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ABSTRACT

The goal of offline reinforcement learning (RL) is to learn near-optimal policies
from static logged datasets, thus sidestepping expensive online interactions. Behav-
ioral cloning (BC) provides a straightforward solution to offline RL by mimicking
offline trajectories via supervised learning. Recent advances (Chen et al., 2021; Jan-
ner et al., 2021; Emmons et al., 2021) have shown that by conditioning on desired
future returns, BC can perform competitively to their value-based counterparts,
while enjoying much more simplicity and training stability. However, the distri-
bution of returns in the offline dataset can be arbitrarily skewed and suboptimal,
which poses a unique challenge for conditioning BC on expert returns at test-time.
We propose ConserWeightive Behavioral Cloning (CWBC), a simple and effective
method for improving the performance of conditional BC for offline RL with two
key components: trajectory weighting and conservative regularization. Trajectory
weighting addresses the bias-variance tradeoff in conditional BC and provides a
principled mechanism to learn from both low return trajectories (typically plentiful)
and high return trajectories (typically few). Further, we analyze the notion of
conservatism in existing BC methods, and propose a novel conservative regularizer
that explicitly encourages the policy to stay close to the data distribution. The
regularizer helps achieve more reliable performance, and removes the need for
ad-hoc tuning of the conditioning value during evaluation. We instantiate CWBC
in the context of Reinforcement Learning via Supervised Learning (RvS) (Emmons
et al., 2021) and Decision Transformer (DT) (Chen et al., 2021), and empirically
show that it significantly boosts the performance and stability of prior methods on
various offline RL benchmarks.

1 INTRODUCTION

In many real-world applications such as education, healthcare and autonomous driving, collecting
data via online interactions can be expensive or even dangerous. However, we often have access to
historical logged datasets in these domains that have been collected previously by some unknown
policies. The goal of offline reinforcement learning (RL) is to directly learn effective agent policies
from such datasets, without additional online interactions (Lange et al., 2012; Levine et al., 2020).
Many online RL algorithms have been adapted to work in the offline setting, including value-based
methods (Fujimoto et al., 2019; Ghasemipour et al., 2021; Wu et al., 2019; Jaques et al., 2019; Kumar
et al., 2020; Fujimoto & Gu, 2021; Kostrikov et al., 2021a) as well as model-based methods (Yu et al.,
2020; Kidambi et al., 2020). The key challenge in all these methods is to generalize the value or
dynamics to state-action pairs outside the offline dataset.

An alternative way to approach offline RL is via approaches derived from behavioral cloning
(BC) (Bain & Sammut, 1995). BC is a supervised learning technique that was initially devel-
oped for imitation learning, where the goal is to learn a policy that mimics the expert demonstrations.
Recently, a number of works propose to formulate offline RL as supervised learning problems (Chen
et al., 2021; Janner et al., 2021; Emmons et al., 2021). Since offline RL datasets usually do not have
expert demonstrations, these works condition BC on extra context information to specify target out-
comes such as returns and goals. Compared with the value-based approaches, the empirical evidence
has shown that these conditional BC approaches perform competitively, and they additionally enjoy
the enhanced simplicity and training stability of supervised learning.
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As commonly observed for supervised learning approaches, the performance of conditional BC is
often limited by the suboptimility of the offline dataset, which particularly can be probed through the
distribution of returns in the dataset. There are two related challenges in this regard for offline RL.

First, there is a unique bias-variance tradeoff in learning that arises due to the mismatch between the
training and test distribution of returns. Typically, offline datasets in the real world mostly contain
trajectories with low returns, whereas at test time, we are interested in conditioning on high returns.
Simply filtering the offline dataset to contain high return trajectories is not always viable, as the
number of such high-return trajectories can be very low leading to high variance during learning.

Second, the maximum return in the offline trajectories is often far below the desired expert returns.
This implies that at test time, we need to condition our agent on out-of-distribution (ood) expert
returns. Interestingly, we find that existing BC methods have significantly different behaviors when
conditioning on ood returns. While DT (Chen et al., 2021) enjoys a stable performance, RvS (Emmons
et al., 2021) is highly sensitive to such ood conditioning and exhibits vast drops in peak performance
for such ood inputs. Therefore, the current practice for setting the conditioning return at test-time
in RvS is based on careful tuning with online rollouts, which is often tedious, impractical, and
inconsistent with the promise of offline RL to minimize online interactions.

We propose ConserWeightive Behavior Cloning (CWBC), a new BC-based approach for offline
RL that mitigates the aforementioned challenges. CWBC consists of 2 key components: trajectory
weighting and conservative regularization. With trajectory weighting, we strive to balance the bias-
variance trade-off in learning by proposing a scheme for downweighting the low-return trajectories,
but at the same time, we do not filter them for data efficiency. Moreover, we introduce a notion of
conservatism for ood sensitve BC methods such as RvS, which encourages the policy to stay close
to the data distribution when conditioning on large returns. We take trajectories with high returns
from the dataset and add positive noise to their returns, which generates trajectories with large ood
returns. We predict actions conditioning on the perturbed returns and project them to the original
actions by penalizing the ℓ2 distance. By imposing such a regularizer, we can condition the policy on
large, unseen target returns at test-time, sidestepping tedious manual tuning and online interactions.

Our proposed algorithm is simple and easy to implement. Empirically, we instantiate our framework
in the context of RvS (Emmons et al., 2021) and DT (Chen et al., 2021), two state-of-the-art BC
methods for offline RL. CWBC significantly improves the performance of RvS and DT in D4RL (Fu
et al., 2020) locomotion tasks by 18% and 8%, respectively, without any hand picking of the value of
the conditioning returns at test-time.

2 RELATED WORK

Offline Temporal Difference Learning Most of the existing off-policy RL methods are often
based on temporal difference (TD) updates. A key challenge of directly applying them in the offline
setting is the extrapolation error: the value function is poorly estimated at unseen state-action pairs.
To remedy this issue, various forms of conservatism have been introduced to off-policy RL methods
that exploits temporal difference updates, with the purpose of encouraging the learned policy to stay
close to the behavior policy that generates the data. For instance, Fujimoto et al. (2019); Ghasemipour
et al. (2021) use certain policy parameterizations specifically tailored for offline RL. Wu et al. (2019);
Jaques et al. (2019); Kumar et al. (2019) penalize the divergence-based distances between the learned
policy and the behavior policy. Fujimoto & Gu (2021) propose an extra behavior cloning term to
regularize the policy. This regularizer is simply the ℓ2 distance between predicted actions and the
truth, yet surprisingly effective for porting off-policy TD methods to the offline setting. Instead of
regularizing the policy, several other works have sought to incorporate divergence regularizations into
the value function estimation, e.g., (Nachum et al., 2019; Kumar et al., 2020; Kostrikov et al., 2021a).
Another recent work by Kostrikov et al. (2021b) predicts the Q function via expectile regression,
where the estimation of the maximum Q-value is constrained to be in the dataset.

Behavior Cloning Approaches for Offline RL Recently, there is a surge of interest in converting
offline RL into supervised learning paradigms (Chen et al., 2021; Janner et al., 2021; Emmons
et al., 2021). In essence, these approaches conduct behavior cloning (Bain & Sammut, 1995) by
additionally conditioning on extra information such as goals or rewards. Among these works, Chen
et al. (2021) and Janner et al. (2021) have formulated offline RL as sequence modeling problems
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and train transformer architectures (Vaswani et al., 2017) in a similar fashion to language and
vision (Radford et al., 2018; Chen et al., 2020; Brown et al., 2020; Lu et al., 2022; Yan et al., 2021).
Extensions have also been proposed in the context of sequential decision making for offline black-box
optimization (Nguyen & Grover, 2022; Krishnamoorthy et al., 2022). A recent work by Emmons
et al. (2021) further shows that conditional BC can achieve competitive performance even with a
simple but carefully designed MLP network. Earlier, similar ideas have also been proposed for online
RL, where the policy is trained via supervised learning techniques to fit the data stored in the replay
buffer (Schmidhuber, 2019; Srivastava et al., 2019; Ghosh et al., 2019).

Data Exploration for Offline RL Recent research efforts have also been made towards under-
standing properties and limitations of datasets used for offline RL (Yarats et al., 2022; Lambert
et al., 2022; Guo et al., 2021), particularly focusing on exploration techniques during data collection.
Both Yarats et al. (2022) and Lambert et al. (2022) collect datasets using task-agnostic exploration
strategies (Laskin et al., 2021), relabel the rewards and train offline RL algorithms on them. Yarats
et al. (2022) benchmark multiple offline RL algorithms on different tasks including transferring,
whereas Lambert et al. (2022) focus on improving the exploration method.

3 PRELIMINARIES

We model our environment as a Markov decision process (MDP) (Bellman, 1957), which can be
described by a tuple M “ xS,A, p, P,R, γy, where S is the state space, A is the action space,
pps1q is the distribution of the initial state, P pst`1|st, atq is the transition probability distribution,
Rpst, atq is the deterministic reward function, and γ is the discount factor. At each timestep t, the
agent observes a state st P S and takes an action at P A. This moves the agent to the next state
st`1 „ P p¨|st, atq and provides the agent with a reward rt “ Rpst, atq.

Offline RL. We are interested in learning a (near-)optimal policy from a static offline dataset of
trajectories collected by unknown policies, denoted as Toffline. We assume that these trajectories are
i.i.d samples drawn from some unknown static distribution T . We use τ to denote a trajectory and
use |τ | to denote its length. Following Chen et al. (2021), the return-to-go (RTG) for a trajectory τ at
timestep t is defined as the sum of rewards starting from t until the end of the trajectory: gt “

ř|τ|

t1“t
rt1 .

This means the initial RTG g1 is equal to the total return of the trajectory rτ “
ř|τ|

t“1 rt.

Decision Transformer (DT). DT (Chen et al., 2021) solves offline RL via sequence modeling.
Specifically, DT employs a transformer architecture that generates actions given a sequence of
historical states and RTGs. To do that, DT first transforms each trajectory in the dataset into a
sequence of returns-to-go, states, and actions:

τ “
`

g1, s1, a1, g2, s2, a2, . . . , g|τ |, s|τ |, a|τ |

˘

. (1)

DT trains a policy that generates action at at each timestep t conditioned on the history of RTGs
gt´K:t, states st´K:t, and actions at´K:t´1, wherein K is the context length of the transformer. The
learning objective a simple mean square error between the predicted actions and the ground truths:

min
θ

LDTpθq “ Eτ„T
“

1
|τ |

ř|τ |

t“1

`

at ´ πθpgt´K:t, st´K:t, at´K:t´1q
˘2‰

. (2)

During evaluation, DT starts with an initial state s1 and a target RTG g1. At each step t, the agent
generates an action at, receives a reward rt and observes the next state st`1. DT updates its RTG
gt`1 “ gt ´ rt and generates next action at`1. This process is repeated until the end of the episode.

Reinforcement Learning via Supervised Learning (RvS). Emmons et al. (2021) conduct a
thorough empirical study of conditional BC methods under the umbrella of Reinforcement Learning
via Supervised Learning (RvS), and show that even simple models such as multi-layer perceptrons
(MLP) can perform well. With carefully chosen architecture and hyperparameters, they exhibit
performance that matches or exceeds the performance of transformer-based models. There are two
main differences between RvS and DT. First, RvS conditions on the average reward ωt into the future
instead of the sum of future rewards:

ωt “ 1
H´t`1

ř|τ |

t1“t rt1 “
gt

H´t`1 , (3)
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(a) Offline data distribution vs the expert dis-
tribution.
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(b) The original return distribution T and the trans-
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Figure 1: The suboptimality of offline datasets (left) and the effect of trajectory weighting on the
return distribution (right). We illustrate on walker2d-med-replay. For weighting, we use
B “ 20, λ “ 0.01, κ “ pr‹ ´pr90, where pr90 is the 90-th percentile of the returns in the offline dataset.

where H is the maximum episode length. Intuitively, ωt is RTG normalized by the number of
remaining steps. Second, RvS employs a simple MLP architecture, which generates action at at step
t based on only the current state st and expected outcome ωt. RvS minimizes a mean square error:

min
θ

LRvSpθq “ Eτ„T
“

1
|τ |

ř|τ |

t“1

`

at ´ πθpst, ωtq
˘2‰

. (4)

At evaluation time, RvS performs a repeating process similarly to DT, except that the expected
outcome is now updated as ωt`1 “ pgt ´ rtq{pH ´ tq.

4 CONSERVATIVE BEHAVIORAL CLONING WITH TRAJECTORY WEIGHTING

A key challenge that behavioral cloning faces in an offline setting is the suboptimality of the dataset,
which we can characterize via the distribution of trajectory returns. An ideal offline dataset consists of
sufficiently many high-quality trajectories, which have returns matching those of a dataset of expert
demonstrations. For such an idealized scenario, offline RL reduces to a vanilla imitation learning
problem. In practice, however, we observe that the return distribution for a typical dataset of offline
trajectories is spread over a wide range of returns and is highly non-uniform. Figure 1a illustrates the
return distribution of the walker2d-med-replay dataset (Fu et al., 2020), which is significantly
different from the expert distribution. Therefore, from a return perspective, the trajectories in the
offline dataset can be of varying importance for learning, which leads to a bias-variance trade-off.
Further, for return-conditioned methods including conditional BC, it is unclear how the policy will
behave when conditioned on o.o.d. returns at test-time. We study mitigation techniques for both these
challenges in the following sections.

4.1 CONTROLLING BIAS-VARIANCE TRADEOFF VIA TRAJECTORY WEIGHTING

To formalize our discussion, recall that rτ denotes the return of a trajectory τ and let r‹ “ supτ rτ be
the maximum expert return, which is assumed to be known in prior works on conditional BC (Chen
et al., 2021; Emmons et al., 2021). We know that the optimal offline data distribution, denoted by
T ‹, is simply the distribution of demonstrations rolled out from the optimal policy. Typically, the
offline trajectory distribution T will be biased w.r.t. T ‹. During learning, this leads to a bias-variance
tradeoff, wherein ideally we want to learn our BC agent to condition on the expert returns, but is
forced to minimize the empirical risk on a biased data distribution.

The core idea of our approach is to transform T into a new distribution rT that better estimates T ‹.
More concretely, rT should concentrate on high-return trajectories, which mitigates the bias. One
naive strategy is to simply filter out a small fraction of high return trajectories from the offline dataset.
However, since we expect the original dataset to contain very few high return trajectories, filtering
trajectories will increase the variance for downstream BC. To balance the bias-variance trade-off, we
propose to weight the trajectories based on their returns. Let fT : R ÞÑ R` be the density function of
rτ where τ „ T . We consider the transformed distribution rT whose density function p

rT is
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Algorithm 1: Weighted Trajectory Sampling
1 Input: offline dataset Toffline, number of bins B, smoothing parameters λ, κ
2 Compute the returns: rτ Ð

ř|τ |

t“1 rt, @τ P Toffline.
3 Group the trajectories into B equal-sized bins according to rτ .
4 Sample a bin b P rBs with probability Pbinpbq defined in Equation (6).
5 Sample a trajectory τ in bin b uniformly at random.
6 Output: τ

Table 1: The normalized return on D4RL locomotion tasks of RvS and DT with trajectory weighting.
We use +W as shorthand for weighting. We use #wins to denote the number of datasets where the
variant outperforms the original model. The results are averaged over 10 seeds.

DT DT+W RvS RvS+W

walker2d-medium 71.5 ˘ 3.9 70.4 ˘ 4.5 73.3 ˘ 5.7 54.5 ˘ 7.7

walker2d-med-replay 53.4 ˘ 12.2 60.5 ˘ 8.9 54.0 ˘ 12.1 61.2 ˘ 14.7

walker2d-med-expert 99.8 ˘ 21.3 108.2 ˘ 0.8 102.2 ˘ 104.1 104.1 ˘ 0.5

hopper-medium 59.9 ˘ 4.9 63.9 ˘ 4.4 56.6 ˘ 5.5 62.5 ˘ 7.1

hopper-med-replay 56.4 ˘ 20.1 76.9 ˘ 5.9 87.7 ˘ 9.7 92.4 ˘ 6.1

hopper-med-expert 95.4 ˘ 11.3 103.4 ˘ 9.0 108.8 ˘ 0.9 108.4 ˘ 1.8

halfcheetah-medium 42.5 ˘ 0.6 41.6 ˘ 1.7 16.2 ˘ 4.5 4.0 ˘ 5.4

halfcheetah-med-replay 34.5 ˘ 4.2 36.9 ˘ 2.2 ´0.4 ˘ 2.7 ´0.8 ˘ 2.2
halfcheetah-med-expert 87.2 ˘ 2.7 85.6 ˘ 2.0 83.4 ˘ 2.1 69.1 ˘ 3.7

# wins / 6 / 4
average 66.7 71.9 64.6 61.7

p
rT pτq 9

trajectory weight
hkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkj

fT prτ q

fT prτ q`λ ¨ exp
`

´
|rτ ´r‹

|

κ

˘

, (5)

where λ, κ P R` are two hyperparameters. A larger value of κ leads to a more uniform rT , whereas
a smaller value upweights the high-return trajectories. In contrast, a smaller value of λ gives more
weights to high-return trajectories, while a larger value makes rT closer to T . Our trajectory weighting
is motivated by a similar scheme proposed for model-based optimization (Kumar & Levine, 2020),
where the authors use it to balance the bias and variance for gradient approximation for surrogates to
black-box functions, and theoretically establish the optimality of the proposed distribution.

4.1.1 IMPLEMENTATION DETAILS

In practice, the dataset Toffline only contains a finite number of samples and the density function
p
rT in equation (5) cannot be computed exactly. Following Kumar & Levine (2020), we sample

from a discretized approximation of rT . We first group the trajectories in Toffline into B equal-sized
bins according to the return rτ . To sample a trajectory, we first sample a bin index b P t1, . . . , Bu

and then uniformly sample a trajectory inside bin b. We use |b| to denote the size of bin b. Let
srbτ “ 1{|b|

ř

τPb rτ the average return of the trajectories in bin b, pr‹ be the highest return in the
dataset Toffline, and define fToffline pbq “ |b|{|Toffline|. As a discretized version of equation (5), the bins
are weighted by their average returns with probability

Pbinpbq 9
fToffline pbq

fToffline pbq`λ ¨ exp
`

´
|srbτ ´pr‹

|

κ

˘

. (6)

Algorithm 1 summarizes the data sampling procedure when trajectory weighting is used. Figure 1b
illustrates the impact of trajectory weighting on the return distribution of the med-replay dataset
for the walker2d environment. We plot the histograms before and after transformation, where the
density curves are estimated by kernel density estimators.

4.1.2 EMPIRICAL RESULTS

Dataset We evaluate the effectiveness of trajectory weighting on three locomotion tasks with dense
rewards from the D4RL benchmark (Fu et al., 2020): hopper, walker2d and halfcheetah.
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Figure 2: Performance of RvS and DT when conditioning on different evaluation RTGs. We report
the mean and standard deviation of 10 seeds.

For each task, we consider the v2 medium, med-replay and med-expert offline datasets. The
medium dataset contains 1M samples from a policy trained to approximately 1

3 the performance
of an expert policy. The med-replay dataset uses the replay buffer of a policy trained up to the
performance of a medium policy. The med-expert dataset contains 1M samples generated by a
medium policy and 1M samples generated by an expert policy.

Baselines We apply trajectory weighting to RvS (Emmons et al., 2021) and DT (Chen et al., 2021),
two state-of-the-art BC methods. We compare their performance when trained on the original
distribution and on the transformed distribution induced by our trajectory weighting (denoted as +W).

Hyperparameters For all datasets, we use B “ 20 and λ “ 0.01, and we set the temperature
parameter κ to be the difference between the highest return and the 90-th percentile: pr‹ ´ pr90, whose
value varies across the datasets. At test time, we set the evaluation RTG to be the expert return for
each environment. The model architecture and the other hyperparamters are identical to what were
used in the original paper. We provide a complete list of hyperparameters in Appendix B.2 and
additional ablation experiments on λ and κ in Appendix C.

Results Table 1 shows the performance of RvS and DT and their variants. DT+W outperforms the
original DT in 6{9 datasets, achieving an average improvement of 8%. The improvement is significant
in low-quality datasets (med-replay), which agrees with our analysis. Unlike in DT, trajectory
weighting in RvS has varying effects, and the average performance of RvS+W is not better than that
of RvS. To better understand this, we plot the achieved returns of RvS and DT when conditioning on
different values of RTG. Figure 2 shows an interesting difference between behaviors of DT and RvS.
DT is insensitive to the conditioning RTG, and continues performing stably even when conditioning
on out-of-distribution RTGs. In contrast, the performance of RvS highly correlates with the evaluation
RTG, but degrades quickly after a certain threshold. The performance crash problem of RvS shadows
the improvement made by trajectory weighting.

4.2 RELIABLE EVALUATION VIA CONSERVATISM

The results in Section 4.1.2 introduce another challenging problem for return-conditioned BC in
offline RL: generalization to out-of-distribution (ood) returns. While strong generalization beyond
the offline dataset remains an ongoing challenge for the offline RL community (Wang et al., 2020;
Zanette, 2021; Foster et al., 2021), we require the policy to be reliable and at least stay close to the
data distribution to avoid catastrophic failure when conditioned on ood returns. In other words, we
want the policy to be conservative. Figure 2 shows that DT enjoys self-conservatism, while RvS does
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Figure 3: Performance of DT when the state and RTG tokens are concatenated. We report the mean
and standard deviation of 10 seeds.

Algorithm 2: ConserWeightive Behavioral Cloning (CWBC) for RvS
1 Input: dataset Toffline, number of iterations I , batch size S, regularization coefficient α, initial

parameters θ0
2 for iteration i “ 1, . . . , I do
3 Sample a batch of trajectories B Ð tτ p1q, . . . , τ pSqu from Toffline using Algorithm 1.
4 for every sampled trajectory τ piq do
5 Samplie noise ε as described in Section 4.2.1.
6 Compute noisy RTGs: gεt Ð gt ` ε, 1 ď t ď |τ piq|.

// loss and regularizer defined in Equation (4) and (7)
7 Perform gradient update of θ by minimizing the regularized empirical risk

pLB
RvSpθq ` α ¨ pCB

RvSpθq.
8 Output: πθ

not. We hypothesize that the conservative behavior of DT comes from the transformer architecture.
As the policy conditions on a sequence of both state tokens and RTG tokens to predict next action, the
attention layers can choose to ignore the ood RTG tokens while still obtaining a good prediction loss.
To test this hypothesis, we experiment with a slightly modified version of DT, where we concatenate
the state and RTG at each timestep instead of treating them as separate tokens. By doing this, the
model cannot ignore the RTG information in the sequence. We call this version DT-Concat. Figure 3
shows that the performance of DT-Concat is strongly correlated with the conditioning RTG, and
degrades quickly when the target return is out-of-distribution. This result confirms our hypothesis.

However, conservatism does not have to come from the architecture, but can also emerge from a
proper objective function, as commonly done in conservative value-based methods (Kumar et al.,
2020; Fujimoto & Gu, 2021). In this section, we propose a novel conservative regularization for BC
that explicitly encourages the policy to stay close to the data distribution. The intuition is to enforce
the predicted actions when conditioning on large ood returns to stay close to the in-distribution
actions. To do that, for a trajectory τ with high return, we inject positive random noise ε „ Eτ to its
RTGs, and penalize the ℓ2 distance between the predicted action and the ground truth. Specifically, to
guarantee we generate large ood returns, we choose a noise distribution E such that the perturbed
initial RTG g1 ` ε is at least pr‹, the highest return in the dataset. The next subsections instantiate the
conservative regularizer in the context of RvS, and empirically evaluate its performance.

4.2.1 IMPLEMENTATION DETAILS

We apply conservative regularization to trajectories whose returns are above prq, the q-th percentile
of returns in the dataset. This makes sure that when conditioned on ood returns, the policy behaves
similarly to high-return trajectories and not to a random trajectory in the dataset. We sample a scalar
noise ε „ Eτ and offset the RTG of τ at every timestep by ε: gεt “ gt ` ε, t “ 1, . . . , |τ |, resulting in
the conservative regularizer:

CRvSpθq “ Eτ„T , ε„Eτ

“

1rτ ąprq ¨ 1
|τ |

ř|τ |

t“1

`

at ´ πθpst, ω
ε
t q
˘2‰

, (7)

where ωε
t “ pgt`εq{pH´t`1q (cf. Equation (3)) is the noisy average RTG at timestep t. We observe

that using the 95-th percentile of pr95 generally works well across different environments and datasets.
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Table 2: Comparison of the normalized return on the D4RL locomotion benchmark. For BC
and TD3+BC, we get the numbers from (Emmons et al., 2021). For IQL, we get the numbers
from (Kostrikov et al., 2021b). For TTO, we get the numbers from (Janner et al., 2021). The results
are averaged over 10 seeds.

RvS RvS+W RvS+C RvS+W+C DT BC TD3+BC CQL IQL TTO

walker2d-medium 73.3 ˘ 5.7 54.5 ˘ 7.7 71.3 ˘ 4.9 73.6 ˘ 5.4 71.5 ˘ 3.9 75.3 83.7 82.9 78.3 81.3 ˘ 8.0

walker2d-med-replay 54.0 ˘ 12.1 61.2 ˘ 14.7 62.0 ˘ 13.5 72.8 ˘ 7.5 53.4 ˘ 12.2 26.0 81.8 86.1 73.9 79.4 ˘ 12.8

walker2d-med-expert 102.2 ˘ 2.3 104.1 ˘ 0.5 102.1 ˘ 10.2 107.6 ˘ 0.5 99.8 ˘ 21.3 107.5 110.1 109.5 109.6 91.0 ˘ 10.8

hopper-medium 56.6 ˘ 5.5 62.5 ˘ 7.1 61.0 ˘ 5.3 62.9 ˘ 3.6 59.9 ˘ 4.9 52.9 59.3 64.6 66.3 67.4 ˘ 11.3

hopper-med-replay 87.7 ˘ 9.7 92.4 ˘ 6.1 91.5 ˘ 3.5 87.7 ˘ 4.2 56.4 ˘ 20.1 18.1 60.9 97.8 94.7 99.4 ˘ 12.6

hopper-med-expert 108.8 ˘ 0.9 108.4 ˘ 1.8 101.0 ˘ 13.4 110.0 ˘ 2.8 95.4 ˘ 11.3 52.5 98.0 102.0 91.5 106.0 ˘ 1.1

halfcheetah-medium 16.2 ˘ 4.5 4.0 ˘ 5.4 40.7 ˘ 1.0 42.2 ˘ 0.7 42.5 ˘ 0.6 42.6 48.3 49.1 47.4 44.0 ˘ 1.2

halfcheetah-med-replay ´0.4 ˘ 2.7 ´0.8 ˘ 2.2 36.8 ˘ 1.5 40.4 ˘ 0.8 34.5 ˘ 4.2 36.6 44.6 47.3 44.2 44.1 ˘ 3.5

halfcheetah-med-expert 83.4 ˘ 2.1 69.1 ˘ 3.7 91.2 ˘ 1.0 91.1 ˘ 2.0 87.2 ˘ 2.7 55.2 90.7 85.8 86.7 40.8 ˘ 8.7

# wins / 4 6 9 / / / / /
average 64.6 61.7 73.1 76.5 66.73 51.86 75.3 80.6 77.0 72.6

We use the noise distribution Eτ “ Uniformrlτ , uτ s, where the lower bound lτ “ pr‹ ´ rτ so that the
perturbed initial RTG gε1 “ rτ ` ε is no less than pr‹, and the upper bound uτ “ pr‹ ´ rτ `

?
12σ2 so

that the standard deviation of Eτ is equal to σ. We emphasize our conservative regularizer is distinct
from the other conservative components proposed for the value-based offline RL methods. While
those usually try to regularize the value function estimation to prevent extrapolation error (Fujimoto
et al., 2019), we perturb the returns to generate ood conditioning and regularize the predicted actions.

When the conservative regularizer is used, the final objective for training RvS is LRvSpθq`α ¨CRvSpθq,
in which α is the regularization coefficient. When trajectory reweighting is used in conjunction
with the conservative regularizer, we obtain ConserWeightive Behavioral Cloning (CWBC), which
combines the best of both components. We provide a pseudo code for CWBC in Algorithm 2.

4.2.2 EMPIRICAL RESULTS

Dataset We evaluate the effectiveness of the conservative regularizer, as well as the performance of
CWBC as a whole on the D4RL datasets (Fu et al., 2020) for the gym locomotion tasks.

Baselines We apply the conservative regularizer, which we denote as +C, to both RvS and RvS+W.
In addition, we report the performance of three value-based methods: TD3+BC (Fujimoto & Gu,
2021), CQL (Kumar et al., 2020), and IQL (Kostrikov et al., 2021b) as a reference.

Hyperparameters We apply our conservatism regularization to trajectories whose returns are above
the q “ 95-th percentile return in the dataset, and perturb their RTGs as described in Section 4.2.1.
We use a regularization coefficient of α “ 1. The evaluation protocol is similar to Section 4.1.2.

Results Table 2 reports the performance of different methods we consider. Our proposed framework
CWBC with all components enabled (RvS+W+C) significantly outperforms the original RvS on 9{9
datasets, with an average improvement of 18% over RvS. RvS+W+C is also the best performing BC
method in the table, and is competitive with the value-based methods. Conservative regularization
consistently improves the results for both RvS and RvS+W. Trajectory weighting on its own can have
varying effects on performance, but is synergistic when combined with RvS+C leading to our best
performing model in RvS+W+C.

To better understand the impact of each component, we plot the achieved returns of RvS and
other variants when conditioning on different values of conditioned RTG. Figure 4 shows that RvS
generalizes poorly to out-of-distribution RTGs, which leads to significant performance drop when
the evaluation RTG is larger than the best return in the dataset. Figure 4 illustrates the significant
importance of encouraging conservatism for RvS, where RvS+C has much more stable performance,
even when the evaluation RTG is 2ˆ the expert return. By explicitly asking the model to stay close
to the data distribution, we achieve more reliable out-of-distribution performance, and avoid the
performance crash problem. This leads to absolute performance improvement of RvS+C in Table 2.
CWBC combines the best of both weighting and conservatism, which enjoys good performance when
conditioning on high RTG values, as well as better robustness to large, out-of-distribution RTGs.
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Figure 4: Performance of RvS and its variants when conditioning on different evaluation RTGs. We
report the mean and standard deviation of 10 seeds.

In addition to the main results, we include ablations for different choices of conservative percentile
q and regularization coefficient α in Appendix C. Finally, we also evaluate CWBC in two more
benchmarks: Atari games (Bellemare et al., 2013) and the D4RL Antmaze datasets. We present these
results in Appendix D and E respectively.

5 CONCLUSION

We proposed ConserWeightive Behavioral Cloning (CWBC), a new framework that extends BC
for offline RL with two novel components: trajectory weighting and conservative regularization.
Trajectory weighting balances the bias-variance tradeoff that arises in learning from a suboptimal
dataset, improving the performance of both DT and RvS. Next, we showed that while DT is self-
conservative due to its attention architecture, we can recover this desired behavior even for RvS using
our proposed conservative regularizer. Confirmed by the experiments, CWBC significantly improves
the performance and stability of RvS.

While we made good progress for BC, advanced value-based methods such as CQL and IQL are still
ahead and we believe further understanding of the tradeoffs in both kinds of approaches is important
future work. Another promising direction from a data perspective is how to combine datasets from
multiple environments to obtain diverse, high-quality data. Recent works have shown promising
results in this direction (Reed et al., 2022). Last but not least, while CWBC significantly improves
the performance and reliability of RvS, it is not able to extrapolate beyond the offline dataset. How to
obtain extrapolation, or whether it is possible, is still an open question, and poses a persistent research
opportunity for not only CWBC but the whole offline RL community.

REPRODUCIBILITY STATEMENT

We present the practical implementation of our framework in Section 4.1.1 and Section 4. We include
the implementation details of our paper in Appendix B, which contains information about the datasets
we use, the open sourced code we base on, and the list of hyperparameters we use to reproduce our
results. Finally, we submitted the source code in the supplementary material.
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A LIST OF SYMBOLS

Table 3: Important symbols used in this paper.

Symbol Meaning Definition

S state space
A action space
τ trajectory
|τ | trajectory length
T distribution of trajectories
Toffline offline dataset
π policy
θ policy parameters
st state at timestep t
at action at timestep t
rt reward at timestep t

rτ trajectory return
ř|τ |

t“1 rt
gt return-to-go at timestep t

ř|τ |

t1“t r
1
t

H maximum trajectory length
ωt average return-to-go at timestep t gt{pH ´ t ` 1q

LRvS empirical risk of RvS Equation (4)
CRvS conservative regularizer for RvS Equation (7)
fT pτq probability density of trajectory τ „ T
p
rT pτq probability density of trajectory τ „ rT Equation (5)

b index of a bin of trajectories in the offline dataset
|b| size of bin b
fToffline pbq proportion of trajectories in bin b |b|{|Toffline|

Pbinpbq probability that bin b is sampled Equation (6)
r̄bτ average return of trajectories in bin b
pr‹ highest return in the offline dataset
prq q-th percentile of the returns in the offline dataset

B IMPLEMENTATION DETAILS

B.1 DATASETS AND SOURCE CODE

We train and evaluate our models on the D4RL (Fu et al., 2020) and Atari (Agarwal et al., 2020)
benchmarks, which are available at https://github.com/rail-berkeley/d4rl and
https://research.google/tools/datasets/dqn-replay, respectively. Our code-
base is largely based on the RvS (Emmons et al., 2021) official implementation at https:
//github.com/scottemmons/rvs, and DT (Chen et al., 2021) official implementation at
https://github.com/kzl/decision-transformer.
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B.2 DEFAULT HYPERPARAMETERS

Table 4: Hyperparameters used for locomotion experiments.

Hyperparameter Value

Model

Context length K (DT) 20
Number of attention heads (DT) 1
Hidden layers 2 for RvS, 3 for DT
Hidden dimension 1024 for RvS, 128 for DT
Activation function ReLU
Dropout 0.0 for RvS, 0.1 for DT

Conservative regularizer
Conservative percentile q 95
Noise standard deviation σ 1000
Regularization coefficient α 1.0

Trajectory weighting
# bins B 20
Smoothing parameter λ 0.01
Smoothing parameter κ pr‹

´ pr90

Optimization

Batch size 64
Learning rate 1e ´ 3 for RvS, 1e ´ 4 for DT
Weight decay 1e ´ 4
Training iterations 100000

Evaluation Target return 1ˆ Expert return

Table 5: Hyperparameters used for Atari experiments.

Hyperparameter Value

Model

Encoder channels 32, 32, 64
Encoder filter sizes 8 ˆ 8, 4 ˆ 4, 3 ˆ 3
Encoder strides 4, 2, 1
Hidden layers 4
Hidden dimension 1024
Activation function ReLU
Dropout 0.1

Conservative regularization

Conservative percentile q 95

Noise std σ
50 for Breakout, Pong
500 for Qbert, Seaquest

Conservative weight α 0.1

Trajectory weighting
# bins B 20
λ 0.1
κ pr‹

´ pr50

Optimization

Batch size 128
Learning rate 6e ´ 4
Weight decay 1e ´ 4
Training iterations 25000

Evaluation Target return

90 for Breakout (1ˆ max in dataset)
2500 for Qbert (5ˆ max in dataset)
20 for Pong (1ˆ max in dataset)
1450 for Seaquest (5ˆ max in dataset)
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C ABLATION ANALYSIS

In this section, we investigate the impact of each of those hyperparameters on CWBC to give
insights on what values work well in practice. We use the walker2d environment and the three
related datasets for illustration. In all the experiments, when we vary one hyperparameter, the other
hyperparameters are kept as in Table 4.

C.1 TRAJECTORY WEIGHTING: SMOOTHING PARAMETERS λ AND κ

Two hyperparameters κ and λ in Equation (6) affect the probability a bin index b is sampled:

Pbinpbq 9
fToffline pbq

fToffline pbq`λ ¨ exp
`

´
|srbτ ´pr‹

|

κ

˘

.

In practice, we have observed that the performance of CWBC is considerably robust to a wide range
of values of κ and λ.

The impact of κ The smoothing parameter κ controls how we weight the trajectories based on
their relative returns. Intuitively, smaller κ gives more weights to high-return bins (and thus their
trajectories), and larger κ makes the transformed distribution more uniform. We illustrate the effect
of κ on the transformed distribution and the performance of CWBC in Figure 5. As in Section 4.1.2,
we set κ to be the difference between the empirical highest return pr‹ and the z-th percentile return in
the dataset: κ “ pr‹ ´ prz , and we vary the values of z. This allows the actual value of κ to adapt to
different datasets.

Figure 5 shows the results. The top row plots the distributions of returns before and after trajectory
weighting for varying values of κ. We tested four values z P t99, 90, 50, 0u, which correspond to
four increasing values of κ. We mark the actual values of κ in each dataset in the top tow1. For
each dataset, we can see the transformed distribution using small κ (orange) highly concentrates on
high returns; as κ increases, the density for low returns increases and the distribution becomes more
and more uniform. The bottom row plots the corresponding performance of CWBC with different
choices of κ. We select RvS+C as our baseline model, which does not have trajectory weighting but
has the conservative regularization enabled. We can see that relatively small values of κ (based on
pr99 , pr90 and pr50) perform well on all the three datasets, whereas large values (based on pr0) hurt the
performance for the med-expert dataset, and even underperform the baseline RvS+C.
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Figure 5: The influence of κ on the transformed distribution (top) and on the performance of CWBC
(bottom). The legend in each panel (top) shows the absolute values of κ for easier comparison. In the
bottom row, we also plot the results of RvS+C (no trajectory weighting) as a baseline.

1
pr0 is defined to be the lowest return in the dataset: pr0 “ minτPToffline rτ .
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The impact of λ To better understand the role of λ, we can rewrite Equation (6) as

Pbinpbq 9

T1
hkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkj

fToffline pbq exp
`

´
|srbτ ´pr‹

|

κ

˘

¨

T2
hkkkkkkkkkkkikkkkkkkkkkkj

␣

1{
`

fToffline pbq ` λ
˘(

.

Clearly, only T2 depends on λ. When λ “ 0, T2 is canceled out and the above equation reduces to

Pbinpbq 9 exp
`

´
|srbτ ´pr‹

|

κ

˘

,

which purely depends on the relative return. As λ increases, T2 is less sensitive to fToffline pbq, and
finally becomes the same for every b P rBs as λ Ñ 8. In that scenario, Pbinpbq only depends on T1,
which is the original frequency fToffline pbq weighted by the relative return.

The top row of Figure 6 plots the distributions of returns before and after trajectory weighting with
different values of λ. When λ “ 0, the distributions concentrate on high returns. As λ increases,
the distributions are more correlated with the original one, but still weights more on the high-return
region compared to the original distribution due to the exponential term in T1. The bottom row of
Figure 6 plots the actual performance of CWBC as λ varies. All values of λ produce similar results,
which are consistently better than or comparable to training on the original datset (RvS+C).
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Figure 6: The influence of λ on the transformed distribution (top) and on the performance of CWBC
(bottom). We plot the result of RvS+C as the baseline.

C.2 CONSERVATIVE REGULARIZATION: PERCENTILE q

We only apply the conservative regularization to trajectories whose return is above the q-th percentile
of the returns in the dataset. Intuitively, a larger q applies the regularization to fewer trajectories. We
test four values for q: 0, 50, 95, and 99. For q “ 0, our regularization applies to all the trajectories
in the dataset. Figure 7 demonstrates the impact of q on the performance of CWBC. q “ 95 and
q “ 99 perform well on all the three datasets, while q “ 50 and q “ 0 lead to poor results for
the med-replay dataset. This is because, when the regularization applies to trajectories of low
returns, the regularizer will force the policy conditioned on out-of-distribution RTGs to stay close to
the actions from low return trajectories. Since the med-replay dataset contains many low return
trajectories (see Figure 5), such regularization results in poor performance. In contrast, medium and
med-expert datasets contain a much larger portion of high return trajectories, and they are less
sensitive to the choice of q.
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Figure 7: Performance of CWBC with different values of the conservative percentile q.

C.3 REGULARIZATION COEFFICIENT α

The hyperparameter α controls the weight of the conservative regularization in the final objective
function of CWBC LRvS ` α ¨ CRvS. We show the performance of CWBC with different values of α
in Figure 8. Not using any regularization (α “ 0) suffers from the performance crash problem, while
overly aggressive regularization (α “ 10) also hurts the performance. CWBC is robust to the other
non-extreme values of α .
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Figure 8: Performance of CWBC with different values of α.

D ADDITIONAL RESULTS ON ATARI GAMES

In addition to D4RL, we consider 4 games from the Atari benchmark (Bellemare et al., 2013):
Breakout, Qbert, Pong, and Seaquest. Similar to (Chen et al., 2021), for each game, we train our
method on 500000 transitions sampled from the DQN-replay dataset, which consists of 50 million
transitions of an online DQN agent (Mnih et al., 2015). Due to the varying performance of the DQN
agent in different games, the quality of the datasets also varies. While Breakout and Pong datasets
are high-quality with many expert transitions, Qbert and Seaquest datasets are highly suboptimal.

Hyperparameters For trajectory weighting, we use B “ 20 bins, λ “ 0.1, and κ “ pr‹ ´ pr50. We
apply conservative regularization with coefficient α “ 0.1 to trajectories whose returns are above
pr95. The standard deviation of the noise distribution varies across datasets, as each different games
have very different return ranges. During evaluation, we set the target return to 5 ˆ pr‹ for Qbert and
Seaquest, and to 1 ˆ pr‹ for Breakout and Pong.
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Figure 9: Performance of RvS and its variants on Atari games when conditioning on different
evaluation RTGs.

17



Under review as a conference paper at ICLR 2023

Table 6: Comparison of the normalized return on Atari games. The results are averaged over 3 seeds.
We include the results of DT, CQL, and BC from (Chen et al., 2021) for reference.

RvS RvS+W RvS+C RvS+W+C DT CQL BC

Breakout 126.9 ˘ 38.0 120.1 ˘ 28.43 163.0 ˘ 50.4 237.3 ˘ 82.1 267.5 ˘ 97.5 211.1 138.9 ˘ 61.7

Qbert ´0.4 ˘ 0.2 0.0 ˘ 0.4 12.4 ˘ 8.6 19.1 ˘ 2.7 15.4 ˘ 11.4 104.2 17.3 ˘ 14.7

Pong 75.7 ˘ 8.6 90.7 ˘ 6.4 84.1 ˘ 9.6 90.4 ˘ 1.9 106.1 ˘ 8.1 111.9 85.2 ˘ 20.0

Seaquest 0.2 ˘ 0.2 ´0.1 ˘ 0.1 1.6 ˘ 0.2 1.4 ˘ 0.3 2.5 ˘ 0.4 1.7 2.1 ˘ 0.3

# wins / 1 4 4
average 50.6 52.7 62.3 87.1 97.9 107.2 60.9

Results Table 6 summarizes the performance of RvS and its variants. CWBC (RvS+W+C) is
the best method, outperforming the original RvS by 72% on average. Figure 9 clearly shows
the effectiveness of the conservative regularization (+C). In two low-quality datasets Qbert and
Seaquest, the performance of RvS degrades quickly when conditioning on out-of-distribution RTGs.
By regularizing the policy to stay close to the data distribution, we achieve a much more stable
performance. The trajectory weighting component (+W) alone has varying effects on performance
because of the performance crash problem, but achieves state-of-the-art when used in conjunction
with conservative regularization.

It is also worth noting that in both Qbert and Seaquest, CWBC achieves returns that are much higher
than the best return in the offline dataset. This shows that while conservatism encourages the policy
to stay close to the data distribution, it does not prohibit extrapolation. There is always a trade-off
between optimizing the original supervised objective (which presumably allows extrapolation) and the
conservative objective. This is very similar to other conservative regularizations used in value-based
such as CQL or TD3+BC, where there is a trade-off between learning the value function and staying
close to the data distribution.

E ADDITIONAL RESULTS ON D4RL ANTMAZE

Our proposed conservative regularization is especially important in dense reward environments such
as gym locomotion tasks or Atari games, where choosing the target return during evaluation is a
difficult problem. On the other hand, trajectory weighting is generally useful whenever the offline
dataset contains both low-return and high-return trajectories. In this section, we consider Antmaze (Fu
et al., 2020), a sparse reward environment in the D4RL benchmark to evaluate the generality of
CWBC. Antmaze is a navigation domain in which the task is to control a complex 8-DoF "Ant"
quadruped robot to reach a goal location. We consider 3 maze layouts: umaze, medium, and
large, and 3 dataset flavors: v0, diverse, and play. We use the same set of hyperparameters
as mentioned in B.2.

Table 7: Comparison of the success rate on the Antmaze environment. The results are averaged over
3 seeds. We include the results of DT, CQL, and BC from (Emmons et al., 2021) for reference.

RvS RvS+W RvS+C RvS+W+C DT CQL BC

umaze-v0 54.0 ˘ 13.56 65.0 ˘ 18.03 58.0 ˘ 8.72 65.0 ˘ 12.85 65.6 44.8 54.6
umaze-diverse 55.0 ˘ 15.65 46.0 ˘ 16.85 50.0 ˘ 10.95 42.0 ˘ 7.48 51.2 23.4 45.6

medium-play 0.0 ˘ 0.0 26.0 ˘ 12.0 0.0 ˘ 0.0 25.0 ˘ 13.6 1.0 0.0 0.0

medium-diverse 1.0 ˘ 3.0 24.0 ˘ 15.62 1.0 ˘ 3.0 23.0 ˘ 11.0 0.6 0.0 0.0

large-play 0.0 ˘ 0.0 4.0 ˘ 4.9 0.0 ˘ 0.0 5.0 ˘ 6.71 0.0 0.0 0.0

large-diverse 0.0 ˘ 0.0 10.0 ˘ 10.0 0.0 ˘ 0.0 17.0 ˘ 11.87 0.2 0.0 0.0

# wins / 4 1 4
average 18.3 29.2 18.2 29.5 19.8 11.4 16.7

Results Table 7 summarizes the results. As expected, the conservative regularization is not important
in these tasks, as the target return is either 0 (fail) or 1 (success). However, the trajectory weighting
significantly boosts performance, resulting in an average of 60% improvement over the original RvS.
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F TRAJECTORY WEIGHTING VERSUS HARD FILTERING

An alternative to trajectory weighting is hard filtering (+F), where we train the model on only top
10% trajectories with the highest returns. Filtering can be considered a hard weighting mechanism,
wherein the transformed distribution only has support over trajectories with returns above a certain
threshold.

F.1 HARD FILTERING FOR RVS

When using hard filtering for RvS, we also consider combining it with the conservative regularization.
Table 8 and Figure 10 compare the performance of trajectory weighting and hard filtering when
applied to RvS. While RvS+F+C also gains notable improvements , it lags behind RvS+W+C
and seems to erode the benefits of conservatism alone in RvS+C. This agrees with our analysis in
Section 4.1. While hard filtering achieves the same effect of reducing bias, it completely removes the
low-return trajectories, resulting in highly increased variance. Our trajectory weighting upweights the
good trajectories but aims to stay close to the original data distribution, balancing this bias-variance
tradeoff. This is clearly shown in Figure 10, where RvS+W+C has much smaller variance when
conditioning on large RTGs.

Table 8: Comparison of trajectory weighting (+W) and hard filtering (+F) on D4RL locomotion
benchmarks. The results are averaged over 10 seeds.

RvS RvS+W RvS+C RvS+W+C RvS+F RvS+F+C

walker2d-medium 73.3 ˘ 5.7 54.5 ˘ 7.7 71.3 ˘ 4.9 73.6 ˘ 5.4 60.9 ˘ 4.9 68.2 ˘ 7.1

walker2d-med-replay 54.0 ˘ 12.1 61.2 ˘ 14.7 62.0 ˘ 13.5 72.8 ˘ 7.5 47.1 ˘ 7.7 53.9 ˘ 11.0

walker2d-med-expert 102.2 ˘ 2.3 104.1 ˘ 0.5 102.1 ˘ 10.2 107.6 ˘ 0.5 101.7 ˘ 3.3 105.4 ˘ 0.6

hopper-medium 56.6 ˘ 5.5 62.5 ˘ 7.1 61.0 ˘ 5.3 62.9 ˘ 3.6 62.4 ˘ 5.0 65.7 ˘ 6.4

hopper-med-replay 87.7 ˘ 9.7 92.4 ˘ 6.1 91.5 ˘ 3.5 87.7 ˘ 4.2 91.2 ˘ 5.3 92.1 ˘ 2.9

hopper-med-expert 108.8 ˘ 0.9 108.4 ˘ 1.8 101.0 ˘ 13.4 110.0 ˘ 2.8 97.5 ˘ 15.0 105.8 ˘ 3.5

halfcheetah-medium 16.2 ˘ 4.5 4.0 ˘ 5.4 40.7 ˘ 1.0 42.2 ˘ 0.7 1.4 ˘ 3.3 36.2 ˘ 2.5

halfcheetah-med-replay ´0.4 ˘ 2.7 ´0.8 ˘ 2.2 36.8 ˘ 1.5 40.4 ˘ 0.8 ´0.1 ˘ 3.5 35.7 ˘ 2.8

halfcheetah-med-expert 83.4 ˘ 2.1 69.1 ˘ 3.7 91.2 ˘ 1.0 91.1 ˘ 2.0 46.0 ˘ 1.5 83.2 ˘ 5.0

# wins / 4 6 9 3 5

average 64.6 61.7 73.1 76.5 56.5 71.8
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Figure 10: Comparison of trajectory weighting and hard filtering.
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F.2 HARD FILTERING FOR UNCONDITIONAL BC

Hard filtering can also be applied to ordinary BC. This is equivalent to Filtered BC in (Emmons et al.,
2021). Table 9 compares Filtered BC and CWBC. CWBC performs comparably well in medium and
med-expert datasets, and outperforms Filtered BC significantly with an average improvement of
12% in med-replay datasets. We believe that in low-quality datasets, even when we filter out 90%
percent of the data, the quality of the remaining trajectories is still very diverse that simple imitation
learning is not good enough. CWBC is able to learn from such diverse data, and by conditioning on
expert return at test time, we can recover an efficient policy.

Table 9: The normalized return on D4RL for Filtered BC, RvS, and CWBC. For Filtered BC, we get
the numbers from (Emmons et al., 2021).

Filtered BC RvS RvS+W+C

walker2d-medium 75.0 73.3 ˘ 5.7 73.6 ˘ 5.4

hopper-medium 56.9 56.6 ˘ 5.5 62.9 ˘ 3.6
halfcheetah-medium 42.5 16.2 ˘ 4.5 42.2 ˘ 0.7

medium average 58.1 48.7 59.6

walker2d-med-replay 62.5 54.0 ˘ 12.1 72.8 ˘ 7.5

hopper-med-replay 75.9 87.7 ˘ 9.7 87.7 ˘ 5.2
halfcheetah-med-replay 40.6 ´0.4 ˘ 2.7 40.4 ˘ 0.8

med-replay average 59.7 47.1 67.0

walker2d-med-expert 109.0 102.2 ˘ 2.3 107.6 ˘ 0.5
hopper-med-expert 110.9 108.8 ˘ 0.9 110.0 ˘ 2.8
halfcheetah-med-expert 92.9˘ 83.4 ˘ 2.1 91.1 ˘ 2.0

med-expert average 104.3 98.1 102.9

average 74.0 64.6 76.5
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G BIAS-VARIANCE TRADEOFF ANALYSIS

We formalize our discussion on the bias-variance tradeoff when learning from a suboptimal distri-
bution mentioned in Section 4.1. The objective functions for training DT (2) and RvS (4) can be
rewritten as:

min
θ

LpD pθq “ Eτ„T rDpτ, πθqs (8)

“ Er„pDprq,τ„Tr
rDpτ, πθqs . (9)

In which, pDprq is the data distribution over trajectory returns, Tr is a uniform distribution over the
set of trajectories whose return is r, and Dpτ, πθq is the supervised loss function with respect to the
sampled trajectory τ . For DT, Dpτ, πθq “ 1

|τ |

ř|τ |

t“1

`

at ´ πθpgt´K:t, st´K:t, at´K:t´1q
˘2

, and for

RvS, Dpτ, πθq “ 1
|τ |

ř|τ |

t“1

`

at ´ πθpst, ωtq
˘2

. Equation (9) is equivalent to first sampling a return r,
then sampling a trajectory τ whose return is r, and calculating the loss on τ . Ideally, we want to train
the model from an optimal return distribution p‹prq, which is centered around the expert return r‹:

min
θ

Lp‹ pθq “ Er„p‹prq,τ„Tr
rDpτ, πθqs . (10)

In practice, we only have access to the suboptimal return distribution pDprq, which leads to a biased
training objective with respect to p‹prq. While the dataset is fixed, we can transform the data
distribution pDprq to qprq that better estimates the ideal distribution p‹prq. The objective function
with respect to q is:

min
θ

Lqpθq “ Er„qprq,τ„Tr
rDpτ, πθqs (11)

“ Er„pDprq,τ„Tr

„

qprq

pDprq
¨ Dpτ, πθq

ȷ

(12)

In the extreme case, qprq “ 1rr “ r‹s, which means we only train the policy on trajectories whose
return matches the expert return r‹. However, since offline datasets often contain very few expert
trajectories, this q leads to a very high-variance training objective. An optimal distribution q should
lead to a training objective that balances the bias-variance tradeoff. We quantify this by measuring the
ℓ2 of the difference between the gradient of Lqpθq and the gradient of the optimal objective function
Lp‹ pθq. Analogous to Kumar & Levine (2020), we can prove that for some constants C1, C2, C3,
with high confidence:

E
“

||∇θLqpθq ´ ∇θLp‹ pθq||22

‰

ď C1 ¨ Er„qprq

„

1

Nr

ȷ

` C2 ¨
d2pq||pDq

|D|
` C3 ¨ DTVpp‹, qq2. (13)

In which, Nr is the number of trajectories in dataset D whose return is r, d2 is the exponentiated
Renyi divergence, and DTV is the total variation divergence. The right hand side of inequality
(13) shows that an optimal distribution q should be close to the data distribution pD to reduce
variance, while approximating well p‹ to reduce bias. As shown in Kumar & Levine (2020),
qprq9 Nr

Nr`K ¨ expp´
|r´r‹

|

κ q minimizes this bound, which inspires our trajectory weighting.
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