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Abstract

Modern large language models (LLMs) achieve impressive performance on some
tasks, while exhibiting distinctly non-human-like behaviors on others. This raises
the question of how well the LLM’s learned representations align with human rep-
resentations. In this work, we introduce a novel approach to study representation
alignment: we adopt an activation steering method to identify neurons responsible
for specific concepts (e.g., “cat”) and then analyze the corresponding activation
patterns. We find that LLM representations captured this way closely align with
human representations inferred from behavioral data, matching inter-human align-
ment levels. Our approach significantly outperforms the alignment captured by
word/sentence embeddings, which have been the focus of prior work on human-
LLM alignment. Additionally, our approach enables a more granular view of how
LLMs represent concepts — we show that LLMs organize concepts in a way that
mirrors human concept organization.

1 Introduction

Large language models (LLMs) exhibit impressive performance on a variety of tasks from text
summarization [2,|10] to zero-shot common-sense reasoning [17,22]], and are increasingly deployed
as a human proxy [11,[12} |6} |18]]. At the same time, there is a growing body of evidence suggesting
that LLMs exhibit patterns of behavior distinctly different from humans, such as hallucinating
information [5 |13]] or memorizing complex patterns to solve reasoning tasks [26]. Such behaviors
raise the question of how closely the conceptual representations learned by these models align with
human conceptual representations, as safe and trustworthy deployment of LLMs may require such
alignment.

Here, we propose a novel way to study human-LLM alignment in concept representation. We borrow
a method from activation steering [23| |24} 20], to identify which neurons are most responsible for
processing and understanding a particular concept, so-called expert neurons. We show that the
neurons discovered with this method provide information about how models represent concepts and
capture the dimensions meaningful to humans, providing a reliable method to test model alignment.
Additionally, we analyze how human-model alignment evolves with model training and depends on
model capacity: it emerges early in training, with model size playing only a small role.
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2 Methods

2.1 Finding expert neurons

We adopt the finding experts approach introduced by Suau et al. [23]] for activation steering, to study
representational alignment. In this approach, a concept c is defined through a set of example sentences

N = N} + N, where N is a set of sentences that contain ¢ (henceforth positive ser) and N is a

set of sentences that do not contain ¢ (negative set). Next, we obtain the activations z;,, = {z,‘m }1:1

for every neuron m in the model in response to the inputs from both sets of sentences. z¢, is then
treated as a prediction score for the presence of c. The performance of each neuron as a classifier for
the concept (i.e., its expertise) is measured as the area under the precision-recall curve (AP) on this
task — an expert is a neuron with AP score of above 0.5. We calculate the AP score for all units in the
MLP and attention layers.

2.2 Data and Models

To understand the alignment between human and model representations, we examine how patterns
in expert neurons relate to perceived concept similarity in humans obtained from the MEN dataset
[4], which contains word pairs annotated with human-assigned similarity judgments. For each word
in a pair, we generate a set of sentences containing that word. We use three models of different
performance levels: GPT-4 [16]], Mistral-7b-Instruct-v0.2 [9], and an internal 80b-chat model. The
negative sets are sampled from the datasets for the remaining non-target concepts (e.g., if we are
considering 1000 concepts, one of which is “cat”, the negative set is sampled from 999 concepts
excluding “cat”).

We use GPT-2 [19] to select hyper-parameters (e.g., the size of the positive and negative datasets) and
the Pythia family [3]] — 70m (smallest), 1b, and 12b (largest) for the main experiment to understand
the impact of model size on representational alignment. For each Pythia model, we work with
checkpoints 1, 512, 1k, 4k, 36k, 72k, and 143k, to track how representational alignment develops
throughout training.

3 Experts capture stable representations across different dataset
characteristics

While the success of expert-based methods at steering model activations is well-documented —
activating the experts for a particular concept steers the model to generate text consistent with a
particular concept [23] |24], our interest is in studying model representations through the patterns in
experts. Given the novel application of the method, we first explore the impact of dataset size, the
model used to generate the dataset, and the exact sentences used to represent a concept on the stability
of the discovered expert sets. We sample 50 word pairs from the training split of the MEN dataset.
For each word in a pair, we generate a positive set containing 7000 sentences from the three models
above. We sweep over multiple positive and negative set sizes (see Fig. [I) and for each positive
and negative set combination, we repeat expert extraction eight times (folds) with the sets randomly
sampled from the full pool of sentences. We examine how sensitive the discovered experts are to the
specific slice of the positive and negative sets (the eight folds). We look at Jaccard similarity between
expert sets across folds, using a range of AP thresholds 7, which can be thought of as the quality of
an expert neuron — the larger the value of 7, the more expert a neuron is for a given concept.

The expert neurons discovered across different data configurations and folds (indicated by the error
bars) are stable, as indicated by a high (~ 0.8) overlap proportion, and show little sensitivity to our
manipulations. Interestingly, the LLM (line color) used to generate the probing dataset matters little
— while stronger models generate more diverse datasets (mean type/token ratio of 0.34, 0.21 and 0.18
for GPT-4, internal 80b-chat, and Mistral-7b-Instruct-v0.2 respectively), resulting in a somewhat
higher expert overlap, the gain is too small to warrant their increased cost. Expert overlap increases
with every increase in the size of the positive set, but the increases are small beyond 300 sentences,
and performance for 400 sentences is virtually indistinguishable from 500 sentences. Interestingly,
a larger negative set results in lower expert overlap at higher 7 values and an increased variability
across folds. Based on these findings, we conduct all subsequent analyses with a positive set of
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Figure 1: Expert discovery is relatively stable across various dataset characteristics. Points represent
condition means; error bars represent bootstrapped 95% confidence intervals. Columns and rows
represent the size (number of unique sentences) of the positive and negative sets respectively. Inter-
concept is within-concept expert overlap; intra-concept is expert overlap averaged across randomly
sampled pairs of concepts.

400 sentences and a negative set of 1000 sentences, all generated with Mistral-7b-Instruct-v0.2 and
consider the expertise threshold 7=0.5.

4 Expert-captured representations are more aligned with humans than the
embeddings

We measure the alignment between LLM and human representations as the correlation between
the human versus the LLM’s similarity score for each pair of concepts in the test split of the MEN
data (1000 pairs). The experts-based similarity score is the Jaccard similarity between expert sets.
We compare this representation to two types of embeddings: single-word embeddings from the
embedding layer in line with prior work on LLM-human concept alignment [[/]] and the average of
the sentence embeddings from the positive set for a given word from the final hidden layer. Here, we
compute cosine similarity between the embeddings for each word pair in the MEN test split.
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Figure 2: Expert-based representations of similarity are more closely aligned with human ones than
the embeddings. Points are Spearman correlations between LLM similarity and human similarity in
the MEN dataset (significant after Checkpoint 1, p<0.05); error bars are bootstrapped 95% confidence
intervals. The subplots are similarity type.

Expert-based representations are closely aligned with humans (Fig. 2). At the final checkpoint,
the Spearman correlations between expert overlap and MEN similarity are 0.70, 0.77, 0.79 for
70m, 1b, and 12b respectively. For reference, agreement between humans has a correlation of 0.84.
Interestingly, model size has a small impact on this alignment in line with findings in vision from
[15]: the 1b and 12b models are virtually indistinguishable, with the 70m model being slightly less



aligned. The correlations with human similarity are significantly lower for both single word and
sentence embeddings compared to the experts (p-values<0.05).

S Expert-captured representations mirror human conceptual structure

We now ask whether the experts capture a broader human-interpretable representation of concepts
that goes beyond pairwise (dis)similarity. Specifically, we ask if the concepts are clustered in the
expert space in a way that aligns with human-interpretable knowledge structures. Humans organize
concepts into domains [8, |14} 21]]. For example, “dog”, “cat” and “horse” are all animals and “bike”,
“bus”, and “car” are all vehicles. This raises the question of whether LLMs organize concepts in a
similar way. For the case study, we manually generate lists of ten domains with four concepts per
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domain (e.g., the domain animal containing concepts “cat”, “dog”, “cheetah”, and “horse”).
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Figure 3: Concept domain reconstruction based on expert overlap in Pythia 12b. Each node represents
a concept; edge thickness corresponds to the degree of reciprocal expert overlap between concepts.

Fig. B|provides a visualization of the concept structure in the expert space, revealing a clear domain
organization: concepts belonging to the same domain are strongly associated (e.g., all color terms
are connected to each other, but not to other domains), while cross-domain associations are notably
sparser. Expert sets, however, also uncover meaningful between-domain connections. For instance,
while “driver” is an occupation, its expert set is also strongly associated with “bus” or “vehicle”.
Similarly, “racing” connects the sports domain with the vehicles domain.

6 Conclusion

We present a novel approach to study alignment between human and model representations based
on the patterns in expert neurons. Representations captured by these neurons align with human
representations significantly more than word/sentence embeddings, and approach human alignment
levels, adding to the growing body of evidence that different learning systems —and, in our case,
humans and LLMs~— can converge on similar representations [/1,[25]. Consistent with prior work in
vision, [[15]], we find that model size has little influence on alignment.
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