing, 822
Volume 1: Foundations of Research. The MIT Press. 823

Lena Strobl, William Merrill, Gail Weiss, David Chi- 824
ang, and Dana Angluin. 2024. What formal lan- 825
guages can transformers express? a survey. Transac- 826
tions of the Association for Computational Linguis- 827
tics, 12:543–561. 828

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019. 829
BERT rediscovers the classical NLP pipeline. In 830
Proceedings of the 57th Annual Meeting of the Asso- 831
ciation for Computational Linguistics, pages 4593– 832
4601, Florence, Italy. Association for Computational 833
Linguistics. 834

Marten van Schijndel, Aaron Mueller, and Tal Linzen. 835
2019. Quantity doesn‘t buy quality syntax with neu- 836
ral language models. In Proceedings of the 2019 Con- 837
ference on Empirical Methods in Natural Language 838
Processing and the 9th International Joint Confer- 839
ence on Natural Language Processing (EMNLP- 840
IJCNLP), pages 5831–5837, Hong Kong, China. As- 841
sociation for Computational Linguistics. 842

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 843
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 844
Kaiser, and Illia Polosukhin. 2017. Attention is all 845
you need. Advances in neural information processing 846
systems, 30. 847

Gabriella Vigliocco and Janet Nicol. 1998. Separating 848
hierarchical relations and word order in language 849
production: is proximity concord syntactic or linear? 850
Cognition, 68(1):B13–B29. 851

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. 852
Thinking like transformers. In Proceedings of the 853
38th International Conference on Machine Learning, 854
volume 139 of Proceedings of Machine Learning 855
Research, pages 11080–11090. PMLR. 856

Zhengxuan Wu, Christopher D. Manning, and Christo- 857
pher Potts. 2023. ReCOGS: How incidental details 858
of a logical form overshadow an evaluation of seman- 859
tic interpretation. Transactions of the Association for 860
Computational Linguistics, 11:1719–1733. 861

Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gor- 862
don Fraser, and Christian Holler. 2023. Grammar 863
coverage. In The Fuzzing Book. CISPA Helmholtz 864
Center for Information Security. Retrieved 2023-11- 865
11 18:18:06+01:00. 866

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, 867
Omid Saremi, Joshua M. Susskind, Samy Bengio, 868
and Preetum Nakkiran. 2024. What algorithms can 869
transformers learn? a study in length generalization. 870
In The Twelfth International Conference on Learning 871
Representations. 872

11

https://doi.org/10.18653/v1/2023.emnlp-main.194
https://doi.org/10.18653/v1/2023.emnlp-main.194
https://doi.org/10.18653/v1/2023.emnlp-main.194
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://doi.org/10.18653/v1/2023.acl-short.38
https://doi.org/10.18653/v1/2023.acl-short.38
https://doi.org/10.18653/v1/2023.acl-short.38
https://openreview.net/forum?id=sAOOeI878Ns
https://openreview.net/forum?id=sAOOeI878Ns
https://openreview.net/forum?id=sAOOeI878Ns
https://openreview.net/forum?id=sAOOeI878Ns
https://openreview.net/forum?id=sAOOeI878Ns
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://arxiv.org/abs/2109.12036
https://arxiv.org/abs/2109.12036
https://arxiv.org/abs/2109.12036
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
https://doi.org/10.18653/v1/2024.naacl-long.402
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.7551/mitpress/4943.003.0128
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.18653/v1/P19-1452
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.18653/v1/D19-1592
https://doi.org/10.1016/S0010-0277(98)00041-9
https://doi.org/10.1016/S0010-0277(98)00041-9
https://doi.org/10.1016/S0010-0277(98)00041-9
https://doi.org/10.1016/S0010-0277(98)00041-9
https://doi.org/10.1016/S0010-0277(98)00041-9
https://proceedings.mlr.press/v139/weiss21a.html
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.1162/tacl_a_00623
https://doi.org/10.1162/tacl_a_00623
https://www.fuzzingbook.org/html/GrammarCoverageFuzzer.html
https://www.fuzzingbook.org/html/GrammarCoverageFuzzer.html
https://www.fuzzingbook.org/html/GrammarCoverageFuzzer.html
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX

Arnold Zwicky. 2008. Agreement with nearest.873

Notes874

No AI tools were used by the author in the prepa-875

ration of this manuscript with the exception of876

anything used in the backend by Google Scholar877

searches for literature and citations and Google878

searches for related material. AI writing aids were879

not used.880

12

https://languagelog.ldc.upenn.edu/nll/?p=839

9 Appendix 881

9.1 Results Notebook links by section 882

9.1.1 ReCOGS RASP model on test set 883

For steps to reproduce and results, see the RASP model ReCOGS test set notebook (link)48. 884

9.1.2 ReCOGS RASP model on generalization set (all splits) 885

For steps to reproduce and results, see the RASP model ReCOGS generalization set notebook (link)49. 886

9.1.3 (Wu et al., 2023) Encoder-Decoder Transformer from scratch baselines (ReCOGS_pos) 887

See the Encoder-Decoder Transformer from scratch baselines notebook (link)50 888

for (Wu et al., 2023) script execution and analysis code. 889

9.1.4 (Wu et al., 2023) Encoder-Decoder baseline 2-layer Transformer does not improve on the 890

obj_pp_to_subj_pp split when adding 1 or 2 additional layers 891

3 and 4 layer results can also be found in that same notebook, which is also the baseline Encoder-Decoder 892

Transformer 3 or 4 layer variation results notebook (link)51 (scroll down). 893

9.1.5 Attraction Error Analysis for (Wu et al., 2023) baseline Encoder-Decoder Transformer on 894

obj_pp_to_subj_pp split 895

See Attraction Error Analysis on baseline Encoder-Decoder Transformer notebook (link)52 . 896

9.1.6 (Wu et al., 2023) baseline Encoder-Decoder Transformer on v_dat_p2 generalization to 897

recipient pp modification after training on theme pp modification (both right of verb) 898

See v_dat_p2 generalization to middle np/recipient pp modification on baseline Encoder-Decoder Trans- 899

former notebook (link)53 . 900

48Full URL for printed copies:
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ RASP_model_for_ReCOGS_eval_test

set(multiday_run_on_dedicated_VM) _(PR_7_contents_on_TEST_set_incl_complement_phrase_support)_(public).ipynb
49Full URL for printed copies:
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ RASP_model_for_ReCOGS_eval_on_gen

set(multiday_run_on_dedicated_VM) _(PR_7_contents_on_GEN_set_incl_complement_phrase_support)_(public).ipynb
50Full URL for printed copies:
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/ supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this

_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing
_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb

51Full URL for printed copies:
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/ supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this

_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing
_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb

52Full URL for printed copies:
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline

_non_RASP_Transformer_ReCOGS_error_prediction _with_n=10_Transformers_trained_from_scratch_(predicting_the_details
_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb

53Full URL for printed copies:
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer

_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp _modification_on_the_theme_(right_most_np),
_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb

13

https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_model_for_ReCOGS_eval_test_set_(multiday_run_on_dedicated_VM)_(PR_7_contents_on_TEST_set_incl_complement_phrase_support)_(public).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_model_for_ReCOGS_eval_on_gen_set_(multiday_run_on_dedicated_VM)_(PR_7_contents_on_GEN_set_incl_complement_phrase_support)_(public).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_model_for_ReCOGS_eval_test_set_(multiday_run_on_dedicated_VM)_(PR_7_contents_on_TEST_set_incl_complement_phrase_support)_(public).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_model_for_ReCOGS_eval_test_set_(multiday_run_on_dedicated_VM)_(PR_7_contents_on_TEST_set_incl_complement_phrase_support)_(public).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_model_for_ReCOGS_eval_on_gen_set_(multiday_run_on_dedicated_VM)_(PR_7_contents_on_GEN_set_incl_complement_phrase_support)_(public).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_model_for_ReCOGS_eval_on_gen_set_(multiday_run_on_dedicated_VM)_(PR_7_contents_on_GEN_set_incl_complement_phrase_support)_(public).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/RASP_for_ReCOGS_(no_RASP_in_this_file)_more_Wu_et_al_2023_transformer_baselines_to_compare_with_Restricted_Access_Sequence_Processing_(_use_fixed_positional_indices)_and_or_data_augmentation.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/train_ReCOGS_baseline_Transformer_(from_Wu_et_al_2023)_on_Wus_training_set_which_only_has_v_dat_p2_pp_modification_on_the_theme_(right_most_np),_test_generalization_on_recipient_modification_(left_in_np_pair_both_right.ipynb

9.2 Restricted Access Sequence Processing901

word-level token program/model design902

For overall model descriptions, first see Model De-903

tail 9.4. For a description of the Restricted Access904

Sequence Processing (RASP) language, which is905

theoretically compilable to Transformer neural net-906

work weights, see (Weiss et al., 2021).907

You can run a demo of our RASP model and see908

the autoregressive output909

no longer cloneable with this command after blinding for review910
(but can use download zip tool there)911
git clone https://anonymous.4open.science/r/learning-rasp-F7C2/912
python recogs_examples_in_rasp.py913

The script will show performance on (Wu914

et al., 2023) ReCOGS_pos data by default, run915

with "–use_dev_split", "–use_gen_split" , or "–916

use_test_split" to see it run on those and give a917

running score every row.918

For ReCOGS, intending to perform well on Se-919

mantic Exact Match, we took a simple, flat, non-920

tree, non-recursive approach which was able to921

get 100% semantic exact match (and string exact922

match) on the full test set, and 99.6% semantic ex-923

act match on the out-of-distribution generalization924

set of the real ReCOGS dataset54.925

We use word-level tokens for all RASP model926

results in this paper.55. We took the RASP native927

sequence tokens at the word-level, and first did a928

Transformer learned-embedding compatible opera-929

tion and created 1 part-of-speech and 4 extra verb-930

type sequences (because each word in the COGS931

vocabulary may actually serve multiple POS roles;932

up to four different verb types as in the case of933

"liked"934

which can serve as v_trans_not_omissible,935

v_trans_not_omissible_pp_p1,936

v_trans_not_omissible_pp_p2, and v_cp_taking937

types).938
The five extra sequences serve to associate each939

word with one or more of the following part-of-940
speech/verb type roles:941
det: 1942
pp: 2943
was: 3944
by: 4945
to: 5946
that: 6947
common_noun: 7948
proper_noun: 8949
v_trans_omissible: 9950
v_trans_omissible_pp: 10951
v_trans_not_omissible: 11952
v_trans_not_omissible_pp: 12953

54word-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

55We believe any solution at the word-level can be converted
to a character-level token solution and that is not the focus of
our investigation here (see Appendix 9.3 for proof of concept
details on a character level solution not used here).

1

A scientist lended a cat a donut *

det: 1
pp: 2
was: 3
by: 4
to: 5
that: 6
common_noun: 7
proper_noun: 8
v_trans_omissible: 9
v_trans_omissible_pp: 10
v_trans_not_omissible: 11
v_trans_not_omissible_pp: 12
v_cp_taking: 13
v_inf_taking: 14
v_unacc: 15
v_unerg: 16
v_inf: 17
v_dat: 18
v_dat_pp: 19
v_unacc_pp: 20

1 7 18 1 7 1 7

1 7 18 1 7 1 71 7 18 1 7 1 7

1 7 18 1 1

np_det_seq = [0, 1, 0, 0, 1, 0, 1]
np_prop_seq = [0, 0, 0, 0, 0, 0, 0]
v_dat_seq = [0, 0, 1, 0, 0, 0, 0]
np_det_left_seq = [1, 0, 0, 1, 0, 1, 0]
np_two_before_seq = [0, 1, 0, 1, 0, 0, 0]
np_before_seq = [0, 0, 1, 0, 1, 0, 0]
np_after_seq = [0, 0, 1, 0, 0, 1, 0]

(A) = (np_det_left_seq & np_two_before_seq) = [0, 0, 0, 1, 0, 0, 0]
(B) = (np_prop_seq & np_before_seq) = [0, 0, 0, 0, 0, 0, 0]
np_np_seq = (A or B) = [0, 0, 0, 1, 0, 0, 0]
np_np_any_before_seq = [1, 1, 1, 0, 0, 0, 0]
np_v_dat_p_np_np = np_after_seq & v_dat_seq
& np_before_seq & np_np_any_before_seq
 = [0, 0, 1, 0, 0, 0, 0]

7 7

1 7 18 1 17 7

1 7 18 1 17 7

1 7 18 17 7

1 7 18 1 17 7

1 7 18 1 17 7

1 7 18 1 17 7

 &

np + np

<

np - 2

np det left

1 7 18 1 7 1 7

1 7 18 1 7 1 7

before np

after np

&

&

&

np v_dat_p2 np np

*COGS official training data uses "lended", instead of "lent"

In bidirectional Encoder
of
Encoder-Decoder
Transformer
equivalent model

0 0 0 0 01 1
0 0 0 1

0 0 0 00 01
0 0 0 00 01

1 1 0 00 01

0 0 0 00 01

0 0 1 00 00

0 1 1 00 00

1 1 10 000
01 0

verb

embed to
part-of-speech
and verb-type

{

Figure 4: Example RASP model flat grammar pattern match-
ing, for np v_dat_p2 np np, for a matching sentence.

v_cp_taking: 13 954
v_inf_taking: 14 955
v_unacc: 15 956
v_unerg: 16 957
v_inf: 17 958
v_dat: 18 959
v_dat_pp: 19 960
v_unacc_pp: 20 961
v_normalized_in_output: 21 # only used in decoder loop 962
#, represents stemmed verbs where type is not important 963

For those used to multidimensional representa- 964

tions, one can think of these as one-hot vectors of 965

dimension 2056 and replace equality checks with 966

vector dot product (and a check for either com- 967

mon_noun or proper_noun would be a dot product 968

with the sum of one-hot 20 dimensional vectors 969

given by (common_noun + proper_noun)) but we 970

keep it simple for human reading here and use these 971

scalars in 1d as is easily supported by RASP. 972

Each of the five sequences comes from a separate 973

map, since in RASP a map could only have a single 974

value per key, and since individual words had up to 975

four different verb roles (as in "liked" which had 976

4). 977

5621d in decoder only for v_normalized_in_output

14

https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

A scientist lended a cat beside a computer a donut *

1 7 18 1 7 1 71

1

1

1

2

2

2

2

7

1 7 18 1 7 1 77

12 1 77

7

7

1 7 18 1 7

1 7 18 1 17 7

1 7 18 1 17 7

 &

np + np

<

np - 2

np det left

1 7 18 1 7

1 7 18 1 7

before np

after np

&

&

&

np v_dat_p2 np np

*COGS official training data uses "lended", instead of "lent"

In bidirectional Encoder
of
Encoder-Decoder
Transformer
equivalent RASP model

12 71 7 18 1 17 7

12 1 77

12 1 77 121 7 18 1 7 1 77

121 7 18 1 7 1 77

121 7 18 1 7 1 77

121 7 18 1 7 1 77

}
Prepositional modification
of the recipient noun (cat)
does not disrupt detection of
the grammar pattern

(neither does tail pp modification
which is more obviously true)

0 0 0 10 0 0 011

0 0 0 10 0 0 001

0 0 0 00 0 0 001

0 0 0 00 0 0 001

0 0 0 10 0 1 001

verb

1 1 1 11 0 0 001

0 0 0 00 1 0 000

0 1 0 01 1 0 000

1 0 1 00 1 1 000

Figure 5: Example RASP model flat grammar pattern match-
ing, for np v_dat_p2 np np, for a matching sentence, despite
pp modification of middle recipient noun. This is in the en-
coder. See also Figure 7 for how the RASP model avoids
attraction errors in assigning agents, recipients, themes due to
prepositional phrase modification in the decoder.

Upon these five parallel, aligned, sequences we978

used a series of attention head compatible opera-979

tions to recognize multi-token patterns (see below)980

corresponding to grammatical forms (listed below).981
np_det_mask = select(7, pos_tokens, ==) \982
and select(pos_tokens, 1, ==) \983
and select(indices+1, indices, ==);984
np_prop_mask = select(8, pos_tokens, ==) and \985
select(indices, indices, ==);986
np_det_sequence = aggregate(np_det_mask, 1);987
np_prop_sequence = aggregate(np_prop_mask, 1);988
np_det_after = select(np_det_sequence, 1, ==) and \989
select(indices+1, indices, ==);990
np_prop_after = select(np_prop_sequence, 1, ==) and \991
select(indices+1, indices, ==);992
np_after_mask = np_det_after or np_prop_after;993
np_after_sequence = aggregate(np_after_mask, 1);994
np_after_mask = select(np_after_sequence, 1, ==) and \995
select(indices,indices, ==);996
...997

998
np v_unerg999
e.g. [1,7,16]1000
set example ["the", "guest", "smiled"]1001
v_unerg_mask = select(16, pos_tokens_vmap1, ==) and \1002
select(indices, indices, ==);1003
np_v_unerg = aggregate(np_after_mask and v_unerg_mask, 1);1004

15

1

A scientist lended a cat to a donut *

1 7 18 1 7 1 7

1 7 18 1 7 1 71 7 18 1 7 1 7

1 7 18 1 17 7

1 7 18 1 1

5

5

5

57 7

1 7 18 17 7

1 0 1 00 1 00

0 1 0 01 0 00
1 7 18 1 17 7

1 7 18 1 17 7

1 7 18 1 17 7

 &

np + np

0 0 0 00 00

0 0 00

0

0 00 0

<

np - 2

np det left

1 7 18 1 7 1 7

1 7 18 1 7 1 7

before np

after np

&

&

&

np v_dat_p2 np np (no match)

5

Inserting "to" causes
np v_dat_p2 np np to no longer match
(would match np v_dat_p1 np pp_iobj)

1 7 18 1 7 1 755

5 5

5

5

5

&

*COGS official training data uses "lended", instead of "lent"

Bidirectional Encoder
of
Encoder-Decoder
Transformer
equivalent model

0 0 0 10 0 01

0 0 0 10 0 01

0 0 0 10 0 01

00 1 0 00 00

00 0 0 00 00

verb

Figure 6: Example RASP model flat grammar pattern match-
ing, for the pattern np v_dat_p2 np np, for a non-matching
sentence.

16

These patterns are not causal because their1005

use/input/output is masked to the input section1006

of the sequence, so would take part in the En-1007

coder of the Encoder-Decoder only (all opera-1008

tions outside the input mask in the word-level1009

token RASP solution used in this paper are di-1010

rectly or indirectly causally masked and we built1011

symbol by symbol in a causal autoregressive way).1012

We could have added an explicit causal mask1013

to each operation but for efficiency and simplic-1014

ity of the code omitted it when we are doing it1015

implicitly by taking only the last sequence po-1016

sition (we also acausally aggregate so that all1017

sequence positions have the same value as the1018

last sequence position to make it easier to read1019

the output – RASP interpreter will just print it1020

as one position if they are all equal and we only1021

take one position).1022

Also, the author thinks many of these RASP1023

steps could be consolidated. The goal here was1024

to first prove by construction that a non-recursive,1025

flat RASP program could get approximately 100%1026

Semantic Exact Match on all the ReCOGS gen-1027

eralization splits (we only missed one split, obj-1028

pp-to-subj-pp by a little (see results), which we1029

believe was due to a mistake made rushing due to1030

two week time constraint for original model im-1031

plementation, not a fundamental limitation of the1032

RASP approach).1033

Introduction of variables at the beginning of the1034

ReCOGS logical form (e.g. in the logical form for1035

"a boy painted the girl", we have "boy (1) ; * girl1036

(4) ; paint (2) AND agent (2 , 1) AND theme (1037

2 , 4)" , the variable introduction is "boy (1) ; *1038

girl (4) ; paint (2)" before the "AND"). We took1039

a simple approach and sorted the input sequence1040

with nouns before verbs and determiners, fillers1041

last (with determiners and fillers not having any1042

corresponding entry in the output sequence). We1043

then count nouns and verbs in the input and count1044

nouns and verbs in the output and determine if we1045

have introduced all the nouns and verbs.1046

See code for full details57 (for simplicity this de-1047

scription was written without discussing sentential1048

complement (CP) handling).1049
Example counting how many nouns and verbs1050

we have output (introduced as variables) so far (to1051
determine what we need to output for next token):1052

nv_in_output_sequence = \1053
OUTPUT_MASK*(indicator(pos_tokens == 7 or pos_tokens == 8) + \1054

57word-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

indicator(pos_tokens_vmap1 == 9 or pos_tokens_vmap2 == 10 or \ 1055
pos_tokens_vmap1 == 11 or pos_tokens_vmap2 == 12 or \ 1056
pos_tokens_vmap3 == 13 or pos_tokens_vmap4 == 14 or \ 1057
pos_tokens_vmap1 == 15 or pos_tokens_vmap1 == 16 or \ 1058
pos_tokens_vmap1 == 17 or pos_tokens_vmap1 == 18 or \ 1059
pos_tokens_vmap2 == 19 or pos_tokens_vmap2 == 20 or \ 1060
pos_tokens_vmap1==21)); 1061
nv_in_output_count = selector_width(select(nv_in_output_sequence, 1, ==)); 1062
causal operation as we use only last sequence position 1063

How variables are introduced with their index 1064
(omitted sorting of input and other operations that 1065
can be read in the code and are less important; 1066
anything acausal is restricted to input sequence 1067
section (Encoder)): (only value at last sequence 1068
position is used; causal) 1069
introducing variables 1070
output = ""; 1071
definite article word handling 1072
before_target_word_index = \ 1073
aggregate(select(indices, nv_in_output_count, ==), \ 1074
input_indices_sorted)-1; 1075

has_star = \ 1076
aggregate(select(indices, before_target_word_index, ==), \ 1077
tokens) == "the"; 1078

last_output_is_star = \ 1079
aggregate(select(indices, length-1, ==), \ 1080
tokens) == "*"; 1081

1082
input_nv_sorted_by_type = \ 1083
input_tokens_sorted_by_type * \ 1084
(input_noun_mask_sorted + input_verb_mask_sorted); 1085

target_word_token = \ 1086
aggregate(select(indices, nv_in_output_count, ==), \ 1087
normalize_nv(input_nv_sorted_by_type)) \ 1088

if (not has_star or last_output_is_star) else "*"; 1089
subtract 1 when matching 1090
for producing the index 1091
because we just output the additional word by then 1092
target_word_index = \ 1093
aggregate(select(indices, nv_in_output_count-1, ==), \ 1094
input_indices_sorted); 1095

1096
output = \ 1097
target_word_token \ 1098
if ((num_tokens_in_output_excluding_asterisks % 5) == 0) \ 1099
else \ 1100
output; 1101

output = \ 1102
"(" \ 1103
if ((num_tokens_in_output_excluding_asterisks % 5) == 1) \ 1104
else output; 1105

output = \ 1106
target_word_index \ 1107
if ((num_tokens_in_output_excluding_asterisks % 5) == 2) \ 1108
else output; 1109

output = \ 1110
")" \ 1111
if ((num_tokens_in_output_excluding_asterisks % 5) == 3) \ 1112
else output; 1113

note that 1114
when nv_in_output_count == nv_in_input_count, 1115
we will add AND instead of ";" 1116
output = \ 1117
(\ 1118
";" \ 1119
if \ 1120
(\ 1121
5 * nv_in_input_count - 1 > \ 1122
num_tokens_in_output_excluding_asterisks \ 1123

) \ 1124
else "AND" \ 1125
) \ 1126

if (num_tokens_in_output_excluding_asterisks % 5 == 4) \ 1127
else output; 1128

1129
if we didn’t have an input/output separator 1130
that needs to be output 1131
output = \ 1132
"|" if num_pipes_in_output == 0 else output; 1133

1134
note that the output/next token prediction above will be overridden 1135
with later decoder variables 1136
(e.g. verb relationship or noun modifier logical form tokens, see below) 1137
if noun/verb introduction is complete, that is if the decoder detects 1138
that all nouns/verbs in input have been output in the logical form. 1139

Note that "normalize_nv" is a lookup into a map 1140

that has no effect unless the word is a verb in which 1141

case it normalizes it to a standard suffix ("ate" to 1142

"eat" , "painted" to "paint", etc). 1143

17

https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

As you can see above, if we have not intro-1144

duced all the variables, we determine our index1145

into the sorted list of nouns and verbs (nouns be-1146

fore verbs), and using a MLP modeling modulus,1147

compute index mod 5 (alternatively, number of to-1148

kens since last separator) and condition on that to1149

output that noun/verb or parentheses or index as1150

prediction for next token at last sequence position1151

(all other sequence positions are ignored). Since1152

we do ReCOGS_pos (semantically identical to ran-1153

dom indices but avoid requiring random numbers)1154

the index we use is the index of the original noun1155

or verb in the original sequence. If we are still1156

introducing variables, that is the end and we have1157

our prediction for the next token.1158

If we are done introducing variables at that point1159

in the Decoder loop, we move on, and use templates1160

that the attention head compatible operations in the1161

Encoder recognized for us in the five parallel part-1162

of-speech / verb-type per location sequences for1163

"v_trans_omissible_p1", "v_trans_omissible_p2",1164

"v_trans_omissible_pp_p1",1165

"v_trans_omissible_pp_p2",1166

"v_trans_not_omissible",1167

"v_trans_not_omissible_pp_p1",1168

"v_trans_not_omissible_pp_p2", "v_cp_taking",1169

"v_inf_taking", "v_unacc_p1", "v_unacc_p2",1170

"v_unacc_pp_p1", "v_unacc_pp_p2", "v_unerg",1171

"v_dat_p2", "v_dat_pp_p1", "v_dat_pp_p2",1172

"v_dat_pp_p3", "v_dat_pp_p4".1173

To be clear, we always compute all vari-1174

ables (noun and verb introduction, verb relation-1175

ships, nmods) but depending on the number of1176

nouns/verbs, verb relationships, nmods detected in1177

the output so far, variables from "completed" or1178

"premature" phases are discarded and the next pre-1179

dicted token is given by variables associated with1180

the appropriate phase, here the verb relationship1181

phase.1182
Here are a couple of examples of patterns the En-1183

coder recognizes, to see how it looks if we support1184
1 verb pattern per input (no sentential complement1185
recursion; which can be easily handled how we1186
handle other things we loop over, looping over cur-1187
rent phrase and masking and processing), which is1188
sufficient to get approximately 100% on all entries1189
that do not use sentential complements (e.g. "the1190
girl noticed that a boy painted" is not supported in1191
this example but "a boy painted" is):1192
define the pattern1193
... \1194
(just showing one example,1195
np_prop_mask and1196
np_before_mask1197
are attention masks defined earlier)1198
np v_dat_p2 np np1199
e.g. [8,18,1,7,1,7]1200
set example ["ella","sold","a","customer","a","car"]1201

np_np_sequence = \ 1202
aggregate((np_prop_mask and np_before_mask) or \ 1203
(np_det_left_mask and np_two_before_mask), 1); 1204

would not support prepositional phrase modification on middle NP 1205
#np_np_before_mask = \ 1206
select(np_np_sequence, 1, ==) and select(indices-1, indices, ==); 1207
np_np_any_before_mask = \ 1208
select(np_np_sequence, 1, ==) and select(indices, indices, >); 1209

acausal is ok 1210
in INPUT sequence (encoder part, not decoder), \ 1211
would mask further if we wanted to do multiple templates per input or 1212
something outside the supported grammar (COGS without sentential complement 1213
recursion is supported here) 1214
np_np_any_before_sequence = \ 1215
aggregate(np_np_any_before_mask, 1); 1216

np_np_any_before_mask = \ 1217
select(np_np_any_before_sequence, 1, ==) and \ 1218
select(indices, indices, ==); 1219

np_v_dat_p_np_np = \ 1220
aggregate(np_after_mask and v_dat_mask and \ 1221

np_before_mask \ 1222
and np_np_any_before_mask, 1); 1223

Example: np_v_dat_p_np_np(\ 1224
[’ella’, ’sold’, ’a’, ’customer’, ’a’, ’car’]) \ 1225
= [0, 1, 0, 0, 0, 0] (ints) 1226
Example: np_v_dat_p_np_np(\ 1227
[8, 18, 1, 7, 1, 7]) \ 1228
= [0, 1, 0, 0, 0, 0] (ints) 1229

1230
... 1231

1232
check the pattern and set the template name 1233
any_np_v_trans_omissible = \ 1234
aggregate(select(np_v_trans_omissible, 1, ==), 1); 1235

template_name = "v_trans_omissible_p1" \ 1236
if (any_np_v_trans_omissible == 1) else template_name; 1237

1238
... 1239

1240
any_v_dat_p2 = aggregate(select(np_v_dat_p_np_np, 1, ==), 1); 1241
template_name = \ 1242
"v_dat_p2" if (any_v_dat_p2 == 1) else template_name; 1243

1244
... 1245

1246
any_v_dat_pp_p4 = \ 1247
aggregate(select(np_was_v_dat_pp_np_by_np, 1, ==), 1); 1248

template_name = \ 1249
"v_dat_pp_p4" if (any_v_dat_pp_p4 == 1) else template_name; 1250

1251
must be checked after P4 1252
any_v_dat_pp_p2 = \ 1253
aggregate(select(np_was_v_dat_pp_to_np_by_np, 1, ==), 1); 1254

template_name = \ 1255
"v_dat_pp_p2" if (any_v_dat_pp_p2 == 1) else template_name; 1256

1257
template name is used to lookup 1258
the number of verb relationships to output 1259
and what they are for each index 1260
e.g. ["theme", "agent"] 1261
vs. ["agent", "recipient", "theme"] etc 1262

18

The rest of this applies to just values used from1263

the last sequence location (output is prediction for1264

next symbol).1265
Based on the template recognized, we lookup the1266

template size for number of relationships (theme,1267
recipient, agent) for that verb type:1268
def template_size(template_name) {1269
number of items to output in verb relationship phase1270
after noun and verb introduction phase1271
(special exception is 2-verb v_inf)1272
template_sizes = {1273

"": 0,1274
"v_trans_omissible_p1": 1,1275
"v_trans_omissible_p2": 2,1276
"v_trans_omissible_pp_p1": 1,1277
"v_trans_omissible_pp_p2": 2,1278
"v_trans_not_omissible": 2,1279
"v_trans_not_omissible_pp_p1": 1,1280
"v_trans_not_omissible_pp_p2": 2,1281
"v_cp_taking": 2,1282
(NOTE: comments within the map should be removed)1283
v_inf_taking is a special 2-verb case, 5 items1284
after noun introduction1285
(verb 1, agent 1, xcomp verb 1 to verb 2, verb 2, agent 2)1286
if first verb were included1287
in introduction phase for v_inf,1288
then it would be 41289
indeed the last map used is template_mapping41290
"v_inf_taking": 5,1291
n.b. if we output out of order1292
(as allowed by Semantic Exact Match)1293
and put both verbs in beginning1294
(verb 1, verb 2, agent 1, xcomp verb 1 to verb 2, agent 2)1295
then the count would be 31296
as we could do normal combined noun and verb intro1297
but if doing String Exact Match, ReCOGS LF has1298
verb 2 after the xcomp for v_inf_taking1299
"v_unacc_p1": 2,1300
"v_unacc_p2": 1,1301
"v_unacc_pp_p1": 1,1302
"v_unacc_pp_p2": 2,1303
"v_unerg": 1,1304

"v_inf": 1,1305
"v_dat_p1": 3,1306
"v_dat_p2": 3,1307
"v_dat_pp_p1": 2,1308
"v_dat_pp_p2": 3,1309
"v_dat_pp_p3": 2,1310
"v_dat_pp_p4": 31311
};1312
return template_sizes[template_name];1313

}1314

Details are in the learning-rasp GitHub RASP1315

code58, but we compute at the last sequence posi-1316

tion (in parallel) the number of relationships output1317

for the verb so far, and for the current relationship1318

which token within that multi-token process (e.g.1319

the word "agent" or the open parenthesis "(" or1320

the left index, or the comma, or right index, close1321

parenthesis ")", "AND", etc) we are on.1322
Like we computed at the last sequence position1323

the number of nouns and verbs in the output once1324
we are finished introducing nouns and verbs (this1325
would be a little different with sentential comple-1326
ments (see actual code for CP support)), we com-1327
pute the number of agent,theme,recipient,xcomp1328
entries in the output:1329
atrx_in_output_sequence = OUTPUT_MASK*(indicator(tokens == "agent" \1330
or tokens == "theme" \1331
or tokens=="recipient" \1332
or tokens=="xcomp"));1333
agent_theme_recipient_xcomp_output_count is the number of relationships we have output1334
agent_theme_recipient_xcomp_output_count = \1335
selector_width(select(atrx_in_output_sequence, 1, ==));1336
after_intro_idx = \1337
(nv_in_output_count - nv_in_input_count + (1 if any_v_inf_taking == 1 else 0) \1338
+ agent_theme_recipient_xcomp_output_count) \1339
if nv_in_output_count + (1 if any_v_inf_taking == 1 else 0) \1340

58word-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

>= nv_in_input_count else 0; 1341

19

https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

We use all those different values which are com-1342
puted independently from the input sequence and1343
so do not add depth/layer requirements as many of1344
the ones which involve accessing the sequence can1345
be done in parallel. We then use the verb-type and1346
relationship index to the relationship into a map to1347
get the current relationship to output (as some verb1348
types output agent first, some output theme, etc):1349
template_mapping1 = {1350
"": "",1351
"v_trans_omissible_p1": "agent",1352
"v_trans_omissible_p2": "agent",1353
"v_trans_omissible_pp_p1": "theme",1354
"v_trans_omissible_pp_p2": "theme",1355
"v_trans_not_omissible": "agent",1356
"v_trans_not_omissible_pp_p1": "theme",1357
"v_trans_not_omissible_pp_p2": "theme",1358
"v_cp_taking": "agent",1359
"v_inf_taking": "agent",1360
"v_unacc_p1": "agent",1361
"v_unacc_p2": "theme",1362
"v_unacc_pp_p1": "theme",1363
"v_unacc_pp_p2": "theme",1364
"v_unerg": "agent",1365
"v_inf": "agent",1366
"v_dat_p1": "agent",1367
"v_dat_p2": "agent",1368
"v_dat_pp_p1": "theme",1369
"v_dat_pp_p2": "theme",1370
"v_dat_pp_p3": "recipient",1371
"v_dat_pp_p4": "recipient"1372

};1373

Outputting the verb relationships we must skip1374

over any "pp np" as possible agents, themes, or re-1375

cipients to avoid getting confused by noun phrases1376

added by prepositional modification (believed by1377

the author to be a cause of the issue with obj pp1378

to subj pp generalization by (Wu et al., 2023)’s1379

Transformer).1380
pp_sequence = indicator(pos_tokens == 2);1381
pp_one_after_mask = select(pp_sequence, 1, ==) and \1382
select(indices+1, indices, ==);1383

pp_one_after_sequence = aggregate(pp_one_after_mask, 1);1384
pp_one_after_mask = select(pp_one_after_sequence, 1, ==) and \1385
select(indices, indices, ==);1386

1387
pp_two_after_mask = select(pp_sequence, 1, ==) and \1388
select(indices+2, indices, ==);1389

pp_two_after_sequence = aggregate(pp_two_after_mask, 1);1390
pp_two_after_mask = select(pp_two_after_sequence, 1, ==) and \1391
select(indices, indices, ==);1392

1393
np_det_diag_mask = select(aggregate(np_det_mask, 1), 1, ==) and \1394
select(indices, indices, ==);1395

np_prop_diag_mask = select(aggregate(np_prop_mask, 1), 1, ==) and \1396
select(indices, indices, ==);1397

1398
no_pp_np_mask = \1399
1 - aggregate((pp_one_after_mask and np_prop_diag_mask) or \1400
(pp_two_after_mask and np_det_diag_mask), 1);1401

1402
here we compute left_idx and right_idx1403
for verb relationships, like "agent ([left_idx] , [right_idx])"1404

1405
one-based index1406
nps_without_pp_prefix_indices = \1407
selector_width(select(NOUN_MASK*no_pp_np_mask, 1, ==) and \1408
select(indices, indices, <=))*NOUN_MASK*no_pp_np_mask;1409

1410
the one verb (except v_inf_taking cases)1411
left_idx_in_nvs_zero_based = nv_in_input_count-1;1412
(after sentential complements, not covered in this example, see actual code via link above)1413
need to also subtract the index in ReCOGS for the 2nd verb if it is v_inf_taking1414
left_idx_in_nvs_zero_based = (left_idx_in_nvs_zero_based-1) \1415
if (template_name == "v_inf_taking" and after_intro_idx <= 2) else left_idx_in_nvs_zero_based;1416

left_idx = aggregate(select(indices, left_idx_in_nvs_zero_based, ==), input_indices_sorted);1417
1418

avoids attractor nouns1419
right_idx = aggregate(select(nps_without_pp_prefix_indices, after_intro_idx, ==), indices);1420

1421
points to 2nd verb for xcomp for v_inf_taking_v_inf1422
note, this simplified example ignores sentential complement (CP) handling1423
(ideally this would be verb specific,1424
we simplify here to reuse variables available in this example)1425
right_idx = aggregate(select(indices, nv_in_output_count, ==), input_indices_sorted) \1426
if (template_name == "v_inf_taking" and after_intro_idx == 2) else right_idx;1427

1428
points to 1st noun for 2nd v_inf agent in v_inf_taking_v_inf1429

right_idx = \ 1430
aggregate(select(nps_without_pp_prefix_indices, 1, ==), indices) \ 1431
if (template_name == "v_inf_taking" and after_intro_idx == 4) else right_idx; 1432

1433
we have computed left_idx and right_idx 1434
for verb relationships, like "agent ([left_idx] , [right_idx])" 1435

1436
... 1437

1438
note, the offset since the last separator in the output, 1439
instead of a modulus, could have been used here 1440
see actual RASP file in GitHub for computation 1441

1442
relationship (idx , idx) AND 1443
0 1 2 3 4 5 6 1444
after_intro_target_token = ""; 1445

1446
"agent", "theme", "recipient", etc 1447
depending on relationship index and flat-matched template (in Encoder) 1448
template_mapping_output = \ 1449
get_template_mapping(template_name, after_intro_idx); 1450

1451
see code in Github for definition of 1452
after_intro_num_tokens_in_output_excluding_asterisks 1453
and use of an offset that depends on v_inf or not 1454
out of scope for this simplified example 1455
after_intro_target_token = template_mapping_output \ 1456
if ((after_intro_num_tokens_in_output_excluding_asterisks) % 7 == 0) \ 1457
else after_intro_target_token; 1458

1459
after_intro_target_token = "(" \ 1460
if ((after_intro_num_tokens_in_output_excluding_asterisks) % 7 == 1) \ 1461
else after_intro_target_token; 1462

1463
after_intro_target_token = left_idx \ 1464
if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 2) \ 1465
else after_intro_target_token; 1466

1467
after_intro_target_token = "," \ 1468
if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 3) \ 1469
else after_intro_target_token; 1470

1471
after_intro_target_token = right_idx \ 1472
if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 4) \ 1473
else after_intro_target_token; 1474

1475
after_intro_target_token = ")" \ 1476
if (after_intro_num_tokens_in_output_excluding_asterisks % 7 == 5) \ 1477
else after_intro_target_token; 1478

1479
after_intro_target_token = "AND" \ 1480
if \ 1481
(after_intro_num_tokens_in_output_excluding_asterisks % 7 == 6 \ 1482
and \ 1483
not (template_mapping_output == "")) \ 1484
else after_intro_target_token; 1485

1486
... 1487

1488
the next token predicted ("output") is 1489
overridden with after_intro_target_token 1490
ONLY if the decoder detects that verb relationships 1491
are the appropriate output phase 1492
by counting how many nouns/verbs/relationships are already in the output 1493

20

After outputting all verb relationships, we con-1494

sider whether we have prepositional phrase noun1495

modifiers to record in the logical form. That is to1496

say, if the current output sequence already includes1497

the verb relationships expected for the input (the1498

count matches), then those Decoder variables dis-1499

cussed earlier for verb relationships are still com-1500

puted, but discarded, and the next token predicted1501

will be overridden with a prepositional phrase noun1502

modifier related output given by a RASP path simi-1503

lar to that below.1504

For outputting prepositional relationships1505

("nmod . in", "nmod . on", "nmod . beside"),1506

we do a similar approach, counting prepositional1507

phrases in the input, counting how many nmods1508

we have output, figuring out which one is currently1509

being output:1510

pps_in_input_sequence = INPUT_MASK*(indicator(pos_tokens == 2));1511
pps_in_input_count = selector_width(select(pps_in_input_sequence, 1, ==));1512
pps_index = pps_in_input_sequence*selector_width(select(pps_in_input_sequence, 1, ==) \1513
and select(indices,indices, <=));1514
nmods_and_pps_in_output_sequence = \1515
OUTPUT_MASK*(indicator(tokens == "nmod . in" or tokens == "nmod . beside" or tokens=="nmod . on"));1516

nmods_and_pps_in_output_count = \1517
selector_width(select(nmods_and_pps_in_output_sequence, 1, ==));1518

current_pp = \1519
aggregate(select(pps_index, nmods_and_pps_in_output_count+1, ==), tokens) \1520
if pps_in_input_count > 0 else "";1521

current_pp = "" if current_pp == 0 else current_pp;1522
current_nmod_token = \1523
("nmod . " + current_pp) if (pps_in_input_count > 0 and not (current_pp == 0) \1524
and after_intro_num_tokens_in_output_excluding_asterisks % 7 == 0) else "";1525
current_nmod_token = \1526
"(" if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 1 else current_nmod_token;1527

current_nmod_token = \1528
(aggregate(select(pps_index, nmods_and_pps_in_output_count, ==), indices)-1) if pps_in_input_count > 0 \1529
and after_intro_num_tokens_in_output_excluding_asterisks % 7 == 2 else current_nmod_token;1530
current_nmod_token = "," \1531
if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 3 else current_nmod_token;1532
after_nmod_idx = \1533
aggregate(select(pps_index, nmods_and_pps_in_output_count, ==), indices)+1;1534
token_at_after_nmod_idx = \1535
aggregate(select(indices, after_nmod_idx, ==), tokens);1536
after_nmod_idx = \1537
(after_nmod_idx + 1) \1538
if (token_at_after_nmod_idx == "the" or token_at_after_nmod_idx == "a") else after_nmod_idx;1539

current_nmod_token = (after_nmod_idx) \1540
if pps_in_input_count > 0 \1541
and after_intro_num_tokens_in_output_excluding_asterisks % 7 == 4 else current_nmod_token;1542
current_nmod_token = ")" \1543
if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 5 \1544
else current_nmod_token;1545
current_nmod_token = \1546
("AND" if nmods_and_pps_in_output_count < pps_in_input_count else "") \1547
if after_intro_num_tokens_in_output_excluding_asterisks % 7 == 6 \1548
else current_nmod_token;1549
after_intro_and_relationships_nmod_token = \1550
current_nmod_token if nmods_and_pps_in_output_count <= pps_in_input_count else "";1551
num_tokens_in_nmod_section = \1552
after_intro_num_tokens_in_output_excluding_asterisks - template_size(template_name)*7 + 1;1553

1554
the decision of whether the nmod output dominates the current decoder next predicted token1555
is computed similarly to the following (see GitHub for actual)1556
we have not included the computation of "offset" and "after_intro_num_tokens_in_output_excluding_asterisks"1557
output = after_intro_and_relationships_nmod_token \1558
if (template_mapping_output == "" and \1559
after_intro_num_tokens_in_output_excluding_asterisks >= \1560
template_size(template_name)*7+offset - 1 and \1561

num_tokens_in_nmod_section < 7*pps_in_input_count and pps_in_input_count > 0 \1562
) else output;1563

1564

Again, see the code for full details59 (for sim-1565

plicity this description was also written without1566

discussing sentential complement handling).1567

59word-level token Restricted Access Sequence Processing
solution: https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

For all steps only the RASP outputs aligned with 1568

the input sequence (Encoder part of derived Trans- 1569

former) or the very last sequence output (for next 1570

token in autoregressive generation) were used. For 1571

convenience of reading the aggregate operator was 1572

usually used acausally to assign all sequence out- 1573

puts before the last one to the same value as the 1574

last (so only one value would be displayed). 1575

You can run a demo and see the autoregressive 1576

output 1577
no longer cloneable with this command after blinding for review 1578
(but can use download zip tool there) 1579
git clone https://anonymous.4open.science/r/learning-rasp-F7C2/ 1580
python recogs_examples_in_rasp.py 1581

21

https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp

9.3 Note on a Restricted Access Sequence1582

Processing character-level token program1583

/ model design (NOT what is used in this1584

paper but feasible)1585

Note, a proof of concept character level Restricted1586

Access Sequence Processing model was done with1587

a decoder loop (unlike word-level solution above,1588

it was a sketch so did not limit to strictly causal1589

operations which just require more careful index-1590

ing – using the value at the separator or the end1591

of a word instead of pooling the same value to all1592

letters in a word for example). Note that this one1593

did not cover translating sentences in general into1594

ReCOGS unlike the word-level solution as it is te-1595

dious and redundant but the core operations are1596

possible and the author believes any solution at the1597

word level can be mapped to a solution in character1598

level tokens (out of scope for this paper to prove1599

it).1600

Since it is a separate problem and adds a lot of1601

complexity without bringing anything to bear on1602

the main questions of the paper, I left a full im-1603

plementation to the word-level tokens which were1604

simpler and ran faster. The difference is one uses1605

a similar approach started at 60 to assign all the1606

letters in each word an index.1607

Word indices can be assigned using RASP to1608

count separators occurring prior to each sequence1609

location like:1610

(we also zero out the word index for the separa-1611

tors themselves)1612
word_indices = \1613
(1+selector_width(select(tokens, " ", ==) \1614
and select(indices, indices, <=))) \1615
*(0 if indicator(tokens == " ") else 1);1616

Then one can do an aggregation of the letters1617

grouping by word index (this, which is NOT part1618

of the techniques used in this paper for the word-1619

level tokens solution, requires additional work (te-1620

dious not challenging) to do causally outside the1621

input (in the decoder), one must sum forward so the1622

word representation is always at the last letter of1623

the word or separator instead of at all letters of the1624

word, and that step is left out of the character-level1625

demo and this discussion; whereas the word-level1626

solution described above has a clear Encoder De-1627

coder separation. This can be done so that the value1628

which is then the same for all letters in each word,1629

is unique to each word in the dictionary and can1630

be looked up in a map to get word level attributes1631

60https://anonymous.4open.science/r/learning-rasp-
F7C2/other-examples/decoder-loop-example-parse-into-
recogs-style-variables.rasp#L2

like part-of-speech and get back to the solution 1632

in the word-level tokens in Appendix 9.2 which 1633

was fully implemented. A simple approach (not 1634

necessarily recommended but works for proof of 1635

concept) that would work for small vocabularies 1636

(easily extended) is to use a map to lookup each 1637

letter of the alphabet to a log prime. Then the sum 1638

of the letters in a word (grouped by the word index 1639

which is the count of spaces/separators prior) is 1640

the sum of the log primes indexed by the alphabet 1641

index. Since the sum of logarithms of numbers is 1642

the same as the logarithm of the product of those 1643

numbers, this is equivalent to the logarithm of the 1644

product of a series of primes. Each prime in the 1645

product corresponds 1-to-1 to a letter in the alpha- 1646

bet, with the number of occurrences in the product 1647

corresponding to the number of times that letter 1648

occurs in the word. By uniqueness of prime num- 1649

ber factorization this would map each multiset of 1650

letters to a single unique sum of log primes. Thus if 1651

you do not have words which are anagrams, all the 1652

letters in each word would be assigned a number 1653

that uniquely represented that word in the vocab- 1654

ulary. If you have anagrams you can do this step 1655

and then take the first and last letter and compute 1656

a separate number from that and add it to all the 1657

letters in the word. 1658

Example lookup table for letters before aggregat- 1659

ing by word index (not recommended but for proof 1660

of concept that one can go from character level 1661

tokens to word-specific numbers which can then 1662

be looked up as in the word-level token solution in 1663

Appendix 9.2 used throughout the paper): 1664

22

https://anonymous.4open.science/r/learning-rasp-F7C2/other-examples/decoder-loop-example-parse-into-recogs-style-variables.rasp#L2
https://anonymous.4open.science/r/learning-rasp-F7C2/other-examples/decoder-loop-example-parse-into-recogs-style-variables.rasp#L2
https://anonymous.4open.science/r/learning-rasp-F7C2/other-examples/decoder-loop-example-parse-into-recogs-style-variables.rasp#L2

def as_num_for_letter_multiset_word_pooling(t) {1665
To be multiset unique, need logarithm of prime so that the sum aggregation1666
used in RASP corresponds to prime number factorization (sum of logs of primes is same as log of product of primes)1667
(we can do sum aggregation instead of mean by multiplying by length)1668

However RASP does not appear to support logarithms (underlying multilayer1669
perceptron can learn to approximate logarithms)1670

#letter_to_prime_for_multiset_word_pooling = {"a": 2, "b": 3, "c": 5, "d": 7,1671
#"e": 11, "f": 13, "g": 17, "h": 19, "i": 23, "j": 29, "k": 31, "l": 37,1672
#"m": 41, "n": 43, "o": 47, "p": 53, "q": 59, "r": 61, "s": 67, "t": 71,1673
#"u": 73, "v": 79, "w": 83, "x": 89, "y": 97, "z": 101, ".": 0,1674
#" ": 0, ":": 0};1675

map_letter_to_log_prime_for_pooling = {"a": 0.6931471805599453, "b": 1.0986122886681098,1676
"c": 1.6094379124341003, "d": 1.9459101490553132, "e": 2.3978952727983707,1677
"f": 2.5649493574615367, "g": 2.833213344056216, "h": 2.9444389791664403,1678
"i": 3.1354942159291497, "j": 3.367295829986474, "k": 3.4339872044851463,1679
"l": 3.6109179126442243, "m": 3.713572066704308, "n": 3.7612001156935624,1680
"o": 3.8501476017100584, "p": 3.970291913552122, "q": 4.07753744390572,1681
"r": 4.110873864173311, "s": 4.204692619390966, "t": 4.2626798770413155,1682
"u": 4.290459441148391, "v": 4.3694478524670215, "w": 4.418840607796598,1683
"x": 4.48863636973214, "y": 4.574710978503383, "z": 4.61512051684126,1684
we zero out tokens we want not to affect the identity of the word1685
".": 0, " ": 0, ":": -1, "(": -1, ")": -1, "0": -1, "1": -1, "2": -1,1686
"3": -1, "4": -1, "5": -1, "6": -1, "7": -1, "8": -1, "9": -1, ";": -1,1687
",": -1};1688
return map_letter_to_log_prime_for_pooling[t];1689

}1690

Pooling by word can then be done with:1691
pseudoembeddedwords = \1692
aggregate(select(word_indices, word_indices, ==), \1693
as_num_for_letter_multiset_word_pooling(tokens))*word_lengths;1694

(Per-character token example is not causally1695

masked, we do causal strict-decoder-compatible1696

solution for anything outside input sequence in the1697

full word-level solution above just leaving out of1698

this character-level sketch, which is NOT used in1699

this paper. For the causal character level solution1700

one would use the summed value at the end of the1701

word or the separator instead, indexing relative to1702

separators.)1703

Those values could then be looked up in a dictio-1704

nary like in the completed word-level token solu-1705

tion to get part-of-speech, verb-type, etc, to derive1706

a separate sequence which can be used for template1707

matching as we successfully did with word-level1708

tokens (see Appendix 9.2).1709

23

9.4 Model Detail1710

For our Restricted Access Sequence Processing1711

ReCOGS program, we used the RASP interpreter1712

of (Weiss et al., 2021) to run our program. For1713

RASP model design and details see Appendix 9.2.1714

We use word-level tokens for all RASP model re-1715

sults in this paper.61 Consistent with (Zhou et al.,1716

2024) we use (Weiss et al., 2021)’s RASP origi-1717

nally used for modeling Transformer encoders to1718

model an encoder-decoder in a causal way by feed-1719

ing the autoregressive output back into the program.1720

We only have aggregations with non-causal masks1721

when that aggregation (or without loss of generality1722

just before the aggregation product is used to avoid1723

multiplying everywhere) is masked by an input1724

mask restricting it to the sequence corresponding1725

to the input.621726

We used RASP maps to map word level tokens1727

to part-of-speech and verb-type which is consis-1728

tent with what can be learned in embeddings or1729

the earliest layer of a Transformer (Tenney et al.,1730

2019)63 and then did 19 different attention-head1731

based template matches on that flat sequence64 (no1732

tree-based parsing, no recursive combination of1733

terminals/non-terminals.) Those 19 templates were1734

constructed using grammar coverage (Zeller et al.,1735

2023) to cover the ReCOGS/COGS input gram-1736

mar as demonstrated in the training data (see "Ap-1737

61We believe any solution at the word-level can be converted
to a character-level token solution and that is not the focus of
our investigation here (see Appendix 9.3 for proof of concept
details on a character level solution not used here).

62An example the author has prepared of this is
available at https://anonymous.4open.science/r/learning-rasp-
F7C2/recogs_examples_in_rasp.py .

63(Tenney et al., 2019) report part-of-speech information
is already tagged in layer 0 (post-embedding) of the 24-
layer BERT large pre-trained language model, trained us-
ing a masked language modeling objective. Though models
for COGS/ReCOGS are usually trained using a sequence-to-
sequence (seq2seq) objective (whether that objective biases
the Transformer to learn the same representation on this task
is not known to our knowledge), one could also use a lan-
guage modeling objective to model the COGS input text and
its associated logical form output (not just the output condi-
tioned on the input). See (Ahuja et al., 2024) for examples
of solving the same language tasks using seq2seq vs various
language modeling objectives - they indeed find better gen-
eralization performance on their problems when using the
language modeling objective (training to model both the input
and the output).

64A flat/non-tree solution was pursued because it was
simple and given the failure documented in (Wu et al.,
2023) of the baseline Encoder-Decoder to generalize from
obj_pp_to_subj_pp and other evidence we give below we shall
see it is hard to argue a tree-based solution which includes the
rule ‘np_det pp np -> np_pp -> np‘ is learned by (Wu et al.,
2023)’s baseline Encoder-Decoder Transformer.

pendix: Restricted Access Sequence Processing 1738

word-level token program/model design" (9.2), and 1739

see Table 2 for patterns and equivalent ReCOGS 1740

training examples).65. 1741

For the vocabulary we used the (Klinger et al., 1742

2024) description of COGS in their utilities66 1743

(same input as ReCOGS) (NOT using their CPG 1744

solution or model anywhere) in constructing our 1745

RASP vocabulary and part-of-speech or verb-type 1746

embedding/mapping. 1747

We are focused on structural, not lexical gen- 1748

eralizations, so same as in (Klinger et al., 2024) 1749

we include all words occurring anywhere in the 1750

upstream (Re)COGS "train.tsv" (including "expo- 1751

sure" rows, though would not change results qual- 1752

itatively to omit the very few words only occur- 1753

ring in exposure examples). We also include two 1754

words in our vocab/embedding as common nouns 1755

accidentally left out of train.tsv vocabulary by the 1756

COGS author: "monastery" and "gardner" (only 1757

included in their train_100.tsv and dev.tsv not also 1758

in train.tsv, but present in test/gen), a decision af- 1759

fecting just 22 or 0.1% of generalization examples 1760

so would not affect any conclusions qualitatively. 1761

See also the discussion on COGS Github with 1762

the COGS author at https://github.com/najoungkim 1763

/COGS/issues/2#issuecomment-976216841 . 1764

For training the baseline Transformers from 1765

scratch with randomly initialized weights using 1766

gradient descent for comparison with RASP predic- 1767

tions, we use scripts derived from those provided 1768

by (Wu et al., 2023)67. 1769

The baseline (Wu et al., 2023) Encoder-Decoder 1770

Transformer was by default 2-layers with 4344077 1771

parameters, except for the layer variation experi- 1772

ments which had 6046701 parameters for the 3- 1773

layer , and 7749325 parameters for the 4-layer vari- 1774

ations. We did not control the parameter count as 1775

discussed earlier as even allowing it to increase, 1776

65To handle prepositional phrases in a flat solution, we find
it necessary on the training data to add a rule that ignores "det
common_noun" or "proper noun" preceded by a preposition
when searching for noun indexes to report in relationships
(agent, theme, recipient, etc) and as if we did that during
pattern matching by using before/after matches instead of
strict relative indexing.

66https://github.com/IBM/cpg/blob/
c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L523

67https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py

and
https://github.com/frankaging/ReCOGS/blob/

1b6eca8ff4dca5fd2fb284a7d470998af5083beb
/model/encoder_decoder_hf.py

24

https://anonymous.4open.science/r/learning-rasp-F7C2/recogs_examples_in_rasp.py
https://anonymous.4open.science/r/learning-rasp-F7C2/recogs_examples_in_rasp.py
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/model/encoder_decoder_hf.py

the additional layers did not result in improved1777

performance on the obj-pp-to-subj-pp split (see1778

results at "(Wu et al., 2023) Encoder-Decoder base-1779

line 2-layer Transformer does not improve on the1780

obj_pp_to_subj_pp split when adding 1 or 2 addi-1781

tional layers" (6)). If there had been an improve-1782

ment, we would have run additional experiments1783

to increase depth while matching parameter count.1784
For ease of reference, the model architecture gen-1785

erated by the (Wu et al., 2023) baseline Encoder-1786
Decoder Transformer script (trained from scratch,1787
not pretrained) is as follows with N BertLayers set1788
to 2 per (Wu et al., 2023) for all baseline experi-1789
ments except the layer variation experiments:1790

For Wu et al 2023 Encoder-Decoder Transformer baselines1791
(we predict and analyze errors made by these1792
in the paper using what we learned about how Transformers1793
can perform the task from the1794
Restricted Access Sequence Processing model),1795
we use the official scripts provided at1796
https://github.com/frankaging/ReCOGS/blob/1797
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/run_cogs.py1798
and1799
https://github.com/frankaging/ReCOGS/blob/1800
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/1801
model/encoder_decoder_hf.py1802
where the architecture generated is as follows:1803
EncoderDecoderModel(1804
(encoder): BertModel(1805
(embeddings): BertEmbeddings(1806
(word_embeddings): Embedding(762, 300, padding_idx=0)1807
(position_embeddings): Embedding(512, 300)1808
(token_type_embeddings): Embedding(2, 300)1809
(LayerNorm): LayerNorm((300,), eps=1e-12,1810

elementwise_affine=True)1811
(dropout): Dropout(p=0.1, inplace=False)1812
)1813
(encoder): BertEncoder(1814
(layer): ModuleList(1815
substitute N=2 for all baseline experiments1816
per Wu et al 2023 paper;1817
N can be 3 or 4 in our layer variation1818
experiments only.1819
(0-(N-1)): N x BertLayer(1820
(attention): BertAttention(1821
(self): BertSdpaSelfAttention(1822
(query):1823
Linear(in_features=300, out_features=300, bias=True)1824
(key):1825
Linear(in_features=300, out_features=300, bias=True)1826
(value):1827
Linear(in_features=300, out_features=300, bias=True)1828
(dropout): Dropout(p=0.1, inplace=False)1829

)1830
(output): BertSelfOutput(1831
(dense):1832
Linear(in_features=300, out_features=300, bias=True)1833
(LayerNorm):1834
LayerNorm((300,), eps=1e-12, elementwise_affine=True)1835
(dropout): Dropout(p=0.1, inplace=False)1836

)1837
)1838
(intermediate): BertIntermediate(1839
(dense):1840
Linear(in_features=300, out_features=512, bias=True)1841

(intermediate_act_fn): GELUActivation()1842
)1843
(output): BertOutput(1844
(dense):1845
Linear(in_features=512, out_features=300, bias=True)1846

(LayerNorm):1847
LayerNorm((300,), eps=1e-12, elementwise_affine=True)1848

(dropout): Dropout(p=0.1, inplace=False)1849
)1850

)1851
)1852
)1853
(pooler): BertPooler(1854
(dense):1855
Linear(in_features=300, out_features=300, bias=True)1856

(activation): Tanh()1857
)1858

)1859
(decoder): BertLMHeadModel(1860
(bert): BertModel(1861
(embeddings): BertEmbeddings(1862
(word_embeddings): Embedding(729, 300, padding_idx=0)1863
(position_embeddings): Embedding(512, 300)1864
(token_type_embeddings): Embedding(2, 300)1865

(LayerNorm): 1866
LayerNorm((300,), eps=1e-12, elementwise_affine=True) 1867

(dropout): Dropout(p=0.1, inplace=False) 1868
) 1869
(encoder): BertEncoder(1870
(layer): ModuleList(1871
substitute N=2 for all baseline experiments 1872
per Wu et al 2023 paper; 1873
N can be 3 or 4 in our layer variation 1874
experiments only. 1875
(0-(N-1)): N x BertLayer(1876
(attention): BertAttention(1877
(self): BertSdpaSelfAttention(1878
(query): 1879
Linear(in_features=300, out_features=300, bias=True) 1880

(key): 1881
Linear(in_features=300, out_features=300, bias=True) 1882

(value): 1883
Linear(in_features=300, out_features=300, bias=True) 1884

(dropout): Dropout(p=0.1, inplace=False) 1885
) 1886
(output): BertSelfOutput(1887
(dense): 1888
Linear(in_features=300, out_features=300, bias=True) 1889

(LayerNorm): 1890
LayerNorm((300,), eps=1e-12, elementwise_affine=True) 1891

(dropout): Dropout(p=0.1, inplace=False) 1892
) 1893

) 1894
(crossattention): BertAttention(1895
(self): BertSdpaSelfAttention(1896
(query): 1897
Linear(in_features=300, out_features=300, bias=True) 1898

(key): 1899
Linear(in_features=300, out_features=300, bias=True) 1900

(value): 1901
Linear(in_features=300, out_features=300, bias=True) 1902

(dropout): Dropout(p=0.1, inplace=False) 1903
) 1904
(output): BertSelfOutput(1905
(dense): 1906
Linear(in_features=300, out_features=300, bias=True) 1907

(LayerNorm): 1908
LayerNorm((300,), eps=1e-12, elementwise_affine=True) 1909

(dropout): Dropout(p=0.1, inplace=False) 1910
) 1911

) 1912
(intermediate): BertIntermediate(1913
(dense): 1914
Linear(in_features=300, out_features=512, bias=True) 1915

(intermediate_act_fn): GELUActivation() 1916
) 1917
(output): BertOutput(1918
(dense): 1919
Linear(in_features=512, out_features=300, bias=True) 1920

(LayerNorm): 1921
LayerNorm((300,), eps=1e-12, elementwise_affine=True) 1922

(dropout): Dropout(p=0.1, inplace=False) 1923
) 1924
) 1925

) 1926
) 1927

) 1928
(cls): BertOnlyMLMHead(1929
(predictions): BertLMPredictionHead(1930
(transform): BertPredictionHeadTransform(1931
(dense): 1932
Linear(in_features=300, out_features=300, bias=True) 1933
(transform_act_fn): GELUActivation() 1934
(LayerNorm): 1935
LayerNorm((300,), eps=1e-12, elementwise_affine=True) 1936

) 1937
(decoder): Linear(in_features=300, out_features=729, 1938
bias=True) 1939

) 1940
) 1941
) 1942

) 1943

For the (Wu et al., 2023) baseline Encoder- 1944

Decoder Transformer layer variation experiments, 1945

when we say e.g. 3 or 4 layers, we refer to 3 or 4 x 1946

BertLayer in the Encoder and Decoder, setting (3 or 1947

4 Transformer blocks). (This is intended because 1948

only once per block, during cross/self-attention 1949

is information exchanged between sequence posi- 1950

tions, and (Csordás et al., 2022) hypothesize that 1951

the number of such blocks must be at least the 1952

depth of the parse tree in a compositional solution, 1953

as in a grammar parse tree at each level symbols are 1954

25

combined which requires transferring information1955

between sequence positions).1956

9.5 Methods Detail1957

We use the RASP (Weiss et al., 2021) interpreter681958

to evaluate our RASP programs69.1959

We implement in RASP the transformation of1960

COGS input sentences into ReCOGS_pos70. log-1961

ical forms (LFs) which are scored by Semantic1962

Exact Match71 against ground truth.1963

In the training data only, any ReCOGS training1964

augmentations like preposing or "um" sprinkles1965

are excluded when evaluating the RASP model on1966

the train data (it does not learn directly from the1967

examples and these augmentations are outside of1968

the grammar).1969

We also measure grammar coverage of input ex-1970

amples supported by our RASP model against the1971

full grammar of COGS/ReCOGS input sentences1972

provided in the utilities of the IBM CPG project1973

(Klinger et al., 2024)721974

When computing grammar coverage (Zeller1975

et al., 2023), we collapse all vocabulary terminals1976

(leaves) to a single terminal (leaf), ignoring purely1977

lexical differences (see "Appendix: Computing1978

Grammar Coverage" (9.10) for details and moti-1979

vation).1980

The overall Semantic Exact Match performance1981

is reported as well as the performance on the spe-1982

cific structural generalization splits where Trans-1983

formers are reported to struggle, even in ReCOGS,1984

specifically Object Prepositional Phrase to Subject1985

68provided at https://github.com/tech-srl/RASP/
69https://anonymous.4open.science/r/learning-rasp-

F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
with a demo at
https://anonymous.4open.science/r/learning-rasp-

F7C2/recogs_examples_in_rasp.py
70We use the ReCOGS positional index data (rather than

default ReCOGS with randomized indices) as it has consistent
position based indices that allow us to perform well on Exact
Match (like the original COGS task) as well as Semantic Exact
Match (which ignores absolute values of indices).

See ReCOGS_pos dataset at
https://github.com/frankaging/ReCOGS/tree/

1b6eca8ff4dca5fd2fb284a7d470998af5083beb
/recogs_positional_index

71https://github.com/frankaging/ReCOGS/blob/
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/
train_utils.py

and
https://github.com/frankaging/ReCOGS/blob/

1b6eca8ff4dca5fd2fb284a7d470998af5083beb/
utils/compgen.py

72https://github.com/IBM/cpg/blob/
c3626b4e03bfc681be2c2a5b23da0b48abe6f570
/src/model/cogs_data.py#L523

Prepositional Phrase (obj_pp_to_subj_pp), Prepo- 1986

sitional Phrase (pp_recursion) are highlighted and 1987

discussed in depth for all models. 1988

For the RASP program’s Semantic Exact Match 1989

results which are based on the outcome of a deter- 1990

ministic program (so cannot randomly reinitialize 1991

weights and retrain, rerun), we can use the Beta 1992

distribution to model the uncertainty and generate 1993

confidence intervals (Clopper-Pearson intervals73) 1994

as each Semantic Exact Match is a binary outcome 1995

(0 or 1 for each example). Unlike bootstrapping 1996

this also supports the common case for our RASP 1997

program of 100% accuracy, which occurs in all but 1998

one split, where resampling would not help us es- 1999

timate uncertainty in bootstrapping, but using the 2000

Beta distribution gives us confidence bounds that 2001

depend on the sample size. 2002

In developing our RASP program74, when we 2003

find the right index of a verb relation (like agent, 2004

theme, or recipient), we found it was necessary to 2005

skip any noun phrases preceded by a preposition 2006

("in", "on", "beside")75.76 2007

Since in the RASP program both this and subject 2008

prepositional phrase modification require the same 2009

rule ignoring the "pp np" when finding right index 2010

candidates for agent, theme, recipient outputs, we 2011

hypothesized two things. 2012

73see e.g. https://en.wikipedia.org/w/index.php?title= Bi-
nomial_proportion_confidence_interval&oldid=1252517214
#Clopper%E2%80%93Pearson_interval and
https://arxiv.org/abs/1303.1288

74https://anonymous.4open.science/r/learning-rasp-
F7C2/word-level-pos-tokens-recogs-style-decoder-
loop.rasp#L776

75RASP code in "Appendix: RASP for relation right index
ignoring attractor ’pp np’" (9.7)

76Otherwise, when modifying a simple sentence like "The
cake burned" with a preposition to "The cake on the plate
burned" we would switch the theme from the cake to the plate
by accident. This cake example is the infamous obj pp to
subj pp example, where training a Transformer successfully to
represent the semantics of sentences like "John ate the cake on
the plate" leads to a model that won’t immediately generalize
to being able to represent the meaning of "The cake on the
plate burned" in logical form. In writing our RASP program
this was observed as nothing to do with subjects or objects but
just modifying noun phrases to the left of the part of speech
(say a verb) they have a relationship with, instead of on the
right side. For example, this also occurs in v_dat_p2 sentences
like "Emma gave a friend a cookie" (agent, recipient, theme
nps). It is obvious that modification of the theme with prepo-
sitional phrases is not going to disrupt parsing the sentence:
"Emma gave a friend a cookie (modification modification ...)",
whereas modifying the recipient, on the left, due to the asym-
metry of prepositional phrases adding to the right, disrupts the
sentence, rendering it unreadable in the limit of too many pps:

"Emma gave a friend (modification modification ...) a
cookie" , in the limit of more modification, "a friend" can-
not be associated with "a cookie".

26

https://github.com/tech-srl/RASP/
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp
https://anonymous.4open.science/r/learning-rasp-F7C2/recogs_examples_in_rasp.py
https://anonymous.4open.science/r/learning-rasp-F7C2/recogs_examples_in_rasp.py
https://github.com/frankaging/ReCOGS/tree/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index
https://github.com/frankaging/ReCOGS/tree/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index
https://github.com/frankaging/ReCOGS/tree/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/train_utils.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/utils/compgen.py
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=1252517214#Clopper%E2%80%93Pearson_interval
https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=1252517214#Clopper%E2%80%93Pearson_interval
https://en.wikipedia.org/w/index.php?title=Binomial_proportion_confidence_interval&oldid=1252517214#Clopper%E2%80%93Pearson_interval
https://arxiv.org/abs/1303.1288
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L776
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L776
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L776

One, that ‘np v_dat_p2 np pp np‘77 general-2013

ization after training on ‘np v_dat_p2 np np pp2014

np‘ would be difficult like (Wu et al., 2023)’s2015

obj_pp_to_subj_pp split.2016

Two, that augmenting the training data with2017

v_dat_p2 recipient modified sentences like "Emma2018

gave a friend in a house a cookie" might lead to2019

crossover improved performance on the subject pp2020

generalization (e.g. "The friend in a house smiled";2021

without adding any example of subjects with pp2022

modification).2023

Thus we additionally train (Wu et al., 2023) base-2024

line Transformers from scratch in two separate ex-2025

periments to test these.2026

For one, ‘np v_dat_p2 np pp np np‘78 generaliza-2027

tion after training on ‘np v_dat_p2 np np pp np‘ we2028

train (Wu et al., 2023) Transformers with default2029

configuration and default training data, then we2030

add a new generalization split derived from (Wu2031

et al., 2023)’s ‘train.tsv‘ of 328 existing training2032

examples where we have transferred the preposi-2033

tional phrase from the theme to the recipient79 in2034

the ‘v_dat_p2‘ sentence form with one preposi-2035

tional phrase (see Appendix 9.9 for details and link2036

to actual data sample).2037

For two, to see if augmenting the training data2038

with v_dat_p2 recipient modified sentences has2039

crossover benefit, we train separate default (Wu2040

et al., 2023) Transformer but with their existing2041

train.csv plus the additional theme-modified sen-2042

tences mentioned above, same as those used for2043

generalization testing in the other experiment; we2044

confirm it does not know them, and separately on2045

fresh runs we try training on them to see if that2046

can benefit other splits by teaching the Encoder-2047

Decoder a general prepositional phrase handling2048

rule (like ignore "pp np"). We then test on (Wu2049

et al., 2023)’s normal test and generalization splits.2050

(Wu et al., 2023) baseline Encoder-Decoder2051

Transformers trained from scratch are trained with2052

random weight initialization multiple times with2053

at least 10 different random seeds with all perfor-2054

mance metrics averaged across runs with sample2055

mean, sample size, and unbiased sample standard2056

deviation reported. Statistical significance of com-2057

77Being precise we only do ‘np v_dat_p2 np_det pp np np‘
as per the grammar ‘np_prop‘ cannot precede a prepositional
phrase

78Restricted to ‘np v_dat_p2 np_det pp np np‘ as per the
grammar ‘np_prop‘ cannot precede a prepositional phrase

79When the recipient is np_det, not np_prop; and we con-
firm it is within the grammar by reparsing with the Lark parser
on the original grammar rules.

parisons between any Transformers performance 2058

sample means are checked with Welch’s unequal 2059

variance t-test with p-values greater than 0.05 defi- 2060

nitely rejected, though stricter thresholds may be 2061

used where applicable. Confidence intervals are 2062

reported using 1.96 standard errors of the sample 2063

mean as the 95% confidence interval for sample 2064

means with that N unless specified otherwise. 2065

See also "Appendix: Results Notebook links by 2066

section" (9.1) for notebooks documenting results 2067

and giving steps to reproduce. 2068

See also "Appendix: Scientific Artifacts - Is Our 2069

Use Consistent with Authors’ Intention and Licens- 2070

ing" (9.15). 2071

9.6 Attraction errors 2072

See Figure 7. 2073

In this paper we predict and confirm the exis- 2074

tence of errors on prepositional modification splits 2075

where putting one or more new prepositional phrase 2076

nouns between a noun of interest and a verb it is re- 2077

lated to causes the relation to inappropriately jump 2078

to one of the new nearer "attractor" nouns. 2079

For overall attraction error results by the 2080

baseline Transformer see results section "At- 2081

traction Error Analysis for (Wu et al., 2023) 2082

baseline Encoder-Decoder Transformer on 2083

obj_pp_to_subj_pp split" (6). 2084

For lack of a better term I am referring to this 2085

as an "attraction" error following (Jespersen, 1954) 2086

section 6.72 "Attraction" in the context of subject- 2087

verb agreement, describing a similar "error" made 2088

by humans: 2089

"Very frequently in speech, and not infrequently 2090

in literature, the number of the verb is determined 2091

by that part of the subject which is nearest to 2092

the verb, even if a stricter sense of grammar would 2093

make the verb agree with the main part of the sub- 2094

ject. This kind of attraction naturally occurs the 2095

more easily, the greater the distance is between 2096

the nominative and the verb." 2097

The term attraction error continues to be used 2098

to describe those errors by psycholinguists, e.g. 2099

(Franck et al., 2006) who in the context of subject- 2100

verb agreement, define attraction errors as "incor- 2101

rect agreement with a word that is not the subject 2102

of the sentence". Those attraction errors are also 2103

used to study hierarchical vs linear language pro- 2104

cessing (in humans, see (Franck et al., 2006) and 2105

also (Vigliocco and Nicol, 1998); in language mod- 2106

els as we discuss here, see also (Goldberg, 2019) 2107

who states that successful subject-verb agreement 2108

27

in the presence of attractor nouns "[is] traditionally2109

taken as evidence for the existence [of] hierarchical2110

structure"), similar to our investigation here. But2111

we are not investigating or explaining grammati-2112

cal attraction in general here, just predicting and2113

documenting a particular error the baseline Trans-2114

formers make as a prediction of a non-hierarchical,2115

non-tree structured approach without a rule for ig-2116

noring intervening prepositional phrase nouns.2117

We specifically hypothesized attraction to the2118

nearest noun (when there is more than one "attrac-2119

tor" noun unrelated to the verb added in-between2120

the related noun and the verb), but the relation-2121

ship jumping to any of those new "attractor" nouns2122

would be an "attraction" error in this terminology.2123

Here are two real examples made by the (Wu2124

et al., 2023) baseline Encoder-Decoder Trans-2125

former with different prepositional recursion2126

depths.2127

e.g. for pp depth 1, the mistake (as we expect2128

from attraction to the nearest noun hypothesis) is2129

to put e.g. agent index 4 here instead of 1:2130

input: The baby beside a valve painted the cake .2131

actual: * baby (1) ; valve (4) ; * cake (7) ;2132

nmod . beside (1 , 4) AND paint (5) AND agent2133

(5 , 4) AND theme (5 , 7)2134

expected: * baby (1) ; valve (4) ; * cake (7) ;2135

nmod . beside (1 , 4) AND paint (5) AND agent2136

(5 , 1) AND theme (5 , 7)2137

whereas e.g. for pp depth 2 on the agent left of2138

the verb, as expected the mistake is to put agent2139

index 7 instead of 1 below (the pp noun closest to2140

the verb steals it, not the other pp noun at index 4):2141

input: A girl on the stool on the table drew a frog2142

.2143

actual: girl (1) ; * stool (4) ; * table (7) ; frog2144

(10) ; nmod . on (1 , 4) AND nmod . on (4 , 7)2145

AND draw (8) AND agent (8 , 7) AND theme (2146

8 , 10)2147

expected: girl (1) ; * stool (4) ; * table (7) ;2148

frog (10) ; nmod . on (1 , 4) AND nmod . on (2149

4 , 7) AND draw (8) AND agent (8 , 1) AND2150

theme (8 , 10)2151

We went looking for this hypothesizing that the2152

(Wu et al., 2023) Transformer may be using flat2153

attention-head compatible verb-centered pattern2154

matching as we are in our RASP model, and with-2155

out learning the the single rule in our RASP pro-2156

gram to ignore "pp det common_noun" and "pp2157

proper_noun" were not learned by the Transformer2158

(as our RASP model has "attraction" errors without2159

it). Without the rule for avoiding "attraction" errors,2160

we supposed the actual attention-head compatible 2161

verb-centered pattern matched noun (closer to the 2162

verb than the actual agent) for a grammar pattern 2163

would labeled the agent or theme instead of the 2164

appropriate one. 2165

Note that (van Schijndel et al., 2019) also see 2166

"attraction" errors by Transformers/RNNs (again 2167

in the context of subject-verb agreement) where 2168

a long-range dependency competes with attrac- 2169

tors/distractors, finding "accuracy decrease[d] in 2170

the presence of distracting nouns intervening be- 2171

tween the head of the subject and the verb". 2172

The "attraction" errors we report here where 2173

attractor/distractor prepositional phrase nouns re- 2174

place the actual agent/subject in the ReCOGS log- 2175

ical form generated by (Wu et al., 2023) baseline 2176

Transformers are NOT due to their presence in pre- 2177

training or training data, as the ReCOGS/COGS 2178

training data is synthetic and syntactically perfect 2179

and for this benchmark the Transformer is trained 2180

from scratch, so it a genuine new error made by 2181

the neural network itself (and we predict a mech- 2182

anism using RASP). But in general, humans do 2183

also exhibit these "attraction" errors, e.g. again 2184

as discussed in human subject-verb agreement per 2185

(Jespersen, 1954) (see quote earlier in this section), 2186

so pre-trained models trained on human-generated 2187

text may have the additional problem of learning 2188

those errors from the training data itself. Language 2189

model tendencies to commit subject-verb agree- 2190

ment attraction errors were previously analyzed by 2191

a co-author of the RASP language in an earlier pa- 2192

per on BERT Transformers in (Goldberg, 2019), 2193

by a COGS benchmark co-author in (van Schijn- 2194

del et al., 2019), and by both together regarding 2195

RNNs in (Linzen et al., 2016) (whose reference to 2196

(Zwicky, 2008) led me to (Jespersen, 1954)). 2197

28

nmod . in

A boy painted a girl

A boy painted a girl in a room

A boy in a room painted a girl

np v_trans_omissible_p2 np
 attention head compatible
 linear matcher

Base sentence

Tail pp modification
 (ok)

Middle pp modification
(attraction or other error)

Double middle pp
(attraction to nearest
or
other non-attraction error)

boy paint
agent

the girl
theme

room paint
agent the girltheme

agent
 Attraction error
from linear processing

In middle pp
pp noun is an attractor noun

A boy in a room in a house painted a girl

In middle double pp
2nd, nearest pp noun
is the attractor noun

boy paint
agent

the girl
theme

room
nmod . in

boy room

nmod . in
boy

house

room

the girltheme
house paint

agent

 Attraction error
to SECOND PP NOUN
from linear processing

vn n

vn n

vn n

vn n

agent

nmod . in

Our RASP model:
ignore
"pp det common_noun"
and "pp proper_noun" when matching agent/theme/recipient relationships.
Found via non-subj-pp examples in training, but fixes the obj-pp-to-subj-pp gen split.
We expect the baseline Wu et al. 2024 Transformer can learn this rule
but have not uncovered how to encourage it to learn such approaches yet.

A boy in a room in a house painted a girl
the girltheme

boy paint
agentvn n

housenmod . innmod . in
room

Figure 7: Non-hierarchical/non-tree structured linear gram-
mar pattern matching without explicitly ignoring prepositional
phrase nouns is expected to give rise to attraction errors, which
we confirmed are contributing to the high error rate of the base-
line (Wu et al., 2023) Transformer on the obj-pp-to-subj-pp
generalization split. Our RASP model avoids these errors by
ignoring "pp det common_noun" and "pp proper_noun" when
matching for agent/theme/recipient relationships (a behavior
added based on non-subj-pp examples in training behavior
but shown here to generalize to those examples). Note that
we also predict such errors for the non-subj-pp case of pp-
modifying the right-of-verb recipient noun in "np v_dat_p2
np np" and confirmed (see Figure 3) that such a generalization
is as hard as the previously reported hardest obj-pp-to-subj-pp
generalization.

29

9.7 RASP for relation right index ignoring2198

attractor "pp np"2199
pp_sequence = \2200
indicator(pos_tokens == 2);2201
pp_one_after_mask = \2202
select(pp_sequence, 1, ==) and \2203
select(indices+1, indices, ==);2204

2205
pp_one_after_sequence = \2206
aggregate(pp_one_after_mask, 1);2207
pp_one_after_mask = \2208
select(pp_one_after_sequence, 1, ==) and \2209
select(indices, indices, ==);2210

2211
pp_two_after_mask = \2212
select(pp_sequence, 1, ==) and \2213
select(indices+2, indices, ==);2214

2215
pp_two_after_sequence = \2216
aggregate(pp_two_after_mask, 1);2217
pp_two_after_mask = \2218
select(pp_two_after_sequence, 1, ==) and \2219
select(indices, indices, ==);2220

2221
np_det_diag_mask = \2222
select(aggregate(np_det_mask, 1), 1, ==) and \2223
select(indices, indices, ==);2224

2225
np_prop_diag_mask = \2226
select(aggregate(np_prop_mask, 1), 1, ==) and \2227
select(indices, indices, ==);2228

2229
no_pp_np_mask = \2230
1 - aggregate((pp_one_after_mask and np_prop_diag_mask) or \2231
(pp_two_after_mask and np_det_diag_mask), 1);2232

2233
nps_without_pp_prefix_indices = \2234
selector_width(select(NOUN_MASK*no_pp_np_mask, 1, ==) and \2235
select(indices, indices, <=))*NOUN_MASK*no_pp_np_mask;2236

2237
right_idx = \2238
aggregate(select(nps_without_pp_prefix_indices, after_intro_idx, ==), indices);2239

30

9.8 Methods detail for Attraction Error2240

Analysis for (Wu et al., 2023) baseline2241

Transformer: parsing sentences with Lark2242

and tagging sentences as agent left-of-verb2243

or not2244

For results, see results section (6).2245

Our hypothesis is in terms of nouns with a logi-2246

cal form relationship to a verb or other noun, where2247

the relationship could be agent, theme, or recipi-2248

ent. We chose to analyze the agent relationship2249

since it is the most common relationship type for2250

the subject noun. Since the obj_pp_to_subj_pp2251

split is in terms of subject vs object preposi-2252

tional modification (instead of agent, recipient,2253

or theme), we use the subset of sentences within2254

this split where the agent is to the left of the2255

verb and modified by a prepositional phrase2256

as it corresponds to the subject in that case.2257

Note that for the input grammar of (Re)COGS,2258

agent-left-of-verb sentences only have one non-2259

prepositional phrase noun to the left of the verb,2260

so without explicitly considering the theme side,2261

requiring the agent to be on the left already2262

intentionally excludes cases like v_unacc_p22263

where the subject is the theme, not the agent.2264

The errors from n=10 fresh training and evalua-2265

tion runs of the baseline (Wu et al., 2023) Encoder-2266

Decoder Transformer on their ReCOGS_pos2267

train.tsv and tested on their unmodified gen.tsv2268

were analyzed for the obj_pp_to_subj_pp split. All2269

the input sentences and output logical forms as well2270

as the ground truth logical forms were logged dur-2271

ing the run. The input sentences were parsed by2272

the Lark parser80 against the COGS input grammar2273

which allowed categorizing each sentence by its2274

verb type 81. The author manually inspected each2275

of verb type patterns and categorized them by the2276

position of the agent relative to the verb (see code2277

below) and used Lark to assign agent sides based2278

on the verb type using that mapping.2279

To focus the analysis, we considered only sin-2280

gle verb cases and ignored sentences with senten-2281

tial complements. Then, of the sentences with the2282

model generating an invalid logical form assessed2283

80https://github.com/lark-parser/lark
81Code to analyze the errors is at:
https://anonymous.4open.science/r/RASP-

for-ReCOGS-16B9/supplemental_data/
ReCOGS_Baseline_non_RASP_Transformer
_ReCOGS_error_prediction
_with_n=10_Transformers_trained_from_scratch _(pre-
dicting_the_details_of _error_in_logical_form_on_obj
_pp_to_subj_pp_split).ipynb .

by Semantic Exact Match, we focused on exam- 2284

ples with a single error in one of the logical form 2285

parts (e.g. agent, theme, recipient, or nmod rela- 2286

tionships).82 2287

used the description of the (Re)COGS grammar 2288
referenced in 2289
Appendix: Methods Detail for categorizing 2290
input sentences for error analysis. 2291
parser = Lark(grammar, start=’start’) 2292

2293
1st NP agent verbs (non CP) 2294
"v_trans_omissible_p1": "agent", 2295
"v_trans_omissible_p2": "agent", 2296
"v_trans_not_omissible": "agent", 2297
"v_cp_taking": "agent", 2298
"v_inf_taking": "agent", 2299
"v_unacc_p1": "agent", 2300
"v_unerg": "agent", 2301
"v_inf": "agent", 2302
"v_dat_p1": "agent", 2303
"v_dat_p2": "agent", 2304
agent_left_of_verb_verb_type_set = \ 2305
set(["v_trans_omissible_p1", "v_trans_omissible_p2", 2306
"v_trans_not_omissible", "v_cp_taking", "v_inf_taking", 2307
"v_unacc_p1", "v_unerg", "v_inf", "v_dat_p1", "v_dat_p2"]) 2308

2309
simpler get_verbs function referenced by get_agent_side 2310
(returns verbs starting from end of sentence, 2311
opposite of 2312
get_verbs_with_pps_before_and_last_noun_before_first_verb_index) 2313
not appropriate for use with sentential complement prefix sentences 2314
that have pp modification in the cp prefix 2315
def get_verbs(lark_tree_root): 2316
nodes = [lark_tree_root] 2317
verbs = [] 2318
while len(nodes) > 0: 2319

node = nodes[-1] 2320
nodes = nodes[:-1] 2321
node_type = node.data[:] 2322
if node_type[:2] == ’v_’: 2323
verbs.append(node_type) 2324

for child in node.children: 2325
it is a tree, no need to check for revisits 2326
nodes.append(child) 2327

return verbs 2328
def get_agent_side(lark_tree_root): 2329

verb_type = get_verbs(lark_tree_root)[0] 2330
if verb_type != None and 2331
verb_type not in agent_left_of_verb_verb_type_set: 2332
return "right or middle" 2333

elif verb_type in agent_left_of_verb_verb_type_set: 2334
return "left" 2335

return None 2336
2337

more complicated version 2338
for enforcing during the check of our hypothesis 2339
a stricter expectation that the closest prepositional noun 2340
to the left of the verb is the misassigned agent 2341
(not just any prepositional noun) 2342
def \ 2343
get_verbs_with_pps_before_and_\ 2344
last_noun_before_first_verb_index(lark_tree_root): 2345
nodes = [lark_tree_root] 2346
verbs = [] 2347
terminals_before_count = 0 2348
pps_before_counts = [] 2349
pps_before_count = 0 2350
last_noun_before_first_verb_index = None 2351
while len(nodes) > 0: 2352

node = nodes[-1] 2353
nodes = nodes[:-1] 2354
node_type = node.data[:] 2355
if node_type[:2] == ’v_’: 2356
pps_before_counts.append(pps_before_count) 2357
verbs.append(node_type) 2358

children = [] 2359
for child in node.children: 2360
it is a tree, no need to check for revisits 2361
children.append(child) 2362

need to visit in a particular order to not just get verbs 2363
but pp before count, 2364
and the last noun before the first verb 2365
in the one verb case this does not matter 2366
children.reverse() 2367
but we may want to return verbs in the order 2368
they appear in the sentence 2369

82Of the single relationship errors, we categorized them
by a description of the position of both the agent relative to
the verb in that sentence (agent was considered to be either
left OR "right or middle") and what relationship had the error.
Sentential complement examples were excluded to focus on
predicting the form of the error on simpler examples.

31

https://github.com/lark-parser/lark
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/ReCOGS_Baseline_non_RASP_Transformer_ReCOGS_error_prediction_with_n=10_Transformers_trained_from_scratch_(predicting_the_details_of_error_in_logical_form_on_obj_pp_to_subj_pp_split).ipynb

for node in children:2370
nodes.append(node)2371

if node_type[:] in ["common_noun",2372
"proper_noun"] and len(verbs) == 0:2373
no need to subtract 1 here as before incrementing below2374
last_noun_before_first_verb_index = \2375
terminals_before_count2376

only increment on terminals2377
if len(children) == 0:2378
terminals_before_count += 12379

if node_type[:] == "pp":2380
pps_before_count += 12381

return verbs, pps_before_counts,2382
last_noun_before_first_verb_index2383

32

9.9 v_dat_p2 recipient pp-modification for2384

generalization assessment and data2385

augmentation attempt2386

We test generalization by the (Wu et al., 2023)’s2387

default Transformer which has been trained on ‘np2388

v_dat_p2 np np pp np‘ but not ‘np v_dat_p2 np pp2389

np np‘ prepositional modifications. The following2390

328 examples were derived83 from the existing2391

https://github.com/frankaging/ReCOGS/blob/2392

1b6eca8ff4dca5fd2fb284a7d470998af5083beb2393

/recogs_positional_index/train.tsv,2394

by modifying 328 existing single-pp v_dat_p22395

lines in train.tsv to simply move the prepositional2396

phrase from the 3rd NP (theme) in the ‘np v_dat_p22397

np np‘ (agent, recipient, theme) to the 2nd NP2398

(recipient), e.g. copying and modifying the line2399

"Liam gave the monkey a chalk in the container ."2400

to "Liam gave the monkey in the container a chalk2401

.".2402

So all the words and the grammar are oth-2403

erwise familiar. This is similar to the exist-2404

ing ‘obj_pp_to_subj_pp‘ generalization (Wu et al.,2405

2023) reports on. All modified rows available in2406

the notebook link in the footnote.2407

83 Notebook: https://anonymous.4open.science/r/RASP-for-
ReCOGS-16B9/supplemental_data/np_v_dat_p2_np_np_modifications_data_prep_script_notebook.ipynb

33

https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://github.com/frankaging/ReCOGS/blob/1b6eca8ff4dca5fd2fb284a7d470998af5083beb/recogs_positional_index/train.tsv
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/np_v_dat_p2_np_np_modifications_data_prep_script_notebook.ipynb
https://anonymous.4open.science/r/RASP-for-ReCOGS-16B9/supplemental_data/np_v_dat_p2_np_np_modifications_data_prep_script_notebook.ipynb

9.10 Computing Grammar Coverage2408

First we use the grammar as it was generated as2409

a probablistic context free grammar per (Kim and2410

Linzen, 2020) using the full details put in Lark2411

format by (Klinger et al., 2024) and converting it2412

ourselves to a format compatible with (Zeller et al.,2413

2023).2414

Note this starting point is not the grammar we2415

claim the our Restricted Access Sequence Process-2416

ing model implements or the Transformer actually2417

learns as we argue the Transformer is learning a2418

flat, non-tree solution to this simple grammar (not2419

actually learning to collapse "np_det pp np" into2420

"np" for example). First we compute grammar cov-2421

erage relative to the PCFG approach that generated2422

it, which mostly aligns with our RASP model. We2423

also ignore terminals in this assessment of cover-2424

age, as stated earlier, when computing grammar2425

coverage, we will report the grammar coverage2426

over expansions that collapse all vocabulary leaves2427

to a single leaf (for example not requiring that ev-2428

ery particular proper noun or common noun be2429

observed in a particular pattern, so long as one2430

has and we can confirm the code treats them as2431

equivalent; e.g. having tested "Liam drew the cat"2432

and proven that "Liam" and "Noah" are treated2433

as interchangeable proper nouns, and that "cat"2434

and "dog" are treated as interchangeable common2435

nouns by the RASP solution – not something one2436

can assume for neural network solutions in general2437

– means that confirming our solution produces the2438

correct logical form for "Liam drew the cat" suf-2439

fices to prove the RASP solution can handle "Noah2440

drew the dog", which saves us a lot of work so2441

long as we make sure to write our RASP solution2442

such that noah/liam and cat/dog are indeed treated2443

identically).2444
Non-terminals only version of2445
https://github.com/IBM/cpg/blame/2446
c3626b4e03bfc681be2c2a5b23da0b48abe6f5702447
/src/model/cogs_data.py#L5292448
NOTE WE DO NOT ACTUALLY USE THIS GRAMMAR IN OUR MODEL,2449
IT IS FOR UNDERSTANDING THE GRAMMAR WE ARE TRYING TO LEARN/MODEL2450

2451
COGS_INPUT_GRAMMAR_NO_TERMINALS = {2452
"<start>": ["<s1>", "<s2>", "<s3>", "<s4>", "<vp_internal>"],2453
"<s1>": ["<np> <vp_external>"],2454
"<s2>": ["<np> <vp_passive>"],2455
"<s3>": ["<np> <vp_passive_dat>"],2456
"<s4>": ["<np> <vp_external4>"],2457
"<vp_external>": ["<v_unerg>", "<v_trans_omissible_p1>",2458
"<vp_external1>", "<vp_external2>", "<vp_external3>",2459
"<vp_external5>", "<vp_external6>", "<vp_external7>"],2460
"<vp_external1>": ["<v_unacc_p1> <np>"],2461
"<vp_external2>": ["<v_trans_omissible_p2> <np>"],2462
"<vp_external3>": ["<v_trans_not_omissible> <np>"],2463
"<vp_external4>": ["<v_inf_taking> <to> <v_inf>"],2464
"<vp_external5>": ["<v_cp_taking> <that> <start>"],2465
"<vp_external6>": ["<v_dat_p1> <np> <pp_iobj>"],2466
"<vp_external7>": ["<v_dat_p2> <np> <np>"],2467
"<vp_internal>": ["<np> <v_unacc_p2>"],2468
"<vp_passive>": ["<vp_passive1>", "<vp_passive2>",2469
"<vp_passive3>", "<vp_passive4>", "<vp_passive5>",2470
"<vp_passive6>", "<vp_passive7>", "<vp_passive8>"],2471
"<vp_passive1>": ["<was> <v_trans_not_omissible_pp_p1>"],2472

"<vp_passive2>": 2473
["<was> <v_trans_not_omissible_pp_p2> <by> <np>"], 2474

"<vp_passive3>": ["<was> <v_trans_omissible_pp_p1>"], 2475
"<vp_passive4>": 2476
["<was> <v_trans_omissible_pp_p2> <by> <np>"], 2477

"<vp_passive5>": ["<was> <v_unacc_pp_p1>"], 2478
"<vp_passive6>": ["<was> <v_unacc_pp_p2> <by> <np>"], 2479
"<vp_passive7>": ["<was> <v_dat_pp_p1> <pp_iobj>"], 2480
"<vp_passive8>": ["<was> <v_dat_pp_p2> <pp_iobj> <by> <np>"], 2481
"<vp_passive_dat>": 2482
["<vp_passive_dat1>", "<vp_passive_dat2>"], 2483

"<vp_passive_dat1>": ["<was> <v_dat_pp_p3> <np>"], 2484
"<vp_passive_dat2>": 2485
["<was> <v_dat_pp_p4> <np> <by> <np>"], 2486

"<np>": ["<np_prop>","<np_det>", "<np_pp>"], 2487
"<np_prop>": ["<proper_noun>"], 2488
"<np_det>": ["<det> <common_noun>"], 2489
"<np_pp>": ["<np_det> <pp> <np>"], 2490
"<pp_iobj>": ["<to> <np>"], 2491
"<det>": [], 2492
"<pp>": [], 2493
"<was>": [], 2494
"<by>": [], 2495
"<to>": [], 2496
"<that>": [], 2497
"<common_noun>": [], 2498
"<proper_noun>": [], 2499
"<v_trans_omissible_p1>": [], 2500
"<v_trans_omissible_p2>": [], 2501
"<v_trans_omissible_pp_p1>": [], 2502
"<v_trans_omissible_pp_p2>": [], 2503
"<v_trans_not_omissible>": [], 2504
"<v_trans_not_omissible_pp_p1>": [], 2505
"<v_trans_not_omissible_pp_p2>": [], 2506
"<v_cp_taking>": [], 2507
"<v_inf_taking>": [], 2508
"<v_unacc_p1>": [], 2509
"<v_unacc_p2>": [], 2510
"<v_unacc_pp_p1>": [], 2511
"<v_unacc_pp_p2>": [], 2512
"<v_unerg>": [], 2513
"<v_inf>": [], 2514
"<v_dat_p1>": [], 2515
"<v_dat_p2>": [], 2516
"<v_dat_pp_p1>": [], 2517
"<v_dat_pp_p2>": [], 2518
"<v_dat_pp_p3>": [], 2519
"<v_dat_pp_p4>": [], 2520

} 2521

After parsing a sentence with the Lark parser, 2522
we can compute the expansions it covers with the 2523
following Python: 2524
def generate_set_of_expansion_keys_for_lark_parse_tree(tree): 2525
nodes = [tree] 2526
expansions_observed = set() 2527
for node in nodes: 2528

current_node_label = node.data[:] 2529
children = node.children 2530
expansion = f"<{current_node_label}> ->" 2531
for child in children: 2532
add expansion for current -> child 2533
child_node_label = child.data[:] 2534
expansion += f" <{child_node_label}>" 2535
also process expansions from child 2536
nodes.append(child) 2537

if len(children) > 0: 2538
#print(f"{expansion}") 2539
expansions_observed.add(expansion) 2540

return expansions_observed 2541

For example, for the sentence "the girl noticed 2542

that a boy painted the girl", 2543
we get 2544

sentence = "the girl noticed that a boy painted the girl" 2545
tree = parser.parse(sentence) 2546
expansions_observed = \ 2547
generate_set_of_expansion_keys_for_lark_parse_tree(tree) 2548
<start> -> <s1> 2549
<s1> -> <np> <vp_external> 2550
<np> -> <np_det> 2551
<vp_external> -> <vp_external5> 2552
<np_det> -> <det> <common_noun> 2553
<vp_external5> -> <v_cp_taking> <that> <start> 2554
<start> -> <s1> 2555
<s1> -> <np> <vp_external> 2556
<np> -> <np_det> 2557
<vp_external> -> <vp_external2> 2558
<np_det> -> <det> <common_noun> 2559
<vp_external2> -> <v_trans_omissible_p2> <np> 2560
<np> -> <np_det> 2561
<np_det> -> <det> <common_noun> 2562

At first we use TrackingGrammarCoverage- 2563
Fuzzer (from (Zeller et al., 2023)) to compute the 2564
set of all possible grammar expansions: 2565

34

cogs_simplified_input_grammar_fuzzer = \2566
TrackingGrammarCoverageFuzzer(COGS_INPUT_GRAMMAR_SIMPLIFIED)2567

2568
expected_expansions = \2569
cogs_simplified_input_grammar_fuzzer.max_expansion_coverage()2570

One can use this to get a sense of what it is pos-2571

sible to learn about the grammar from a particular2572

set of examples2573

and what examples need to be seen at a minimum2574

for any model to learn the task from scratch and2575

could possibly help one design a minimum length2576

dataset with low redundancy. Note for a Trans-2577

former model learning word embeddings / map-2578

ping to part-of-speech for each word, one would2579

need to use the grammar with terminals to com-2580

pute coverage. Here we want to argue something2581

about our RASP model where we can ensure via2582

implementation that all terminals in a category are2583

treated identically (and we observe 100% semantic2584

exact match for the related generalization splits for2585

swapping words within a part of speech).2586
We can ask what % of the grammar without2587

terminals is covered by the first 21 sentences from2588
the COGS training set?2589
https://raw.githubusercontent.com/frankaging/ReCOGS/2590
1b6eca8ff4dca5fd2fb284a7d470998af5083beb/cogs/train.tsv2591
nonsense_example_sentences = [2592
"A rose was helped by a dog",2593
"The sailor dusted a boy",2594
"Emma rolled a teacher",2595
"Evelyn rolled the girl",2596
"A cake was forwarded to Levi by Charlotte",2597
"The captain ate",2598
"The girl needed to cook",2599
"A cake rolled",2600
"The cookie was passed to Emma",2601
"Emma ate the ring beside a bed",2602
"A horse gave the cake beside a table to the mouse",2603
"Amelia gave Emma a strawberry",2604
"A cat disintegrated a girl",2605
"Eleanor sold Evelyn the cake",2606
"The book was lended to Benjamin by a cat",2607
"The cake was frozen by the giraffe",2608
"The donut was studied",2609
"Isabella forwarded a box on a tree to Emma",2610
"A cake was stabbed by Scarlett",2611
"A pencil was fed to Liam by the deer",2612
"The cake was eaten by Olivia"2613
]2614

2615
all_expansions_observed_across_examples = set()2616

2617
for sentence in nonsense_example_sentences:2618
single_example_expansions = \2619
generate_set_of_expansion_keys_for_lark_parse_tree\2620
(parser.parse(sentence.lower()))2621
all_expansions_observed_across_examples = \2622
all_expansions_observed_across_examples.union\2623
(single_example_expansions)2624

2625
1 - len(set(expansions_expected) \2626
- all_expansions_observed_across_examples) / len(expansions_expected)2627
0.71153846153846162628

Those 21 COGS input sentences cover 71% of the2629

grammar. (Continued on next page.)2630

We can compare the first 21 sentences of COGS2631

that to the 19 sentences used in developing the2632

RASP program (then add one to cover basic prepo-2633

sitional phrases, and one more to cover sentential2634

complements):842635

84(see
https://anonymous.4open.science/r/learning-rasp-

(note each of these sentences has multiple equiv- 2636

alent examples in the ReCOGS training set, as 2637

shown in Table 2 in Appendix 9.11) 2638
handpicked_example_sentences = [2639
non-recursive grammar rule examples only 2640
no prepositional phrases or sentential complements 2641
see link above all these examples 2642
each correspond to distinct rules in the code 2643
"the girl was painted", 2644
"a boy painted", 2645
"a boy painted the girl", 2646
"the girl was painted by a boy", 2647
"a boy respected the girl", 2648
"the girl was respected", 2649
"the girl was respected by a boy", 2650
"the boy grew the flower", 2651
"the flower was grown", 2652
"the flower was grown by a boy", 2653
"the scientist wanted to read", 2654
"the guest smiled", 2655
"the flower grew", 2656
"ella sold a car to the customer", 2657
"ella sold a customer a car", 2658
"the customer was sold a car", 2659
"the customer was sold a car by ella", 2660
"the car was sold to the customer by ella", 2661
"the car was sold to the customer", 2662
] 2663

2664
all_expansions_observed_across_examples = set() 2665

2666
for sentence in handpicked_example_sentences: 2667
single_example_expansions = \ 2668
generate_set_of_expansion_keys_for_lark_parse_tree(2669

parser.parse(sentence.lower()) 2670
) 2671
all_expansions_observed_across_examples = \ 2672
all_expansions_observed_across_examples.union(2673

single_example_expansions) 2674
2675

1 - len(set(expansions_expected) \ 2676
- all_expansions_observed_across_examples) 2677
/ len(expansions_expected) 2678

0.9230769230769231 2679
2680

Those 19 rules cover 92.3% of the COGS input grammar 2681
(not necessarily 92.3% of examples as the examples 2682
are not evenly distributed across grammar rules). 2683
Let’s see what rules are still missing: 2684

2685
set(expansions_expected) - 2686
all_expansions_observed_across_examples 2687

tells us we need a prepositional phrase example! 2688
#{’<np> -> <np_pp>’, 2689
tell us we need prepositional phrase examples 2690
’<np_pp> -> <np_det> <pp> <np>’, 2691
tells us we need sentential complement examples 2692
’<vp_external5> -> <v_cp_taking> <that> <start>’, 2693
tells us we need sentential complement examples 2694
’<vp_external> -> <vp_external5>’} 2695

F7C2/word-level-pos-tokens-recogs-style-decoder-
loop.rasp#L574

for the full list and associated rules in the code as the RASP
does not learn from examples but hand-coded rules coded as a
sequence of parts of speech / verb types)

35

https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574
https://anonymous.4open.science/r/learning-rasp-F7C2/word-level-pos-tokens-recogs-style-decoder-loop.rasp#L574

We got to 92.3% grammar coverage in our 192696

examples instead of COGS 71% in 21 examples.2697

And, it is telling us we are missing an example2698

with prepositional phrases and sentential comple-2699

ments (see next examples)2700
Let us add a simple prepositional phrase example2701

and sentential complement example:2702
handpicked_example_sentences = \2703
handpicked_example_sentences + \2704
["a boy painted the girl in a house"] + \2705
["the girl noticed that a boy painted the girl"]2706

2707
handpicked_example_sentences2708
[’the girl was painted’,2709
’a boy painted’,2710
’a boy painted the girl’,2711
’the girl was painted by a boy’,2712
’a boy respected the girl’,2713
’the girl was respected’,2714
’the girl was respected by a boy’,2715
’the boy grew the flower’,2716
’the flower was grown’,2717
’the flower was grown by a boy’,2718
’the scientist wanted to read’,2719
’the guest smiled’,2720
’the flower grew’,2721
’ella sold a car to the customer’,2722
’ella sold a customer a car’,2723
’the customer was sold a car’,2724
’the customer was sold a car by ella’,2725
’the car was sold to the customer by ella’,2726
’the car was sold to the customer’,2727
’a boy painted the girl in a house’,2728
’the girl noticed that a boy painted the girl’2729
#]2730
all_expansions_observed_across_examples = set()2731

2732
for sentence in handpicked_example_sentences:2733
single_example_expansions = \2734
generate_set_of_expansion_keys_for_lark_parse_tree(parser.parse(sentence.lower()))2735
all_expansions_observed_across_examples = \2736
all_expansions_observed_across_examples.union(single_example_expansions)2737

2738
1 - len(set(expansions_expected) - \2739
all_expansions_observed_across_examples) / len(expansions_expected)2740

1.02741
2742

set(expansions_expected) - all_expansions_observed_across_examples2743
set()2744

(continued below)2745

36

Thus in 19 intentionally crafted sentences (Table2746

2) (each is in the RASP code with a corresponding2747

rule) cover 92.3% of the grammar, using the cov-2748

erage we can what we did not cover yet, and thus2749

add two sentences to fill the reported gap and get2750

to 100% .2751

However these coverage metrics are misleading2752

when it comes to prepositional phrases as it would2753

not suggest to include prepositional phrases in all2754

positions, assuming they could be collapsed by the2755

model back to ‘np‘ using ‘np -> np_pp -> np_det pp2756

np‘ while our experiments on the (Wu et al., 2023)2757

baseline Encoder-Decoder model and experience2758

designing our RASP model suggest it is either nec-2759

essary to train with prepositional phrases explicitly2760

in the different positions of the grammar patterns2761

or learn an alternative approach (as in our RASP2762

model) of ignoring "pp det common_noun" and2763

"pp proper_noun" except when outputting noun2764

modifier information in the logical form.2765

That is, we believe that the only recursion2766

learned is tail recursion in the decoder loop and2767

that ‘np -> np_det | np_prop | np_pp‘ and ‘np_pp2768

-> np_det pp np‘ is not actually performed as if2769

the Encoder-Decoder Transformer were to learn a2770

tree-based or recursive representation. If the Trans-2771

former had a tree based representation, it is pre-2772

dicted that the "v_dat_p2_pp_moved_to_recipient"2773

would not be any harder than when the pp modifica-2774

tion is on the theme, as ‘np v_dat_p2 np_det pp np2775

np‘ can be transformed by the recursive grammar2776

rule ‘np_det pp np -> np_pp -> np‘ to ‘np v_dat_p22777

np np‘ on which it is already trained and has2778

good performance, but instead it fails completely2779

(see Figure 3), and see also "Error Analysis for2780

(Wu et al., 2023) baseline Encoder-Decoder Trans-2781

former on obj_pp_to_subj_pp split" and where we2782

observe that prepositional modification of a noun2783

to the left of a verb it is the agent of causes the2784

new prepositional phrase noun that becomes the2785

closest noun to be mistaken for the agent, which is2786

in contradiction to the model collapsing ‘np_det pp2787

np‘ to ‘np‘ before matching the overall grammar2788

pattern (see Figure 7).2789

That said with a couple of simple rules that2790

were not tree we were able to get 100% on the2791

pp_recursion split (up to depth 12) and 92.20%2792

(90.36-93.79% 95% CI) of the obj_pp_to_subj_pp2793

split.2794

Modifying the grammar coverage to model this2795

non-tree representation would be exciting to ad-2796

dress in future work.2797

See also "Appendix: Grammar Coverage anal- 2798

ysis to develop and justify Restricted Access Se- 2799

quence Processing model design" (9.11). 2800

9.11 Grammar Coverage analysis to develop 2801

and justify Restricted Access Sequence 2802

Processing model design 2803

See "Appendix: Computing Grammar Coverage" 2804

(9.10) for how the grammar coverage is computed. 2805

If we ignore lexical differences, by the first 2806

55 examples of the ReCOGS training set (un- 2807

shuffled, no augmentations) or 77 (median; 95% 2808

confidence interval, n=1000 random shuffles: 2809

39 to 161) examples of the ReCOGS training 2810

set (shuffled, no augmentations), 100% gram- 2811

mar coverage is reached85(lexical differences 2812

ignored) (Zeller et al., 2023) (noting that if 2813

the model is not capable of learning certain 2814

expansions in the grammar such as ‘np_det pp 2815

np -> np_pp -> np‘, it may need to see more 2816

variations to memorize individual cases instead): 2817

2818

That shows if one already knows parts of speech 2819

and verb types for words one needs much less data. 2820

Thus, we can be more efficient than using the 2821

ReCOGS training set for our RASP model built by 2822

hand since our solution uses a manual embedding 2823

via a dictionary mapping words to part-of-speech 2824

and verb-type, that ensures all words within a part 2825

of speech are treated identically. In general, pre- 2826

training86 or using an embedding like GloVe (Pen- 2827

nington et al., 2014) would ensure this type of infor- 2828

85Given the COGS input sentences were generated as a
probablistic context free grammar per (Kim and Linzen, 2020)
using the full details put in Lark format by (Klinger et al.,
2024) and converting it ourselves to a format compatible with
(Zeller et al., 2023) (see "Appendix: Computing Grammar
Coverage" (9.10)) , we use their TrackingGrammarCoverage-
Fuzzer to generate the set of all expansions of the COGS
grammar.

86(Tenney et al., 2019) confirm BERT, a Transformer model
pretrained using a language modeling objective, in wide use,
has part-of-speech information available at the earliest layers.

37

mation was available in the embedding; when train-2829

ing from scratch for COGS/ReCOGS we expect2830

the act of modeling the input sentences to be able2831

to result in embeddings with part-of-speech and2832

verb type information, to facilitate this one might2833

consider also to adjust the training objective as dis-2834

cussed in (Ahuja et al., 2024) to explicitly predict2835

the input sentences by treating the seq2seq problem2836

as a language modeling problem for the input con-2837

catenated with output instead of as a seq2seq. We2838

are focused on ReCOGS (and COGS) structural2839

generalizations (which Transformer models per-2840

form poorly on), not lexical generalizations in this2841

paper (Transformers already known to perform rel-2842

atively well), so do not study the learning of word2843

level representations (embeddings) here, only how2844

those words are combined once they are mapped2845

to their possible part-of-speech and possible verb-2846

types.2847

See Table 2 below for the 19 part-of-speech/verb2848

type patterns and example sentences that cover2849

the non-recursive grammar at non-terminal (post-2850

embedding level), as well as the training-2851

compatible prepositional phrase and sentential com-2852

plement examples used for the RASP model de-2853

sign.2854

38

RASP-for-ReCOGS
grammar pattern
example

Actual part-of-speech/verb-type sequence used in RASP model COGS/ReCOGS input
training example

the girl was painted det common_noun was v_trans_omissible_pp_p1 The donut was studied .

a boy painted det common_noun v_trans_omissible_p1 The captain ate .

a boy painted the girl det common_noun v_trans_omissible_p2 det common_noun The sailor dusted a boy .

the girl was painted by a

boy

det common_noun was v_trans_omissible_pp_p2 by det com-

mon_noun

A drink was eaten by a

child .

a boy respected the girl det common_noun v_trans_not_omissible det common_noun A girl liked the raisin .

the girl was respected det common_noun was v_trans_not_omissible_pp_p1 The pen was helped .

the girl was respected by

a boy

det common_noun was v_trans_not_omissible_pp_p2 by det com-

mon_noun

A rose was helped by a

dog .

the boy grew the flower det common_noun v_unacc_p1 det common_noun A cat disintegrated a girl .

the flower was grown det common_noun was v_unacc_pp_p1 A box was inflated .

the flower was grown by

a boy

det common_noun was v_unacc_pp_p2 by det common_noun The cake was frozen by

the giraffe .

the scientist wanted to

read

det common_noun v_inf_taking to v_inf The girl needed to cook .

the guest smiled det common_noun v_unerg The sailor laughed .

the flower grew det common_noun v_unacc_p2 A cake rolled .

ella sold a car to the cus-

tomer

proper_noun v_dat_p1 det common_noun to det common_noun Emma passed a cake to

the girl .

ella sold a customer a car proper_noun v_dat_p2 det common_noun det common_noun Liam forwarded the girl

the donut .

the customer was sold a

car

det common_noun was v_dat_pp_p3 det common_noun A girl was sold the cake .

the customer was sold a

car by ella

det common_noun was v_dat_pp_p4 det common_noun by

proper_noun

The girl was lended the

balloon by Harper .

the car was sold to the cus-

tomer by ella

det common_noun was v_dat_pp_p2 to det common_noun by

proper_noun

The pen was offered to

the girl by Emma .

the car was sold to the cus-

tomer

det common_noun was v_dat_pp_p1 to det common_noun The melon was lended to

a girl .

Prepositional phrase
and sentential com-
plement examples
mentioned in paper

part-of-speech/verb-type sequence (used example for develop-
ment)

COGS/ReCOGS input
training example

a boy painted the girl in a

house

det common_noun v_trans_omissible_p2 det common_noun pp det

common_noun

A frog ate a sweetcorn in

a pile .

the girl noticed that a boy

painted the girl

det common_noun v_cp_taking that det common_noun

v_trans_omissible_p2 det common_noun

A girl said that a crocodile

ate the rose .

Table 2: Additional justification of the specific examples we generated and used for our RASP model design by matching them
to COGS/ReCOGS training examples. Note that our RASP model collapses "a" and "the" to "det" (coded as 1) so we do as well
here. All but the last example are from the first 119 training examples. Ignoring lexical differences, full coverage of the grammar
occurs by training example 55 in the PCFG sense (see "Appendix: Computing Grammar Coverage" (9.10)) when read in order
but the specific sentences we used (one of multiple ways to cover the grammar) occur by example 119 in the order given in the
train.tsv file, except for the specific sentential complement example we gave by modifying one of our existing examples with a
sentential complement ("the girl noticed that a boy painted the girl") which does not have an exactly matching counterpart until
the 4,186th example (other equivalent-for-these-purposes sentential complement examples are demonstrated earlier, e.g. within
55 examples in default ordering). Note the prepositional phrase and sentential complement examples are not actually pattern
matched (the 19 pattern matches plus a general cp/pp rule are used) and so do not exist in the RASP code, but are just given for
reference.

39

9.12 Zhou et al 2024 relevance of their long2855

addition experiment to language2856

modeling and note on the Parity task and2857

Transformers2858

(Zhou et al., 2024) adds index hints to the long ad-2859

dition task based on a RASP-grounded analysis of2860

what is preventing the Transformer from learning2861

it, allowing the model to learn to pair digits from2862

each number being added more easily. They also2863

observe that if multi-digit carries are not part of2864

the training set one can still get generalization by2865

making the carry causal for the causal autoregres-2866

sive Transformer decoder mode by reversing the2867

digits (least significant digit first), and prove this2868

resolves the issue. Causality issues like trying to2869

output a long addition digit by digit starting with2870

the most significant digit in a long addition before2871

computing the sums of the less significant digits2872

that come later, and failing if there is a carry at any2873

point, are not limited to math, nor limited to lan-2874

guage models, for just one example from English2875

grammar concerning human language processing,2876

(Jespersen, 1954) explains "Concord of the verb"2877

errors made by humans especially in speech when2878

the verb is on the left due to needing to agree with a2879

noun not explicitly selected yet: "The general rule,2880

which needs no exemplification, is for the verb to2881

be in the singular with a singular subject, and in the2882

plural with a plural subject. Occasionally, however,2883

the verb will be put in the [singular], even if the2884

subject is plural; this will especially happen when2885

the verb precedes the subject, because the speaker2886

has not yet made up his mind, when pronouncing2887

the verb, what words are to follow."2888

(Zhou et al., 2024) also use RASP-L to analyze2889

and then modify the Parity task so that it can be2890

learned by a Transformer. Some useful context is2891

that e.g. (Chiang and Cholak, 2022) confirm ex-2892

perimentally that a Transformer cannot learn the2893

basic Parity task even though Transformers can be2894

shown to be able to solve it, (Chiang and Cholak,2895

2022) themselves in fact artifically construct a soft2896

attention Transformer that can just barely solve2897

it with confidence that is O(1/n) where n is the2898

input length. This is perhaps surprising since ba-2899

sic non-Transformer feedforward neural networks2900

have been known to be able to learn Parity from2901

randomly initialized weights per (Rumelhart et al.,2902

1988).2903

9.13 Composition and Learning 2904

Composition is important in learning. Consider a 2905

single nonterminal grammar expansion87 , ‘(noun 2906

phrase) (verb dative p2) (noun phrase) (noun 2907

phrase)‘, with three noun phrases all already ex- 2908

panded to np_det ("a" or "the" and "common 2909

noun") and a single verb. A possible substitution 2910

of terminals would be "a teacher gave the child a 2911

book", as would be "the teacher gave a child the 2912

book" (change of determiners), as would be "the 2913

manager sold a customer the car" (change of nouns 2914

and verb) and it would require 23V 3
n Vv examples 2915

where Vn is the vocab size for eligible common 2916

nouns and Vv is the vocab size for eligible verbs to 2917

see all the possible terminal substitutions . If the 2918

qualifying vocabulary is say of order of magnitude 2919

100 words for the nouns and 10 for the verbs88 2920

that would come out order of magnitude 100 mil- 2921

lion examples. By contrast, if parts-of-speech and 2922

verb types are already known89 it might take as few 2923

as one example to learn the new grammar pattern 2924

‘(noun phrase) (verb dative p2) (noun phrase) (noun 2925

phrase)‘.90 2926

Note in this paper that having an or condition 2927

everywhere in our model for "det common_noun", 2928

87COGS input sentences were actually generated by a prob-
abilistic context-free grammar and this is a grammar expansion
in their grammar. Words used in the example are within their
vocabulary.

88In COGS the number of common nouns is over 400 and
qualifying verbs in this case over 20

89that is if determiners ("a", "the") are understood to be
equivalent, common nouns are already known ("teacher",
"manager", "child", "customer", "book", "car") separately,
qualifying verb dative verbs are already known ("gave",
"sold"). Note (Tenney et al., 2019) report part-of-speech in-
formation is already tagged in the very earliest layers of the
24-layer BERT large pre-trained language model.

90Composing further, in a tree-structured or hierarchical
way, allows for efficient handling of recursive grammar forms
like nested prepositional phrases, so that learning the recursive
combination rule ‘np_det pp np -> np‘ for example allows the
model in a single rule to understand how to handle preposi-
tional phrase modification of any noun phrase in any sentence
possible in the grammar, generally. There is some evidence
in humans that during language production we start with a
simplified form and expand it in hierarchically/tree-structured
way into the final sentence, e.g. from attraction/proximity
concord errors in subject-verb agreement that seem to depend
on syntactic tree distance rather than linear distance in the
sentence(Franck et al., 2006)(Vigliocco and Nicol, 1998). In
this paper we demonstrate a model (our RASP model, see
below) which is not tree-structured in that it does not have
the recursive rules in the COGS grammar (e.g. ‘np_det pp
np -> np‘), yet performs with high accuracy. Omitting one of
its rules for avoiding attraction errors leads to a prediction of
linear distance (non-hierarchical) attraction errors, which is
observed for the baseline (Wu et al., 2023) Transformer (see
results and discussions).

40

"proper_noun" , such that they are treated the same,2929

without adjusting the sequence length or further2930

combining any non-terminals, is not referred to2931

as tree-structured or hierarchical - we consider a2932

model that stops at this level of structure which2933

per the discussion above already provides a lot of2934

representational power as flat/non-hierarchical/non-2935

tree-structured.2936

We see in the results, Appendix 9.11, and Table2937

2 quantitatively how few (training) sentence exam-2938

ples (and if recursive or looping rules are omitted,2939

equivalently how many flat-pattern rules91), it actu-2940

ally takes to cover a grammar in the sense of (Zeller2941

et al., 2023), and use this to design our Transformer-2942

equivalent model by hand to translate sentences in2943

a particular subset of the English grammar into2944

their corresponding logical forms.2945

9.14 Potential Risks2946

There is a definite risk of the RASP-for-ReCOGS2947

model as provided being misused, as unintended2948

use WILL give invalid results or halt - we have2949

NOT provided a general language model, we2950

have provided a simulation of how a Trans-2951

former could perform a specific task. The RASP2952

model/simulation as provided is for research pur-2953

poses only to prove feasibility of the ReCOGS task2954

by Transformers and is not appropriate for ANY2955

other uses whatsoever without modification. For2956

one, an actual Transformer performing the equiv-2957

alent operations would run orders of magnitude2958

faster, which should be reason enough to not want2959

to use the RASP simulation for actual input-output2960

tasks outside of a research setting. However, there2961

is also no "tokenizer" provided for the RASP model2962

to handle out-of-vocabulary inputs and fallback2963

paths for out-of-grammar examples are not pro-2964

vided so the RASP model will halt on most in-2965

puts and can only run on the in-distribution (non-2966

augmented) training data, and the dev, test, and2967

gen sets of ReCOGS, though such aspects could2968

be added. We provide the code for reproducing2969

the results of this study and for researchers who2970

are capable of writing RASP themselves to build2971

upon the work and/or more easily apply RASP to2972

their own problems given our examples, not for2973

immediate application to any other tasks without2974

appropriate modification.2975

This paper supporting that vanilla Transform-2976

91if we ignore terminals and stop at part-of-speech and verb
type sequences, for example, which we can map word level
tokens to by an embedding layer

ers should be able to perform ReCOGS with high 2977

accuracy including the currently challenging struc- 2978

tural generalizations may unintentionally discour- 2979

age some researchers from exploring potentially su- 2980

perior architectures and overinvest in research into 2981

training Transformers to learn solutions that gener- 2982

alize (when possibly other architectures may have 2983

better inductive biases and Transformers (with- 2984

out scratchpad, reasoning steps) are not Turing- 2985

complete (Merrill and Sabharwal, 2024) (Deletang 2986

et al., 2023) (Strobl et al., 2024) unlike other archi- 2987

tectures, e.g. Universal Transformers (Dehghani 2988

et al., 2019) or many others that could be explored 2989

instead). 2990

The suggestion that an embedding that tags pos- 2991

sible part-of-speech and verb-type is especially use- 2992

ful (we reduced the input to such a representation, 2993

a sequence of possible parts of speech and verb 2994

types, to solve this task) and pointing out examples 2995

of Transformers with a language modeling objec- 2996

tive learning this (Tenney et al., 2019) then citing 2997

the finding of (Ahuja et al., 2024) that reframing 2998

sequence-to-sequence problems as language mod- 2999

eling problems (predicting both input and output 3000

autoregressively) leads to better hierarchical gener- 3001

alization could lead to some wasteful misdirection 3002

of research effort if such a change of learning objec- 3003

tive does not turn out to usefully affect the represen- 3004

tation learned (though since COGS/ReCOGS input 3005

sentences are English sentences it seems reasonable 3006

to think it may lead to more similar embeddings as 3007

models trained on English corpora with a language 3008

modeling objective to explicitly predict the input 3009

sentences in addition to the logical forms). 3010

The finding that a recursive, hierarchical, or tree- 3011

structured model/representation is not necessarily 3012

required to solve the structural generalizations in- 3013

cluding the up to depth 12 prepositional phrase (pp) 3014

recursion and sentential complement (cp) recursion 3015

splits may be misinterpreted to unintentionally dis- 3016

courage potentially fruitful research into hierarchi- 3017

cal generalization using tree-structured approaches. 3018

While the author expects many of the find- 3019

ings here to hold for the upstream COGS dataset 3020

and has released separate code that is currently 3021

under evaluation to perform the COGS bench- 3022

mark in RASP, and the COGS and ReCOGS in- 3023

put grammar/vocabulary and input sentences for 3024

dev/test/gen are identical (only the output format 3025

for logical form differ), until that work is published, 3026

one should not assume all conclusions here about 3027

feasibility extend to COGS. 3028

41

There is a risk that the results could be misin-3029

terpreted to reduce future investigation into the3030

ReCOGS and COGS datasets (the opposite of3031

this author’s intention) or as a criticism of the3032

ReCOGS paper’s baseline Encoder-Decoder Trans-3033

former (the opposite of this author’s intention)3034

which undergoes error analysis in this work.3035

9.15 Scientific Artifacts - Is Our Use3036

Consistent with Authors’ Intention and3037

Licensing3038

COGS (Kim and Linzen, 2020) (3039

https://aclanthology.org/2020.emnlp-main.731/3040

) and ReCOGS (Wu et al., 2023) (3041

https://aclanthology.org/2023.tacl-1.96/) pa-3042

pers and examples are licensed Creative3043

Commons Attribution 4.0 International License (3044

https://creativecommons.org/licenses/by/4.0/) as3045

hosted by the ACL Anthology with the intention of3046

providing datasets for others to perform research3047

upon.3048

GitHub hosted artifacts for COGS (3049

https://github.com/najoungkim/COGS) and3050

ReCOGS (https://github.com/frankaging/recogs)3051

including the training, development, and general-3052

ization set examples are MIT licensed, are intended3053

for research use, and were used in a research3054

context for this paper. We specifically use the3055

ReCOGS authors’ provided python scripts to run3056

their baselines, with their chosen hyperparameters3057

and obtain results compared to and consistent3058

with those they publish in their paper (e.g. we3059

compare our reported performance of their3060

baseline on the obj-pp-to-subj-pp generalization3061

(of ReCOGS_pos), measured by us as 19.7% +/-3062

6.1% Semantic Exact Match (sample mean +/- std)3063

with 95% confidence interval for the sample mean3064

with n=20 of 17.0% to 22.4% (n=20 separately3065

trained models with different random seeds for3066

weight initialization and training data ordering;3067

n=1000 examples used to test each of the n=203068

models) with their Figure 5 (ReCOGS_pos)).3069

The RASP (Weiss et al., 2021) interpreter3070

(hosted at https://github.com/tech-srl/rasp) is MIT3071

licensed and we do not reproduce their code or3072

any substantial part of their actual work within this3073

publication (our code when executed retrieves a3074

fresh copy from the source and their interpreter is3075

not bundled with it), though we use the language3076

they define and provide code samples written in3077

that language. We are studying how a Transformer3078

could perform the ReCOGS task (an approximation3079

of interpreting the meaning of a subset of English 3080

sentences), which is consistent with their intended 3081

research use for the language. We are not deploy- 3082

ing any RASP programs in a customer/user facing 3083

or online use case and using in an offline research 3084

context only. 3085

Klinger’s description of the COGS in- 3086

put probabilistic context-free grammar 3087

(PCFG) from within their CPG project 3088

(from https://github.com/IBM/cpg/blob/ 3089

c3626b4e03bfc681be2c2a5b23da0b48abe6f570 3090

/src/model/cogs_data.py#L523 , note we 3091

are not using CPG itself) is Apache v2 li- 3092

censed (https://github.com/IBM/cpg/blob/ 3093

c3626b4e03bfc681be2c2a5b23da0b48abe6f570 3094

/LICENSE) and we do not substantially reproduce 3095

it within our work but do use their labels for 3096

parts of speech and verb types in a few examples 3097

(it may be copied from the code they received 3098

from Kim and Linzen as they acknowledge Kim 3099

and Linzen for providing their COGS generator 3100

code). We believe that "Derivative Works shall 3101

not include works that remain separable from, or 3102

merely link (or bind by name) to the interfaces 3103

of, the Work and Derivative Works thereof" 3104

to our use of the names. As far as use for the 3105

intended purpose we are studying the same input 3106

(ReCOGS uses COGS input, except in training 3107

where augmentations are added) as Klinger and 3108

are using the description of the COGS input PCFG 3109

for a similar purpose (though we are studying 3110

how COGS/ReCOGS input can be interpreted by 3111

Transformers, while they are proposing an alterna- 3112

tive to Transformer-like approaches). Specifically, 3113

Klinger’s Lark-compatible description of the 3114

COGS input grammar was used for analyzing 3115

COGS/ReCOGS input sentences to understand 3116

how many flat pattern rules would be required 3117

to cover the diversity of training input sentences, 3118

categorize sentences for different types of error 3119

analysis, and study how many in-distribution non- 3120

augment training examples would be required for a 3121

model that could learn the underlying probabilistic 3122

context-free grammar to see all expansions. We 3123

independently checked that all the words were 3124

present in either the train.tsv, train_100.tsv, or 3125

dev.tsv and that words in Klinger’s description 3126

were not leaked from test or generalization sets. 3127

We do keep "monastery" and "gardner" as Klinger 3128

do (only included in their train_100.tsv and dev.tsv 3129

not also in train.tsv) , see relevant discussion 3130

on COGS Github with the COGS author at 3131

42

https://aclanthology.org/2020.emnlp-main.731/
https://aclanthology.org/2023.tacl-1.96/
https://creativecommons.org/licenses/by/4.0/
https://github.com/najoungkim/COGS
https://github.com/frankaging/recogs
https://github.com/tech-srl/rasp
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/src/model/cogs_data.py#L523
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE
https://github.com/IBM/cpg/blob/c3626b4e03bfc681be2c2a5b23da0b48abe6f570/LICENSE

https://github.com/najoungkim/COGS/issues/3132

2#issuecomment-976216841. We similarly3133

checked all grammar patterns that Klinger describe3134

were demonstrated in the training examples3135

(ignoring lexical differences - though note that3136

we do NOT use their description of grammar in3137

our actual RASP model, though it is included in3138

comments for comparison, as our RASP model is3139

NOT even a PCFG but a flat pattern matcher for 193140

patterns (plus 2 masking rules) for which we give3141

explicit ReCOGS training examples see Table 2).3142

The Lark tool (https://github.com/lark-3143

parser/lark , MIT licensed) was used for planning3144

and analysis (NOT by our RASP model) to parse3145

the COGS/ReCOGS input examples into the3146

COGS PCFG grammar as described by Klinger3147

(not used by the model when actually performing3148

the task, completely separate analysis to look3149

at which examples demonstrate which rules or3150

require which rules to perform and how many3151

rules are required to cover the grammar). The Lark3152

tool is frequently used in research so this use is3153

consistent with the author’s intention.3154

For grammar coverage analyses the Track-3155

ingGrammarCoverageFuzzer from (Zeller et al.,3156

2023) was used (we do NOT reproduce/copy their3157

work outside invoking by name within our paper3158

or shared code, though it is MIT licensed) (see3159

e.g. https://github.com/uds-se/fuzzingbook/blob/3160

c675e20c92f1514692067f01b7654d7e78ab0a973161

/docs/code/GrammarCoverageFuzzer.py, where3162

the "source code that is part of the content,3163

as well as the source code used to format and3164

display that content is licensed under the MIT3165

License"). The authors (Zeller et al., 2023) provide3166

their book as a resource for software developers3167

working on software testing among other things3168

(https://github.com/uds-se/fuzzingbook/blob/3169

c675e20c92f1514692067f01b7654d7e78ab0a973170

/README.md?plain=1#L59).3171

Software versions for packages installed are also3172

typically logged for each experiment in the note-3173

book for each experiment see Section 9.1 for links.3174

For styling and formatting this paper, we3175

used the Association for Computational Lin-3176

guistics conference paper templates linked from3177

https://github.com/acl-org/acl-style-files/blob/3178

40bd374c5610aa17a96e3e4f0b5834ba90febe983179

/README.md?plain=1#L133180

and hosted at Overleaf, see3181

https://web.archive.org/web/ 20250131174713/3182

https://www.overleaf.com/latex/templates/3183

association-for-computational-linguistics- 3184

acl-conference/jvxskxpnznfj which is li- 3185

censed Creative Commons CC BY 4.0 (3186

https://creativecommons.org/licenses/by/4.0/ 3187

) and explicitly listed as an option by 3188

https://web.archive.org/web/ 20250211084433/ 3189

https://aclrollingreview.org/authors (Overleaf 3190

template option). 3191

43

https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/najoungkim/COGS/issues/2#issuecomment-976216841
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/docs/code/GrammarCoverageFuzzer.py
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/docs/code/GrammarCoverageFuzzer.py
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/docs/code/GrammarCoverageFuzzer.py
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/docs/code/GrammarCoverageFuzzer.py
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/docs/code/GrammarCoverageFuzzer.py
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/README.md?plain=1#L59
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/README.md?plain=1#L59
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/README.md?plain=1#L59
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/README.md?plain=1#L59
https://github.com/uds-se/fuzzingbook/blob/c675e20c92f1514692067f01b7654d7e78ab0a97/README.md?plain=1#L59
https://github.com/acl-org/acl-style-files/blob/40bd374c5610aa17a96e3e4f0b5834ba90febe98/README.md?plain=1#L13
https://github.com/acl-org/acl-style-files/blob/40bd374c5610aa17a96e3e4f0b5834ba90febe98/README.md?plain=1#L13
https://github.com/acl-org/acl-style-files/blob/40bd374c5610aa17a96e3e4f0b5834ba90febe98/README.md?plain=1#L13
https://github.com/acl-org/acl-style-files/blob/40bd374c5610aa17a96e3e4f0b5834ba90febe98/README.md?plain=1#L13
https://github.com/acl-org/acl-style-files/blob/40bd374c5610aa17a96e3e4f0b5834ba90febe98/README.md?plain=1#L13
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://web.archive.org/web/20250131174713/https://www.overleaf.com/latex/templates/association-for-computational-linguistics-acl-conference/jvxskxpnznfj
https://creativecommons.org/licenses/by/4.0/
https://web.archive.org/web/20250211084433/https://aclrollingreview.org/authors
https://web.archive.org/web/20250211084433/https://aclrollingreview.org/authors
https://web.archive.org/web/20250211084433/https://aclrollingreview.org/authors

	Introduction
	Prior Literature
	Data
	Model
	Methods
	Results
	Analysis
	Conclusion
	Appendix
	Results Notebook links by section
	ReCOGS RASP model on test set
	ReCOGS RASP model on generalization set (all splits)
	Wu2023 Encoder-Decoder Transformer from scratch baselines (ReCOGS_pos)
	Wu2023 Encoder-Decoder baseline 2-layer Transformer does not improve on the obj_pp_to_subj_pp split when adding 1 or 2 additional layers
	Attraction Error Analysis for Wu2023 baseline Encoder-Decoder Transformer on obj_pp_to_subj_pp split
	Wu2023 baseline Encoder-Decoder Transformer on v_dat_p2 generalization to recipient pp modification after training on theme pp modification (both right of verb)

	Restricted Access Sequence Processing word-level token program/model design
	Note on a Restricted Access Sequence Processing character-level token program / model design (NOT what is used in this paper but feasible)
	Model Detail
	Methods Detail
	Attraction errors
	RASP for relation right index ignoring attractor "pp np"
	Methods detail for Attraction Error Analysis for Wu2023 baseline Transformer: parsing sentences with Lark and tagging sentences as agent left-of-verb or not
	v_dat_p2 recipient pp-modification for generalization assessment and data augmentation attempt
	Computing Grammar Coverage
	Grammar Coverage analysis to develop and justify Restricted Access Sequence Processing model design
	Zhou et al 2024 relevance of their long addition experiment to language modeling and note on the Parity task and Transformers
	Composition and Learning
	Potential Risks
	Scientific Artifacts - Is Our Use Consistent with Authors' Intention and Licensing

