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ABSTRACT

Tiny objects are hard to detect due to their low resolution and small size. The
poor detection performance of tiny objects is mainly caused by the limitation of
network and the imbalance of training dataset. A new feature pyramid network
is proposed to combine context augmentation and feature refinement. The fea-
tures from multi-scale dilated convolution are fused and injected into feature pyra-
mid network from top to bottom to supplement context information. The channel
and spatial feature refinement mechanism is introduced to suppress the conflict-
ing formation in multi-scale feature fusion and prevent tiny objects from being
submerged in the conflict information. In addition, a data enhancement method
called copy-reduce-paste is proposed, which can increase the contribution of tiny
objects to loss during training, ensuring a more balanced training. Experimental
results show that the mean average precision of target targets on the VOC dataset
of the proposed network reaches 16.9% (10U=0.5:0.95), which is 3.9% higher
than YOLOV4, 7.7% higher than CenterNet, and 5.3% higher than RefineDet.

1 INTRODUCTION

As an challenge in the field of target detection, tiny object detection is widely used in vision tasks
such as autonomous driving, medical field, drone navigation, satellite positioning, and industrial
detection. In recent years, object detectors based on deep learning have made great progress(Tong
et al.l 2020; Feng et al) 2020). One-stage algorithms represented by(Redmon & Farhadil 2018;
Zhang et al., 2020; [Liu et al. [2016) can directly get access to the target of interest through the
forward convolutional neural network with a fast speed. However, two-stage algorithms(He et al.,
2017; Ren et al.| 2016)) obtain the Rol (Region of Interest) based on the generated candidate boxes,
which has higher accuracy. Although these target detection algorithms have made great progress in
precision and speed, their performance is still very unsatisfactory when detecting tiny targets(less
than 32x32 pixels). On most public data sets, the detection precision of tiny objects is even less than
half of that of larger targets(Liu et al., 2016). Therefore, tiny object detection still has a lot of room
for improvement.

The poor performance of tiny object detection is mainly caused by the limitations of the network
itself and the imbalance of training data(Kisantal et al., |2019). To obtain solid semantic informa-
tion, modern detectors try to stack more and more pooling and down-sampling operations so that
tiny object features with few pixels are gradually lost in forwarding propagation(Liu et al. [2021),
limiting the detection performance of tiny objects. FPN(Lin et al., 2017) can alleviate the problem
of information diffusion to a certain extent (Redmon & Farhadil [2018; [Liu et al., 2016)) by fusing
low-resolution feature maps with high-resolution feature maps horizontally. However, fusing the in-
formation of different densities directly will cause semantic conflicts, which limiting the expression
of multi-scale features and making tiny objects submerged in conflicting information easily. At the
same time, in the current classic public data set, the number of annotations of tiny objects is much
less than that of larger targets(Chen et al., 2020). Therefore, the convergence direction of the net-
work is continuously leaning toward larger targets during training, resulting in poor performance of
tiny objects. Consequently, we believe that it is feasible to improve the detection rate of tiny objects
from the above two aspects.
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To solve the problem of feature dispersion of tiny objects and semantic differences between layers,
this paper proposes a new feature pyramid composite neural network structure that combines context
augmentation and feature refinement. The proposed algorithm framework is shown in Figure[]
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Figure 1: Overall network structure. CAM and FRM are the main components of the network. CAM
injects contextual information into FPN, and FRM filters FPN conflicting information.

It is combined with context augmentation module (CAM) and feature refinement module (FRM).
CAM merges multi-scale dilated convolution features to obtain rich context information for feature
augmentation. FRM introduces a feature refinement mechanism in the dimensions of the channel
and space to suppress conflict information and prevent tiny objects from being submerged in conflict
information. Simultaneously, to ensure that the network will not lean towards larger targets during
training, a method called copy-reduce-paste is proposed to increase the contribution to the loss
of tiny objects in training. We train and test on the standard public data set PASCAL VOC, and
verify the effectiveness of out method for detecting tiny objects through comparative experiments
and ablation experiments. The algorithm proposed in this paper achieves a precision of §3.6%
(I0U=0.5) on the VOC data set, which is higher than most comparison algorithms, and the precision
of tiny objects reaches 16.9% (I0U=0.5:0.95), which is higher than YOLOV4, CenterNet and other
cutting-edge networks.

2 RELATED WORK

2.1 OBIJECT DETECTOR BASED ON DEEP LEARNING

As a fundamental computer vision task, target detection contains both classification and localiza-
tion, which can be regarded as a regression problem. In the early days, hand-designed features were
widely applied to target detection. However, hand-designed feature is a kind of shallow feature, and
it is gradually replaced after the appearance of the CNN-based features. R-CNN(He et al.,[2017), as
the pioneering work of two-stage algorithms, employs prior boxes of different size to match targets
of different size and then selects candidate regions through CNN. To reduce the training time, Fast-
RCNN(Ren et al., 2016} Xiao et al., 2020) extracts the feature map of the entire image, and then
spatial pyramid pooling and Rol (Region of Interest) pooling are used to generate regional features
and to filter candidate regions. To further improve the precision of tiny object, EFPN(Deng et al.,
2021)) proposes a super-resolution feature pyramid structure to amplify tiny object features. Com-
pared with two-stage networks, one-stage networks have a faster speed but lower precision. SSD(Liu
et al., 2016)) puts anchor boxes densely on the image to obtain the target boxes, and meanwhile, it
makes full use of features of different scales to detect smaller targets. YOLOV3(Redmon & Farhadi,
2018)) chooses to detect large, medium, and tiny objects separately based on three outputs of the fea-
ture pyramid, which significantly improves the detection performance of tiny objects.(Zhang et al.,
2020) introduces a high-resolution attention mechanism to FPN to mine the most useful information
of tiny targets. This paper chooses YOLOV3(Redmon & Farhadi, 2018) as the baseline and makes
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improvements on this basis. RefineDet(Zhang et al.| 2018)) introduces a new loss function to solve
the imbalance between simple samples and difficult samples. Recently, detectors based on anchor-
free architecture are becoming more and more popular(Zhao et al.|[2019). Although target detection
algorithms are constantly developing and replacing, there is no big breakthrough in the field of tiny
object detection, and the detection precision of tiny objects stays low.

2.2 MULTI-SCALE FEATURE FUSION

Using multi-scale features is an effective method to improve the detection precision of tiny objects.
SSD(Liu et al., 2016 is the first attempt to predict the location and category of targets with multi-
scale features. FPN(Lin et al., 2017) merges adjacent feature maps with different grains from top
to bottom, which can improve the expressive ability of features greatly. A large number of variant
structures similar to FPN(Lin et al., 2017 have emerged. PANet(Liu et al.|[2018)) adds extra bottom-
up connections based on FPN(Lin et al.,[2017) to transfer information from the lower layer to the
upper layer more efficiently. NAS-FPN(Ghiasi et al.} 2019) found a new connection method through
neural architecture search technology. BiFPN(Tan et al.,|2020) improved the connection method of
PANet(Liu et al.||2018) to make it more efficient and introduced a simple attention mechanism at the
connection point. Although the structures mentioned above have greatly improved the multi-scale
expression ability of the network, they have ignored the existence of conflict information between
features of different scales, and the lack of context information may hinder the further improvement
of performance, especially for tiny objects, which is easy to be submerged in conflict information.
This article fully considers the impact of conflict information and context information on detection
precision.

2.3 DATA AUGMENTATION

Preprocessing of the training set has always been an indispensable part of deep learning, such as
rotation, deformation, random erasure, random occlusion, illumination distortion, and MixUp. In
recent days, several data enhancement methods for tiny objects have been proposed.(Chen et al.|
2020) regards loss as a kind of feedback. And four images were scaled to the same size and stitched
together to enhance the performance of tiny object detection under the guidance of feedback. Un-
like(Chen et al.|[2020), (Yu & Koltun, 2015)) scales 4 images to different sizes and stitched them into
one.(Kisantal et al.l[2019) tried to achieve tiny object data augmentation by copying and pasting tiny
objects back to original images. This method can only increase the number of tiny objects but not
the number of training images containing tiny objects. It will also cause the imbalance of training
to a certain extent. Because larger targets are widely distributed in each batch of training, this paper
guarantees the tiny objects’ contribution to the loss in eache batch of training, making the training
more balanced.

3  PROPOSED METHODS

This chapter will introduce our tiny object detection network in detail. As we can see in Figure
{C2, C3, C4, C5} represent different levels after input image being down-sampled by {4, 8, 16, 32}
times. {F1, F2, F3} are denoted as newly generated feature levels corresponding to {C3, C4, C5} by
a layer of convolution, and C2 is discarded because of a mess of noises. {L1, L2, L3} are denoted
as feature levels generated by FPN and {P1, P2, P3} are denoted as the feature levels generated
by FRM. The network is mainly composed of CAM and FRM. CAM is inspired by the mode that
humans recognize objects. For example, it is difficult for human to distinguish a bird in a very high
sky, but it is easy for human to distinguish when considering the sky as the context information.
Therefore, we believe that context information is helpful for tiny object detection. CAM applies
dilated convolution with different dilated convolution rates to obtain context information of differ-
ent receptive fields, and injects it into FPN(Lin et al., 2017) from top to bottom to enrich context
information. But it will introduce redundant information and conflicting information while shar-
ing the information, because of the semantic differences among different levels of FPN(Lin et al.,
2017). Therefore, FRM is proposed to filter conflict information and reduce semantic differences.
By fusing the features between different layers adaptively, the conflict information among layers is
eliminated to prevent the tiny object features from being submerged in the conflict information.
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Simultaneously, in view of the small number of positive samples generated by tiny objects and the
limited contribution to loss of tiny objects, a data augmentation method called copy-reduce-paste
is proposed. Specifically, copy the larger targets in the training set, reduce them, and then paste
them back to the original imge. During the pasting process, it is necessary to ensure that the pasted
targets do not overlap with the existing targets. The above methods will be explained in detail in the
following sections.

3.1 FEATURE PYRAMID NETWORK WITH CONTEXT AUGMENTATION AND FEATURE
REFINEMENT

3.1.1 CONTEXT AUGMENTATION MODULE

Tiny target detection requires context information. We propose to use dilated convolution with
different dilated convolution rates to obtain context information of different receptive fields to enrich
the context information of FPN. The structure is shown in Figure[2]
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Figure 2: The Structure of CAM: The feature is processed by the dilated convolution with rates of
1, 3, and 5 respectively. And the context information is obtained by fusing the features of different
receptive fields.

Figure[Z]is the structure of CAM(Yu & Koltun| 2015). We obtain the context information of different
receptive fields by performing dilated convolution with different dilated convolution rates on CS.
The kernel size is 3x3, and the dilated convolution rates are 1, 3, and 5. The possible ways of fusion
are shown in Figure 3] (a), (b), and (c).
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Figure 3: Ways of fusion.

Method (a) and (c) are weighted fusion and concatenation operation respectively. That is, the fea-
ture maps are directly added in the dimension of space and channel. Method (b) is an adaptive
fusion method. Specifically, assuming that the size of the input can be denoted as (bs, C, H, W),
we can obtain a spatial adaptive weight of (bs, 3, H, W) by performing operations of convolution,
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Table 1: Ablation experiment results of CAM

METHOD APq AP, AP AR, AR, AR,
baseline 348% 60.5% 83.6% 579% 787% 82.8%
Weighted Fusion 35.6% 63.0% 84.1% 60.5% 81.8% 93.2%
Adaptive Fusion 36.0% 631% 849% 589% 81.0% 93.6%

Concatenation Fusion 36.6% 61.0% 842% 59.8% 79.5% 93.1%

concatenation and Softmax. Three channels correspond to the three inputs one-to-one, and the con-
text information can be aggregated to the output by calculating the weighted sum. We verify the
effectiveness of each fusion method through ablation experiments and the results are shown in the
following Table m APg, APy, and AP) are defined as the precision of tiny, medium, and large
targets. And AR;, ARy, and AR are denoted as the recall of tiny, medium, and large targets.

It can be seen from Table [T] that the advantages obtained by (c) is the largest for tiny objects. AP
and ARy are both increased by 1.8%. Method (b) has the greatest improvement for medium and
large targets. The improvement brought by method (a) is basically somewhere in between.

3.1.2 FEATURE REFINEMENT MODULE

FPN(Lin et al}|2017)) is proposed to fuse features of different scales. However, features of different
scales have semantic differences that cannot be ignored. Directly fusing features of different scales
will bring much redundant information and conflicting information, reducing the ability of multi-
scale expression. Therefore, FRM is proposed to filter conflicting information and prevent tiny
object features from being submerged in conflict information. The overall structure of FRM is
shown in Figure [
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Figure 4: The proposed FRM: (a) The framework of FRM. (b) The structure represented by the solid
line in (a)

As can be seen from Figure d] FRM is mainly composed of two parallel branches, namely channel
purification module and space purification module. They are used to generate adaptive weights in the
dimension of space and channel, which can guide features to learn in a more critical direction. The
structure of channel purification module is shown in Figure (b). To obtain channel attention map,
the input feature map is compressed in the dimension of space to aggregate the spatial information
that can represent the global features of images. Adaptive average pooling and adaptive maximum
pooling are combined to obtain more refined global features of images. X, is defined as the input
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of the my;, (m={1, 2, 3}) layer of FRM. X (n,m) is defined as the result of resizing from the n,
layer to the myy, layer. X} "y Are defined as the value of the myj, feature map on the k;;, channel at
the position (x,y). So, the output of the upper branch is:

K7y =am x4 pm e x ) e x G )

In the above formula, K", represents the output vector of the my;, layer at the position (x,y). a, b
and c are the channel adaptlve weights, the size of which is 1x1x1. a,b, and c are defined as:

[@™, 0™, "] = o [AP (F) + MP (F)] 2

F is the feature generated by concatenation operation just as show in Figure @ o represents the
sigmoid operation. AP and MP are average pooling and maximum pooling respectively, and then
these two weights are summed in the dimension of space, and the channel-based adaptive weight is
generated after sigmoid.

The spatial purification module generates the relative weight of all positions relative to the channel
through softmax, and the output of the lower branch is shown in the following equation 3}

o, ZZ( e XS 40y X 4 X)) 3)

c=1lk,z,y

In formula[3] x and y denote the spatial position of the feature map, and k denotes the channel of the
input feature map. ¢7", is the output feature vector at position (x,y). ", ..V, and ", . denote
the spatial attention weight relative to the myj, layer, where ¢ represents their channel. v, can be
expressed by the formula [}

(™ v™ n™ = Softmax (F) 4)

In formulafd] F has the same meaning as formula[2] and softmax is used to normalize the feature map
in the direction of the channel to get the relative weights of different channels at the same location.
Therefore, the total output of this module can be expressed as:

m — qéﬂl _F lifﬂm (5)

In this way, the features of all layers of FPN are fused together under the guidance of adaptive
weights, and {p1, p2, p3} is used as the final output of the entire network.

In this way, the features of all layers of FPN are fused together under the guidance of adaptive
weights, and {p1, p2, p3} is used as the final output of the entire network.

To demonstrate the effectiveness of FRM, we visualized some feature maps. The detection of tiny
objects is mainly dominated by the bottom layer of FPN, so the bottom layer features are visualized
in this section only. And we scale the feature maps to the same size. As shown in the figure, the
leftmost column is the input image to be detected. F3, L3, P3 are the visualization results of the
feature map of the corresponding label in Figure[T]

Input

Figure 5: Visualization results of feature maps. F3 is the input feature map of FPN(Lin et al.l[2017),
L3 is the output feature map of FPN(Lin et al., [2017), and P3 is the output feature of FRM which
has less conflicting information.
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It can be seen from Figure[3]that F3 can roughly locate the position of targets, but there is more noise
in the background. After FPN(Lin et al.,[2017), a large amount of high-level semantic information is
introduced into L3. These features can filter most of the background noise, but conflict information
is also introduced because of the different grains of feature, making the response of the target area
weaken. Focusing on P3, the target feature is strengthened, the background area is suppressed, and
the boundary between the target and the background is more obvious, which will help the detector
distinguish between positive and negative samples and facilitate positioning and classification. It
can be seen from the visual analysis that the FRM proposed in this paper can greatly reduce the
conflict information and improve the detection precision of tiny objects.

Figure 6: Examples of data enhancement. The red box denotes the original target, and the green box
represents the enhanced target.

Table 2: Ablation study results of data augmentation
PAST TIME AP, AP, AP, AR, AR, AR,

baseline 348% 60.5% 83.6% 579% 18.7% 82.8%
Pastex1 373% 62.7% 834% 59.8% 809% 93.0%
Pastex2 36.8% 62.6% 822% 58.0% 81.0% 92.1%
Pastex3 332% 59.7% 81.5% 58.0% 79.8% 93.1%

3.2 COPY-REDUCE-PASTE DATA ENHANCEMENT

In the current mainstream public data set, the number of positive samples generated by tiny objects
and the contribution to loss of tiny objects is much smaller than those of larger targets, making the
direction of convergence lean toward to larger targets. In order to alleviate this problem, we copy,
reduce, and paste the target in images during training. By increasing the number of tiny objects in
images and the number of images containing tiny objects, the contribution to the loss of the tiny
object is increased and makes training more balanced. Figure [6]b, ¢ is the results of pasting once
per target at different positions. By this way, the number and context information of tiny objects is
greatly enriched.

In this part, we study the influence of the paste times on the detection of tiny objects. The results of
the ablation experiment are shown in Table 2]

It can be seen from Table [2]that as the times of pasting increase, the detection performance of tiny
objects gradually decreases, and it may even be lower than the baseline. This may because that as
the number of pasting increases, the distribution of the data set is gradually destroyed, making the
performance in the test set worse. Experimental results show that pasting once is the best setting.
Compared with the baseline, APy is increased by 2.5%, AR is increased by 1.9%, and the detection
performance of medium and large targets is also slightly improved.

3.3 ABLATION STUDY

We design ablation experiments to verify the effectiveness and contribution rate of each module. In
this section, we gradually add data enhancement methods, CAM, and FRM to the baseline model,
YOLOV3(Redmon & Farhadil, [2018)), ensuring that the test environment and configuration are ex-
actly the same during the experiment. The experimental results are shown in Table[3]
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Table 3: Overall ablation study results

AUGMENTATION CAM FRM AP, AP, AP, AR, AR, AR

348% 60.5% 83.6% 579% 18.7% 92.8%

v 373% 627% 83.4% 59.8% 809% 93.0%
36.6% 61.0% 842% 598% 79.5% 93.1%

v 376% 62.1% 839% 59.0% 79.1% 92.6%

v v v 402% 64.1% 84.6% 64.8% 81.0% 93.9%

In general, the module proposed in this paper can significantly improve the target detection perfor-
mance, especially for the tiny objects and medium objects, which is also in line with our original
intention. As shown in the table, APy is increased by 5.4%. APy, is increased by 3.6% , while AP, is
increased by 1.0%. At the same time, the recall of targets of different scales has also been improved
to varying degrees. Specifically, ARy is increased by 6.9%, AR,, is increased by 2.3%, and AR;
is increased by 1.1%. Copy-reduce-paste: The data enhancement method increases AP by 2.5%
, increases APy, by 2.2%, but decreases AP slightly. CAM: The CAM module can improve APg
, APy, and AP, especially for APy . Its precision and recall rate are increased by 1.8% and 1.9%
respectively. FRM: AP is increased by 2.8%, APy, is increased by 1.6%, and AP is basically the
same.

4 EXPERIMENT

4.1 DATA SET AND EVALUATION INDICATORS

Experiments are conducted on PASCAL VOC data. The data set has 20 classes and contains 22136
training images (voc2007 and 2012trianval) and 4952 test images (voc2007test). we choose average
precision (AP) and average recall (AR) as evaluation indicators. The precision evaluation indicators
contain mAP, AP, and AP,,, which measure the overall precision rate, tiny object precision rate,
and medium target precision rate, respectively. The recall evaluation indicators contain AR, AR,
and AR,,, which measure the overall recall rate, the tiny object recall rate, and the medium target
recall rate, respectively.

In order to ensure the fairness of comparison, all experiments in this paper are conducted under the
framework of PyTorch(Paszke et al.| [2019), and hardware facilities are kept the same(CPU: Intel
Core 17-5820k CPU@3.30GHZ, Memory: 16GB, Graphics card: GeForce GTX TITAN X). We
apply the SGD optimizer to train 50 epochs, set the batchsize to 8, and set the learning rate to
0.0001.

4.2 MAIN RESULTS

In this section, we compare the algorithm proposed with other one-stage and two-stage algorithms
on the VOC data set. The comparison results are shown in Table ] and all the data has been pub-
lished(Wang et al.,[2019).

It can be seen from Table ] that the algorithm proposed in this paper has a higher mAP on the VOC
data set than most algorithms in recent years. It is 1.3% higher than PFPNet-R512(Kim et al.,[2018).
But itis 1.2% lower than IPG RCNN(Liu et al., |2020). This is largely due to the poor backbone and
smaller image size, making the detection performance slightly worse than IPG RCNN(Liu et al.,
2020). If we test the algorithm with multi-scale method, the mAP on the VOC data set can reach
85.1%, which is higher than all comparison algorithms.

At the same time, we reproduce the results of several state-of-the-art detectors on the VOC data
set and compare them with the algorithm proposed in this paper to verify the effectiveness of our
algorithm. The results are shown in the following Table [5]
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Table 4: Comparison results on the VOC data set (IOU=0.5), “++” Represents multi-scale testing

ALGORITHM BACKBONE INPUT SIZE MAP
Two-stage Network
Faster RCNN(Ren et al.,[2016)) ResNet101 1000x600 76.4
OHEM(Shrivastava et al., 2016) VGGI16 1000x600 74.6
CoupleNet(Zhu et al.,|2017) ResNet101 1000x600 82.7
FPN-Reconfig(Kong et al., 2018) ResNet101 1000x600 82.4
IPG RCNN(Liu et al.} [2020) IPGNet101 1000x600 84.8
- One-stage Network
SSD512(Liu et al.|[[2016) VGGI16 512x512 79.8
YOLOv2(Redmon & Farhadi,[2017) Darknet19 544x544 78.6
RefineDet(Zhang et al.,[2018) VGG16 512x512 81.8
CenterNet(Duan et al.,[2019) DLA 512%x512 80.7
PFPNet-R512(Kim et al.,[2018) VGGI16 512x512 82.3
Proposed Darknet53 448x448 83.6
Proposed++ Darknet53 448x448 85.1

It can be seen from Table[5]that the algorithm proposed in this paper has absolute advantages in AP
and AR on tiny objects. The algorithm in this paper is 3.9% higher than YOLOV4(Bochkovskiy
et al., |2020) (16.9%vs.13%), which has the highest AP; among comparison algorithms. Compared
with the RefineDet(Zhang et al., 2018)), our proposed algorithm are 9.2% (29.4% vs. 20.2%) higher
on AR but 1.5% lower on AP,,. Meanwhile, the algorithm proposed in this paper has the highest
AR of middle targets, which shows strong detectability for middle targets. We can see that the
algorithm proposed in this paper has great advantages in detecting tiny objects. Both the AP and the
AR of tiny objects perform well, which are better than most detection algorithms.

Table 5: Detection results of tiny object
ALGORITHM  AP; AP, AR, AR,

RefineDet 11.6% 349% 202% 39.9%
CenterNet 92%  313% 174% 43%

YOLOV4 13% 345% 18.1% 42.8%
Proposed 16.9% 33.4% 29.4% 45.8%

5 SUMMARY

We propose a composite structure of FPN, which contains a context augmentation module and a
feature refinement module. The context augmentation module leverages the dilated convolution to
extract the context information of different receptive fields and then integrates it into FPN to im-
prove the context information of the tiny objects. The feature refinement module combines spatial
adaptive fusion and channel adaptive fusion to suppress conflicting features from the dimensions
of channel and space to highlight useful features. In addition, a copy-reduce-paste data enhance-
ment method of tiny objects is proposed to prevent imbalance in training. Through experimental
results, we can see that the tiny object detection network proposed in this paper performs well on
the VOC data set. More results and Code are available at https://github.com/xiaojs18/
ObJject-Detection/tree/main/smallObjDetectionl
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