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Abstract

Causal disentanglement has great potential for capturing complex situations. How-
ever, there is a lack of practical and efficient approaches. It is already known that
most unsupervised disentangling methods are unable to produce identifiable results
without additional information, often leading to randomly disentangled output.
Therefore, most existing models for disentangling are weakly supervised, provid-
ing information about intrinsic factors, which incurs excessive costs. Therefore,
we propose a novel model, SCADI(SElf-supervised CAusal DIsentanglement), that
enables the model to discover semantic factors and learn their causal relationships
without any supervision. This model combines a masked structural causal model
(SCM) with a pseudo-label generator for causal disentanglement, aiming to provide
a new direction for self-supervised causal disentanglement models.

1 Introduction

Imitating humans has been the ultimate goal of machine learning, and now machine learning is capable
of performing various tasks. However, due to the inherent drawbacks of black box models, there are
still limitations in understanding and learning complex relationships. To imitate image understanding
of human, we consider a two-step process, as depicted in Fig. 1. The first step is observation, learning
about the various elements presented in the data, such as light sources, a swinging pendulum, and
shadows (see Fig. 1). The second step is interpretation, which involves understanding the relationships
among the elements identified during the observation stage. This paper aims to propose a methodology
that can perform both observation and interpretation without any supervision. Our approach, SCADI
(Self-supervised Causal Disentanglement), is based on disentangled representation learning, and
brings us closer to the process of human thinking. Disentangling aims to understand the factors
of variation in the data, and can compress complex data in a concise and information-rich manner,
making it beneficial for downstream tasks [1, 2, 3, 4, 5, 6, 7]. The early-stage disentangling was
done through unsupervised learning using latent variable models with an independence assumption
on factors, such as variational autoencoders (VAEs)[8, 9, 10, 11]. Among them, β-VAE [8][12]
serves as our baseline model for observer. β-VAE adjusts the balance between the reconstruction loss
and the Kullback-Leibler (KL) divergence in the objective function. Minimizing the KL divergence
loss, weighted by β, enforces independence among factors by encouraging the latent variables to
align with the prior distribution. However, Locatello et al.[13] demonstrated that unsupervised
disentangling lacks identifiability [14], making it difficult to get consistent results. As a result, many
weakly supervised disentangling models emerged [15][16][17][18] [19], which incorporate additional
information or inductive biases . Nevertheless, the cost of the labels is excessive. Therefore, various
semi-supervised disentangling approaches have been proposed[20] [21] [22] [23], with many still
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Figure 1: Process of understanding image : Observation and Interpretation.

maintaining the independence assumption. However, feature independence is often unrealistic (Fig.
1). Consequently, models such as CausalGAN[24], CausalVAE[25], and DEAR[26] have emerged,
which have discarded the independence assumption, but they still provide additional information
in the form of labels[25] or by incorporating prior causal graphs [24][26], or using weakly paired
datasets[27]. DEAR[26] aims to utilize a practical amount of labeled data, but it requires prior
knowledge about causal graph.

To significantly alleviate the burdens of supervision, we propose the first self-supervised approach
that prevents random disentanglement. In our best knowledge, SCADI(Self-supervised CAusal Disen-
tanglement), is the first attempt at achieving causal structured disentanglement without any additional
information or inductive biases. SCADI has two main components: 1. An observer, which performs
dimension-wise unsupervised disentangling through a latent variable model, generating pseudo-labels.
2. An interpreter, a module for vector-wise weakly supervised causal disentanglement. It relies
on the structured causal model (SCM) [28, 29]. SCM has played a significant role in incorporating
causality into latent variable models[26][30][31][24], including in CausalVAE[25], which serves as
the baseline for interpreter. In SCADI, the interpreter is supervised by the labels generated by the
observer, while the observer receives additional regularization from the interpreter, which forces the
adjacency matrix in masked SCM to be a directed acyclic graph (DAG). Our detailed explanations and
experiments address how SCADI performs causal disentanglement. Our code is available at https:
//github.com/Hazel-Heejeong-Nam/Self-supervised-causal-disentanglement.

2 Method

Starting with observer, we adopt a latent variable model for unsupervised disentangling, β-VAE[8],
to utilize the latent space as pseudo-labels. While β-VAE, does not capture causality directly, its KL
divergence forces it to focus on the most distinguishable features in data. However, as highlighted
by Locatello et al.[13], unsupervised disentangling models not only cannot always produce well-
disentangled results, but also lack the ability to disentangle correlated factors. This prompted us to
consider providing additional regularization to improve the quality of the pseudo-labels.

Definition 1 (Symbols of our model). We will begin by defining our notations. ĝ(·) and g(·) will be
also explained further in 2

1. Dataset X consists of n images. i.e. X := {x1, ..., xn}, where xi ∈ RW×H×C .

2. Adjacency Matrix A := {A1, ..., An}, where Ai := [A1
i |...|Ac

i ] and Ak
i := {Ajk

i }ck=1. c is
the number of factors of interest in data.

3. Exogenous latent variables are E := {ϵ1, ..., ϵn}, where ϵi := f(xi). f(·) is the first
encoder in Fig.2. ϵi ∈ Rα·c where α is an arbitrary positive number. Endogenous latent
variables are zi = ĝ(Ai, ϵi) , zi ∈ Rc×αand Z := {z1, ...zn}, where zjki is value of jth

row and kth column in zi.
4. Observed Labels are U := {u1, ..., un}, where ui := fO(ϵi), are defined as observed labels

from Observer. fO is an additional observation encoder followed by the shared encoder,
and ui := {uk

i }ck=1.
5. Decoders : Observation decoder and interpretation decoder are denoted as hO(·) and hI(·)

respectively. We define reconstructed data as x̃iO := hO(ui) and x̃iI := hI(g(Ai, zi)
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Figure 2: Overview of self-supervised structured causal disentanglment.

Example 1 . We additionally define true underlying factor set S with c factors in it, i.e. S :=
{s1, ..., sc}. Any pair of (si, sj) can be either independent or causally related. Fig. 3 (a) shows an
entangled case of the observer’s disentangling process. Both observed factors ui and uj are having
combined effects of true factors si and sj . Here, we assume ith factor is a cause of jth factor, i.e. ith
factor and jth factor are in parent-child relationship. Successful disentanglement would make the
distributions of true underlying factor S and observed factor U aligned.

Figure 3: (a) Observed factors and true underlying factors are entangled. (b) Adjacency matrix of
observation. (c) Adjacency matrix of true factors.

We incorporate the concept of DAGness[25, 32, 33] in the adjacency matrix for SCM, denoted as
H(A) in (1). After the labels were passed to the interpreter, SCADI performs causal disentangling
within SCM and learns A. In Example 1, A of true underlying factors should be like Fig.3(c).
However, if the generated labels are entangled, as shown in Fig.3(a), A would exhibit bidirectional
relationships, as in Fig.3(b). Therefore DAGness of A can assess the disentanglement in observer,
and in the same context, minimize DAGness would assist disentangling factors by helping to sup-
press bidirectional relationships and anchor the factors in place. Although this constraint does not
yet achieve complete mathematical identifiability[14], we insist that DAGness prevents randomly
disentangled results in the observer. The proved identifiability of the CausalVAE[25], corresponding
to our interpreter, implies that if only the generated labels are well-disentangled, the identifiability of
SCADI will also be satisfied.

H(A) ≡ tr((I +A ◦A)c)− c (1)

Observer and Interpreter The task of the observer is to provide a scalar label for each factor.
Observer has two key differences from β-VAE[8]. Firstly, it undergoes a two-step encoding process.
In the first encoding step, f(·) shares its weights and the latent space with the interpreter. The
exogenous latent vector E from f(·) does not inherently encode relationships among factors. In the
second step, the output vector U with a fixed length c is obtained through fO(·). U is not only fed
to the decoder hO(·) but also serves as the label passed to the interpreter. Finally, by adding the
evidence lower bound (ELBO) loss, the objective function of the observer can be written as (2).

Lobs = −Eqϕ(u|x,ϵ)[log pθ(x, ϵ|u)] + wd
OH(A) + βDKL(qϕ(u|x, ϵ)||pθ(u))

= −ELBO + wd
OH(A) (2)
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Figure 4: Gradient flow while training observer and interpreter.

The interpreter is similar to CausalVAE[25], which adopts SCM. The exogenous latent variable E is
mapped to the endogenous latent variable Z through causal inference, using the adjacency matrix A.
Here, a linear SCM[28] equation, as shown in (3), is employed. We defined (3) as ĝ. Subsequently,
SCADI performs causal disentanglement within the masked SCM[29]. By masking out non-parental
elements of Z using A in each semantic vector, the model is able to learn the effects of the individual
factors while maintaining their connections with their parental semantics. This can be written as
(4), where j represents each concept and a is a non-linear function for stability. We defined (4) as g,
where ηi is the parameter set of a.

z = AT z + ϵ = (I −AT )−1ϵ, ϵ ∼ N(0, I) (3)

zj = aj(Aj ⊙ z; ηj) + ϵj (4)

uj = aj(Aj ⊙ u; ηj) (5)

In Similar way, the labels generated from the observer are fed to the SCM layer as (5). The mask loss,
denoted as lm, compares z before and after applying (4), and then incorporated into the objective
function of the interpreter. Similarly, the label loss, lu, can be obtained by comparing u before and
after the mask layer. Adding evidence lower bound (ELBO) loss, the interpreter loss can be described
as (6). We follow Yang et al.[25] for further details. To summarize, the observer receives DAGness
from the interpreter, while the interpreter obtains labels from the observer, establishing a mutually
beneficial relationship. During training, in order for all parameters to be updated at least once, two
forward passes are needed. The first pass aims to minimize the objective function for the observer(2),
as illustrated by the gradient flow depicted in Fig.4(a). The second forward pass aims to minimize
the objective function for the interpreter(6), and we detach the gradient of the label as in Fig.4(b).
During inference, only a single forward pass is required.

Lint = −Eϵ,z[log pθ(x|z, ϵ, u)] +DKL(qϕ(ϵ, z|x, u)||pθ(ϵ, z|u)) + wd
IH(A) + wu

I lu + wm
I lm

= −ELBO + wd
IH(A) + wu

I lu + wm
I lm (6)

3 Experiments

Synthetic pendulum dataset We utilized the synthetic pendulum dataset by Yang et al. [25].
Each image consists of a light source, a pendulum, and a shadow with varying lengths and loca-
tions determined by the position of the light source and pendulum. The factor of variants are as
follows[25][26] : 1) pendulum angle, 2) light position, 3) shadow length, and 4) shadow position.
With the official split of the train and test set[25], we obtained 5482 training images and 1826 test
images. Fig.7(b) shows the true causal graph of the described factors.

Baselines We compared our model with 3 differenct architectures: CausalVAE[25], unsup-
CausalVAE[25], and nd-SCADI. Unsup-CausalVAE eliminates supervision from the masked SCM as
Yang et al.[25] did, which is equivalent to using only interpreter in SCADI. Nd-SCADI is a modified
model from SCADI, which abandoned extra DAGness regularization to the observer. Table 1 shows
differences among SCADI and its baselines. We also provide brief structures of our baselines in
Appendix B.
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Table 1: Baselines and architecture summary

Supervision Observer Interpreter

CausalVAE[25] # × #

unsup-CausalVAE[25] × × #

nd-SCADI × # #

SCADI × # #

Figure 5: Label-finding set. (a),(b),(c),(d) are showing paired data for corresponding factors.

3.1 Setup and evaluation

For the observer in SCADI, we assess how well the model separates the factors. In existing weakly
supervised methods, providing supervision makes it easier to determine which dimension of the
latent space encodes a specific underlying factor. However, since unsupervised disentangling does
not have a predefined order in the latent vector, it becomes essential to reveal the order of the factors
for further interpreter analysis. To do so, we categorized a small subset of counterfactual images,
twice the number of factors, as the label-finding set depicted in Figure 5. We then used these images
to examine which factors are encoded in each dimensions of the latent vector produced by observer.

Definition 2 (Label-Finding process). As shown in Fig. 5, the label-finding set is divided into
subgroups. Each subgroup consists of a pair of counterfactual images, (F i

a, F
i
b ), which differ only in

the state of the ith semantic, while the other semantics remain the same. By calculating the absolute
element-wise difference between the latent variables generated from F i

a and F i
b , we can quantify

the variation in each dimension when the ith semantic changes. We consider the index of the latent
variable with the largest difference as labeli, since the ith value in the latent vector strongly encodes
the ith semantic. (7) summarizes the label-finding process, where obs denotes the observation process
of getting the labels.

Definition 3 (Label-Quality score). We defined the LQ(Label-Quality) score measured based on
Label-Finding process. We calculate cross-entropy loss between label and |obs(F i

a)− obs(F i
b )|. Eq.

(8) shows how LQ score is calculated. We consider a lower LQ score to indicate better performance.

labeli = max(|obs(F i
a)− obs(F i

b )|) (7)

lqi = Cross Entropy(|obs(F i
a)− obs(F i

b )|, labeli) (8)

We prioritize non-overlapping labels. Even if the LQ score is better, overlapped labels indicate
suboptimal performance. Our evaluation enables an examination of how semantics are represented and
how strongly they are disentangled. For the evaluation of the interpreter, we followed CausalVAE[25].
Quantitatively, we examine the DAGness where a smaller DAGness indicates a less entangled result.
Qualitatively, we first directly compared the obtained causal graph to the ground truth. While each
value in A ranges from 0 to 1, we rounded up to determine causality. Secondly, since most of the
casual disentangling models are generative latent variable models[25, 24, 26, 31], learned causality
can be visualized through do-operations[26][25], which intervene on latent variables to generate
counterfactual data [34]. Ideally, if the parent element is changed, the corresponding child also should
be changed accordingly, while the parent element should remain unaffected even though the child
element has been changed. See Appendix A for our implementation details.

3.2 Experiment results

Observation and interpretation Table 2 shows |obs(F i
a)− obs(F i

b )| of SCADI while intervening
each factor. Pendulum angle and shadow location are fully disentangled in u[2] and u[3] respectively,
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Table 2: Label finding process

Intervene u[0] u[1] u[2] u[3]

shadow length 1.6296 0.9784 0.1379 0.5790

light 7.0160 6.8370 3.3080 0.3135

pendulum 2.6932 0.9545 3.6941 2.8357

shadow location 0.7641 0.1960 1.8232 3.3046 Figure 6: Adjacency matrix of SCADI

Figure 7: For simplicity, following symbols are used: A for the shadow length, B for the light position,
C for the pendulum angle, and D for the shadow location. (a) Graph based on Fig. 6. Red arrows
indicate a incorrect causal relationship. C is ambiguous in the result of SCADI. (b) True causal graph.
(c) Result of do-operation. To lessen ambiguity, the A is considered to be in u[0] and C is in u[1].

having the same largest value both in row and column. However, shadow length and light position
have the largest value in u[0] in their row, thus seem to be entangled. Even though they are not
fully disentangled, column u[1] strongly encodes light position. Consequently, we labeled each
latent dimension as Fig.6. Then we compare our obtained result (Fig. 7 (a)) to the true causal graph
(Fig. 7 (b)). We found that SCADI can capture causal relationship to some extent in a cost-effective
manner. Fig. 7 (c) demonstrates that SCADI generates strong labels which are able to reconstruct
counterfactual images by do-operation. In detail, A and C intervene light position and pendulum
angle respectively, which are both parental elements of the shadow position and length. Thus, the
position and length of the shadow changed as a result of do-operation. However, in B and D, the
length and center location of the shadow are changed respectively, which are not parental elements
for none of the others. Thus, even when shadow labels are intervened, the other factors remain the
same.

Figure 8: Comparison of the adjacency matrices of various unsupervised models.
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Comparative Evaluation Fig.8 illustrates the final adjacency matrices of four models (Table 1),
including SCADI. It is evident that the unsup-CausalVAE and nd-SCADI exhibit subpar performance,
as evidenced by the full entanglement within adjacency matrix. In contrast, CausalVAE with weak
supervision and SCADI with self-generated labels show adjacency matrices that nearly satisfy and
fully satisfy the Directed-Acyclic-Graph (DAG) conditions, respectively. Furthermore, upon com-
paring the obtained relationships and the ground truth, both SCADI and the reproduced CausalVAE
successfully capture major causality among the factors. (See Fig.7 for SCADI, and Appendix B
for CausalVAE.) Additionally, Table 4 shows DAGness of A after training, indicating that SCADI,
trained to ensure DAG in both the observer and interpreter, exhibits the lowest DAGness.

Subsequently, we compute the LQ scores for SCADI and nd-SCADI, which are equipped with an
observer structure (See Table 1.). As shown in Table 3, SCADI, with additional DAGness imposed on
the observer, demonstrated a higher average LQ score in comparison to nd-SCADI. This observation
suggests that DAGness aids the observer in anchoring its labels to the underlying factors effectively.

Table 3: Evaluation of unsupervised causal disentanglement methods

factor of variation average LQ
shad length ligth pos pendulum shad loc

nd-SCADI u index 3 0 2 3 0.6744
LQ 0.5915 0.4901 0.6485 0.9675

SCADI u index 0 0 2 3 0.5698
LQ 0.7401 0.6216 0.6167 0.3007

Table 4: Final DAGness

DAGness

CausalVAE 0.5298
unsup-CausalVAE 0.4745

nd-SCADI 9.7837
SCADI 0.1359

4 Conclusion

In conclusion, this paper has endeavored to propose a methodology capable of conducting both
observation and interpretation in an unsupervised manner. SCADI is able to capture major causality
among factors effectively, and showed better disentanglement result than the other fully unsupervised
settings. We hope that our work contributes to future research that aims to achieve unsupervised
causal disentanglement.
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Appendices
A Implementation details

We assign a 16-dimension latent space (α = 4, c = 4) for the output of the shared encoder. A
batch size of 512 and 500 epochs for training are chosen as default. Adam optimizer is adopted
with a learning rate of 0.001 for the observer and 0.0003 for the interpreter. The default DAG
constraint for the observer is set to 6H(A) + 1H(A)2, which is twice as large as the DAG constraint
used in the interpreter, i.e. 3H(A) + 0.5H(A)2 is used for interpreter which is a default setting
of CausalVAE[25]. The β parameter for the observer is set to 20, while the default setting for the
interpreter is 4[25]. Every network in the model consists of linear layers with the ELU[35] activation
functions as CausalVAE[25] did. Details of the encoder and decoder architectures are shown in Table
5 and Table 6. We followed Yang et al.[25] for further details.

Table 5: Encoders

Shared encoder Observation encoder

Linear(W ∗H ∗ C, 900) Linear(α ∗ c, α ∗ c)
ELU( ) ELU( )

Linear(900, 300) Linear(α ∗ c, α ∗ c)
ELU( ) ELU( )

Linear(300, 2 ∗ α ∗ c) Linear(2 ∗ c)

Table 6: Decoders

Observation decoder Interpreteration decodera

Linear(c, 300) Linear(α, 300)

ELU( ) ELU( )

Linear(300, 300) Linear(300, 300)

ELU( ) ELU( )

Linear(300, 1024) Linear(300, 1024)

ELU( ) ELU( )

Linear(1024, 1024) Linear(1024,W ∗H ∗ C)

ELU( )

Linear(1024,W ∗H ∗ C)
a Each factor has seperated interpreter decoder, i.e.

Total number of interpreter decoder SCADI has is c.

B Experiment details

While our default training duration comprised 500 epochs, the progress of learning the adjacency
matrix A is illustrated in Fig. 9. In Epoch 0, we initialize the diagonal elements to 0 and all the
others to 0.5 so that initialized matrix A looks like Fig.9 (a) after rounding up. Fig.9(b) still has a
bidirectional relationship, but it almost satisfies a DAG. After more iterations, Fig.9 (c) and (d) satisfy
DAG.

Figure 9: Progress of learning adjacency matrix.

During our experiment in Section3.2, four different structures were compared, and Fig.10 briefly
shows the differences among them.

Furthermore, Fig 11 shows additional results from the reproduced CausalVAE[25]. As it operates
with weakly supervised labels, there is no need for a label-finding process. The order of factors in the
latent variable is predefined: arranged as pendulum angle, light position, shadow length, and shadow
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Figure 10: Architectures used in Sec.3.2

location. During the reproduction of CausalVAE results, we referenced the default settings proposed
by Yang et al.[25]. While not in perfect alignment with the ground truth, it is discernible that the
model successfully captured significant causality among the factors.

Figure 11: Additional anaylsis on CausalVAE

C Ablation study on DAGness

This experiment aims to investigate whether the additional regularization imposed on the observer,
referred to as DAGness, leads to the generation of higher-quality labels. To investigate the impact of
varying levels of DAGness on causal disentangling, we conducted an experiment by giving different
conditions: 1) No DAGness to the observer, 2) Half the amount of DAGness compared to our default
setting, and 3) SCADI with the default setting.

Table 7: Overall results with varying degree of DAGness

factor of variation average LQ DAGness
shad length light pos pendulum shad loc

0H(A) + 0H(A)2
u index 3 0 2 3

0.6744 9.7387
LQ 0.5915 0.4901 0.6485 0.9675

3H(A) + 0.5H(A)2
u index 0 0 0 3

0.7581 0.0942
LQ 1.0366 0.3373 1.3862 0.2755

6H(A) +H(A)2
u index 0 0 2 3

0.5698 0.1359
LQ 0.7401 0.6216 0.6167 0.3007
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Table 7 shows quantitative result and Fig. 12 shows the adjacency matrices.

Figure 12: Comparing the adjacency matrices with varying degrees of DAGness

In SCADI without imposing DAGness on the observer, all factors are causallly entangled, as can
be seen in Fig.12, even though labels from label-finding process do not overlap significantly. This
indicates that the observer could not generate strong labels without DAGness , meaning that the
factors are not anchored to the distribution of the true underlying factors. Imposing half the amount
of DAGness allows the observer to generate a directed acyclic adjacency matrix. However, Table 7
shows that the underlying factors are poorly disentangled, showing overlapped labels in the observed
latent space. SCADI with a proper amount of DAGness not only has a directed acyclic adjacency
matrix but also has the best average LQ score, indicating that both the observer and interpreter
operate well.
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