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Abstract

Recent advances in reinforcement learning (RL)
have demonstrated impressive capabilities in com-
plex decision-making tasks. This progress raises
a natural question: how do these artificial systems
compare to biological agents, which have been
shaped by millions of years of evolution? To help
answer this question, we undertake a compara-
tive study of biological mice and RL agents in a
predator-avoidance maze environment. Through
this analysis, we identify a striking disparity:
RL agents consistently demonstrate a lack of
self-preservation instinct, readily risking “death”
for marginal efficiency gains. These risk-taking
strategies are in contrast to biological agents,
which exhibit sophisticated risk-assessment and
avoidance behaviors. Towards bridging this gap
between the biological and artificial, we propose
two novel mechanisms that encourage more nat-
uralistic risk-avoidance behaviors in RL agents.
Our approach leads to the emergence of natural-
istic behaviors, including strategic environment
assessment, cautious path planning, and preda-
tor avoidance patterns that closely mirror those
observed in biological systems.

1. Introduction
Mathematical foundations for reinforcement learning (RL)
emerged through several landmark contributions: Samuel’s
early work on learning systems, Bellman’s dynamic pro-
gramming principles, and later Sutton’s temporal differ-
ence learning (Samuel, 1959; Bellman, 1966; Sutton, 1988).
While these seminal advances have enabled powerful
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decision-making agents, they arose primarily from compu-
tational principles1 rather than biological experimentation.
Although subsequent research has attempted to draw paral-
lels between RL algorithms and biological learning mech-
anisms (Pozzi et al., 2018; Neftci & Averbeck, 2019; Tan
et al., 2023), suggesting the biological plausibility of meth-
ods like Q-learning, a fundamental question remains: To
what extent do RL agents truly capture the decision-making
characteristics of biological organisms?

To investigate this question, we designed a controlled exper-
imental environment where mice navigate a complex space
while avoiding a robotic predator-like autonomous agent
(hereafter referred to as “predator” for brevity). A simu-
lation environment replicates this with the prey controlled
by an RL algorithm. The predator is a reactive agent in
both the experiment and simulation. Through careful behav-
ioral analysis, offline RL modeling (Levine et al., 2020) of
mouse behavior, and Exploratory Data Analysis over visita-
tion density graphs, we identified several striking disparities
between biological and artificial agents. Most notably, RL
agents demonstrate a remarkable lack of self-preservation
instinct, often choosing marginally more efficient paths that
bring them dangerously close to the predator. In contrast,
biological agents exhibit sophisticated risk-assessment be-
haviors, with mice spending a significant amount of time
gathering environmental information and evaluating preda-
tor positions before movement.

Inspired by these observations, we developed two novel
mechanisms to bridge the behavioral gap. First, we intro-
duce a modified replay buffer mechanism that amplifies and
frequently resamples near-death experiences during train-
ing, mimicking post-traumatic stress responses observed
in biological systems. This enhancement enables agents to
develop more appropriate risk-avoidance behaviors. Second,
we propose a fundamental modification to the TD-learning
framework incorporating action uncertainty through Q-value
variance estimation. These additions create naturally risk-
averse agents that better reflect the cautious decision-making

1While Sutton et al. (1998) has some biological inspiration,
there is a clear distinction to be drawn between biologically in-
spired and derived from measured biological data. We investigate
the latter viewpoint in this volume.
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patterns observed in biological systems. Empirically, these
mechanisms enhance the behavioral similarity between arti-
ficial and biological agents, increasing the visitation pattern
overlap with mice from 20.9% to 86.1%. The enhanced
agents exhibit conservative movement patterns with approx-
imately 45% less distance traveled during initial environ-
ment entry, closely matching the cautious behavior of real
mice.

Given the fundamental behavioral differences we observed
between RL and biological agents, we were left wonder-
ing whether more advanced AI systems might naturally
exhibit more biologically-aligned behavior. To investigate
this, we introduced a third agent derived from a large lan-
guage model (LLM)—a system trained on vast amounts
of human-written text and capable of sophisticated world
modeling. (Devlin, 2018; Brown et al., 2020; Hurst et al.,
2024) Surprisingly, when controlling a simulated version
of the mouse, the LLM exhibited risk-taking characteristics
much more aligned with traditional RL agents than biologi-
cal ones. This finding suggests that biological alignment in
decision-making behaviors may be a broader challenge in
AI systems, independent of their training approach or world
knowledge.

Our key contributions can be stated as follows:

• We perform a systematic analysis of behavioral dif-
ferences between biological and artificial agents in a
high-risk pseudo-predator-prey environment.

• We derive novel mechanisms for incorporating biologi-
cally inspired risk assessment and experience process-
ing into RL objectives.

• Results show that incorporating these mechanisms lead
to trajectories that are closer to biological behavior.
This is true even when compared to other surprise-
avoiding objectives from the literature such as SMiRL.
(Berseth et al., 2019)

2. Experiment Setup
This study assessed strategic evasion behaviors in mice
through a task approximating predator-prey interactions
within a hexagonal arena, namely “cellworld” (Lai et al.,
2024). The physical setup included a custom robotic
predator-like threat that pursued the mice, simulating preda-
tory threat through aversive air blasts, while the mice at-
tempted to reach a designated reward area without being
“captured” (within 27.5 cm or 0.1 units of the robot). The
arena was mapped with a hexagonal grid of 331 magnetic
cells, each 11 cm apart, where obstacles were strategically
placed to encourage adaptive evasion strategies(Mugan &
MacIver, 2020).

To record precise positioning and behavior, a high-speed
tracking system monitored both the robot and mice at 90 Hz,

Figure 1. Real Mouse Setting

Figure 2. RL Setting: Mouse’s view (left), predator’s view (right).

facilitating real-time adjustments for the robot’s trajectory
through a combination of A∗ pathfinding and PID control.
The robot initiated each episode from a starting position
outside the mouse’s field of view and actively navigated
the arena by algorithm 1. The experimental arena featured
both rewards and threats: water rewards were available
at specific locations (Figure 1, doors), while mice had to
simultaneously avoid being caught by the pursuing robot.
The mice were water-restricted, which motivated them to
explore the arena despite the predator’s presence. The ex-
periment involved eight lab mice (4 male and 4 female),
each performing multiple 30-minute sessions daily. This
data collection procedure follows previously established
methodologies (Lai et al., 2024).

Algorithm 1 Autonomous robot predator behavior
1: while experiment is running do
2: Find spawn cell S
3: Move robot to S
4: while episode is running do
5: if mouse is visible then
6: Move robot to last seen mouse cell
7: else if mouse is not visible then
8: Find cells not visible to robot
9: Randomly select a non-visible cell N

10: Move robot to N
11: end if
12: end while
13: end while

For a direct comparison with the reinforcement learning
(RL) model, we created a simulated environment, “cellworld
gymnasium”, building upon the Gymnasium API (Towers
et al., 2024) and Pygame, which closely mirrors the physical
experiment setup. This simulated environment replicates
the hexagonal grid layout of the real arena and incorporates
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the same reward structure: the virtual “mouse” receives a
reward of +1 upon reaching the goal without capture and a
penalty of -1 if it is “puffed” by the simulated predator-like
robotic threat.2 To further ensure fidelity, both the mouse
and the predator in the RL environment move at speeds
proportionally scaled to the average speeds observed in
the physical trials. Additionally, the RL agent has partial
observations, detecting the predator’s location only when
the predator is within its field of view. All distances within
the arena are normalized such that 1 unit corresponds to the
diameter of the hexagonal arena.

3. Reinforcement Learning (RL)
Reinforcement Learning (RL) provides a robust framework
for sequential decision-making (Sutton et al., 1998), where
an agent learns to maximize cumulative rewards through
interactions with an environment. Formally, the RL problem
is defined as a Markov Decision Process (MDP), character-
ized by the tuple (S,A,P, r, γ). Here, states S represents
all possible states, actions A denotes available actions, tran-
sition dynamics P(s′|s, a) defines the transition probability
from state s to s′ given action a, r(s, a) specifies the reward
for taking action a in state s, and discount factor γ ∈ [0, 1)
balances future versus immediate rewards.

The objective of RL is to find an optimal policy π∗(a|s) that
maps states to action distributions, maximizing the expected
cumulative discounted reward:

J(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]

3.1. Online RL: Learning through Interaction

Online RL involves the agent iteratively interacting with
the environment to gather data and refine its policy. This
paradigm is further divided into:

3.1.1. MODEL-FREE METHODS

These methods optimize the policy directly without con-
structing an explicit model of the environment’s dynamics.
Notable examples include:

Deep Q-Network (DQN): It utilizes a neural network to
approximate the action-value function Q(s, a). The update
rule is based on the Bellman equation (Hester et al., 2018):

Q(s, a)← r(s, a) + γmax
a′

Q(s′, a′).

Soft Actor-Critic (SAC): An actor-critic (Konda & Tsitsik-
2The equal magnitude (+1/-1) for rewards and penalties was

chosen to reflect that both water reward and air blasts are relatively
mild stimuli.

lis, 1999) algorithm that simultaneously optimizes a policy
and a value function by maximizing a trade-off between
expected reward and entropy (α: entropy coefficient), pro-
moting exploration (Haarnoja et al., 2018):

J(π) = E(s,a)∼π [r(s, a)− α log π(a|s)] .

3.1.2. MODEL-BASED METHODS

Model-based methods learn a world model P(s′|s, a) to
predict environment dynamics (Ha & Schmidhuber, 2018;
Okada & Taniguchi, 2022). TDMPC-2 combines tempo-
ral difference (TD) learning with model predictive control
(MPC) (Morari & Lee, 1999; Nagabandi et al., 2018), using
the world model’s trajectories to jointly optimize policies
and value functions (Hansen et al., 2022; 2023). The al-
gorithm operates by first using an encoder z = h(s) to
transform states into latent representations, then employing
latent dynamics z′ = d(z, a) to predict the next latent state.
It includes a reward predictor r∗ = R(z, a) for estimating
immediate rewards and a value predictor q∗ = Q(z, a) for
predicting future rewards in the latent space. A policy prior
â = p(z) proposes actions to maximize the predicted value.
This hybrid approach improves both sample efficiency and
policy performance.

TDMPC-2 optimizes two objectives. The model objective
L(θ) minimizes the discrepancy between predictions and
actual values:

L(θ) = E(s,a,r,s′)∼B

[
H∑
t=0

λt
(
∥z′t − sg(h(st))∥22

+ CE(r∗t , rt) + CE(q∗t , qt)
)]

where B denotes the replay buffer and CE is the cross-
entropy loss. The policy objective Lp(θ) maximizes returns
while maintaining exploration:

Lp(θ) = E(s,a)0:H∼B

[
H∑
t=0

λt (αQ(zt, p(zt))− βH(p(·|zt)))

]
For action selection, TDMPC2 uses MPPI (Williams et al.,
2017) to optimize over a horizon H:

µ∗, σ∗ = argmax
(µ,σ)

EN (µ,σ2)[γ
HQ(zt+H , at+H)

+

H−1∑
h=t

γhR(zh, ah)]

4. Comparison Between Mouse Behavior and
RL Agent Behavior

By directly comparing mouse behavior with RL agents in the
“cellworld” setting, we aim to characterize key behavioral
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differences in their threat evasion strategies. Specifically,
we analyze trajectory patterns to quantify wall-following
tendencies, examine state density distributions to under-
stand waiting behaviors near obstacles and starting points
and compare action sequences before and after predator
detection. Through these analyses, we seek to uncover the
fundamental differences between mice and RL agents in
risk management during predator-prey interactions.

We begin by training TDMPC-2 on the “cellworld gymna-
sium” environment and comparing the behaviors generated
to those of the mice. On a superficial level, the performances
of the mice and TDMPC-2 are similar, with the mice achiev-
ing an 86% success rate3 across environments and the RL
algorithms achieving about 80%. However, when we ex-
amine the exact nature of these successes, we see there is a
dramatic divergence between the two agents.

TDMPC-2 Trajectories
Wall Following: 0.0%

Real Mouse Trajectories
Wall Following: 70.0%

Figure 3. Trajectory plots: RL (left) vs Mouse (right). Blue indi-
cates wall-following trajectories (thigmotaxis), while red indicates
non-wall-following trajectories.

We also find that on average RL agents explore only 21.3%
of the available space. This is in contrast to mice, which
visit 77% of the entire arena. The visitation pattern overlap
between RL agents and mice is only 20.9%.

TDMPC-2 Mouse
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Figure 4. Density plot of RL (left) vs Mouse (right)

As shown in Figure 3, mice trajectories exhibit distinct
patterns concentrated along walls (thigmotaxis, commonly
observed in many animals and corresponding to measures
of anxiety (Mugan & MacIver, 2020) and obstacles, with
approximately 70% of trajectories following wall-following
paths.4 In contrast, RL agents’ trajectories show direct,

3Proportion of runs in which the agent reached the goal without
being captured.

4Defined as trajectories where over 70% of states are within

goal-oriented paths with minimal environmental interaction,
with 0% of trajectories hugging walls. The state-visitation
density of RL agents is heavily concentrated along these
direct routes, showing little of the preemptive caution or
environmental awareness displayed by the mice.

Figure 5. An example of distinct behaviors: Mouse (left) exhibits
hesitation (dense segments near entrance), while RL agent (right)
takes a direct path. Additional examples are in the Appendix.

This behavioral disparity is particularly evident in situations
where the predator is not visible. As illustrated in Figure
5, mice exhibit distinct waiting behavior, shown by dense
trajectory segments near the entrance (left), while the RL
agent takes a direct path through the arena (right). This
waiting behavior is further confirmed by the density plots in
Figure 4. RL and mice agents start from the same position,
but only the mice show high-density concentrations near
the entrance, obstacles, and walls. While mice tend to wait
and observe in such scenarios, RL agents maintain their
direct approach, suggesting a fundamental difference in risk
assessment and strategic planning between biological and
artificial agents.
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Figure 6. Top row: Mean changes in goal-agent distance before
and after predator detection (left, right), with shaded areas showing
standard deviation. Bottom row: spatial distribution of first three
steps for each agent, with black stars showing mean positions. (1
unit = the diameter of the hexagonal arena)

Figure 6 highlights key behavioral differences between

0.1 units (10% of the diameter of the hexagonal arena) of the wall.
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TDMPC-2 and mice. In reduction of distance to goal (top
row), TDMPC-2 shows excessive movement both before
(-0.2 to -0.4) and after (-0.2 to -0.35) predator detection,
while mice maintain conservative patterns (-0.05 to -0.15),
reflecting natural cautiousness. Spatially (bottom row), mice
trajectories exhibit structured, radial exploration patterns,
whereas TDMPC-2’s movements appear scattered and dis-
organized.

Another key difference lies in learning efficiency after neg-
ative encounters. RL agents typically require multiple air
blasts before adapting their behavior to avoid the preda-
tor, while mice exhibit immediate and persistent avoidance
after a single encounter. Of course, this disparity is natu-
ral—mice have millions of years of evolutionary risk avoid-
ance encoded in their genetics, while neural networks begin
learning from scratch. However, this gap highlights an im-
portant challenge in artificial intelligence: how to develop
RL systems that can more readily incorporate risk-avoidance
behaviors without requiring extensive negative experiences.

5. Changing RL Behaviors to Match Biology
5.1. Trauma-Inspired Safety Memory in RL Agents

Can we teach RL agents to value their own ’lives’ more and
have a greater fear of the predator?

A common approach is Prioritized Experience Replay (PER)
(Schaul et al., 2015). Our experiments demonstrate that
PER provides some benefits, but does not fully address the
challenges in our scenario. While PER accelerates learning,
it has minimal impact on the agents’ behavioral policies.
This limitation motivated the development of our novel
extensions.

We introduce the Trauma-Inspired Safety Buffer (TISB),
which modifies standard experience replay to mimic how
biological systems learn from trauma (Al Abed et al., 2020).
In nature, rodents overweight negative experiences during
risk assessment (LeDoux, 2013). Our approach implements
this through two mechanisms:
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Figure 7. Experiments over 5000 steps show that 50% negative
experiences yield optimal performance (5 random seeds).

Threat Experience Rebalancing: Inspired by how rodents
show heightened sensitivity to dangerous situations, we
investigate whether a higher proportion of negative experi-
ences is necessary for effective learning. We employ vari-
ous percentage settings to ensure that each training batch
contains a specified proportion of negative transitions dur-
ing sampling. Our experiments (Figure 7) shows that 50%
negative experiences in the training batch yields optimal
performance. This finding provides valuable insights into
the importance of negative experiences during early learning
phases, similar to how young animals develop risk assess-
ment behaviors.

Threat Experience Amplification: The rewards of nega-
tive experiences are amplified by a factor of 200 during
sampling5, reflecting the heightened emotional intensity of
trauma in biological systems, which leads to stronger behav-
ioral changes.

TDMPC-2 with no Amplification TDMPC-2 with 200 Amplification
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Figure 8. Standard TDMPC-2 with limited exploration patterns;
Right: With a Threat Experience Amplification factor of 200,
showing increased path diversity and enhanced wall-following
behavior.

Our computational experimental results demonstrate that the
TISB induces more naturalistic behaviors in RL agents. In
our long-term experiments, TISB was implemented primar-
ily through the Threat Experience Amplification mechanism.
Figure 8 illustrates broader exploration and wall-following
patterns similar to those observed in mice. However, the
agents still lack the characteristic waiting behaviors seen in
mice, as evidenced by the significantly lower density at the
entrance compared to mice. This observation motivates our
next approach.

5.2. Learning to Wait Through Variance-Penalized
Temporal Difference (TD) Learning

Our analysis of mouse behavior reveals that pausing before
potentially surprising situations is a key survival strategy.
Mice tend to wait and gather information when they cannot
see predators or when entering new areas. This observa-
tion suggests that effective survival behaviors might emerge

5We conducted experiments with different amplification factors:
smaller values showed limited behavioral changes, while factors
above 200 slowed down training without providing substantial
benefits.
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from an agent’s desire to encode uncertainty in decision-
making circuits (Rushworth & Behrens, 2008) and minimize
surprise in its environment. One established framework for
achieving such behavior is Surprise Minimization in Rein-
forcement Learning (SMiRL) (Berseth et al., 2019), which
explicitly encourages agents to seek predictable states.

To embed SMiRL in TDMPC-2, we assign the intrinsic
reward

rSMiRL(st) = − log p
(
st | s<t

)
,

which penalizes unlikely states under the agent’s learned
history. Estimating the full conditional density p(st | s<t)
is prohibitively costly and numerically brittle in our high-
dimensional, rapidly changing environment, so we approx-
imate the negative log-likelihood with the mean-squared
prediction error in the model’s latent space. Under the com-
mon fixed-variance Gaussian assumption, the MSE differs
from the negative log-likelihood by only an additive con-
stant (Girin et al., 2019), preserving the intuition that large
prediction errors signal rare or “surprising” states. Because
the latent representation learned by TDMPC-2 is especially
sensitive to abrupt events—such as a predator suddenly
entering view—the MSE provides a responsive and compu-
tationally lightweight proxy for surprise, yielding a stable
and efficient realization of the SMiRL objective.

TDMPC-2 SMiRL without TISB SMiRL with TISB 0
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Figure 9. Density plots: TDMPC-2 (left), SMiRL without TISB
(middle), and SMiRL with TISB (right). SMiRL may negate
TISB’s effect, as indicated by only minor changes in the main
density regions.

Unfortunately, incorporating SMiRL into TDMPC-2 did not
have the desired effect of making RL agents more conser-
vative and cautious. As shown in Figure 9, while SMiRL
shows some increased density in the central area compared
to the baseline TDMPC-2, suggesting slightly more diverse
path choices, the core trajectory pattern remains largely un-
changed, as evidenced by the similar high-density regions
(bright pink areas) across all conditions. Most importantly,
SMiRL failed to demonstrate the crucial waiting behavior
at the entrance, which was our primary goal. Furthermore,
when combined with TISB, SMiRL appears to counteract
TISB’s path-finding benefits that were previously observed
in TDMPC-2, resulting in only minor changes to the density
distribution compared to the more substantial strategy shifts
we were aiming for.

We attribute these limitations to SMiRL’s fundamental mech-
anism of penalizing surprise across all state transitions. In

our partially observable environment, where states naturally
fall into distinct risk categories (e.g., safe vs. dangerous),
this uniform penalization becomes problematic. By treating
all transitions equally, SMiRL may inadvertently discourage
beneficial state transitions, such as moving from danger-
ous to safe states, and interfere with TISB’s path-finding
capabilities.

To address these issues, we propose a more selective ex-
tension approach based on our observation that Q-value
variance effectively signals states requiring caution. Our em-
pirical analysis shows that Q-value variance across actions
spikes sharply when the predator appears or approaches, nat-
urally indicating states where cautious behavior is crucial.
This insight leads us to develop a variance-penalized TD
target that selectively adjusts penalties based on the agent’s
uncertainty in different states. We formalize this approach
as:

TDtarget = rt+γ (Q(st+1, π(st+1))− αVara∈A(Q(st+1, a)))

Here, α is a coefficient that controls the strength of the vari-
ance penalty. During training, we compute this variance by
uniformly sampling a grid of actions from the action space,
calculating Q-values for each action, and then computing
the variance of these Q-values. This process results in a
penalty term that increases in states where different actions
lead to highly variable outcomes.

Our method diverges from SMiRL in two critical ways: in-
stead of modeling state transition probabilities, we directly
measure uncertainty through Q-value variance across ac-
tions, aligning penalties with the agent’s decision-making
confidence. Rather than statically penalizing all state transi-
tions via rewards, we dynamically adjust penalties within
the TD target computation, enabling risk-averse behavior to
emerge contextually, particularly in high-uncertainty states
such as predator proximity.

In summary, both approaches can be viewed as implement-
ing different forms of uncertainty minimization:

SMiRL: max
π

E

[∑
t

γt (rt − α1 log p(st | s<t))

]

Our approach: max
π

E

[∑
t

γt (rt − α2Vara(Q(st, a)))

]

Consequently, our approach encourages the agent to avoid
states with high decision uncertainty, effectively balancing
exploration and risk aversion. Intuitively, it incentivizes be-
haviors such as cautious planning and avoiding unnecessary
risks.
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Figure 10. Top row: Mean changes in goal-agent distance before and after predator detection (left, middle), and initial mean movement
distances (right). Shaded areas show standard deviation. Bottom row: Spatial distribution of first three steps for each agent, with black
stars indicating mean positions. The black stars show that mouse data and VP-TDMPC2 maintain more consistent, cautious initial
positions, while baseline TDMPC2’s mean positions spread out more rapidly, indicating less conservative early behavior. (1 unit = the
diameter of the hexagonal arena)

Figure 11 compares the three agents under investigation.
Numerical calculations of the visitation pattern overlap show
that the TDMPC-2 agent has a 20.9% overlap with mice,
while VP-TDMPC-2 achieves 86.1%. This metric reflects
similarity in exploratory coverage (whether both agents have
been to the same states), rather than a one-to-one match in
how frequently or in what manner they visit those states.

TDMPC-2 VP-TD-MPC2 (Ours) Mouse

Figure 11. Final states visitation pattern comparison of original
TDMPC-2 (left), to our VP-TDMPC2 (middle: trained with TISB
and Variance-Penalized TD learning) and Mouse (right).

Notably, VP-TDMPC-2 exhibits geometric patterns and bal-
anced coverage resembling mice’s systematic exploration,
though it lacks the extreme thigmotaxis (wall-following
with minimal distance throughout the entire trial) observed

in real mice. For a closer examination of the differences
between mice behavior and RL, we analyzed the initial part
of the trajectory from the start gate.

Our analysis (Figure 10) reveals behavioral parallels with
mice exploration patterns. Before encountering the preda-
tor, VP-TDMPC-2 demonstrates natural hesitation patterns,
with distance changes closely matching mice behavior (-
0.1 to -0.2), while the baseline TDMPC-2 shows excessive
movement (-0.2 to -0.5). The spatial distribution plots (bot-
tom row) further illustrate that our method captures key
characteristics of mice behavior: initial hesitation near en-
try points6, some thigmotactic movement along boundaries,
and structured radial exploration patterns.

To further quantify these behaviors, we conduct additional
analyses focusing on two metrics: waiting behavior7 and
episode length. Across 1,000 trajectories, standard TD-
MPC showed 0% incidence of waiting, while real mice

6Trajectory comparisons (Figure 15) in the appendix provide
additional evidence of the behavioral similarity between VP-
TDMPC-2 and real mice.

7Defined as movement with distance changes under 0.1 units
within the first six steps.
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exhibited about 27.7% and our VP-TDMPC-2 achieved
about 32.4%.

Episode length also differed substantially (Figure 13 in Ap-
pendix). Standard RL agents completed the task in an av-
erage of 7.09 steps, while VP-TDMPC-2 averaged 13.89
steps, closely aligning with the 14.04-step average observed
in mice. Longer episodes may reflect more cautious or
deliberate planning under risk.

Together, these quantitative findings suggest that our pro-
posed mechanisms enhance the agent’s ability to model
biologically plausible risk-sensitive behaviors.

5.3. Challenges in Closing the Mice and Machines Gap

As shown in Figure 11, the final converged policies still
exhibit qualitative differences. Mice display stronger wall-
following behavior, whereas our improved RL agents tend
to make greater use of the central regions.

Our hypothesis is that this behavioral difference arises from
the structure of the RL state space. After thoroughly explor-
ing the outer wall during training, the agent no longer needs
to maintain constant wall contact for safety. Upon reaching
the top area of the arena, it can confidently conclude that
the task is solved. Additionally, the original TDMPC2 agent
relied almost entirely on the central regions. Although our
improved RL agent has learned to exhibit some cautious,
mouse-like behavior, it has also learned that the central area
offers more efficient paths to the goal when safety is ensured.
In contrast, mice continue to follow the wall regardless of
task mastery, likely due to rodents’ innate behavioral priors
(Champagne et al., 2010).

We observe that performance can be sensitive to the penalty-
weight hyperparameter: setting it higher may encour-
age overly cautious policies, whereas lower settings can
sometimes produce risk-prone behavior. Moreover, our
predator–prey environment is deliberately highly stochas-
tic—even with fixed seeds—to better mimic real predator
randomness, which can occasionally lead to less stable train-
ing compared to standard RL benchmarks. These limitations
highlight the broader challenge of aligning artificial behav-
iors with natural ones, both in terms of behavioral fidelity
and parameter robustness.

6. What about LLM agents?
Given the remarkable capabilities of transformer models
in sequence modeling and reasoning (Brown et al., 2020),
we are particularly interested in examining how a large
language model (LLM) agent behaves in a controlled envi-
ronment. Recent work has shown that LLMs like GPT-4 can
exhibit behavior consistent with human-like theory of mind
in controlled tasks (Strachan et al., 2024), raising impor-

tant questions about the extent and nature of their internal
representations. Does the behavior of an LLM resemble
that of mice, or is it closer to that of an RL agent? Such an
experiment may provide insights into the world model of
LLMs and their biological alignment. In this study, we use
ChatGPT-4 to perform the experiments.

Parallel to the RL setting, the LLM agent receives state
information in two forms: a visual representation of the cur-
rent environment and a textual description of the task. The
LLM agent operates under the same partial observability
constraint, where the predator’s location is only revealed
when it falls within the agent’s field of view. Our LLM agent
makes decisions at each timestep, identical to TDMPC2, en-
suring a fair comparison. To maintain experimental integrity
and assess the LLM’s inherent capabilities, the prompts are
designed to be neutral without any suggestive cues about
optimal strategies.

Figure 12. LLM agent trajectories (left) and scatter plots (right).
Experiments were run with fewer trials due to API cost constraints,
but this was sufficient to illustrate the observed pattern.
Interestingly, like RL agents, the LLM agent often exhibits
reckless behavior (Figure 12). At the beginning of each trial,
the agent enters the environment without apparent strategic
considerations, despite expressing intentions such as: “Mov-
ing cautiously towards the goal while avoiding obstacles
and staying alert to the unseen predator’s movements.”

When encountering the predator, the agent does take eva-
sive actions, with internal reasoning resembling: “Moving
horizontally to avoid obstacles and maintain distance from
the predator while progressing toward the goal.” However,
the observed behavior significantly differs from that of mice.
While the LLM agent demonstrates reactive adjustments
to visible threats, its overall approach lacks the nuanced,
adaptive strategies often exhibited by biological agents like
mice. We believe this suggests the internal world model of
LLMs might lack biological alignment along certain axes,
particularly regarding anxiety and fear.

7. Related Work
Reinforcement learning has emerged as a fundamental
framework for understanding decision-making processes in
neuroscience and bio-behavioral research (Botvinick et al.,
2020; Subramanian et al., 2022; Fan et al., 2023). Re-
searchers (Schultz et al., 1997; Niv, 2009) discovered that
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dopamine neuron activity patterns in the midbrain closely
mirror the reward prediction error signals central to tempo-
ral difference learning. Neuroimaging studies (Lockwood
& Klein-Flügge, 2021) have revealed neural correlates of
Q-values in the ventral striatum and orbitofrontal cortex,
establishing these regions as key components in value-based
decision-making.

The discovery of mirror neurons, which exhibit similar acti-
vation patterns during both action execution and observation
(Buccino et al., 2004), has provided a biological founda-
tion for imitation learning, influencing both robotic systems
(Zahra et al., 2022) and third-person imitation learning al-
gorithms in RL (Stadie et al., 2017). Building on biological
inspiration, researchers have also integrated curiosity-driven
learning mechanisms (Stadie et al., 2015; Oudeyer & Smith,
2016) into RL algorithms to enhance exploration and learn-
ing efficiency. Recent advances in distributional reinforce-
ment learning suggest that the brain encodes not merely the
mean expected reward, but rather the complete distribution
of possible rewards (Muller et al., 2024).

Comparative studies have increasingly focused on aligning
biological and artificial behavior. For instance, Vaxenburg
et al. (2024) and Singh et al. (2023) analyze navigation tasks
across species and models. Our use of model-based RL
draws on findings by Daw et al. (2011), who demonstrated
that animals employ internal models in decision-making,
with striatal signals resembling TD prediction errors. Fur-
thermore, Mattar & Daw (2018) showed that prioritized
memory access can explain biological planning, which di-
rectly motivates our TISB framework. In parallel, Blanchard
et al. (2011) identified neural mechanisms for risk assess-
ment in rodents, aligning with our variance-penalized ob-
jective. Together, these studies suggest that while standard
RL falls short of replicating mouse-like behavior, biologi-
cally grounded modifications offer a promising path toward
closing this gap.

8. Discussion
In this paper, we present a detailed parallel comparison be-
tween machines and mice in an environment characterized
by risks, goals, and obstacles. The parallel comparison al-
lows us to explore behavioral differences in depth: mice
show distinct path-planning strategies, often sacrificing path
efficiency for safety, while RL agents gradually learn to
follow distance-optimal routes. Most importantly, we ob-
serve waiting and peeking behaviors in mice at entrances,
behind obstacles, and other locations where the predator is
not visible, while regularly trained RL agents never exhibit
such behaviors.

These behavioral discrepancies may arise from a fundamen-
tal architectural gap. Unlike biological agents that evolve in

the context of decisions where the outcome is irreversible
(succumbing to a predator, for example), standard RL sys-
tems lack an explicit notion of mortality (Ororbia & Friston,
2024). Without permanent failure states, RL agents tend
to over-explore and underweight rare but fatal risks, prior-
itizing immediate goals over the survival-oriented caution
observed in biological threat responses. Irreversibility in
outcomes has motivated using imagination to inform policy
learning in planning algorithms (Racanière et al., 2017),
and is a possible basis for the evolution of imagination and
planning in the brain (MacIver & Finlay, 2022).

To bring RL agents closer to mice, we introduce two mecha-
nistic innovations: the Trauma-Inspired Safety Buffer and
variance-penalized TD learning. The TISB’s dual mecha-
nisms provide key insights: Threat Experience Rebalanc-
ing reveals the optimal proportion of negative experiences
during early learning, while Threat Experience Amplifica-
tion enhances wall-following behaviors similar to mice’s
defensive strategies. Meanwhile, the variance penalty objec-
tive induces information-gathering behaviors reminiscent
of biological risk assessment. These mechanisms not only
make agent behaviors more mice-like but also advance the
interpretability of RL systems by grounding their decision-
making processes in biologically plausible behaviors.

We do admit that our work indeed focuses on a spe-
cific predator-prey domain, and the proposed mechanisms
were intentionally designed within this context. However,
predator-prey dynamics represent fundamental survival in-
teractions observed across both natural and artificial sys-
tems, as highlighted by Marrow et al. (1996) and Tsutsui
et al. (2024). These studies emphasize such scenarios as key
paradigms for investigating adaptive behavior. Importantly,
we view this work as an exploratory step toward aligning
artificial agent behavior with biologically inspired patterns,
rather than as a definitive benchmark for performance or
generality.

Several promising directions emerge from our find-
ings. While our methods improved wall-following behav-
ior, certain patterns—like extreme wall-kissing trajecto-
ries—remain challenging to replicate. The dynamic predator
presence complicated our attempts with intrinsic rewards,
suggesting the need for novel architectures to capture these
biological strategies. An observed “baiting” behavior is of
special interest—where mice intentionally attract predator
attention before retreating (Lai et al., 2024). While TDMPC-
2 incorporates planning horizons, replicating such deceptive
strategies requires deeper integration of opponent model-
ing, pointing to opportunities to develop better prediction
mechanisms.
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A. Environment Details
In our environment setting, we employ both discrete and continuous action spaces, tailored for position control. The
continuous action space is utilized for algorithms such as SAC and TDMPC-2, while the discrete action space is designed
for algorithms like DQN or other discrete action-based methods.

In the continuous action space, we have a three-dimensional action space. The first two dimensions represent the target
coordinates (x, y) within the arena, indicating the position the agent should move to. The third dimension serves as a waiting
or movement indicator: if this value is larger than 0.5, the agent should not move. The agent learns the value of these actions
through interaction with the environment.

In the discrete action space, the environment is modeled using a hexagonal grid, where the arena is a large regular hexagon
composed of smaller hexagonal cells. Each cell is assigned a unique identifier, effectively discretizing the action space. In
this setting, each step corresponds to 0.25 seconds in the real-world mouse experiment.

The state space is represented as a ten-dimensional vector, which includes the following information:

• The simulated mouse’s own position, including its x and y coordinates and the direction it is facing.
• The simulated robot’s position, but only when the robot is visible to the mouse.
• The distance to the goal.
• A binary indicator of whether the mouse has been “puffed” by the robot.

The reward structure is sparse. All distances within the arena are normalized such that 1 unit corresponds to the diameter of
the arena. This normalization ensures consistency and scalability across different experimental setups.

Upon each environment reset, the predator is initialized at a random location outside the prey’s field of view. This
initialization remains stochastic even when a fixed random seed is used, introducing variability in the predator’s starting
state across episodes. After initialization, the predator then begins hunting the prey following the procedure outlined in
Algorithm 1.

B. Experimental Details
All experiments were conducted with a maximum episode length of 300 steps and a total of 100,000 training steps. We use
a timestep of 0.25s. This aligns with findings showing that rodents make approximately 2-5 decisions per second during
navigation (Resulaj et al., 2009). Through environment setup, we determined that the 0.25s provides an optimal balance
between biology realism and learning performance.

B.1. Model-Free Methods

Experiments on SAC and DQN were implemented based on stable-baseline3 (Raffin et al., 2021). For baseline comparisons,
DQN was implemented with an epsilon-greedy exploration strategy, using a learning rate of 1e-4 and batch size of 256.
SAC was initialized with 1,000 random seed steps for exploration, trained with a learning rate of 3e-4 and batch size of 256.
Both algorithms employed two-layer networks with 256 units per layer and parameters updated every step.

B.2. Main Model-Based Method

For our main methods, TDMPC-2 and VP-TDMPC-2, we implemented both experiments based on the original code (Hansen
et al., 2023). Both methods utilized 1,000 random seed steps for initial exploration and were trained with a learning rate of
1e-4 and batch size of 512. After training, we collected expert trajectories from TDMPC-2.

For VP-TDMPC-2, we modified the buffer and TD-target of the TDMPC-2 agents in their original code. To calculate
Q-variance, we first sampled 400 actions uniformly from the action space. We used an ensemble of 5 different Q-networks,
each predicting Q-values for these actions. The variance was then computed across all Q-values produced by these networks.

We used the horizon length of 3 is in our experiments. Our task mirrors real mouse behavior: excluding waiting periods,
mice need 2-3 seconds to reach the goal. Given our simulation timestep (0.25 seconds per action), successful task completion
in RL requires 8-12 steps. The gamma factor is 0.995.

The penalty coefficients in the range of 0.1–0.2 achieved the optimal balance between task completion and cautious behavior.
For comparison with mice, we trained two separate agents with coefficients of 0.1 and 0.2, respectively, and collected expert
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data from both. To prevent training instability and variance explosion, we implemented variance value clipping at 1,000
during VP-TDMPC-2’s TD target updating.

As we have stated in the limitation section, while VP-TDMPC-2 demonstrated improved behavioral alignment with
biological agents, we note that its training stability was limited. The model exhibited high variance, and successful cautious
behavior only emerged under specific hyperparameter settings. Although our findings are representative, we emphasize that
VP-TDMPC-2 remains a proof-of-concept method rather than a robust, general-purpose algorithm.

B.3. Why not SAC and DQN

We experimented with DQN and SAC alongside TDMPC2 but focused on TDMPC2 because: (i) Model-based approaches
together with TD learning better align with biological decision-making (Daw et al., 2011), (ii) DQN and SAC showed less
stable convergence and inconsistent trajectories, and TDMPC2 produced more stable behaviors.

Notably, with sufficient training, all mentioned RL methods ultimately exhibited similar ”reckless” behaviors (lacking
waiting periods and showing minimal exploration), confirming that our observations about behavioral gaps are not specific
to one algorithm.

B.4. How we evaluate our agent

For the density plots presented in all sections, we select the best-performing model based on validation metrics to ensure
that the comparison highlights the real exploration capabilities of each method. If we averaged multiple runs, one with
density mainly at the top and another at the bottom, the result could wrongly suggest strong exploration, even if both actually
explored poorly.

To ensure a fair comparison, both the baseline and improved models were trained following identical procedures, and the
best-performing checkpoint (as measured by validation performance) was selected for each. The collected datasets are of
similar scale to highlight the main patterns.

C. Episode Length Distribution Plot
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Figure 13. Comparison of episode length distributions across models and mice (filtered for episodes with length between 5 and 50 to
exclude trivial failures and outlier trajectories unlikely to reflect meaningful exploratory behavior). TD-MPC2: Mean = 7.09, SD =
1.77, Range = [5, 46]; Mouse: Mean = 14.04, SD = 10.40, Range = [5, 50]; VP-TD-MPC2: Mean = 14.25, SD = 6.24, Range = [6, 50];
VP-TD-MPC2 reproduces mouse-like exploratory durations more faithfully than standard TD-MPC2, with a longer mean episode length
and greater behavioral variability.
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D. More Example trajectories

Figure 14. More mouse trajectories, demonstrating consistent waiting behavior at the entrance and strong thigmotactic patterns
(wall-following behavior). We added slight noise to highlight the waiting path.

Figure 15. More VP-TDMPC-2 trajectories, exhibiting similar waiting patterns at the starting point and emerging thigmotactic tendencies,
closely resembling mice behavior. We added slight noise to highlight the waiting path.
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Figure 16. More TDMPC-2 trajectories, showing direct, goal-oriented paths with predator avoidance occurring only in close proximity
to the goal, lacking the strategic caution observed in mice. We added slight noise to highlight the waiting path, otherwise it would be
visually obscured due to overlapping trajectory lines.

E. Fitting Offline RL On Mouse Data and Motivation for KL Divergence
To further validate the behavioral differences between mice and RL agents, we employ offline reinforcement learning to
directly learn from mouse trajectory data. By training offline RL algorithms on mouse behavioral datasets, we can create
”mouse-like” policies that mimic biological decision-making patterns.

Comparing these learned policies with standard online RL agents provides additional evidence for the fundamental
differences in risk assessment and exploration strategies between biological and artificial agents.

Offline RL aims to learn optimal policies solely from pre-collected datasets without further environment interactions. This
approach is essential in scenarios where live data acquisition is prohibitively expensive or risky. A primary challenge in
offline RL is addressing the distributional shift between the data distribution ddata(s, a) and the policy-induced distribution
dπ(s, a).

E.1. Behavior Cloning (BC)

Behavior Cloning (Torabi et al., 2018) is a supervised learning approach that learns a policy π(a|s) directly from the dataset
by mimicking the actions taken by the behavior policy. The objective is to minimize the discrepancy between the learned
policy and the behavior policy:

min
π

E(s,a)∼ddata [ℓ (a, π(s))] ,

where ℓ is a loss function measuring the difference between the actions.

Limitations of BC: While BC can effectively mimic certain aspects of mouse behavior, it struggles with capturing the
underlying decision-making strategies, especially in states that are underrepresented or absent in the dataset. This limitation
results in poor generalization and inability to solve the task.
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E.2. Offline RL Methods

To overcome the shortcomings of BC, more sophisticated offline RL methods modify standard RL objectives to account for
the distributional shift:

1. Conservative Q-Learning (CQL): CQL penalizes overestimation of Q-values for unseen actions (Kumar et al., 2020),
ensuring the learned policy remains close to the data distribution. The objective is:

min
Q

max
µ

α
(
Es∼ddata, a∼π(a|s)

[
Q(s, a)

]
− E(s,a)∼ddata

[
Q(s, a)

])
+ LBellman(Q) +R(µ),

where µ is an auxiliary action-distribution andR(µ) its regularizer.

2. Conservative offline model-based policy optimization (COMBO): COMBO (Yu et al., 2021) extends CQL by
incorporating a learned model of the environment. It utilizes model-based planning in conjunction with conservative
value estimation to improve policy learning:

min
Q

α
(
Es∼d̂,a∼π(a|s) [Q(s, a)]− E(s,a)∼ddata [Q(s, a)]

)
+ LBellman(Q),

where d̂ represents the state distribution induced by the learned model.

3. Implicit Q-Learning (IQL): IQL (Kostrikov et al., 2021) focuses on recovering optimal actions implicitly by
decoupling the value function from policy improvement. It uses expectile regression to learn the value function:

LV (ψ) = E(s,a)∼ddata [L
τ
2 (Qθ(s, a)− Vψ(s))] ,

LQ(θ) = E(s,a,r,s′)∼ddata

[
(Qθ(s, a)− r − γVψ(s′))

2
]
,

where Lτ2 is the asymmetric squared loss with expectile τ .

Empirical Evaluation

In our predator-prey task, we evaluate the performance of different offline reinforcement learning methods in reproducing
mouse behaviors. While both CQL and COMBO successfully reproduce the basic mouse trajectories, they fail to capture
the nuanced waiting behavior observed in real mice. This limitation appears to stem from their overemphasis on reward
optimization, which leads to overly aggressive strategies that deviate from the natural behavioral patterns.

In contrast, IQL demonstrates superior performance by accurately capturing both the waiting actions and the precise
trajectory patterns exhibited by mice. This success highlights IQL’s enhanced adaptability to complex behavioral dynamics
and its ability to balance between reward optimization and behavioral fidelity.

Despite these promising results, the limited availability of mouse trajectory data in our dataset constrains our ability to learn
a fully accurate mouse policy. This data scarcity represents a fundamental challenge that must be addressed in future work.
We anticipate that developing more sophisticated behavior-cloning techniques will be essential for faithfully reproducing the
subtle decision-making patterns observed in real mice.

To provide a quantitative assessment of the behavioral differences, we measure the discrepancy between the online RL
policy and the mouse-derived policy using Kullback-Leibler (KL) divergence (Hershey & Olsen, 2007). For each state s in a
representative subset of the state space, the KL divergence between the two policies is defined as:

KL(πIQL(·|s)∥πRL(·|s)) =
∑
a

πIQL(a|s) log
πIQL(a|s)
πRL(a|s)
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where πIQL(a|s) denotes the probability of selecting action a given state s under the IQL policy (representing mouse
behavior), and πRL(a|s) represents the corresponding probability under the online RL policy. By averaging the KL
divergence across all sampled states, we obtain an overall measure of policy divergence.
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Figure 17. KL Divergence between online RL and IQL policies (IQL representing mouse behavior)

Our quantitative analysis reveals a substantial divergence between the online RL policy and the mouse-derived policy, with a
KL divergence value of 6.4386 (Figure 17). This significant divergence underscores the considerable gap between current
RL approaches and natural mouse behavior, highlighting the complexity of accurately modeling biological decision-making
processes. These findings emphasize the need for more sophisticated approaches that can better capture the nuanced
behavioral strategies employed by mice in predator-prey scenarios.
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F. ChatGPT-4o Experiment

Table 1. LLM Agent Prompt

You a r e c o n t r o l l i n g a p rey a g e n t i n a p r e d a t o r − p rey e n v i r o n m e n t .

Your g o a l i s t o r e a c h t h e g r e e n g o a l p o i n t ( 1 . 0 , 0 . 5 ) w h i l e a v o i d i n g t h e
p r e d a t o r and o b s t a c l e s .

Envi ronment D e t a i l s :
− You ( r e d d o t ) must r e a c h t h e g o a l ( g r e e n d o t ) w h i l e a v o i d i n g
t h e p r e d a t o r ( b l u e d o t )
− Black a r e a s a r e o b s t a c l e s / w a l l s t h a t you c a n n o t p a s s t h r o u g h
− The p r e d a t o r ( b l u e d o t ) i s c o n s t a n t l y moving and t r y i n g t o c a t c h you ,
and t h e r e i s a
l a r g e r b l u e c i r c l e i n d i c a t i n g t h e p u f f e d a r e a a round t h e p r e d a t o r
− I f you can ’ t s e e t h e p r e d a t o r , i t means i t ’ s h i dd en be h i nd o b s t a c l e s
− The e n v i r o n m e n t has a g r i d t o h e l p you l o c a t e p o s i t i o n s
( x and y c o o r d i n a t e s from 0 t o 1 )
− Each move must have an L2 norm l e s s t h a n 0 . 2

Your r e s p o n s e must be a JSON o b j e c t w i th e x a c t l y t h i s f o r m a t :
{

”move ” : [
{” x ” : < f l o a t > , ” y ” : < f l o a t >}

] ,
” t h o u g h t s ” : ”< s i n g l e l i n e e x p l a i n i n g your s t r a t e g y >”

}

Rules f o r moves :
1 . P r o v i d e e x a c t l y 1 move
2 . Each move s h o u l d be a s m a l l s t e p
( L2 norm of d i s t a n c e between your n e x t p o s i t i o n and
c u r r e n t p o s i t i o n < 0 . 2 )

Example r e s p o n s e :
{

”move ” : [
{” x ” : 0 . 2 0 , ” y ” : 0 . 4 5} ,

] ,
” t h o u g h t s ” : ” Moving toward t h e g o a l w h i l e a v o i d i n g o b s t a c l e s and k e e p i n g
d i s t a n c e from p o t e n t i a l p r e d a t o r l o c a t i o n s . ”

}
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