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A smooth, beige headband 
with a bow-like ornament 

on top is dropping.

Throwing a hat made of 
a denim crown, and a 

cotton bill..

Material-annotated 3D Dataset

Foot
  𝐸: 2×1011

𝜈: 0.3
...

Pillow
  𝐸: 1×107

𝜈: 0.3
 ...

...

Sofa

Figure 1. Left: We introduce a dataset of 3D objects enriched with physical material properties, e.g., Young’s modulus (E) and Poisson’s
ratio (ν), to capture their physical behavior under forces and interactions with other objects. Middle: We also introduce a physics-aware
generative model of objects that can be used for 4D generation from a single image along with forces in an environment (e.g., an external
force for the plant shown in blue, collision with the ground for the pillow. Right: We also show text-to-4D generation as another application.

Abstract

We present SOPHY, a generative model for 3D physics-
aware shape synthesis. Unlike existing 3D generative mod-
els that focus solely on static geometry or 4D models that
produce physics-agnostic animations, our approach jointly
synthesizes shape, texture, and material properties related
to physics-grounded dynamics, making the generated ob-
jects ready for simulations and interactive, dynamic envi-
ronments. To train our model, we introduce a dataset of
3D objects annotated with detailed physical material at-
tributes, along with an annotation pipeline for efficient ma-
terial annotation. Our method enables applications such as
text-driven generation of interactive, physics-aware 3D ob-
jects and single-image reconstruction of physically plausi-
ble shapes. Furthermore, our experiments demonstrate that
jointly modeling shape and material properties enhances
the realism and fidelity of generated shapes, improving
performance on generative geometry evaluation metrics.
Our project page is available at: https://xjay18.
github.io/SOPHY .

1. Introduction
Generating high-quality 3D assets that can be incorporated
in interactive virtual worlds or manufactured into functional
3D objects is a fundamental challenge in generative AI and
digital content creation. Unfortunately, current generative
models of 3D shapes are limited to generating only static
geometry and textures. Although there is significant effort
in building 4D generative models for both geometry and

motion synthesis, current approaches are limited to gener-
ating fixed animations and are incapable of producing mo-
tions resulting from complex, dynamic object interactions.

In this work, we introduce a diffusion-based genera-
tive model for physics-aware 3D object synthesis, capa-
ble of generating 3D assets with detailed shape, texture,
and, most importantly, physical material attributes govern-
ing kinematic object deformations (e.g., elastic deforma-
tions, plastic softening) and frictional interactions. Our
approach produces physics-aware, interactive 3D objects,
which are helpful for downstream applications such as
physically based simulation, robotic interaction, and man-
ufacturing. There are various challenges to developing such
a generative approach. First, current 3D and 4D datasets do
not contain physical material attributes for objects, making
it hard to train, or even fine-tune such physics-aware gen-
erative models. Second, it is unclear how to jointly model
the interplay of shape and material in 3D asset generation.
Clearly, material attributes are not independent of geometric
shapes i.e., certain materials are associated with certain geo-
metric structures, as also repeatedly observed in prior works
of physical material prediction from shapes [1, 26, 28, 48].

Our work aims to address the above challenges. First, we
introduce a semi-automatic pipeline for annotation, which
combines VLM guidance with iterative expert (mechanical
engineer) feedback for more efficient object annotation with
material properties. Second, we introduce a diffusion-based
generative model that builds upon recent advancements in
latent diffusion models, yet incorporates novel insights on
representing 3D objects as compact latent codes capturing
shape geometry, albedo color, and material properties re-
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lated to elasticity and plasticity, as well as capturing their
interdependence through cross-attention blocks. We ob-
serve that modeling shape and material properties together
enhances the realism and fidelity of the geometry in the gen-
erated shapes. Overall, our contributions are:
• We introduce a 3D dataset consisting of 3K objects and

15K parts annotated with physical material properties.
• We propose a novel autoencoder for representing physics-

aware 3D objects into compact latent codes, along with a
latent diffusion-based generative model that jointly syn-
thesizes geometry, texture, and physical materials.

• We demonstrate applications of our generative framework
on the synthesis of simulation-ready objects conditioned
on text prompts or images.

2. Related Work
3D asset generation. Over the recent years, we have
witnessed an explosion of 3D generative models capa-
ble of generating detailed geometry and texture. The ad-
vances have been driven by expressive neural representa-
tions, such as NeRFs [35, 41], Gaussian splats [20], signed
distance fields [8, 39], occupancy fields [34], and numer-
ous other representations for capturing shape or/and texture
[11, 13, 14, 18, 27, 36, 40, 46, 59, 62] to name a few. We
also refers readers to the recent surveys of 3D generative
model [25, 56]. Unfortunately, the vast majority of existing
3D generative models neglect the physical material prop-
erties of the generated 3D objects, limiting their applica-
bility to interactive and simulation-based environments. To
address this gap, recent research has begun incorporating
physical priors and constraints into the generative pipeline.
For example, DiffuseBot [55] evaluates generated 3D robot
models based on their simulation performance and refines
the sampling distribution to favor more successful designs.
Atlas3D [7] and Phys-Comp [12] enforce static equilibrium
constraints during shape optimization, ensuring that gener-
ated objects remain stable under gravity. Despite these ad-
vances, all these prior works assume uniform or limited ma-
terial properties, restricting their ability to generate diverse
and physically intricate 3D assets. In contrast, our approach
jointly optimizes 3D shape, texture, and material properties
with a network that captures their natural dependencies.
Material-annotated 3D datasets. The advances in 3D
generative models have also been led by the development
of influential 3D datasets such as ShapeNet [5] and Obja-
verse [10]. More recent datasets, including ABO [9], Mat-
synth [52], and BlenderVault [31], incorporate surface tex-
ture information to train models for 3D generation and more
plausible, photorealistic rendering. Despite this progress,
a critical gap remains in the availability of detailed physi-
cal material information essential for accurately modeling
material properties for physics-based simulations. While
datasets such as ShapeNet-Mat [28], 3DCoMPaT [26], and

its extensions [1, 48] attempt to address this limitation by
providing part-level material labels, their annotations are
coarse and unsuitable for direct use in physical simulators.
To bridge this gap, we introduce a new dataset consisting
of 3K objects spanning 12 shape categories, each annotated
with precise part-level physical material properties.

4D content generation. 4D generation aims to create dy-
namic 3D content that aligns with input conditions such
as images, text, or videos. Existing approaches primarily
follow a data-driven pipeline, leveraging off-the-shelf im-
age or video diffusion models to generate dynamic scenes.
For example, DreamGaussian4D [44] adopts Stable Video
Diffusion [3] to animate 3D Gaussian splats (3DGS) [20]
reconstructed from a single image. STAG4D [60] initial-
izes multi-view images using image-to-image diffusion [47]
anchored on input video frames from a text-to-video mod-
ule. However, these methods rely on pre-trained generative
models that lack physical understanding, often resulting in
physically unrealistic motions [2]. To address this, Phys-
Gaussian [58] and PhysDreamer [63] integrate the Material
Point Method (MPM) [17] with 3DGS to produce physics-
aware dynamics. Building on these efforts, several con-
current studies have emerged recently, focusing on image-
conditioned physical dynamics generation. Phy124 [29] ob-
tains 3DGS from a single image, feeds them into an MPM
simulator, and then renders the dynamic content. In Phys-
Motion [50], the visual quality is further enhanced with a
diffusion-based video refinement module. However, these
approaches often rely on manually assigned or predefined
homogeneous material properties, failing to capture the di-
verse and heterogeneous nature of real-world materials.
They also follow a two-stage pipeline, first generating 3D
shapes and then assigning material properties, which can
lead to inconsistencies between shape and materials. In
contrast, our method introduces an end-to-end approach for
simulation-ready object generation. By jointly modeling
shape geometries and material properties, our method en-
sures greater physical realism and geometric coherence.

3. Material Annotation

We first describe the procedure for creating a dataset of 3D
objects annotated with detailed physical material properties.
Specifically, we annotate shapes with the material parame-
ters used in the Material Point Method (MPM) [15, 17, 49],
a popular simulator known for its effectiveness in handling
complex simulations of behaviors and inertia effects inher-
ent in solids [4, 24, 58, 63], including but not limited to
elastic and plastic deformation of solids and frictional in-
teractions. The material parameters include: (a) Young’s
modulus, (b) Poisson’s ratio, (c) yield stress, (d) friction
angle, and (e) material behavior type (also known as mate-
rial model), including pure elastic deformation [57], plastic
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A chair made of 3 parts: 
(1) a pewter gray metal 
leg, (2) a dark navy 
blue fabric seat, and (3) 
a blue, gray stripes 
fabric backrest.

Rendered Images Text Descriptions

Please choose the most
suitable fine-grained
material type for the
p a r t ( s ) : [ s e a t ,
backrest] . . .
Available choices for 
fabric: [cotton, 
wool, . . .] . . .

Query Prompts

{
  "seat": "polyester",
  "backrest": "cotton"
}

VLM Output

A chair made of 3 parts: 
(1) a pewter gray metal 
leg, (2) a dark navy 
blue (polyester) fabric 
seat, and (3) a blue, 
gray stripes (cotton) 
fabric backrest.

P l e a s e specify the 
material models, along 
with material parameters  
to simulate the motion 
of the object . . .

{
  "leg": {
    "𝐸": 200000000000,
    "𝜈": 0.3,
    . . .
  }
  "seat": . . . ,
  . . .
}

Figure 2. VLM-guided material annotation of shape parts.

deformation with softening (damage) [53], plastic deforma-
tion without softening [54], and granular deformation [22].

Unfortunately, no datasets of 3D objects exist with such
detailed material properties available. The most related
dataset is 3DCoMPaT [26] along with its subsequent ver-
sions (3DCoMPaT++ [48], 3DCoMPaT200 [1]), which pro-
vide a rather coarse labeling of materials for 3D shape parts,
such as “plastic”, “fabric”, “metal”, “wood”, and so on.
While these classifications provide some insight into the
general physical characteristics of objects, they are often too
broad for accurate simulation in physics engines. For exam-
ple, a “plastic” part made out of rigid PVC is much stiffer
(i.e., has a much higher Young’s modulus) than a flexible
plastic material (e.g., LDPE). Unfortunately, such proper-
ties can be provided only by domain experts or manufac-
turers, and are difficult to interpret or estimate for annota-
tors without a strong physics background and experience on
commonly used material types in objects. Hiring experts to
label material properties for every single component of ev-
ery 3D object in a large database would be extremely cum-
bersome. Thus, we devised a semi-automatic pipeline that
combines material property annotation by VLMs, followed
by iterative expert feedback and verification.

3.1. VLM-guided Material Property Proposals

VLMs have recently become prominent in physical reason-
ing [6, 23, 30, 32, 64, 65] due to their extensive knowl-
edge bases built on multi-modal data. Thus, we leveraged
their zero-shot reasoning ability to give an initial estima-
tion of material properties for input 3D shapes. We started
by choosing 12 shape categories from 3DCoMPaT200 [1],
which contained a variety of material compositions and be-
haviors capable of elastic or plastic deformation, such as
bags, pillows, and chairs. We skipped categories where
objects behave rigidly (e.g., cabinets, faucets). As shown
in Figure 2(top), we provided a popular VLM (ChatGPT-
4o [37]) with (a) two automatically generated, rendered
views of each textured object in the selected categories, (b)
a textual description of the shape, including its object cate-
gory, part tag, coarse material label, and color, as provided
by 3DCoMPaT200, (c) a list of available fine-grained mate-
rial categories e.g., for “plastic”, we include sub-types such
as polypropylene, rigid or flexible PVC, and so on. We pro-
vide this fine-grained list in Section 7.1 (supplement). Our

Generated Parameters

The chair's leg is too 
weak to support the weight.

The dynamics are aligned 
with intuitive physics.

The current material 
properties create unrealistic 
dynamics when the object is 
tilted in the simulator. [User 
Feedback]. Please update these 
properties for better 
simulation results . . .

User Feedback
leg
  𝐸: 2×1011

  𝜈: 0.35
...

leg
  𝐸: 1×106

  𝜈: 0.4
...

{
  "leg": {
    "𝐸": 10000000000,
    "𝜈": 0.3,
    . . .
  }
  "seat": . . . ,
  . . .
}

leg
  𝐸: 1×1010

𝜈: 0.3
...

The dynamics are aligned 
with intuitive physics.

(1) (2)

(3a)

(3b.1)

Dataset

(3b.2)
(3b.3)

(3b.4) (3b.5) (3b.6)

Generated Dynamics

Figure 3. Expert verification of material annotations.

text prompt asks the VLM to identify the most plausible
fine-grained material category per part. Then for each part,
in a second round, we further prompted the VLM to pro-
vide the most likely material models and parameters (e.g.,
Young’s modulus, Poisson’s ratio, yield stress, and friction
angle) based on a similar textual description, including this
time the fine-grained material category as shown in Fig-
ure 2(bottom). This two-round prompt provided better ma-
terial property prediction based on our expert verification.

3.2. Expert Verification and Feedback

Although VLMs often offer reasonable initial estimates of
material properties, they are not always reliable. To address
this issue, we develop a pipeline that generates simulation
videos of objects based on the material properties provided
by the VLM, then ask experts with mechanical engineering
backgrounds to assess their physical plausibility.

Test scenarios. Specifically, we created five test scenar-
ios to simulate object dynamics: (1) Dropping an object
from a certain height; (2) Throwing an object in a certain
direction; (3) Tilting an object; (4) Dragging an object; (5)
Applying a short-term, time-variant (e.g., wind) force. We
render objects photorealistically under these scenarios using
a particle-based simulator based on warp-mpm [66] that
we extended it to model heterogeneous materials per object,
since our dataset often contains objects whose components
are made of different materials. Then we used PhysGaus-
sian [58] to render the simulation videos. After collecting
these videos, we enlisted five mechanical engineer gradu-
ates to evaluate the physical plausibility of each video and
instructed them to reach a consensus on their judgment. As
shown in Figure 3(2)-(3a), for simulated objects deemed as
realistic by this group, we store their material properties in
our dataset. For objects deemed to have unrealistic motion,
we ask the group to provide feedback to the VLM, specify-
ing which part of the object seems to move in an implausible
manner and why. This allows us to re-query VLMs for ma-
terial parameters, as demonstrated in Figure 3(3b.1)-(3b.5),
and generate new simulation videos automatically based on
the VLM’s updated parameters. This process is iterative un-
til satisfactory simulation results are achieved.
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SA Self-Attention CA Cross-Attention

𝒛𝑠, 𝒇𝑠 Shape Code 𝒛𝑐 , 𝒇𝑐 Color Code

𝒛𝑠 SA SA

𝒛𝑐 SA CA

SA CA𝒛𝑚

× 𝐵

ො𝒄SA

SA

SA ෡ℳ

ො𝑜

𝒛𝑚 , 𝒇𝑚 Material Code ො𝑜 Occupancy ො𝒄 Color ෡ℳ Material Properties

𝒒

𝒒 Query Point Clouds

𝑿

𝑿′FPS

(Eq. 1)

(Eq. 7)(Eq. 4-6)

𝒇 𝒛

(Eq. 2-3)

𝒇𝑠

𝒇𝑐

𝒇𝑚

Input Representation Encoder  KL Regularization Decoder                 Decoder Output 

Figure 4. SOPHY’s autoencoder architecture for compressing 3D objects into compact shape, texture, and material-aware codes.

3.3. Dataset Summary
After the above verification stage, we obtained 3, 004
3D models in 12 object categories originating from the
3DCoMPaT200 [1] dataset. Every shape part is labeled
with physical material properties and detailed material cate-
gories, resulting in a total of 15, 575 labeled parts. We split
our dataset into training, validation, and test sets, following
the 3DCoMPaT200 splits – the total number of samples in
each split are 2462, 180, and 362 respectively. More in-
formation about our dataset and samples of simulation se-
quences can be found in Section 8 of our supplement.

4. Generative Model
Our proposed generative model, SOPHY, is based on the
idea of Stable Diffusion [45], which generates data by de-
noising a compressed feature space (latent space). To ex-
tract this latent space, we process our shapes along with
the color and physical material parameters through a vari-
ational autoencoder (Section 4.1). Then a latent diffusion
model is trained to jointly model the distribution of ob-
ject geometries, colors, and material properties in this latent
space (Section 4.2). The rationale behind jointly modeling
these properties together is that they are strongly interde-
pendent on each other i.e., certain shapes are strongly cor-
related with the use of specific materials and colors e.g., thin
cantilever-shaped chair bases are associated with the use of
metal and have a metallic gray color appearance. Modeling
these properties independently of each other would yield
unlikely or impossible materials for sampled geometries.
After training our diffusion model, it can be sampled to gen-
erate new latent codes, which are then decoded to generate
shapes and compatible colors and materials.

4.1. Shape, Texture & Material Autoencoder
The goal of our autoencoder is to compress input 3D objects
into compact latent codes that encode shape, color (albedo
texture) and physical material properties. The autoencoder
architecture is shown in Figure 4. We discuss its compo-
nents in the following paragraphs.
Input representation. We represent an object as a dense
surface point cloud P = {pj}Nj=1, where pj is a 3D point

position (N = 2048 in our implementation). The input to
our autoencoder is a color- and material-augmented point
cloud X = {xj}Nj=1, where each entry xj contains the fol-
lowing per-point information:
• the point’s 3D position pj .
• the point’s RGB color cj .
• a material property vector mj with the following 8 en-

tries: (a) the logarithm of Young’s modulus Ej (a scalar),
(b) Poisson’s ratio νj (a scalar), (c) logarithm of yield
stress σj (a scalar), (d) friction angle ϕj (a scalar), and
(e) a 4-dimensional learnable embedding µj of material
behavior type (i.e., 4 different embedding vectors for 4
material behavior types used in our MPM simulator).

Note that we use a logarithmic scale for Young’s modulus
and yield stress due to their extremely wide value ranges.
For example, Young’s modulus may vary from 10−3 GPa
for very soft materials to 103 GPa for very stiff materials.
We represent material information per point rather than per
part to accommodate the general case where a semantic part
is not made of a homogeneous material.
Encoder. To aggregate the per-point information from the
augmented point cloud, we design a set-to-set network in-
spired by 3DShape2VecSet [62] as our encoder. We first
sub-sample a smaller point cloud P ′ with M = 512 fewer
points from the original point cloud through furthest point
sampling (FPS) [42], and augment it with color and material
information to obtain X ′ = {x′

i}Mi=1. Then, we use cross
attention to produce the object’s latent representation:

{f i}Mi=1 = CrossAttn
(
g
(
{x′

i}Mi=1

)
, g
(
{xj}Nj=1

))
, (1)

where g is a linear layer projecting the augmented point
cloud into the embedding space RC (C = 512 in our imple-
mentation) and {f i}Mi=1 is a set of latent codes.
KL regularization. The above object’s representation is
quite high-dimensional. Thus, we seek to compress it to-
wards a more compact latent code. Following Stable Diffu-
sion [45] and 3DShape2VecSet [62], we adopt a variational
autoencoder (VAE) regularized with the KL-divergence to
achieve this effect. We first use two fully connected (FC)
layers to project each latent code f i to mean and variance:

fµ
i = FCµ(f i), f

σ
i = FCσ(f i), (2)

4



where fµ
i ,f

σ
i ∈ RC0 and C0 ≪ C (C0 = 24 in our imple-

mentation). Then, we use the reparameterization sampling
and obtain a smaller latent code zi ∈ RC0 :

zi = fµ
i + ϵ · fσ

i , ϵ ∼ N (0, 1), (3)

which enables us to train diffusion models on a lower-
dimensional space later. Finally, we project zi back into
the original embedding space RC with another FC layer.
Decoder. One possible decoder design follows the ap-
proach of 3DShape2VecSet [62], where latent codes are
first processed through a series of self-attention blocks, then
for a query point q ∈ R3, its occupancy is determined by
interpolating the latent codes based on the query position
and transforming the result through a fully connected layer.
This design could be naturally extended to also decode color
and material information per query point. However, we ob-
served worse performance using this approach, as color and
material information are not meaningful for non-occupied
query points (i.e., points outside the shape volume).

Empirically, we achieved better results with an alterna-
tive decoder design. In this approach, we first decode ge-
ometry in terms of occupancy values, then decode color,
and finally decode material properties, but only for query
points classified as occupied. Performance was further im-
proved when we explicitly split the latent codes zi into three
sub-codes: the shape code zi,s for occupancy decoding, the
color code zi,c for texture decoding, and the material code
zi,m for material property decoding. Each sub-code has a
shape of M × C0

3 . To decode these components, we in-
troduce three dedicated branches, each responsible for pro-
cessing one of the sub-codes (Figure 4). We also apply
cross-attention layers to the color and material branches,
enabling them to attend on information from previously de-
coded latents. This models the natural dependency of color
on geometry and material properties on both geometry and
color (Figure 4). Our decoder design is inspired by the
workflow commonly used in 3D asset creation, where artists
typically start by defining the object’s shape, then apply tex-
tures, and finally assign physical attributes. Specifically, the
cross-attention in our decoder is formulated as follows:

{f (l)
i,s} = SelfAttn

(
{f (l−1)

i,s }
)
, (4)

{f (l)
i,c} = CrossAttn

(
{f (l−1)

i,c }, {f (l−1)
i,s }

)
, (5)

{f (l)
i,m} = CrossAttn

(
{f (l−1)

i,m }, {
[
f
(l−1)
i,s ,f

(l−1)
i,c

]
}
)

(6)

where l is the layer index, and [·, ·] denotes concatenation.
Decoder output. Given a query point q ∈ R3, the oc-
cupancy values are decoded by interpolating the geometry
sub-codes from the last layer (layer L) and processing them
through a fully connected (FC) block:

O(q)=FC
( M∑

i

Softmax
(q(fq) · k(f

(L)
i,s )√

C

)
v(f

(L)
i,s )

)
, (7)

where fq is a feature vector obtained by processing the
query point through our encoder described in Equation (1).
The functions q(·), k(·), v(·) are the query-key-value linear
transformations used in attention [51]. By disentangling the
latent codes, we ensure that occupancy is determined solely
based on the shape sub-codes relevant to this task.

Color and material properties are decoded similarly, each
using their own dedicated FC block and interpolation over
the corresponding color and material sub-codes. For color
prediction, we apply a normalization operation after the
FC block to ensure the output falls within the range [0, 1].
Young’s modulus and yield stress are always positive, so the
FC blocks predict their values on a logarithmic scale. The
friction angle has a range of [0, π/2], so we apply a sigmoid
activation after the FC block and scale the output by π/2.
The categorical material behavior type is predicted using a
softmax activation after the FC block. We store the material
properties only for query points predicted as occupied. For
color, we only predict the values for query points sampled
on the mesh surface obtained by marching cubes [33].

Autoencoder training. While training our variational au-
toencoder, we jointly optimize a combination of loss func-
tions involving 3D occupancies, colors, and material prop-
erties. Specifically, we minimize a weighted sum of the
following losses: (a) occupancy loss Lo (binary cross-
entropy), (b) color loss Lc (ℓ1 norm), (c) Young’s modulus
loss LE (ℓ1 norm applied to logarithmic values), (d) Pois-
son’s ratio loss Lν (ℓ1 norm), (e) yield stress loss Lσ (ℓ1
norm applied to logarithmic values), (f) friction angle loss
Lϕ (ℓ1 norm), (g) material model loss LM (cross-entropy),
(h) a regularization loss Lr imposing a KL penalty towards
a standard normal distribution on the latent codes, as typi-
cally used in VAEs [21]. We note that the color and material
losses are computed only for training query points on or in-
side the object’s surface. For off-surface training points, we
assign color and material properties by copying them from
their nearest surface points. The combined loss function is:

L = Lo +
∑
ω

λωLω, ω = {c, E, ν, σ, ϕ,M, r}, (8)

where λω are weight coefficients listed in Section 9.3.
To further enhance training, we leverage the pretrained
3DShape2VecSet model [62], which was trained on
ShapeNet [5] (a larger dataset containing 55K shapes) using
occupancy supervision alone. Specifically, we initialize all
network layers shared with 3DShape2VecSet, including the
cross-attention weights on point positions in our encoder,
the self-attention weights on shape sub-codes, and the occu-
pancy decoder weights, using their pretrained values. This
provides a small boost compared to training our model from
scratch on our smaller 3K-shape dataset.
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Metric Baseline w/o CA Fused SOPHY

M.B. Acc(%) ↑ 71.04 92.77 93.23 93.55
MAE-log(E) ↓ 1.18 0.50 0.47 0.45

MAE-ν(×10−2) ↓ 4.10 3.06 2.98 3.06
MAE-log(σ) ↓ 1.07 0.41 0.32 0.29

MAE-ϕ (×10−2) ↓ 5.45 1.89 1.22 1.28
Sim-CD (×10−3) ↓ 53.84 17.47 10.05 8.72

MAE-c(×10−2) ↓ 8.75 8.47 8.35 8.13

IoU(%) ↑ 90.69 90.75 90.66 90.89
CD(×10−4) ↓ 3.51 3.34 3.30 3.02
F-Score(%) ↑ 93.65 93.77 93.79 93.85

Table 1. Quantitative comparison in the auto-encoding setting.
The upper, middle, and lower sections display the average metrics
for predictions of material, color, and shape respectively.

4.2. Diffusion

Generating a simulation-ready object involves executing the
reverse process of a diffusion that progressively transforms
Gaussian noise in the latent space of objects into target la-
tent codes: Z = {zi}Mi=1. Sampling is performed by solv-
ing the stochastic differential equations from the EDM dif-
fusion pipeline [19]. Once a latent code is sampled, we pass
it through our trained decoder to extract occupancy values
on a dense R3 grid. These values are then converted into a
mesh using marching cubes, then color and material prop-
erties are decoded at densely sampled mesh points.

Training. To train the diffusion model, we use the loss:

Ledm = EẐ∼pdata
EN∼N (0,σ2

t I)
∥D(Ẑ +N , σt, c)− Ẑ∥22,

where D is the denoising network, Ẑ are training latent
codes, N are added Gaussian noises, σt denotes the noise
level, and c is a signal for conditioning. We experimented
with two input conditions to our denoiser: (a) an RGB im-
age of a target object, where c represents here the extracted
features from a pre-trained image encoder (“DINOv2-ViT-
B/14” [38]), (b) a text prompt, where c represents features
from a pre-trained text encoder (“CLIP-ViT-L/14” [43]).
The denoising network consists of alternating self-attention
layers for processing the latent representations and cross-
attention layers for incorporating the signals c. Details on
the denoiser are provided in Section 9.1 of the supplement.

5. Experiments

We evaluate SOPHY on its autoencoder effectiveness (Sec-
tion 5.1), its generative capabilities for image-conditioned
generation (Section 5.2) and text-conditioned generation
(Section 5.3) of simulation-ready 3D objects. All our com-
parisons against alternatives were performed in the same
test split of our dataset, described in Section 3.3.

5.1. Auto-encoding Evaluation
In terms of auto-encoding evaluation, our goal is to check
how well we are able to recover a test 3D shape, along with
its color and material properties, given its input representa-
tion. This evaluation is common in 3D latent-based gener-
ative models [62], since it is imperative for the autoencoder
to capture latent spaces that can generalize to novel inputs.

Competing approaches. We stress that there is no exist-
ing generative model matching our setting of joint shape
and physical material synthesis, thus, we compare here with
alternative designs for our autoencoder:
(a) baseline is a model that excludes color and material
properties from the generation process i.e., it generates a 3D
shape, then predicts color conditioned on the shape through
a decoder, and then the material through another decoder.
The choice of this baseline attempts to answer the question
of whether there is any benefit of incorporating the phys-
ical materials in the generation process i.e., whether it is
simply better to generate the 3D shape first, then guess its
most likely texture and material discriminatively. For this
baseline, we use 3DShape2VecSet as the generative model,
trained on the same split as our method. We use a texture de-
coder, which decodes its latent shape representation with a
set of self-attention blocks to per-point colors. Then we use
one more decoder to decode the latent shape representation
to material properties, including a cross-attention block for
conditioning on colors. The number of attention blocks and
the number of parameters remain comparable to our model.
(b) w/o CA is a degraded variant of our proposed SOPHY. It
discards the cross-attention blocks used in the color and ma-
terial decoder branch. This variant is equivalent to decoding
our latent sub-codes with three non-interacting branches for
occupancy, color, and material predictions.
(c) Fused is another variant of SOPHY that uses a unified
representation for the latent code, without separating it into
the shape, color, and material sub-codes. The decoder in-
fers the per-query occupancy, color, and material properties
conditioned on this single latent code.

Metrics. For material and color prediction, we report the
classification accuracy of the material behavior type (M.B.
Acc.) and the mean absolute error (MAE) of all our ma-
terial parameters. In addition, we report Chamfer dis-
tance (Sim-CD) between densely sampled points of the pre-
dicted shapes and ground-truth ones under the deformed
states computed by our MPM simulator along the whole
simulation trajectory for the dropping test scenario (Sec-
tion 3.2). Finally, we report purely geometric measures for
the rest state of the reconstructed test shape compared to the
ground-truth one. We use the standard metrics of Chamfer
Distance (CD), volumetric Intersection-over-Union (IoU),
and F-score, as reported in prior 3D generative models [62].
We average all errors across the test cases of our dataset.
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Metric DG4D [44] Baseline SOPHY

VideoPhy z-score ↑ -0.09 -0.06 0.16
DINO Similarity ↑ 0.73 0.76 0.77

Table 2. Comparison on image-conditioned 4D generation.

Metric STAG4D [60] Baseline SOPHY

VideoPhy z-Score ↑ -0.82 0.30 0.52
CLIP Similarity ↑ 0.13 0.12 0.13

Table 3. Comparison on text-conditioned 4D generation.

Results. Table 1 presents quantitative comparisons in the
auto-encoding setting. Compared to the “baseline” model,
jointly modeling shape, color, and material in a shared em-
bedding space significantly improves material metrics, with
additional, more modest gains in color and geometry eval-
uation metrics. Notably, the material behavior type classi-
fication is improved by more than 20%, while Sim-CD is
reduced by a factor of 5x. This performance gain supports
our hypothesis that geometry, color, and material attributes
are strongly correlated and should be jointly modeled in the
generative process. Compared to not using cross-attention
in the decoder (“w/o CA”) model, we see that our full model
has 2x lower Chamfer distance during simulation, and still
slightly better performance in all other metrics. Finally, we
observe that the “Fused” variant, has a tiny edge over our
model in Poisson’s ratio and friction angle prediction. Yet,
it performs significantly worse in terms of Sim-CD, and
worse in all other measures. We suspect this behavior is due
to an uneven network capacity allocation across occupancy,
color, and material within a single fused latent code.

5.2. Image-to-4D
We now discuss applying SOPHY to generate 4D dynam-
ics given a single input RGB image. Specifically, given a
3D object with physics material properties generated by our
method conditioned on the input image, we plug it into a
virtual 3D environment with other objects or primitives e.g.,
ground planes, walls, and so on, and animate it based on its
material properties and interactions with the environment.
To evaluate in this setting, we render a 2D image from each
object of our test split, provide it to our trained diffusion
model for generation, then simulate the generated object us-
ing the test scenarios of Section 3.2 to create 4D scenes.

Competing approaches. In the absence of published
methods for generating physics-grounded 4D scenes from a
single image1, we first compare with our “baseline” model
discussed in the previous section. We also compare with
a popular image-to-4D method, DreamGaussian4D, or in
short DG4D [44], which generates deforming 3D Gaussian

1PhysMotion [50] is a concurrent work with no published code at the
time of this submission – see related work for discussion of differences.

splats (3DGS) over time conditioned on an input image, yet
does not rely on any explicit physics-based representation.
Metrics. Given rendered images of the 4D scenes gen-
erated by any of the above compared methods, and the
ones rendered from the ground-truth test objects from the
same viewpoints, we leverage VideoPhy [2], a state-of-
the-art VLM trained based on human annotations to eval-
uate whether the generated videos align with real-world
physics. The method produces a per-scene score that is
uncalibrated for different scenarios (i.e., it has different
scales). Thus, following [50], we apply z-score normaliza-
tion on the scores across all methods for each scene to cal-
ibrate them, allowing us to obtain a more meaningful aver-
age score across the test scenes. Positive z-scores mean that
a method performs better than average, and negative means
worse. Additionally, we assess the image similarity aver-
aged across all frames and scenes using cosine similarity on
DINO features from the pre-trained encoder of “DINOv2-
ViT-B/14” [38]. Given that DG4D generates 3DGS, we
also use 3DGS for rendering our generated shapes using
the 3DGS renderer [20] and the splat fitting provided in
PhysGaussian [58]. We note that the generation times are
comparable for all methods (about 10 minutes per scene,
including the feedforward pass, simulation, and rendering,
as measured on a single L40s GPU).
Results. SOPHY outperforms the other methods, demon-
strating positive z-scores for alignment with real-world
physics based on VideoPhy. In terms of image similarity,
our method is better aligned with the ground-truth. We
also show qualitative results for a few sample frames for
test scenes in Figure 5. We observe that DG4D struggles
to generate noticeable deformations, even for soft objects
e.g., plants, due to its reliance on Stable Video Diffusion
(SVD) [3], which is relatively hard to tune for deforma-
tion. The baseline model generates object geometry inde-
pendently of physical materials. Thus, it often creates phys-
ically implausible objects or predicts inappropriate materi-
als for the generated shapes. SOPHY produces more real-
istic dynamics aligning closely with the given conditions.

5.3. Text-to-4D
We also evaluate SOPHY for text-to-4D. The evaluation is
the same as before with the only difference being the input
condition (text instead of an image). We test on prompts,
describing the object category, part tags, fine-grained mate-
rial categories for our test objects, following the prompts of
Section 3.1. We also include the test scenario in the prompt.
Competing methods & Metrics. We compare our
method with the text-to-4D method of STAG4D [60] that
generates deforming 3DGS driven by text prompts. We note
that our method outputs 4D videos about 10x faster than
STAG4D based on the same GPU and splat renderer. We
also compare with our baseline. For evaluation metrics, we
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Condition
(a)

“A chair is 
falling.”

Baseline

Condition
(b)

“Drag the 
leaves of a 
planter.”

Baseline

Ours

DG4D

Condition
(c)

DG4D

“Drop a love 
seat.”

Baseline

Ours

Ours

Condition
(d)

“Drop a 
headband.”

Baseline

Ours

DG4D

DG4D

Figure 5. Qualitative comparison in the image-to-4D setting. We pick test scenarios described in Section 3.2 to create 4D videos. The
description below the conditioned image illustrates the desired dynamics. The blue arrow shows the direction of the external force. In the
dropping scenarios, the objects fall onto a ground plane (not shown here).

Baseline

Ours

STAG4D

Baseline

Ours

Condition
(b)

Throwing a rectangular, rigid handbag with a woven 
texture, dark brown leather-like material, metallic 
rivets, a central clasp, and two curved handles.

A chair made of a polypropylene seat connector, a 
metal foot, a metal leg, a polyester backrest, and a 
polyester seat is dropping.

Condition
(a)

STAG4D

Figure 6. Qualitative comparison in the text-to-4D setting. The text prompts used as input condition are shown below.

use the z-normalized VideoPhy scores and CLIP similarity
for measuring alignment of the rendered frames with the
input text prompt averaged over all frames and test scenes.
Results. SOPHY achieves the highest performance in
VideoPhy Score, demonstrating a large positive score in
contrast to STAG4D’s negative score. The CLIP score is
comparable for all methods demonstrating similar align-
ment with text. We also present a visual comparison for the
generated dynamics in Figure 6. We observe that STAG4D
produces unrealistic object behavior, e.g., in Figure 6(b),
the size of the handbag fluctuates over time. Compared
to the baseline, our method produces more geometrically

coherent and physically plausible results. These findings
highlight SOPHY’s ability to generate simulation-ready 3D
objects for diverse, physically realistic 4D content.

6. Discussion

We have presented a new generative model of 3D objects
incorporating geometry, color, and physical material prop-
erties. Our experiments demonstrated significant benefits of
the approach, including generating physically plausible 4D
videos from images and text. Interesting avenues for future
work include extending our generative model for synthesiz-
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ing whole scenes and generating other phenomena e.g., flu-
ids or gases. More accurate simulators, e.g., based on finite
elements, could be used instead since our model generates
the full objects’ volume. Our annotated dataset is only a
first step towards more physics-aware 3D datasets – enlarg-
ing it with more objects and material properties would be a
fruitful direction.
Acknowledgements. This work has received funding
from the European Research Council (ERC) under the Hori-
zon research and innovation programme (No. 101124742).
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SOPHY: Generating Simulation-Ready Objects with PHYsical Materials

Supplementary Material

7. Full Prompts

In this section, we provide the detailed prompts we used
in the VLM-guided material annotation stage described
in Section 3.1.

7.1. Fine-grained Material Types
We pre-define a list of available fine-grained material types
for coarse materials, i.e., “fabric”, “leather”, and “plas-
tic”, from 3DCoMPaT200 [1]. This is necessary due to
the significant variations in material characteristics within
these broader classifications. Concretely, the available
fine-grained materials for “fabric” include: cotton, wool,
polyester, silk, denim, spandex, linen, and rayon. The avail-
able fine-grained materials for “leather” include: full-grain
leather, top-grain leather, genuine leather, nubuck leather,
suede, patent leather, bonded leather, and faux leather. The
available fine-grained materials for “plastic” include: low-
density polyethylene, high-density polyethylene, polyethy-
lene terephthalate, polypropylene, rigid polyvinyl chloride,
flexible polyvinyl chloride, polystyrene, polycarbonate,
acrylonitrile butadiene styrene, polyamide, polyurethane,
and thermoplastic elastomers.

When processing a part component that belongs to any
of these coarse material types, we supply the VLM with the
corresponding fine-grained material types to achieve a more
precise result regarding its material composition, as shown
below.

You are an intelligent AI assistant for computer
graphics, physical simulation, and material science.

Follow the user’s requirements carefully and make
sure you understand them.

Keep your answers short and to the point.

Do not provide any information that is not required.

You are going to identify the most likely
fine-grained material type for one or more parts of
the object in the attached image(s).

The attached images describe a [SHAPE NAME] made of
[N_P] parts: [PART-MATERIAL DESCRIPTION].

Given the appearance and your knowledge on material
composition, please choose the most suitable
fine-grained material type for the part(s): [A LIST
OF PART NAMES].

The available options for the [COARSE-GRAINED
MATERIAL NAME] material type are: [A LIST OF
AVAILABLE FINE-GRAINED MATERIAL NAMES].

Please provide your answer in the following JSON
format:
‘‘‘
{
’part_name’: ’most_suitable_material_type’,

...: ... # other parts
}
‘‘‘
The output should **only** contain the dictionary.

7.2. Material Models and Parameters

You are an intelligent AI assistant for computer
graphics, physical simulation, and material science.

Follow the user’s requirements carefully and make
sure you understand them.

Keep your answers short and to the point.

Do not provide any information that is not required.

You are going to use the Material Point Method to
simulate the motion of the object shown in the
attached image(s).

To simulate the effect, you need to specify an
elastic and a plastic material model, along with
material parameters such as Young’s modulus,
Poisson’s ratio, and yield stress.

Note that the material parameters should be
reasonable for the object shown in the image(s).

More specifically, when the material parameters are
used to simulate dropping, throwing, or tilting the
object, the object should behave according to
physical common sense.

The available material models are list below.
# Available elastic material models (with parameters
required)
1. Neo-Hookean elasticity (Young’s modulus, Poisson’s
ratio);
2. StVK elasticity (Young’s modulus, Poisson’s ratio).
# Available plastic material models (with parameters
required)
1. Identity plasticity;
2. von Mises plasticity (Young’s modulus, Poisson’s
ratio, yield stress);
3. Drucker-Prager plasticity (Young’s modulus,
Poisson’s ratio, friction angle);

The available combinations of material models for
each material category are listed below. The leading
number is the **Combination ID**.
# ceramic
M1. Neo-Hookean elasticity, von Mises plasticity with
damage;
# fabric
M0. Neo-Hookean elasticity, Identity plasticity;
M1. Neo-Hookean elasticity, von Mises plasticity with
damage;
# leather
M0. Neo-Hookean elasticity, Identity plasticity;
M1. Neo-Hookean elasticity, von Mises plasticity with
damage;
# metal
M2. Neo-Hookean elasticity, von Mises plasticity;
# plant
M0. Neo-Hookean elasticity, Identity plasticity;
# plastic
M1. Neo-Hookean elasticity, von Mises plasticity with
damage;
# soil
M3. StVK elasticity, Drucker-Prager plasticity;
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# wood
M1. Neo-Hookean elasticity, von Mises plasticity with
damage;

The attached image(s) describe the object you are
going to simulate.

It is a [SHAPE NAME] made of [N_P] parts:
[PART-MATERIAL DESCRIPTION].

For each part, you need to specify **both the elastic
and the plastic** material model and the material
parameters.

Please provide your answer in the following JSON
format (for Young’s modulus and yield stress, the
unit is Pa.):
‘‘‘
{
"part_name": {

"CID": "Mx", // Combination ID
"E": youngs_modulus,
"nu": poissons_ratio,
"...": ..., // other parameters, e.g., yield
stress ("sigma_y"), friction angle ("phi")

}
..., // other parts
}
‘‘‘
The output should **only** contain the dictionary.

7.3. Update with Expert Feedback
In this case, we send three messages with the role set by
user, assistant, user in succession. The first user
prompt is the same as the prompt for obtaining the initial
material properties. The assistant prompt is the out-
put of the original query from the VLM. The second user
prompt is as follows.
The original output creates unrealistic dynamics when
the object [TEST CASE DESCRIPTION] in the simulator.

Specifically, [USER COMMENT].

Given this information, please update the material
parameters to make the object behave more
realistically.

The output should be formatted as the original
version.

8. Dataset Details
In Table 4, we present the detailed composition of the pro-
posed dataset, which covers 12 common categories with de-
tailed part-level material annotations for 3, 004 shapes. Af-
ter the VLM-guided material annotation, we obtained 8, 7,
10 types of fine-grained materials for “fabric”, “leather”,
and “plastic” respectively2. The occurrence of parts la-
beled with these fine-grained materials is illustrated in Fig-
ure 7. We also present the statistics of material behavior
types in the proposed dataset in Figure 8. Specifically, M0
represents pure elastic materials using neo-Hookean elas-
ticity and identity plasticity. M1 represents plastic mate-

2We did not obtain parts labeled with “bonded leather” for the “leather”
type, and parts labeled with “flexible polyvinyl chloride”, “polystyrene”
for the “plastic” type from the VLM.

Figure 7. Statistics of fine-grained material types in our
dataset.

Figure 8. Statistics of material models in our dataset.

rials with softening implemented with neo-Hookean elas-
ticity and von Mises plasticity with damage. M2 is for
plastic material without softening, which is supported by
neo-Hookean elasticity and von Mises plasticity. Finally,
M3 stands for granular material with StVK elasticity and
Drucker-Prager plasticity as the material models.

Our dataset offers detailed material properties, which
serve as a first step for advancements in simulation-driven
learning, physics-informed generative modeling, and inter-
active virtual environments. We hope that our dataset can
expand the scope of 3D perception research and contribute
to developing effective algorithms and techniques that im-
prove our understanding of the physical world.

9. Implementation Details
9.1. Denoiser and Conditional Signals
In Figure 10, we present the denoising network used in our
method. We alternatively use a self-attention (SA) layer and
a cross-attention (CA) layer for image- and text-conditioned
generation. The cross attention is used to inject the condi-
tional signal c into the latent representation. In the image-
conditioned experiment, we use 10 rendered images from
randomly sampled viewpoints with a size of 256 × 256 as
training data. In the text-conditioned experiment, each ob-
ject is accompanied by 5 text descriptions. 4 of these de-
scriptions are automatically generated using metadata from
the 3DCoMPaT200 [1], as shown in the code snippet be-
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Split Bag Bed Chair Crib Hat Headband Love Seat Pillow Planter Sofa Teddy Bear Vase Total

Train 75 418 898 27 18 27 139 71 383 278 37 91 2462
Valid 10 26 52 5 2 5 21 11 21 18 6 3 180
Test 24 48 106 8 7 10 39 18 46 31 11 14 362

Table 4. Data composition of our proposed dataset.

Figure 9. Examples from our proposed dataset.

low. The fifth description is created by querying ChatGPT-
4o [37] for a text description of the object based on two
rendered views.

1 # Conditional Signals for Text
2 # 1. with color, coarse material type, and part label
3 text_1 = f"A {shape_name} made of"
4 for i, (part, mat, mat_fine) in enumerate(part_descriptions, start=1):
5 mat_color = MAT_COLORS[mat].lower()
6 if i != len(part_descriptions):
7 text_1 += f" a {mat_color} {mat} {part},"
8 else:

9 text_1 += f" and a {mat_color} {mat} {part}."
10
11 # 2. with fine material type and part label
12 text_2 = f"A {shape_name} made of"
13 for i, (part, mat, mat_fine) in enumerate(part_descriptions, start=1):
14 if mat_fine is None:
15 mat_name = mat
16 else:
17 mat_name = mat_fine
18 if i != len(part_descriptions):
19 text_2 += f" a {mat_name} {part},"
20 else:
21 text_2 += f" and a {mat_name} {part}."
22
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Figure 10. Denoiser architecture. We train the denoising network
in the latent space (refer to Equation (3)) and adopt alternative self
attention (SA) and cross attention (CA) to learn denoised represen-
tations. The cross attention is for incorporating conditional signal
(c) like images or text prompts.

23 # 3. with part label
24 text_3 = f"A {shape_name} composed of"
25 for i, (part, mat, mat_fine) in enumerate(part_descriptions, start=1):
26 if i != len(part_descriptions):
27 text_3 += f" a {part_name},"
28 else:
29 text_3 += f" and a {part_name}."
30
31 # 4. with category label
32 text_4 = f"A 3D shape of {shape_name}."

9.2. Data Preprocessing
For object autoencoding and generation, we mainly follow
the preprocessing pipeline of 3DShape2VecSet [62] to ob-
tain per-point information. First, each 3D shape is con-
verted into a watertight mesh using ManifoldPlus [16] and
normalized to its bounding box. From this, we sample
a dense surface point cloud of 150, 000 points. To train
the network, we randomly sample 300, 000 points in 3D
space—each annotated with occupancy, color, and material
properties—along with an additional 300, 000 points from
the near-surface region with the same attributes. We apply
the frequency embedding [35, 62] to each point’s position
and color before forwarding it to the encoder. We note that
per-point color is assigned using a 1-NN approach, where
each point inherits the color of its nearest surface point. Ma-
terial properties are determined through a label propagation
process. 3DCoMPaT200 [1] provides surface points with
part labels for each object. To extend these labels to volu-
metric points, we apply a 5-NN algorithm, assigning labels
via majority vote. Once part labels are obtained, we map
corresponding material attributes based on shape part anno-
tations in our material-augmented dataset.

9.3. Training Details
For object autoencoding, we use a surface point cloud of
2, 048 points as input to the autoencoder. At each iteration,
we sample 1, 024 query points from the bounding sphere
and another 1, 024 from the near-surface region for attribute
prediction. Following [61], we ensure an equal distribu-
tion of query points between occupied and non-occupied
regions. We set the weight coefficients described in Equa-
tion (8) as λc = λν = λϕ = λM = 0.1, λE = λσ = 0.01,

and λr = 0.001. The autoencoder is trained with a batch
size of 256 for 500 epochs, using a learning rate that linearly
increases to 10−4 over the first 25 epochs before gradually
decaying to 10−5 following a cosine schedule.

For object generation, we train our diffusion models with
a batch size of 256 for 2, 000 epochs. The learning rate
is linearly increased to 2 × 10−4 over the first 200 epochs
and then gradually decays to 10−6 using a cosine schedule.
We adopt the default hyperparameter settings of EDM [19].
During sampling, the final latent codes are obtained using
only 18 denoising steps.
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