Published as a conference paper at ICLR 2020 DeepDiffEq workshop

ENFORCING HARD PHYSICAL CONSTRAINTS 1IN
CNNS THROUGH DIFFERENTIABLE PDE LAYER

Chiyu “Max” Jiang Karthik Kashinath

UC Berkeley Lawrence Berkeley National Lab

chiyu.jiang@berkeley.edu kkashinath@lbl.gov

Prabhat Philip Marcus

Lawrence Berkeley National Lab UC Berkeley

prabhat@lbl.gov pmarcus@me.berkeley.edu
ABSTRACT

Recent studies at the intersection of physics and deep learning have illustrated
successes in the application of deep neural networks to partially or fully replace
costly physics simulations. Enforcing physical constraints to solutions generated
by neural networks remains a challenge, yet it is essential to the accuracy and
trustworthiness of such model predictions. Many systems in the physical sciences
are governed by Partial Differential Equations (PDEs). Enforcing these as hard
constraints, we show, are inefficient in conventional frameworks due to the high
dimensionality of the generated fields. To this end, we propose the use of a
novel differentiable spectral projection layer for neural networks that efficiently
enforces spatial PDE constraints using spectral methods, yet is fully differentiable,
allowing for its use as a layer within Convolutional Neural Networks (CNNs)
during end-to-end training. We show that its computational cost is cheaper than
a single convolution layer. We apply it to an important class of physical systems
- incompressible turbulent flows, where the divergence-free PDE constraint is
required. We train a 3D Conditional Generative Adversarial Network (CGAN)
for turbulent flow superresolution efficiently, while guaranteeing the spatial PDE
constraint of zero divergence. Furthermore, our empirical results show that the
model produces realistic flow statistics when trained with hard constraints imposed
via the proposed novel differentiable spectral projection layer, as compared to soft
constrained and unconstrained counterparts.

1 INTRODUCTION

Convolutional Neural Network (CNN) based deep learning architectures have achieved huge success
in many tasks across computer vision, but their use in the physical sciences, and in particular fluid
dynamics (Tompson et al.| (2017); Xie et al.| (2018)); Kim et al.| (2018)), have only recently been
explored. Unlike computer vision problems, physical fields are often constrained by PDEs that arise
from the governing equations of the physical system. For example, the Poisson equation of the
form V2¢ = f is often encountered in heat diffusion problems, whereas the divergence-free (also
known as solenoidal) conditions in the form of V - ¢ = 0 is fundamental to magnetic fields, as well
as incompressible fluid velocity fields to ensure conservation of mass. For meaningful application
of deep learning to a range of important physical problems, it is essential to enforce such spatial
PDE constraints to guarantee physical consistency and reliability of the model output for scientific
applications. Yet, general means of enforcing these constraints do not exist and the existing methods
(Salzmann & Urtasun| (2010); Varol et al.| (2012); [Pathak et al.| (2015); Marquez-Neila et al.| (2017);
Amos & Kolter| (2017); |[Frerix et al.|(2019)) do not scale well with high dimensional, high resolution
outputs. Other works that incorporate physical constraints in neural networks utilize soft constraints
with fully connected networks (Raissi| (2018)); |[Raissi et al.| (2018} |2019)) and do not levarage the
spatial efficiencies of CNNs.
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In this paper, we address this issue by proposing a novel differentiable PDE layer (PDEL) that
efficiently enforces spatial PDE constraints for neural networks within CNNss, at costs on par with
a single CNN layer. We use spectral methods, which leverages the highly efficient Fast Fourier
Transform (FFT) algorithm for enforcing such constraints. Using this formulation, we are able to
exploit the structures of the spectral matrices corresponding to these differential operators that renders
the entire layer O(nlogn) for processing a 3 dimensional field of size n. The method is general for
enforcing arbitrary linear combinations of differential operators on these fields, which encompasses
physical constraints from a broad range of important scientific and engineering systems. We apply
this hard constraining layer to the problem of turbulence superresolution, where we show that training
with the hard constraining layer in-the-loop not only guarantees that the imposed constraint is strictly
satisfied, but also generates solutions that are more accurate measured via a variety of fluid flow
metrics.

2 METHODS

We present a novel method for efficiently enforcing hard linear spatial PDE constraints within CNNs
using spectral methods (Canuto et al.| (1988)). This is in the context of underdetermined systems,
since solutions do not exist for overdetermined systems, while solutions for determined systems
do not fit in the context of constraining the outputs. More specifically, given the output of the
network to be a discretization of a 3D vector field f : R? — R? and a linear spatial PDE operator
A((a%j)o, (8%)1, ---) that maps vector fields to scalar fields Af : R? — R, we seek a means of
efficiently imposing the spatial linear PDE constraints within CNNS, i.e.,

Af=b (1)
Note that this form encompasses a wide range of physically relevant constraints. In particular, all
spatial PDE constraints composed of divergence, curl, Laplacian and other higher order partial
differential terms in linear combination may be expressed in this form. Depending on the domain
of application, this includes mass conservation for incompressible fluid flows, the heat equation,
the wave equation, Laplace’s equation, Helmholtz equation, Klein-Gordon equation, and Poisson
equation. For the important constraint of mass conservation in incompressible flows, we investigate
the divergence-free (solenoidal) constraint of:

0
V-f=Za—xjfj:0 )
J

We present our main results for computing the spectral projection operator that efficiently enforces
the solenoidal condition using spectral methods. We defer readers to Eqns (14]-[27)) of Appendix [C]
for detailed derivation of these results. In spectral space, the projection of the original vector field F’

into solution space: F, can be computed by:
F=PF+QB 3)
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where F' = FFT(f), B = FFT(b) with FFT denoting the Fast Fourier Transform operator, and A;
denoting the ¢-th component of the spectral gradient operator.

3 EXPERIMENTS AND RESULTS

3.1 COMPUTATIONAL COMPLEXITY AND COST

We first show that although the classic Lagrangian based hard constraining method is general and able
to enforce hard linear constraints, solving it by direct inversion leads to poor computational efficiency,
especially with high-resolution 3-dimensional data outputs from CNNs. Each linear projection step
solved by direct inversion is of complexity O((3n)?) ~ O(9n?) operations. In comparison, the
spectral projection method only involves element-wise operations, resulting in an overall complexity
of O(n) operations for enforcing constraints, and O(nlog(n)) for the FFT and IFFT operations.
Results of an empirical analysis for computational time and memory usage is shown in Fig.
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Figure 1: Comparison of computational performance for direct solve using Lagrangian multiplier method and
our PDE Layer (PDEL). Computational performance for a single Conv3d layer of kernel size 3 is also included
for comparison purposes. Our PDEL fairs well with respect to size of the linear system, even compared with the
highly optimized 3D convolution layers, allowing for its direct integration into CNN architectures. Direct solve
leads to memory overflow at very small output resolutions (24%). Above computation benchmarks performed on
a 2.4 GHz CPU chip.

3.2 TURBULENCE SUPERRESOLUTION WITH CONDITIONAL GAN

Problem setup The main target application of this study is the super-resolution of turbulent flow
fields. Fully resolving turbulence requires direct numerical simulation (DNS) that can resolve the
smallest scales of the flow (Komogorov scale), which is prohibitively expensive. Therefore, the
motivation of this study is to produce flow fields and flow statistics comparable to DNS at the cost
of a low-resolution proxy, while strictly enforcing PDE constraints. To this end, we leverage high-
resolution DNS data to train a deep neural network to learn the mapping between the low-resolution
flow and its high-resolution counterpart. We compare between several algorithms for the task: the
conventional trilinear interpolation which is not learning based, and various variations of the GauGAN
architecture (Park et al.[|(2019)) for conditional generative modeling. The compared methods for
enforcing PDE constraints are below: (1) GauGAN with our PDE Layer inserted as a last layer after
the generator to enforce hard PDE constraints (2) GauGAN with soft PDE constraint as an additional
loss term, and (3) no PDE constraints. Furthermore, since PDEL layer can be utilized either only at
test time or both at test time and also used in-the-loop during training, we investigate the use of PDEL
during training time to see how it improves the model effectiveness. We use the Forced Isotropic
Turbulence dataset from the Johns Hopkins Turbulence Database for this experiment (Perlman et al.
(2007)).

Evaluation metrics we refrain from directly comparing the norm of the difference in velocity
fields, as turbulence solutions are chaotic. Instead, we compare the distributions of various key
flow statistics, as outlined by [Perlman et al. (2007), which are more informative from a turbulence
modeling standpoint. The flow statistics in Tab. [I]is defined as below. For simplicity, we denote the
different velocity components using Einstein notation, and use angle brackets <> to denote spatial
averaging.

e Total kinetic energy, Eyy = 3 < uju; >

Ou;
8wi

e Dissipation, ¢ = 2v < 0y;0;; >, where 05 = %(B“i +

e ) and v = 0.000185 is a

constant for fluid viscosity.

e Large eddy turnover time: 77, = L/u/, where L = 575 Ik %dk and v’ = /(2/3) B

Results The main quantitative results for this experiment are presented in Tab. whereas a
visualization of the distributions regarding various key flow statistics are presented in Fig. 2] Results
indicate that while soft constraining can encourage the network to adhere to constraints, its residue
is nonzero, implying that the imposed constraint is not strictly satisfied. Spectral based projection
method can effectively eliminate residue. Training with the PDE layer in-the-loop eliminates residue
and achieves greater accuracy on key statistical quantities, as compared to unconstrained and soft
constrained cases, even when hard constraints are enforced at test time. We note that although this
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Figure 2: Probability Density Function plots of samples generated by various models as well as ground truth
distributions (highlighted in red). The quality of the distributions compared against the ground truth distributions
are captured well by the KS statistic and mean difference measurements in Tab. m (d) Shows the spectrum, where
all methods trail the data distribution well in the low wavenumber regime and deviate at higher wavenumbers.

Constraint Type No PDE Layer PDEL at test time In-the-loop
Trilinear None Soft | Trilinear None Soft | PDEL
Residue(]) | 3.597 19.763  0.150 | 0.000 0.000  0.000 | 0.000
KS tkenergy 1.000 0.308  0.712 | 1.000 0.216 0.632 | 0.163
dissipation | 1.000 0.283  0.549 | 1.000 1.000 0.332 | 0.422
Stats p
W) eddytime 1.000 0.388  0.599 | 1.000 0.229 0.487 | 0.276
mean 1.000 0.326  0.620 | 1.000 0.482 0.484 | 0.287
Mean tkenergy 6.227 0.745  2.192 | 6.593 0.396 1.845 | 0.106
Diff dissipation | 16.245 0.016  1.301 | 16.732 2.690 0.731 | 0.804
) eddytime 9.343 0.878 1.516 | 10.037 0.436 1.125 | 0.591
mean 10.605 0.546  1.670 | 11.121 1.174 1.234 | 0.500

Table 1: Comparison of generated distributions on test set against ground truth distribution on test set. Smaller
values indicate a better match between distributions.

method is not the most accurate for the dissipation statistic, presumably because of discrepancies in
the high wavenumber regime (where dissipation occurs), the overall mean statistics and individual
statistics for the other metrics are superior compared to all the other compared methods.

4 CONCLUSIONS AND FUTURE WORK

Enforcing hard physical constraints to solutions generated using neural networks are essential for
their application to important scientific problems. Some key limitations of this work are: (i) the
method is applicable in its current form only to flows with periodic boundary conditions; (ii) we only
develop a method for linear spatial constraints and (iii) we only consider statistically steady flows. In
future we will address all the above limitations to extend our work to more general sets of nonlinear
unsteady constraints with arbitrary boundary conditions.
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APPENDIX

A ENFORCING LINEAR CONSTRAINTS

We first discuss enforcing linear constraints on the outputs of the neural network, where we have
a neural network that learns the function mapping f : R? — R™, where the function f(x;8) is
parameterized by learnable parameters 6, and is subject to the linear constraint A f(x; 0) = b, where
A € R™™™ b € R™. For this to be an underconstrained system, we have n < m. Two forms of
constraints are possible for explicitly enforcing a certain set of constraints for neural network outputs:
soft constraints and hard constraints.

Soft constraints are easy to implement, by adding a differentiable residual loss for penalizing the
network during training time for violating the explicit constraints. For simplicity, let y := f(x; 0).
In the conventional unconstrained case, assume the neural network is trained under the differentiable
loss function L( f(x; @)), in the constrained case, the loss function can be augmented by an additional
residual loss term defined by:

Le(8) = L(0) + a((Ay — b)" (Ay — b)) (5)
where « is a hyper-parameter weighing the two loss functions that can be difficult to determine and

vary between applications. Although easy to implement, soft constraints provide no guarantees on
the solutions satisfying the imposed constraint.

Hard linear constraints can be enforced by posing the problem as a constrained optimization
problem for seeking the closest point in the solution space subject to the constraints, which can be
solved by satisfying the Karush-Kuhn-Tucker (KKT) condition. The result of the projection step can
be written as the stationary point of the Lagrangian:

min max £(g, A) (6)
g A
where we have the Lagrangian as:
. 1 . N

L@XNy) =5 -9)" (y—9) + A (Ay - b) (7)

oL .
——y—g+ATA ®)

oy

The KKT condition leads to the following linear system, the solution of which involves solving a
linear system of dimensions (m + n) x (m + n). Given that the linear system is symmetric and
positive definite, the solution can be sought by inverting the system:

L NE-E-E G

While this approach is general for enforcing arbitrary linear constraints on arbitrary network outputs,
it is difficult to scale it to higher dimensions, and particularly difficult for 2-dimensional and 3-
dimensional outputs, by direct matrix inversion followed by matrix multiplication.

B SPECTRAL METHODS

We present an overview of the spectral methods (Canuto et al.|(1988)) for discretizing the spatial
PDE operators. Spectral methods are a class of numerical methods that computes the spatial partial
derivatives of a field based on the spectral decomposition of the signal. By decomposing the original
signal into a linear combination with respect to trigonometric basis functions of varying wavenumbers
(or frequencies), the spatial derivatives with respect to the trigonometric basis functions can be easily
and efficiently computed. The Fast Fourier Transform (FFT) is a well known algorithm for efficiently
computing the Direct Fourier Transform (DFT) of uniform discrete signals. The multidimensional
FFT and inverse FFT respectively compute the following:

N-1 N-1

(k) _ (n) ,—i2rk-(n/N). p(n) _ (k) ji2mk-(n/N)
F\®) = E f™e ; Y = NN, g F'\%e (10)
k=0

n=0
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where F(¥) = FFT(f™), f™ = IFFT(F®), spatial indices n = (ny,na,n3),n; €
{0,1,---,N; — 1} and spectral indices k = (k1, k2, k3),k; € {0,1,---,N; — 1}. The spatial
derivative with respect to x; can be computed by:
9
ax]—
In matrix form, for the ¢-th component of a 3 dimensional vector field: F, taking its flattened vector

form, and taking the flattened vector form of the wavenumber k; corresponding to the dimension x,
the spatial derivative with respect to x; can be computed using matrix multiplication:

F™ = 1FFT(ik; F®)) (11)

0 L
%Ft = diag(ik;)F; (12)

where diag() converts a vector into a corresponding diagonal matrix. In general, arbitrary linear
combination of spatial derivatives of varying orders can be computed using a single diagonal matrix

multiplication:
(Z Z Cjr (%)T)Ft = diag(z Z cjr(ik;)" ) Fy := A Fy (13)
j T j T

J
where A; is a diagonal matrix for the spatial derivatives corresponding to the ¢-th component of the
vector field, that is a polynomial of ik;, and A = [A1, As, A3].

C MATHEMATICAL DERIVATION FOR SPECTRAL PROJECTION

The solution to the Lagrangian multiplier method for enforcing the solenoidal conditions involves
inverting the left-hand-side matrix in Eqn. [0] Since I, A, 0 are block matrices, the inverse can be
represened by

I AT]T'  [1— AT(AAT)1 A AT(AAT)! 14
A 0 o (AATY=1A —(AAT) 1
Hence the projected vector in spectral space can be computed as:
F=PF+QB (15)

The second term in the equation above drops out since b = 0 for solenoidal constraints. More
specifically for spectral methods, the matrix A can be represented as three diagonal matrices for the
wavenumbers in the three dimensions multiplied by the imaginary number i:

A A, Ay As (16)

S A Ay Ay (17)
The only matrix inverse associated is AA”, whose value can be computed by block matrix multipli-
cation:

AAT = A2 + A2+ A2 (18)
Given that Ay, Ay, A3 are diagonal matrices (eliminating the terms regarding the [0, 0, 0] mode), its
inverse can be computed by directly inverting the diagonal terms:

1

-1

AATY V= 1
(44%) AT + A3 + A3 (19)
Hence the linear projection matrix can be written as:
T Ty\—1 L At Alglz Al
I-A"(AA" )T A=1—- 55— |A1dy A7  AxAj3 (20)
Al + Az + A3 A1A3 A2A3 A%
T Ty—1 1 As
AT (AAT) T = - Ay Q1)
X047 [As
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Notation | Description
Conv(n) | 3D convolution block with n output layers
SResBlock SPADE Residue Block consisting of
SPADE + ReLU + Conv + SPADE + ReLLU + Conv
Up(n) | Upsampling layer with nearest neighbor interpolation with scaling factor of n
IN \ 3D Instance Normalization Layer

Table 2: Description of module notations in Fig.

Recovering the same solution as in Eqn. f] More specifically for the divergence-free condition, we
have:

A; = diag(—ik;) (22)
B=0 (23)
Hence the spectral projection step can be further simplified as:
A k-F
F=F-—k 24
ok (24)

It is easy to show that the result is divergence-free, since:
—ikF = —ikF +ikF =0 (25)

It is also easy to show that the projection is orthogonal to the solution space, since the dot product
between the F' — F and F' is zero:
. A k-F k- F
F-F) F=—(—k) (F——— 26
(F—F)- F = (k) (F— - k) 26)
=0 27

D MODEL AND TRAINING DETAILS

We use the GauGAN architecture (with schematics as shown in Fig. [3) for the conditional flow field
generation task. The abbreviated names for the various modules are given in Tab. [2] Our model differs
from the original GauGAN model in two distinct aspects. First, our architecture utilizes 3 dimensional
convolutions instead of the 2 dimensional counterparts in the original GauGAN architecture. Second,
for our hard constrained case, we append the spectral projection layer to the end of the architecture
for enforcing hard constraints.

For training the model, we use multiresolution discriminator loss as in |Park et al.| (2019) across 3
discriminators. We train the model with batch size of 18 (across 6 Volta V100 GPUs) with the Adam
optimizer using a learning rate of 2F — 4. The soft constrained model uses a residue penalty factor
of 0.01.

E ADDITIONAL VISUALIZATION
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Figure 3: Schematic for the network architecture for the turbulent flow superresolution task. The network is a
modified GauGAN (2019)) architecture for 3D fields that utilizes spatially-adaptive normalization
for conditioning with the input, and residual blocks for facilitating gradient flows. The network inputs a low
resolution flow field in R32*32%32 and outputs an output field of R*2$X128x128 with an upscaling factor of 4 in
each dimension.

Low-Res Input Trilinear None Soft Trlinear+PDEL None+PDEL  Soft+PDEL PDEL Ground Truth

Figure 4: Visualizations for low resolution inputs from the test set, predictions by various models, along with
the ground truth flow fields. The flow fields are colored by mapping the three velocity components to RGB
channels respectively. The 2d images are slice plots in the z dimension.
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