
DiffAdvMAP: Flexible Diffusion-Based Framework for Generating Natural
Unrestricted Adversarial Examples

Zhengzhao Pan 1 Hua Chen 2 Xiaogang Zhang 1

Abstract

Unrestricted adversarial examples(UAEs) have
posed greater threats to deep neural net-
works(DNNs) than perturbation-based adversarial
examples(AEs) because they can make extensive
changes to images without being restricted in a
fixed norm perturbation budget. Although cur-
rent diffusion-based methods can generate more
natural UAEs than other unrestricted attack meth-
ods, the overall effectiveness of such methods is
restricted since they are designed for specific at-
tack conditions. Additionally, the naturalness of
UAEs still has room for improvement, as these
methods primarily focus on leveraging diffusion
models as strong priors to enhance the gener-
ation process. This paper proposes a flexible
framework named Diffusion-based Adversarial
Maximum a Posterior(DiffAdvMAP) to generate
more natural UAEs for various scenarios. Dif-
fAdvMAP approaches the generation of UAEs
by sampling images from posterior distributions,
which is achieved by approximating the posterior
distribution of UAEs using the prior distribution
of real data learned by the diffusion model. This
process enhances the naturalness of the UAEs.
By incorporating an adversarial constraint to en-
sure the effectiveness of the attack, DiffAdvMAP
exhibits excellent attack ability and defense ro-
bustness. A reconstruction constraint is designed
to enhance its flexibility, which allows DiffAd-
vMAP to be tailored to various attack scenarios.
Experimental results on ImageNet show that we
achieve a better trade-off between image quality,
flexibility, and transferability than baseline unre-
stricted adversarial attack methods.
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1. Introduction
Deep Neural Networks (DNNs) have been prosperous in var-
ious vision tasks these years, such as object detection, face
recognition, and semantic segmentation. However, many
works have shown that DNNs are vulnerable to adversarial
examples. Adversarial examples are images intentionally
crafted by adding tiny perturbations to natural images. Such
modified images can deceive DNNs to make wrong predic-
tions while remaining imperceptible to humans, bringing
security risks to decision-critical systems. This vulnerabil-
ity poses great threats to lots of vision tasks such as image
classification (Goodfellow et al., 2014), (Carlini & Wagner,
2017), (Madry et al., 2017), segmentation (Li et al., 2023),
and tracking (Li et al., 2021b), (Li et al., 2023).

Unlike traditional perturbation-based adversarial examples
(AEs), which limit perturbations to a small range to maintain
imperceptibility, unrestricted adversarial examples (UAEs)
are generated by applying extensive natural transformations
to images, such as color conversion, which significantly
reduces the noticeable noise patterns in AEs. UAEs can also
be generated by training a generative model like AC-GAN
(Song et al., 2018), enabling the attacker to produce a more
natural and unlimited number of UAEs. Such approaches
do not require perturbing real images with restricted per-
turbations, thus being more concealed and effective than
traditional AEs. As a result, UAEs have emerged as a signif-
icant area of study in adversarial examples over the past few
years due to their potential threat to deep neural networks.
Though generative models like GANs and VAEs can learn
and sample from data distribution effectively, it’s difficult
to perform well on complex and high-quality datasets like
ImageNet (Deng et al., 2009) because of their weak inter-
pretability. Diffusion models (Ho et al., 2020) have shown
their superiority in synthesizing realistic and high-quality
images in recent years, thus, they become powerful com-
petitors to GANs and VAEs in generating UAEs. Inspired
by this, recent works (Dai et al., 2025), (Chen et al., 2023),
(Liu et al., 2023a) explore new methods to generate realistic
UAEs on complex datasets with diffusion models and obtain
better performance than previous works.

However, there still exist some problems that affect the
effectiveness and naturalness of UAEs generated by diffu-
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sion models to be considered: 1) As is shown in (Meng
et al., 2021), diffusion models tend to add low-level seman-
tic information such as the layout in the early generation
steps while more high-level semantic information in the
later steps, modifying the latent code of the early steps in
the generation process(Chen et al., 2023) may change the
low-level features and take the risk of generating unnatural
UAEs. Although some methods(Dai et al., 2025)(Chen et al.,
2024a) generate UAEs by generating adversarial high-level
features, they primarily focus on using diffusion models
as strong priors to enhance the generation process. This
approach does not fully leverage the prior knowledge of
real data distributions learned by diffusion models, which
may still take the risk of generating unrealistic features. 2)
Most existing methods are limited to a fixed set of scenarios,
as they are designed for specific attacking conditions, such
as generating UAEs similar to given reference images or
producing UAEs from noise. This narrow focus restricts the
overall effectiveness of the adversarial examples.

To this end, we propose a flexible diffusion-based unre-
stricted adversarial attack framework to generate natural
UAEs. In our opinion, the posterior distribution of UAEs
derived from the prior distribution of natural data learned
by the diffusion model is more close to natural data distri-
bution, we can generate more natural UAEs by sampling
from this distribution. We leverage the generation process
of a pre-trained diffusion model, extending and adjusting
the maximum a posterior(MAP) method to form our Dif-
fAdvMAP framework to generate natural UAEs. Under the
Bayesian framework, we first derive the posterior distribu-
tion of UAEs based on the real data distribution learned by
the diffusion model under the adversarial and reconstruction
constraints, the adversarial constraint is used to ensure the
effectiveness of the attack, and the reconstruction constraint
is used to control the content of generated UAEs. Then we
go through the generation process of the diffusion model and
sample UAEs from such distribution. Since our framework
samples UAEs from the approximated posterior distribution
of UAEs, there’s no need to go through the whole generation
process to remove too many conspicuous adversarial noises.
We integrate a destruction and construction method into our
framework, which destroys most high-level features of real
images by the diffusion process, and regenerates adversarial
features via DiffAdvMAP. As a result, our framework can
generate UAEs with a truncated generation process while
protecting most low-level features, thus improving the natu-
ralness and generation speed of UAEs. Finally, when facing
different attacking tasks such as generating UAEs similar to
the given images, generating UAEs from noise, generating
UAEs via regenerating specified regions of given images,
and generating UAEs via changing the color or style of given
images, the reconstruction constraint in DiffAdvMAP can
be customized to such tasks while keeping the naturalness.

Our main contributions are summarized as follows:

• We propose a flexible diffusion-based framework for
generating UAEs named DiffAdvMAP, it can generate
UAEs under various attacking conditions. We achieve
it by approximating the posterior distribution of UAEs
using pre-trained diffusion models and sampling from
the distribution. This approach leads to a better natu-
ralness than most diffusion-based attack methods.

• We design an adversarial constraint and a reconstruc-
tion constraint within the Bayesian framework to gen-
erate UAEs. The adversarial constraint ensures the
effectiveness of UAEs; the reconstruction constraint
grants our framework the flexibility to handle various
attack conditions.

• Experimental results regarding white-box attack suc-
cess rate, transferability, and defense robustness
demonstrate the effectiveness of DiffAdvMAP. Ad-
ditionally, UAEs generated under various attack con-
ditions further emphasize its superiority in flexibility
and effectiveness over baseline attacks.

2. Related Works
2.1. Adversarial Examples

Perturbation-based adversarial attacks are performed by
adding small and imperceptible perturbations to natural
images such that the target model makes wrong predic-
tions. Since (Szegedy et al., 2013) shows the existence
of adversarial examples, the security concerns of such
attacks are increasing in computer vision and machine
learning communities as more and more advanced and
powerful methods are developed (Moosavi-Dezfooli et al.,
2016)(Long et al., 2022). On the other hand, adversarial
attacks play important roles in improving contrastive learn-
ing(Lee et al., 2020)(Ho & Nvasconcelos, 2020), image
recognition(Xie et al., 2020), privacy protection(Li et al.,
2021a)(Liu et al., 2023a), and other applications. Attack-
ers can easily generate perturbation-based adversarial sam-
ples by using gradient-based methods such as fast gradi-
ent sign method(FGSM)(Goodfellow et al., 2014), CW
attack(Carlini & Wagner, 2017), projected gradient de-
scent(PGD)(Madry et al., 2017).

While most of the perturbation-based adversarial attacks
that focus on optimizing additive perturbations at the pixel
level have achieved good results, it is shown that the restric-
tions of perturbations are not accurate in representing the
way that humans perceive the differences between similar
images (Jia et al., 2022), (Yuan et al., 2022), and thus in-
troducing conspicuously noise patterns, such as the global
noise introduced by the PGD attack. As a result, researchers
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Figure 1. An overview of the DiffAdvMAP algorithm for generating unrestricted adversarial examples

turn to generating AEs using generative models, achieving
higher realism than perturbation-based AEs while keeping
a high success rate. (Wong & Kolter, 2020) trains a con-
ditional VAE to generate a variety of perturbations. (Xiao
et al., 2018) trains a conditional GAN to produce adversarial
examples directly. (Song et al., 2018) trains an AC-GAN
and samples adversarial examples from noise. (Qiu et al.,
2020) generates imperceptible AEs by modifying the at-
tributes of the natural images using a GAN. (Bhattad et al.,
2019) perturbs images from the perspective of color and
texture by leveraging corresponding pre-trained GANs.

Diffusion models(Ho et al., 2020) are more powerful and
stable than GANs and VAEs, and many works have suc-
ceeded in generating more realistic UAEs on complex and
high-quality datasets. (Chen et al., 2023) is the first to in-
vestigate generating UAEs with diffusion models, it adds
small adversarial perturbations to each latent code of the
generation process and removes unnecessary noise via diffu-
sion models to generate natural UAEs, it also leverages the
information of original images to preserve semantic impor-
tant objects. (Dai et al., 2025) generates realistic UAEs by
using the gradient of defending classifiers to guide the latent
code during each generation step. (Chen et al., 2024a) gen-
erates imperceptible and transferable UAEs by optimizing
the attention map during the generation process of diffusion
models. Furthermore, Diff-PGD (Xue et al., 2023) utilizes
diffusion models to adapt adversarial examples generated by
the PGD (Madry et al., 2017) method to align more closely
with the real data distribution, resulting in more stealthy
adversarial examples. Although it can be applied to vari-
ous tasks, it is fundamentally based on the PGD method, a
perturbation-based attack that depends on global noise pat-
terns. Consequently, the naturalness and effectiveness of the
adversarial examples remain unsatisfactory, despite the use
of diffusion models to alleviate these patterns. To the best
of our knowledge, all works so far consider using diffusion
models as strong priors to enhance the generation of adver-

sarial samples only, and have not explored approximating
the posterior distribution of UAEs yet.

2.2. Diffusion Models

Since (Ho et al., 2020) proposes denoising diffusion proba-
bilistic models(DDPMs) and show their superiority in syn-
thesizing high-quality and high-diversity images, the appli-
cation range of diffusion models is becoming increasingly
broad, such as image synthesis(Rombach et al., 2022)(Sa-
haria et al., 2023)(Zhang et al., 2023), time series predic-
tion(Tashiro et al., 2021)(Rasul et al., 2021), video syn-
thesis(Harvey et al., 2022)(Ho et al., 2022), point cloud
completion(Lyu et al., 2021)(Zhou et al., 2021), adversarial
perturbations purification(?), etc.

DDPM is defined as a Markov chain comprising T forward
diffusion steps, x1:T , which convert an original image x into
pure Gaussian noise and a series of Gaussian transitions
comprising T reverse generation steps, xT :1, which generate
high-quality images with pure Gaussian noise input. In
each forward diffusion step t ∈ [1 : T ], Gaussian noise
is iteratively added to each latent code xt according to a
monotonically increasing noise schedule β1:T . Specifically,

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI) (1)

The reverse generation process, which begins with sampling
xT from Gaussian distribution, generates each latent code
xt−1 by removing Gaussian noise from previous latent code
xt and finally generates natural-like data x0:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),Σθ(xt, t)) (2)

In DDPMs, µθ(xt, t) = 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)),

Σθ(xt, t) ≈ βt. Here, αt = 1−βt, ᾱt =
∏t

i=1 αi, ϵθ(xt, t)
is Gaussian noise estimated by model ϵθ.

(Nichol & Dhariwal, 2021) proposes an improved DDPM
that learns the variance schedule to improve quality and effi-
ciency. Denoising Diffusion Implicit Models(DDIMs)(Song
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et al., 2020) use a non-markovian diffusion process to
achieve a much faster sampling speed than DDPMs with the
same training procedure, whose generation process is:

pθ(xt−1|xt) = N (xt−1;
√
ᾱt−1x0

+
√

1− ᾱt−1 − δ2t
xt −

√
ᾱtx0√

1− ᾱt
, δ2t I

) (3)

Here, δt ∈ [0,
√

1−ᾱt−1

1−ᾱt

√
1− ᾱt

ᾱt−1
] is the standard devia-

tion, when δt = 0, the generation process is deterministic,

when δt =
√

1−ᾱt−1

1−ᾱt

√
1− ᾱt

ᾱt−1
, the generation process is

the same as DDPMs.

In addition, efforts are also made to improve the qual-
ity of conditional image generation. (Dhariwal & Nichol,
2021) leverages a pre-trained noisy classifier to guide class-
conditional image synthesis. (Liu et al., 2023b) then extends
it to image- and text-based guidance. (Ho & Salimans, 2022)
further improves classifier guidance to classifier-free guid-
ance, which utilizes an internal latent classifier.

3. Method
As is shown in Figure 1, DiffAdvMAP is formed with two
branches to deal with two main attacking scenarios: whether
or not a reference image exists. Suppose a real image is
given for reference. In that case, most high-level features of
the real image will be destroyed by going through the diffu-
sion process for t∗ steps to obtain the latent code xt; if not,
a noisy image xT will be sampled from the Standard Gaus-
sian distribution, it will go through the original generation
process for T − t∗ steps until the latent code x∗

t is obtained,
where T is the total length of the generation process, t∗

is a hyperparameter. Then the UAE is generated similarly
for both scenarios with a t∗-steps-long truncated generation
process. It approximates the posterior distribution of latent
code x̂t given the previous latent code x̂t+1 under the adver-
sarial and reconstruction constraints, and samples x̂t from it
iteratively until the final UAE is generated. Going through
the truncated generation process, we can generate adversar-
ial high-level features by sampling from the approximated
posterior distribution to generate more natural UAEs faster.

3.1. Diffusion-Based Adversarial Maximum a Posterior

We extend and adjust the MAP method to the diffusion-
based UAEs generation task. We develop our methods un-
der the Bayesian framework, which uses the Bayes formula
to derive the posterior distribution of the target data, and
samples the target data from this distribution by maximiz-
ing the probability density function(PDF) of the posterior
distribution. In this section, we first construct the generation
problem of UAEs in the form of mathematical formulas,
then we derive the posterior distribution of UAEs with the

prior distribution of real data learned by the diffusion model
based on the formulas. Afterward, we infer the PDF of the
posterior distribution as our objective function. Finally, we
follow a greedy optimization procedure to find each adver-
sarial latent code x̂T :0 that maximizes the objective function
to generate the final UAEs.

3.1.1. POSTERIOR DISTRIBUTION DERIVATION

Given an optional reference real image x, a ground truth
label y, a diffusion model Gθ, and a target classifier Fϕ, our
goal is to utilize Gθ to generate adversarial examples x̂0

that can deviate the decision of Fϕ from correct to wrong:

Fϕ(Attack(Gθ; y;x if exists)) = Fϕ(x̂0) ̸= y (4)

Here, if x exists, x̂0 must be semantically close to x, and
Attack(·) is our attack algorithm. From CW attack(Carlini
& Wagner, 2017), we can convert the goal of Fϕ(x̂0) ̸= y
into the adversarial constraint:

C1 : Z(x̂0)y −maxi̸=y(Z(x̂0)i) = c (5)

Where c ≤ 0 is the confidence level of fooling the classifier,
Z(x̂0)i is the logit output of classifier Fϕ at entry i with x̂0

as input. For convenience, we denote the logit difference
Z(·)y −maxi̸=y(Z(·)i) as l(·).

When generating UAE with a reference image, the differ-
ence between the UAE and the reference image is specifi-
cally defined in different scenarios, we introduce a recon-
struction constraint to control the content of the UAE:

C2 : m ◦ Ω(x̂0) = m ◦ Ω(x̃) (6)

Here, ◦ means element-wise multiplication and m is the
mask used to deal with different kinds of regeneration re-
gions. Specifically, when UAEs are generated globally, m
is an identity matrix; when UAEs are generated in some
specified regions, m is the mask that covers such specified
regions. Only the regions m covers should be generated
when generating regional UAEs. Function Ω(·) is a cus-
tomized function for generating UAEs in different scenarios.
For generating image-similar UAEs, x̃ is the original refer-
ence image, Ω(x) = x; for generating style UAEs, x̃ is an
extra image that contains the target style, Ω(·) computes the
style score as (Gatys et al., 2016); as for generating color
UAEs, x̃ is the reference image after changing color, Ω(·)
converts images from the RGB space into the LAB space.

As a result, given the adversarial constraint C1 and the recon-
struction constraint C2, the posterior distribution of UAEs
can be represented as pθ(x̂0|C1, C2), and since the reverse
generation process of DDIMs is a deterministic process
that once the input Gaussian noise X̂T is determined, the
output x̂0 is uniquely determined, the generation problem
boils down to determine an appropriate X̂T based on the
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following posterior distribution:

pθ(x̂T |C1, C2) ∝ pθ(x̂T )pθ(C1|x̂T )pθ(C2|x̂T ) (7)

Then, since the generation process of the diffusion model is
a Markov process that can be decomposed as:

pθ(x̂0:T |C1, C2) = pθ(x̂T |C1, C2)

T∏
t=1

pθ(x̂t−1|x̂t, C1, C2)

(8)
As a result, we derive the posterior distribution of each
adversarial latent code as follows:

pθ(x̂t−1|x̂t, C1, C2) ∝ pθ(x̂t−1|x̂t)pθ(C1|x̂t−1)pθ(C2|x̂t−1)
(9)

As for the scenario that the reference image is not given,
we are supposed to generate the UAE from noise, the gen-
erated UAE must contain the object that can be recognized
as the predefined label y but be misclassified as another
label by the target classifier. So we utilize the conditional
diffusion model to generate most low-level features of the
target object, and then generate adversarial features with
DiffAdvMAP. Please refer to Appendix B for more details.

3.1.2. INFERENCE OF OBJECTIVE FUNCTION

For image-similar UAEs, we propose the PDF of the poste-
rior distribution of each adversarial latent code x̂t (t ∈ [T :
1]) in equation (8), Appendix B shows detailed derivation.

The approximation of the log PDF of equation (7) is:

log p′θ(x̂T |C1, C2)

= −1

2
||x̂T ||22 −

1

2ξ′21T
||c− l(fT

θ (x̂T ))||22

− 1

2ξ′22T
||x− fT

θ (x̂T )||22 + C ′

(10)

Where ξ′i(i = 1, 2) is the standard deviation of distribution
pθ(Ci|x̂T )(i = 1, 2), C ′ is the normalizing constant, f t

θ(·)
is a one-step estimation used to approximate the final UAE
x̂0 with intermediate latent code x̂t to reduce the computing
complexity. The one-step estimation is defined as:

x̂0 ≈ f t
θ(x̂t) =

x̂t −
√
1− ᾱtϵθ(x̂t, t)√

ᾱt
(11)

Then the log PDF of the posterior distribution of each adver-
sarial latent code from equation (9) can be approximated:

log p′θ(x̂t−1|x̂t, C1, C2)

= − 1

2δ2t
||x̂t−1 − µ̂t||22 −

1

2ξ′21t−1

||c− l(f t−1
θ (x̂t−1))||22

− 1

2ξ′22t−1

||x− f t−1
θ (x̂t−1)||22 + C ′

(12)

Here, as is shown in equation (3), in DDIMs

µ̂t =
√
ᾱt−1f

t
θ(x̂t) +

√
1− ᾱt−1 − δ2t

x̂t −
√
ᾱtf

t
θ(x̂t)√

1− ᾱt
(13)

We follow a greedy optimization procedure to find each
latent code x̂0:T , which samples an x̂T by maximizing equa-
tion (10), and then samples x̂t−1 given previous latent code
x̂t by maximizing equation (12). Note that, each latent code
x̂t−1 in equation (12) is initialized by µ̂t. As for the approx-
imation error introduced by the one-step estimation, it will
reduce gradually as t reduces and close to zero at the last
few steps of the generation process(Zhang et al., 2023), so
it has little effect on the quality and effectiveness of UAEs.

3.2. Destruction and Construction Method

Since going through the whole generation process of the
diffusion model is time-consuming and recent research on
real image editing(Mokady et al., 2023)(Couairon et al.,
2022)(Kwon & Ye, 2022) show that perturbations can be
applied to high-level semantics without compromising im-
age realism. And (Meng et al., 2021)(Chung et al., 2022)
present that generating adversarial features on real images
can be regarded as a special case of real image editing. So
we integrate a destruction and construction method with
our framework, which allows us to preserve most low-level
features of the original images and generate adversarial high-
level features while accelerating the generation process.

This method is used for obtaining an appropriate intermedi-
ate latent code xt via the diffusion model as follows:

xt ∼

{
q(xt|x0), x0 exists

pθ(xT )
∏t+1

i=T pθ(xi−1|xi), otherwise
(14)

Here, x0 is a reference image, q(·) means the diffusion pro-
cess, pθ(·) means the generation process. Then x̂T in equa-
tion (10) is initialized by xt, and DiffAdvMAP is performed
with a truncated generation process to generate UAEs. By
integrating this method, the generation speed is improved
greatly. The pseudo-code is shown in Appendix C.

4. Experiments
In this section, we evaluate the effectiveness of our frame-
work under the black-box settings. This section is organized
according to various attack conditions: generating UAEs
from noise, global image-similar UAEs generation, regional
image-similar UAEs generation, and customized UAEs gen-
eration. We will evaluate the transferability and robustness
against defense methods of our framework in the global
image-similar UAEs generation and generating UAEs from
noise part. We also conduct evaluations under the white-box
setting, please refer to Appendix D for more details.
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4.1. Experimental Settings

Datasets and Metrics. We evaluate the performance of our
framework on the ImageNet-compatible dataset(Kurakin
et al., 2018), consisting of 1,000 images from ImageNet’s
validation set. In our experiments, we only consider the
resolution of 224 ∗ 224 ∗ 3. We apply the FID(Heusel et al.,
2017) and LPIPS(Zhang et al., 2018) as the image qual-
ity metrics for global image-similar UAEs generation, FID,
TRES(Golestaneh et al., 2022) and HyperIQA(Su et al.,
2020) for generating UAEs from noise. Note that the refer-
ence data for computing the FID score is from DiffAttack.

Models. We adopt the latent diffusion model(?) for gen-
erating UAEs from noise, and a pre-trained unconditional
DDPM from(Dhariwal & Nichol, 2021) in other attack-
ing conditions. We select Inception V3(Inv-v3) (Szegedy
et al., 2016), MobileNet V2(Mob-V2)(Sandler et al., 2018),
Resnet50(Res-50)(He et al., 2016) and Swin-B(Liu et al.,
2021) as the surrogate models, and evaluate the trans-
ferability of UAEs against each other. In addition, we
also take various defense methods into consideration and
evaluate the robustness against them: preprocessing meth-
ods(DiffPure(Nie et al., 2022), R&P(Xie et al., 2017), and
NRP(Naseer et al., 2020) ) and adversarially trained models
(Adv-Inc-v3(Kurakin et al., 2018), Inc-v3ens3, Inc-v3ens4,
and IncRes-v2ens(Tramèr et al., 2017)).

Baseline Attacks. For generating UAEs from noise, we
choose AdvDiff(Dai et al., 2025) as the baseline method; for
Global Image-Similar UAEs Generation, we choose three
classical unrestricted attack methods(cAdv(Bhattad et al.,
2019), ReColorAdv(Laidlaw & Feizi, 2019), and NCF(Yuan
et al., 2022) ), two diffusion-based attack methods(Diff-
PGD(Xue et al., 2023), and DiffAttack(Chen et al., 2024a)).
We don’t consider ACA(Chen et al., 2024b) since the official
code isn’t offered and the method is similar to DiffAttack.

Implementation Details. We leverage the DDIM sampling
for the generation process. The number of diffusion steps
T is respaced to 200, t = 40, c = −30 and the number
of DiffAdvMAP iterations is set to I = 10 for generating
UAEs from noise. For other attacking conditions, T = 100,
t = 20, c = −40 and I = 2. We apply an adaptive learning
rate with an initial value of lr = 0.01, ξ′i(i = 1, 2) in
equation (10) is set to 0.1 for all settings. All experiments
are done with a single RTX3090 GPU.

4.2. Generating UAEs From Noise

Generating UAEs from noise is important for generative
model-based adversarial attack methods, attackers can gen-
erate an unlimited number of UAEs once such an algorithm
is developed. This can not only pose a great security chal-
lenge to DNNs but also offer enough AEs for adversarial
training, thus improving the robustness of DNNs. We gen-

Figure 2. UAEs generated from noise using DiffAdvMAP and Ad-
vDiff for attacking Resnet 50. We can see the eyes of the dog, the
windows of the bus, and the body of the butterfly are more natural
in UAEs generated by DiffAdvMAP.

erate one UAE for each class of the ImageNet dataset, the
qualitative results are shown in Figure 2, and we can see that
the UAEs generated by our method are more natural. We
compare with AdvDiff quantitatively in Table 1 regarding
attack success rate, transferability, and image quality. Our
framework can generate UAEs with near 100% white-box
attack success rate while achieving better naturalness and
transferability than the baseline method.

4.3. Global Image-Similar UAEs Generation

In this section, we conduct experiments regarding transfer-
ability, image quality assessment metrics: FID score, LPIPS
metric, and defense robustness. Note that there is a trade-off
between effectiveness and naturalness: larger perturbations
are more likely to be robust against transfer and defense
methods but can also diminish naturalness.

Results on Normally Trained Models. In this part, we
evaluate the transferability between four normal DNNs, we
select 3 classical unrestricted adversarial attack methods
and two diffusion-based attack methods as our baseline.
Table 2 shows the quantitative results of the white-box at-
tack success rate and transferability. As we can see, our
framework achieves near 100% white-box attack success
rate, which surpasses most baseline attacks. Meanwhile,
in some model transfer experiments, DiffAttack and NCF
achieves better transferability than our framework concern-
ing the transfer attack success rate. However, our framework
surpasses other baselines in all experiments, including the
diffusion-based attack method Diff-PGD, which uses the
same basic diffusion model as we do. Note that, our frame-
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Table 1. The white-box attack success rate(%), transfer attack success rate (%), image quality metrics, as well as the run time(sec) of
DiffAdvMAP and AdvDiff in the task of generating UAEs from noise. Since computing LPIPS score needs reference images, we replace
it with blind image quality assessment metrics: TRES and HyperIQA.

SURROGATE MODELS ATTACK
DEFENDING MODELS FID(↓) TRES(↑) HYPERIQA(↑) TIME

INC-V3 RES-50 MOB-V2 SWIN-B

INC-V3 ADVDIFF 99.9 10.5 11.3 7.9 43.1 81.4 0.62 14.3
DIFFADVMAP(OURS) 99.2 30.0 26.1 21.7 44.3 81.8 0.64 16.4

RES-50 ADVDIFF 12.8 100.0 9.7 7.1 44.3 81.2 0.62 -
DIFFADVMAP(OURS) 29.8 100.0 28.6 18.5 42.8 84.3 0.66 -

MOB-V2 ADVDIFF 11.2 9.0 100.0 6.8 45.2 81.1 0.62 -
DIFFADVMAP(OURS) 23.7 22.3 99.0 13.8 42.7 83.9 0.65 -

SWIN-B ADVDIFF 13.6 11.5 12.3 98.7 43.7 81.5 0.63 -
DIFFADVMAP(OURS) 24.6 25.2 23.9 97.3 43.0 83.2 0.65 -

work achieves near 50% attack success rate across various
transfer models, which highlights the effectiveness of our
framework in the transfer-based black-box attack. We also
conduct ablation study in terms of each module and the
adversarial confidence level c, please refer to Appendix E
for more details.

Figure 3. UAEs generated by the three diffusion-based methods,
the surrogate model is Inception v3. UAEs generated by Dif-
fAdvMAP don’t have conspicuous noise patterns and preserve
important low-level features. (eg: The face of the statue, the sign
on the tail fin of the plane.)

Besides, we also evaluate the naturalness of adversarial ex-
amples as well as the time cost quantitatively in Table 2.
Our framework achieves the best image quality among the
attacks, it surpasses other diffusion-based methods includ-
ing DiffAttack, which uses the stable diffusion model — a
powerful model trained on a large set of high-quality data
— which provides an optimal trade-off between naturalness
and transferability. Compared with Diff-PGD, our frame-
work demonstrates significantly better naturalness. In terms
of the time cost, DiffAdvMAP still achieves a relatively
low time cost. Figure 3 visualizes the adversarial exam-
ples generated by the three diffusion-based attack methods,
providing a subjective perspective on their naturalness.

Results on Denfense Robustness. We also evaluate the
robustness of our framework against three preprocessing de-
fense methods and four adversarially trained models. After
going through these strategies, we assess the effectiveness
by calculating each attack method’s white-box attack suc-
cess rate. The results are shown in Table 3. We can see
that DiffAdvMAP keeps a top-2 ranking in terms of the
robustness against such defense strategies. The satisfactory
robustness of DiffAdvMAP against such defense methods
is due to the design of the adversarial constraint and the
approach of sampling from the posterior distribution.

4.4. Regional Customized UAEs Generation

Figure 4. Qualitative results of regional color UAEs and style
UAEs, the surrogate model is the Resnet50, predicted labels are in
white.

In some scenarios, UAEs can only be generated by modi-
fying some specified regions of the original images. Such
UAEs can look similar to the original images or contain the
same objects but differ in some attributes. In this section,
we conduct experiments on generating customized UAEs:
color UAEs generated by changing the color of reference
images, and style UAEs generated by changing the style of
reference images toward the target style. The qualitative
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Table 2. The white-box attack success rate(%), transfer attack success rate (%), image quality metrics, as well as the run time(sec) of
DiffAdvMAP and baseline methods in the task of generating global image-similar UAEs.

SURROGATE MODELS ATTACK
DEFENDING MODELS FID(↓) LPIPS(↓) TIME

INC-V3 RES-50 MOB-V2 SWIN-B

INC-V3

CADV 91.7 23.1 29.7 14.3 65.7 0.186 18.7
RECOLORADV 98.4 31.6 39.3 15.0 63.4 0.154 3.86
NCF 82.6 47.4 53.8 16.6 70.9 0.383 10.45
DIFF-PGD 83.8 28.2 34.7 10.3 65.9 0.147 9.6
DIFFATTACK 86.1 39.4 42.9 25.4 62.3 0.127 28.2

DIFFADVMAP(OURS) 100.0 42.8 48.6 30.3 61.2 0.127 6.0

RES-50

CADV 46.8 97.6 57.5 24.7 65.7 0.186 -
RECOLORADV 47.9 99.2 63.8 28.1 63.4 0.154 -
NCF 47.4 88.7 69.7 23.2 70.9 0.383 -
DIFF-PGD 53.0 95.8 63.8 31.5 66.6 0.170 -
DIFFATTACK 69.0 96.3 76.6 56.2 62.6 0.137 -

DIFFADVMAP(OURS) 65.8 100.0 81.0 57.4 61.0 0.127 -

MOB-V2

CADV 49.5 50.5 96.6 27.7 68.6 0.211 -
RECOLORADV 48.7 40.4 99.8 30.1 63.3 0.157 -
NCF 48.1 64.0 92.6 23.9 69.7 0.387 -
DIFF-PGD 50.1 56.3 94.9 27.3 65.7 0.164 -
DIFFATTACK 67.8 76.3 98.0 54.2 62.9 0.138 -

DIFFADVMAP(OURS) 64.6 77.0 100.0 54.7 60.0 0.135 -

SWIN-B

CADV 43.2 40.9 46.1 98.4 67.4 0.191 -
RECOLORADV 37.6 36.5 42.1 99.1 65.7 0.147 -
NCF 39.5 50.5 55.1 63.1 65.5 0.346 -
DIFF-PGD 41.2 46.6 53.1 94.7 70.6 0.189 -
DIFFATTACK 57.7 56.6 58.4 90.1 65.5 0.138 -

DIFFADVMAP(OURS) 55.6 56.9 63.5 99.1 64.9 0.125 -

Table 3. Evaluation of the robustness against three defense strategies. A higher white-box attack success rate(%) means better robustness.
The surrogate model is Inception V3.

ATTACKS R&P NRP DIFFPURE ADV-INC-V3 INC-v3ens3 INC-v3ens4 INCRES-v2ens
CADV 11.7 53.4 52.5 31.0 37.4 36.4 23.2
RECOLORADV 8.1 57.4 50.6 30.0 32.6 32.5 18.8
NCF 33.6 71.6 67.8 51.2 52.8 51.0 39.5
DIFF-PGD 30.0 57.3 64.7 31.9 37.0 34.7 19.1
DIFFATTACK 34.5 83.9 72.2 54.0 56.2 56.9 41.7

DIFFADVMAP 46.8 93.3 78.6 51.9 58.2 58.5 44.2

results of changing the color and style of specific objects in
the original images are shown in Figure 4. We also conduct
experiments on generating regional image-similar UAEs,
which is a more broader perspective, please refer to Ap-
pendix F for more details.

5. Conclusion
In this paper, we introduce a flexible diffusion-based un-
restricted adversarial attack framework, DiffAdvMAP. We
generate natural UAEs by sampling adversarial latent code
from the approximated posterior distribution of the UAEs.
Near 100% white-box attack success rate shows that our
framework effectively defeats top-ranked robust models
while keeping the naturalness of UAEs. In addition, our
framework outperforms current SOTA with more natural-
ness and less time cost. DiffAdvMAP also achieves an

optimal trade-off between image naturalness, transferability,
runtime, and defense robustness in the black-box setting,
which makes it outperform most baseline attacks. Moreover,
DiffAdvMAP is flexible enough to generate UAEs under
various scenarios, making it more effective in various attack
conditions, posing a significant challenge to DNNs.

Impact Statement
This paper presents work to advance the Unrestricted adver-
sarial attack. The community has discussed many potential
societal consequences comprehensively, none of which we
feel must be specifically highlighted here.
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A. Overview
Here is the overview of the appendix, we will first provide a detailed Bayesian derivation of the approximated posterior
distribution as well as the derivation AdvMAP method in Appendix B. Then we put the pseudo-code of DiffAdvMAP and
DiffAdvMAP-Region in Appendix C. The experimental results under the white-box setting will be evaluated in Appendix D.
Appendix E shows the ablation study of each module and the super-parameters of DiffAdvMAP. Appendix F presents the
experiments of Regional image-similar UAEs, we also visualize the qualitative results. Appendix G shows more qualitative
results of UAEs generated by our framework.

B. Detailed Bayesian Inference and Derivation of DiffAdvMAP
Given the input noise image xT ∼ N(0, I) of the diffusion model, the ground truth label y, the adversarial constraint C1:

C1 : Z(x̂0)y −maxi̸=y(Z(x̂0)i) = c (15)

Where c ≤ 0 is the confidence level of fooling the classifier, Z(x̂0)i is the logit output of classifier Fϕ at entry i with x̂0 as
input. For convenience, we denote the logit difference Z(·)y −maxi̸=y(Z(·)i) as l(·).

The reconstruction constraint C2:
C2 : m ◦ Ω(x̂0) = m ◦ Ω(x̃) (16)

Here, ◦ means element-wise multiplication and m is the mask used to deal with different kinds of regeneration regions.
Specifically, when UAEs are generated globally, m is an identity matrix; when UAEs are generated in some specified regions,
m is the mask that covers such specified regions. Only the regions m covers should be generated when generating regional
UAEs. Function Ω(·) is a customized function for generating UAEs in different scenarios. For generating image-similar
UAEs, x̃ is the original reference image, Ω(x) = x; for generating style UAEs, x̃ is an extra image that contains the target
style, Ω(·) computes the style score; as for generating color UAEs, x̃ is the reference image after changing color, Ω(·)
converts images from the RGB space into the LAB space.

The posterior distribution of image-similar UAEs and UAEs generated from noise can be derived as follows:

pθ(x̂T |C1, C2) =
pθ(x̂T , C1, C2)

pθ(C1, C2)

=
pθ(C1, C2|x̂T ) ∗ pθ(x̂T )

pθ(C1) ∗ pθ(C2)

=
pθ(C1|x̂T ) ∗ pθ(C2|x̂T ) ∗ pθ(x̂T )

pθ(C1) ∗ pθ(C2)

(17)

pθ(x̂T |y, C1) =
pθ(x̂T , y, C1)

pθ(y, C1)

=
pθ(y, C1|x̂T ) ∗ pθ(x̂T )

pθ(y) ∗ pθ(C1)

=
pθ(y|x̂T ) ∗ pθ(C1|x̂T ) ∗ pθ(x̂T )

pθ(y) ∗ pθ(C1)

=

pθ(x̂T )∗pθ(y)
pθ(x̂T ) ∗ pθ(C1|x̂T ) ∗ pθ(x̂T )

pθ(y) ∗ pθ(C1)

=
pθ(x̂T ) ∗ pθ(C1|x̂T )

pθ(C1)

(18)

The posterior distribution of latent code x̂t−1 given latent code x̂t can be derived:

pθ(x̂t−1|x̂t, C1, C2) =
pθ(x̂t−1|x̂t) ∗ pθ(x̂t) ∗ pθ(C1, C2|x̂t−1, x̂t)

pθ(x̂t, C1, C2)

=
pθ(x̂t−1|x̂t) ∗ pθ(x̂t) ∗ pθ(C1|x̂t−1, x̂t) ∗ pθ(C2|x̂t−1, x̂t)

pθ(C1|x̂t) ∗ pθ(C2|x̂t) ∗ pθ(x̂t)

=
pθ(x̂t−1|x̂t) ∗ pθ(C1|x̂t−1) ∗ pθ(C2|x̂t−1)

pθ(C1|x̂t)pθ(C2|x̂t)

(19)
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pθ(x̂t−1|x̂t, y, C1) =
pθ(x̂t−1|x̂t, y) ∗ pθ(x̂t, y) ∗ pθ(C1|x̂t−1, x̂t, y)

pθ(x̂t, y, C1)

=
pθ(x̂t−1|x̂t, y) ∗ pθ(y|x̂t) ∗ pθ(x̂t) ∗ pθ(C1|x̂t−1)

pθ(C1, y|x̂t) ∗ pθ(x̂t)

=
pθ(x̂t−1|x̂t, y) ∗ pθ(C1|x̂t−1)

pθ(C1|x̂t, y)

(20)

Note that since we leverage a DDIM, whose generation process is deterministic, as a result, when x̂T in equation (17)(18)
and x̂t−1 in equation (19)(20) is given, adversarial goal C1 and reconstruction constraintC2 is independent. Then according
to equations (15)(16) and (17), pθ(x̂T ) is a Gaussian distribution, and since when x̂T is given, x̂0 is a deterministic function
of x̂T , pθ(l(x̂0) = c|xT ) and pθ(m ◦ Ω(x̂0) = m ◦ Ω(x̃)) follows Dirac delta function δ(·), then pθ(C1|x̂T ) = pθ(l(x̂0) =
c|x̂T ) = δ(l(x̂0) = c), pθ(C2|x̂T ) = pθ(m ◦ Ω(x̂0) = m ◦ Ω(x̃)) = δ(m ◦ Ω(x̂0) = m ◦ Ω(x̃)), which means the
probability density is infinite at l(x0) = c, m ◦ Ω(x̂0) = m ◦ Ω(x̃), and 0 elsewhere. The Dirac delta function can be
approximated by a Gaussian density function with zero variance. Therefore, if we take the logarithm to equation (17), we
can approximate it as:

log pθ(x̂T |C1, C2)

≈ −1

2
||x̂T ||22 −

1

2ξ21
||c− l(x̂0)||22 −

1

2ξ22
||m ◦ Ω(x̂0)−m ◦ Ω(x̃)||22 + C

≈ −1

2
||x̂T ||22 −

1

2ξ21
||c− l(Gθ(x̂T ))||22 −

1

2ξ22
||m ◦ Ω(Gθ(x̂T ))−m ◦ Ω(x̃)||22 + C

(21)

where C is the normalizing constant, ξ1 and ξ2 are the standard deviation of the approximated Gaussian distribution of the
Dirac delta functions respectively, when ξ1 and ξ2 approaches 0, the approximations go exact.

However, computing Gθ(x̂T ) needs to go through the whole reverse generation process, which is time-consuming. As a
result, we perform a one-step approximation of x̂0 for each step t ∈ [T : 1] in DDIM:

x̂0 ≈ f t
θ(x̂t) =

x̂t −
√
1− ᾱtϵθ(x̂t, t)√

ᾱt
(22)

Then the conditional distributions of l(x̂0) and x̂0 given x̂T can be approximated as Gaussian distributions centered around
the one-step approximated value fT

θ (xT ):

p
′

θ(l(x̂0)|x̂T ) = N(l(x̂0); l(f
T
θ (x̂T )), ξ

′2
1T I)

p
′

θ(m ◦ Ω(x̂0)|x̂T ) = N(m ◦ Ω(x̂0);m ◦ Ω(fT
θ (x̂T )), ξ

′2
2T I)

(23)

The approximation of log probability density computed from equation (17) and equation (18) are as follows:

log p′θ(x̂T |C1, C2)

= log(pθ(x̂T )) + log(p′θ(l(x̂0) = c|x̂T )) + log(p′θ(m ◦ Ω(x̂0) = m ◦ Ω(x̃)|x̂T )) + C ′

= −1

2
||x̂T ||22 −

1

2ξ′21T
||c− l(fT

θ (x̂T ))||22 −
1

2ξ′22T
||m ◦ Ω(fT

θ (x̂T ))−m ◦ Ω(x̃)||22 + C ′
(24)

log p′θ(x̂T |y, C1)

= log(pθ(x̂T |y)) + log(p′θ(l(x̂0) = c|x̂T )) + C ′

= −1

2
||x̂T ||22 −

1

2ξ′2T
||c− l(fT

θ (x̂T ))||22 + C ′
(25)

ξ′i(i = 1, 2) is the standard deviation of approximated Gaussian distributionp′θ(l(x̂0) = c|x̂T ), which is different from
ξi(i = 1, 2) in equation (21), it should be large enough to capture the approximation error. Then since the generation process
of UAEs under C1 and C2 can be decomposed as:

p′θ(x̂0:T |C1, C2) = p′θ(x̂T |C1, C2)

T∏
t=1

p′θ(x̂t−1|x̂t, C1, C2) (26)
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p′θ(x̂0:T |y, C1) = p′θ(x̂T |y, C1)

T∏
t=1

p′θ(x̂t−1|y, x̂t, C1) (27)

We can also approximate the intermediate conditional distributions given latent code x̂t as:

p
′

θ(l(x̂0)|x̂t) = N(l(x̂0); l(f
t
θ(x̂t)), ξ

′2
1tI)

p
′

θ(m ◦ Ω(x̂0)|x̂t) = N(m ◦ Ω(x̂0);m ◦ Ω(f t
θ(x̂t)), ξ

′2
2tI)

(28)

Then the reverse generation process given equation (19)(20) can be computed as:

log p′θ(x̂t−1|x̂t, C1, C2)

= log(pθ(x̂t−1|x̂t)) + log(p′θ(l(x̂0) = c|x̂t−1, x̂t)) + log(p′θ(m ◦ Ω(x̂0) = m ◦ Ω(x̃)|x̂t−1, x̂t)) + C ′

= log(pθ(x̂t−1|x̂t)) + log(p′θ(l(x̂0) = c|x̂t−1)) + log(p′θ(m ◦ Ω(x̂0) = m ◦ Ω(x̃)|x̂t−1)) + C ′

= − 1

2δ2t
||x̂t−1 − µ̂t||22 −

1

2ξ′21t−1

||c− l(f t−1
θ (x̂t−1))||22 −

1

2ξ′22t−1

||m ◦ Ω(f t−1
θ (x̂t−1))−m ◦ Ω(x̃)||22 + C ′

(29)

log p′θ(x̂t−1|x̂t, y, C1)

= log(pθ(x̂t−1|x̂t)) + log(p′θ(l(x̂0) = c|x̂t−1, x̂t, y)) + C ′

= log(pθ(x̂t−1|x̂t)) + log(p′θ(l(x̂0) = c|x̂t−1)) + C ′

= − 1

2δ2t
||x̂t−1 − µ̂t||22 −

1

2ξ′2t−1

||c− l(f t−1
θ (x̂t−1))||22 + C ′

(30)

note that as is shown in equation (3), in DDIMs,

µ̂t =
√
ᾱt−1x̂0 +

√
1− ᾱt−1 − δ2t

x̂t −
√
ᾱtx̂0√

1− ᾱt

=
√
ᾱt−1f

t
θ(x̂t) +

√
1− ᾱt−1 − δ2t

x̂t −
√
ᾱtf

t
θ(x̂t)√

1− ᾱt

(31)

C. Pseudo-code
The pseudo-code of DiffAdvMAP and DiffAdvMAP-Region is shown in Alg.1 and Alg. 2 respectively.
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Algorithm 1 DiffAdvMAP
Input: optional reference image x, ground truth label y, diffusion model ϵθ , target classifier Fϕ, forward diffusion steps t∗, random
Gaussian noise ϵ, noise schedule β1:T , MAP iterations I , MAP learning rate lr, adversarial confidence level c
if x exists then

xt∗ ←−
√
ᾱt∗x+ (1− ᾱt∗)ϵ

else
for t = T to t∗ + 1 do

xt−1 =
√
ᾱt−1f

t
θ(xt) +

√
1− ᾱt−1

xt−
√
ᾱtf

t
θ(xt)√

1−ᾱt

end for
end if
x̂t∗ = xt∗

for i = 0 to I − 1 do
x̂t∗ = x̂t∗ + lr ∗ ∇(log(p′θ(x̂t∗ |C1, C2)))

if argmaxFϕ(f
t∗
θ (x̂t∗)) ̸= y then

break
end if

end for
for t = t∗ to 1 do

µ̂t =
√
ᾱt−1f

t
θ(x̂t) +

√
1− ᾱt−1

x̂t−
√
ᾱtf

t
θ(x̂t)√

1−ᾱt

x̂t−1 = µ̂t

for i = 0 to I − 1 do
x̂t−1 = x̂t−1 + lr ∗ ∇(log(p′θ(x̂t−1|x̂t, C1, C2))
if argmaxFϕ(f

t−1
θ (x̂t−1)) ̸= y then

break
else

lr=lr*2
end if

end for
end for
return x̂0

Algorithm 2 DiffAdvMAP-Region
Input: reference image x, mask m, ground truth label y, diffusion model ϵθ , target classifier Fϕ, forward diffusion steps t∗, random
Gaussian noise ϵ, noise schedule β1:T , MAP iterations I , MAP learning rate lr, adversarial confidence level c
xt∗ ←−

√
ᾱt∗x+ (1− ᾱt∗)ϵ

x̂t∗ = m ◦ xt∗ + (1−m) ◦ x
for i = 0 to I − 1 do
x̂0 = m ◦ f t∗

θ (x̂t∗) + (1−m) ◦ x
x̂t∗ = x̂t∗ + lr ∗ ∇(log(p′θ(x̂t∗ |C1, C2)))
if argmaxFϕ(x̂0) ̸= y then

break
end if

end for
for t = t∗ to 1 do

µ̂t =
√
ᾱt−1x̂t +

√
1− ᾱt−1

x̂t−
√
ᾱtx̃0√

1−ᾱt

x̂t−1 = m ◦ µ̂t + (1−m) ◦ x
for i = 0 to I − 1 do

x̂0 = m ◦ f t−1
θ (x̂t−1) + (1−m) ◦ x

x̂t−1 = x̂t−1 + lr ∗ ∇(log(p′θ(x̂t−1|x̂t, C1, C2)))
if argmaxFϕ(x̃0) ̸= y then

break
else

lr=lr*2
end if

end for
end for
return x̂0
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D. UAEs Under the White-box Setting
In this part, we compare the naturalness and effectiveness of our framework in terms of image quality and attack success
rate against both normal models and robust models. We select the state-of-the-art white-box diffusion-based unrestricted
adversarial attack method: AdvDiffuser (Chen et al., 2023) as the baseline method. We evaluate the performance of our
framework on the identical dataset as AdvDiffuser, it’s a subset of the ImageNet test set which contains 1000 randomly
selected images, 1 image for each class. We apply the FID score, LPIPS score, and SSIM metric to evaluate the quality
of UAEs. As for the classifiers, we select a normally trained Resnet50 (He et al., 2016) as the baseline model, and three
robust models from the RobustBench leaderboard (Croce et al., 2020) to evaluate the effectiveness of our framework against
robust models: a Robust Resnet50 (Salman et al., 2020) B, a Robust Wide-Resnet50-2 (Salman et al., 2020) A (these two are
current most robust convolutional networks), and an adversarially trained Resnet50 with the PGD attack (Engstrom et al.,
2019). We also conduct experiments on vision transformer-based classifiers: a normally trained vit-b (Dosovitskiy, 2020), a
Beit (Bao et al., 2021), and a robust vit-b (Singh et al., 2023) from RobustBench leaderboard. Note that since the authors of
AdvDiffuser didn’t offer their code, we compare our method with results proposed in their paper, so we also compare with
AEs generated from Diff-PGD(Xue et al., 2023) with our reimplementation. We respace the number of diffusion steps from
T = 1000 to T = 400 and set the forward diffusion step of DiffAdvMAP to t = 3. The adversarial confidence level is set to
c = −10.

As is depicted in Figure 5, AEs generated by Diff-PGD contain obvious noise patterns when attacking robust models.
Meanwhile, though UAEs generated by AdvDiffuser look natural, they change too many low-level features, taking unnatural
features to UAEs when compared with the original images, for example, the bird’s beak in the first column is almost gone.
As for our framework, we leverage the prior knowledge of natural data to generate high-level adversarial features instead,
which makes UAEs look more natural than AdvDiffuser and Diff-PGD.

Figure 5. Image-similar UAEs generated by DiffAdvMAP, AdvDiffuser (Chen et al., 2023) and Diff-PGD (Xue et al., 2023). The
defending model is the robust Wide-Resnet50-2 from (Salman et al., 2020).

We also conduct quantitative experiments to evaluate the effectiveness and naturalness of our framework. Table 4 presents
the quantitative results of AdvDiffuser, Diff-PGD, and DiffAdvMAP respectively in terms of attack success rate, runtime for
each sample, LPIPS score, SSIM metric, and FID score. As we can see, our framework achieves near 100% white-box attack
success rate against both normal models and robust models. Our framework also generates more natural UAEs, represented
as much lower LPIPS, and FID scores. Meanwhile, the significantly reduced runtime addresses the inherent shortcoming of
the slow generation speed of diffusion models, while still preserving the naturalness of UAEs.

We also amplify and compare the perturbations added by each method in Figure 6. We can observe that in UAEs generated
by our framework, perturbations are tiny and coherent with class-specific semantics, so the prominence in areas with
low information is greatly reduced. Our observations show that sampling UAEs from the posterior distribution of UAEs
effectively improves their naturalness while maintaining a high attack success rate. Moreover, the use of the destruction
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and construction method allows us to regenerate adversarial high-level features through a few generation steps, which
improves the naturalness and generation speed further. In contrast, though AdvDiffuser achieves a better SSIM metric than
our framework by introducing the information of original images in each step, it generates UAEs from the very beginning of
the generation process and perturbs each latent code step by step, which suffers from diffusion models’ slow generation
speed. It also changes too many low-level features completely and only leverages the diffusion model to purify unnecessary
perturbations, bringing strangeness and unnaturalness to UAEs(e.g. the claw of the chihuahua and the hog’s nose and
mouth.), and thus appears more noticeable and less imperceptible.

Table 4. Comparing global image-similar unrestricted attacks on ImageNet defending models, we also include the best-known robustness
within l∞ = 4/255 for each model.

ATTACKER ASR(%) LPIPS(↓) SSIM(↑) FID(↓) TIME

NORMAL RESNET50 (HE ET AL., 2016)

l∞=4/255 100 - - -
DIFF-PGD 98.7 0.180 0.82 57.61 ∼ 10s

ADVDIFFUSER 100 0.03 0.99 20.9 ∼ 90s
DIFFADVMAP 100 0.006 0.97 6.83 ∼ 4s

ROBUST WIDE-RESNET50-2 FROM (SALMAN ET AL., 2020)

l∞=4/255 61.9 - - -
DIFF-PGD 88.6 0.201 0.82 81.54 -

ADVDIFFUSER 99.5 0.05 0.97 26.7 -
DIFFADVMAP 99.3 0.011 0.97 12.75 -

ROBUST RESNET50 FROM (SALMAN ET AL., 2020)

l∞=4/255 65.1 - - -
DIFF-PGD 90.5 0.203 0.82 87.03 -

ADVDIFFUSER 99.8 0.05 0.97 27.2 -
DIFFADVMAP 99.8 0.007 0.97 9.95 -

ROBUST RESNET50 FROM (ENGSTROM ET AL., 2019)

l∞=4/255 70.8 - - -
DIFF-PGD 91.5 0.21 0.80 89.26 -

ADVDIFFUSER 99.4 0.05 0.98 25.9 -
DIFFADVMAP 99.4 0.012 0.97 13.20 -

NORMAL BEIT (DOSOVITSKIY, 2020)

l∞=4/255 100 - - -
DIFF-PGD 98.3 0.161 0.82 39.02 -

ADVDIFFUSER - - - - -
DIFFADVMAP 100 0.006 0.97 3.87 -

NORMAL VIT-B (BAO ET AL., 2021)

l∞=4/255 100 - - -
DIFF-PGD 92.3 0.182 0.82 43.96 -

ADVDIFFUSER - - - - -
DIFFADVMAP 100 0.015 0.97 7.64 -

ROBUST VIT-B FROM (SINGH ET AL., 2023)

l∞=4/255 45.3 - - -
DIFF-PGD 72.1 0.200 0.82 67.67 -

ADVDIFFUSER - - - - -
DIFFADVMAP 93.8 0.015 0.97 12.41 -
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Figure 6. Perturbations generated by DiffAdvMAP and AdvDiffuser respectively. The defending model is a robust Wide-Resnet50-2 from
(Salman et al., 2020). The predicted labels are shown in white.

E. Ablation Study of Global Image-Similar UAEs Generation
In this section, we use Inception V3 as the surrogate model and analyze the effect of the reconstruction constraint and
the forward diffusion step t towards the UAEs in terms of white-box attack success rate, naturalness, transferability, and
generate time. The results are reported in Table 5. As we can see, the destruction and reconstruction module makes great
contribution towards improving the run time, but it is somewhat detrimental to the image quality; the adversarial constraint
ensures the near 100% white-box attack success rate and high transferability, but it will reduce the image quality of UAEs;
the reconstruction constraint in generating image-similar UAEs can help preserve important semantics of original images,
thus improving the image quality, though it will reduce the transferabiltiy to some extent. In short, we find a better trade-off
between transferability, white-box attack success rate and image quality in our DiffAdvMAP framework, and outperform
other baseline attacks. We also make an ablation study of adversarial confidence level c, the results are shown in Table 6.

Table 5. Ablation Study of DiffAdvMAP in terms of each module on the Imagenet compatible dataset, the surrogate model is Inception
V3. w/o means without the module in the framework.

SETTINGS
WHITE-BOX ATTACK NATURALNESS TRANSFERABILITY TIME
SUCCESS RATE FID(↓) LPIPS(↓) RES-50 MOB-V2 SWIN-B

W/O RECONSTRUCTION CONSTRAINT 100.0 63.3 0.171 52.5 55.1 40.8 6.0
W/O ADVERSARIAL CONSTRAINT 25.0 58.1 0.056 11.4 16.2 5.7 6.0
W/O DESTRUCTION AND RECONSTRUCTION 100.0 61.8 0.116 35.9 45.2 24.4 44.5

DIFFADVMAP(OURS) 100.0 61.2 0.127 42.8 48.6 30.3 6.0

As we can see, the adversarial constraint ensures that our framework consistently achieves a near 100% white-box attack
success rate, regardless of the adversarial confidence level. As the absolute value of the confidence level increases, the
attack strength of the UAEs also increases, which is evident in their enhanced transferability. However, the image quality
diminishes as the absolute value of c rises, due to more prominent adversarial features, as discussed in the first paragraph of
Section 4.3. Nonetheless, the experimental results demonstrate that our framework achieves a superior balance between
naturalness and attack strength compared to baseline attacks.
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Table 6. Ablation Study of DiffAdvMAP in terms of adversarial confidence level c on the Imagenet compatible dataset, the surrogate
model is Inception V3.

ADVERSARIAL CONFIDENCE LEVEL c
WHITE-BOX ATTACK NATURALNESS TRANSFERABILITY

SUCCESS RATE FID(↓) LPIPS(↓) RES-50 MOB-V2 SWIN-B

-5 98.9 58.5 0.085 16.3 23.8 10.7
-10 99.7 58.5 0.089 20.5 27.6 11.5
-15 99.9 58.5 0.092 23.5 30.5 14.2
-20 100.0 59.0 0.098 26.7 34.1 16.6
-25 100.0 59.5 0.106 30.3 38.2 20.0
-30 100.0 59.9 0.112 35.2 40.9 22.9
-35 100.0 60.4 0.119 38.4 44.5 26.4
-40 100.0 61.2 0.127 42.8 48.6 30.3

F. Regional Image-Similar UAEs Generation
In this section, we leverage random square masks to specify the regions to be perturbed, generating regional image-similar
UAEs. We compare the regional adversarial examples with Diff-PGD visually in Figure 4. We select an adversarially trained
Resnet50 as the surrogate model. As we can see, in the specified regions, our framework can still generate natural adversarial
features, while for Diff-PGD, strange textures and noise patterns exist in the image, for instance, in the first column, the
white flower displays a strange red color; in the fourth column, the noise texture in the left bottom of the fig is quite obvious.

Figure 7. UAEs generated by DiffAdvMAP-Region with random square masks, the defending model is a robust Resnet50 from (Engstrom
et al., 2019), predicted labels are in white.

We also introduce more qualitative results as well as the perturbations in Figure 8, the regional UAEs are generated
against different robust models with two kinds of masks: random square masks and irregular masks generated by Grad-
CAM(Selvaraju et al., 2017) method. For random square masks, perturbations become extremely significant, especially
when most of the mask doesn’t include semantic useful information, leading to unnatural adversarial examples or even
failure. If combined with Grad-CAM to find out the region where the defending model extracts features to predict the
ground truth label, the perturbations become coherent with semantics and thus less significant and perceptible.

We also compare our method with Diff-PGD quantitatively, as is shown in Table 7, the experiments are done under the
white-box setting. As we can see, we achieve a much higher attack success rate against normal and robust models than
Dif-PGD while maintaining a better image quality.
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Figure 8. UAEs in specified regions against a robust Wide-Resnet50-2 from (Salman et al., 2020) with square masks and Grad-CAM
masks respectively. We also include corresponding perturbations and predicted labels.

Table 7. Comparing Regional UAEs on ImageNet defending models.
ATTACKER ASR(%) LPIPS SSIM FID

NORMAL RESNET50

l∞=4/255 100 - - -
DIFF-PGD 89.7 0.03 0.97 24.53

DIFFADVMAP 99.8 0.01 0.99 7.05

ROBUT WIDE-RESNET50-2 FROM (SALMAN ET AL., 2020)

l∞=4/255 61.9 - - -
DIFF-PGD 36.5 0.06 0.96 30.64

DIFFADVMAP 81.6 0.02 0.98 14.75

ROBUT RESNET50 FROM (SALMAN ET AL., 2020)

l∞=4/255 65.1 - - -
DIFF-PGD 42.4 0.05 0.96 30.18

DIFFADVMAP 91.8 0.01 0.98 10.38

ROBUT RESNET50 FROM (ENGSTROM ET AL., 2019)

l∞=4/255 70.8 - - -
DIFF-PGD 45.3 0.06 0.96 32.64

DIFFADVMAP 86.9 0.02 0.98 14.01

G. More Qualitative Results of UAEs Generated by DiffAdvMAP
In this section, we will propose more qualitative results of various UAEs generated by DiffAdvMAP, as shown in Figures 9,
10, 11, and 12.
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Figure 9. UAEs generated from noise with four normal DNNs as surrogate models.
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Figure 10. Global image-similar UAEs with four normal DNNs as surrogate models.
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Figure 11. Global customized UAEs generated by DiffAdvMAP, the surrogate model is normal Resnet50.
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Figure 12. Regional customized UAEs generated by DiffAdvMAP, the surrogate model is normal Resnet50.
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