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ABSTRACT

Learnable 3D Neural Graphics Representations (3DNGRs) have emerged as promis-
ing 3D representations for reconstructing 3D scenes from 2D images. Numerous
works, including Neural Radiance Fields (NeRF), 3D Gaussian Splatting (3DGS),
and their variants, have significantly enhanced the quality of these representations.
The ease of construction from 2D images, suitability for online viewing/sharing,
and applications in game/art design downstream tasks make it a vital 3D representa-
tion, with potential creation of large numbers of such 3D models. This necessitates
large data stores, local or online, to save 3D visual data in these formats. However,
no existing framework enables accurate retrieval of stored 3DNGRs. In this work,
we propose, Retri3D, a framework that enables accurate and efficient retrieval of 3D
scenes represented as NGRs from large data stores using text queries. We introduce
a novel Neural Field Artifact Analysis technique, combined with a Smart Camera
Movement Module, to select clean views and navigate pre-trained 3DNGRs. These
techniques enable accurate retrieval by selecting the best viewing directions in
the 3D scene for high-quality visual feature embeddings. We demonstrate that
Retri3D is compatible with any NGR representation. On the LERF and Scan-
Net++ datasets, we show significant improvement in retrieval accuracy compared
to existing techniques, while being orders of magnitude faster and storage efficient.

1 INTRODUCTION

A radiance field maps 3D spatial locations and 2D viewing directions to a radiance value, typically
encoding the color and intensity (Pharr & Humphreys, 2016). It has recently been combined with
learnable representations, such as neural networks and trainable 3D Gaussians, revolutionizing novel
view synthesis tasks (Mildenhall et al., 2020; Kerbl et al., 2023). We refer to these solutions, which
learn radiance fields for novel view synthesis, as 3D Neural Graphics Representations (3DNGRs).
Traditional 3D formats, such as meshes, voxels, and point clouds, explicitly define the geometry of
the 3D data. In contrast, NGRs use differentiable rendering to learn the 3D scenes from sparse sets of
2D images. This approach has many advantages including compact storage (Mildenhall et al., 2020),
continuous and unbounded representation (Barron et al., 2021; Kerbl et al., 2023), and high-quality
novel view synthesis (Liang et al., 2023). Additionally, NGRs can be integrated with AI content
generation pipelines (Poole et al., 2022) with many applications in 3D art and game design (Saito
et al., 2023; Gu et al., 2023; Unity Technologies, 2024; NVIDIA Corporation, 2024). The ease of
constructing NGRs from casually captured 2D images has resulted in an abundance of diverse 3D
scenes available for viewing, sharing, and downloading online (Polycam, 2024; Luma AI, 2024).
Despite the abundance of NGR assets, a framework for storing and retrieving 3D scenes represented
as NGRs from a data store has not yet been developed. Many existing works tackle the storage
and retrieval of images and traditional 3D formats (meshes, point clouds, voxel grids) (Tan et al.,
2021; Lahav & Tal, 2020; Sanghi, 2020; Wang et al., 2018). Existing NeRF semantic understanding
solutions are performed on a scene-by-scene basis and cannot be easily scaled to hundreds of scenes
as a general retrieval solution (Kerr et al., 2023; Qin et al., 2023).
In this work, we identify three main challenges in enabling efficient retrieval of NGR assets in a
data store: First, the representation format is highly heterogeneous. A wide range of NGR formats
exist, for example, NeRF, 3DGS, and their variants. In addition, new formats are continuously being
developed. It is critical for a retrieval system to be compatible with any pre-trained NGR, ensuring that
existing 3D assets do not become obsolete and that new NGR formats can be seamlessly added to the
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Figure 1: Overview of Retri3D: (a) Retri3D enables the storage and retrieval of any neural graphics
representation (NGR). (b) We perform noise analysis and viewpoint selection to select high-quality
artifact-free views (See Section 3.3 and 3.4). Videos of rendered trajectories are provided in the
supplementary material. (c) Visual embeddings for retrieval are generated using a pre-trained Vision-
Language Model (VLM). (d) Both NGRs and visual embeddings are stored in the database. (e) Given
a user query, we use the same VLM to generate a corresponding text embedding. (f) Retrieval of
the relevant scene is based on the highest cosine similarity between the text and visual embeddings,
returning the NGR and optionally, a rendered image, to the user.

data store. Second, 3D scenes exhibit a high degree of diversity and complexity. Since NGRs allow
3D scenes to be easily constructed from casually captured 2D images, a retrieval solution must be
compatible with any semantic concepts or sentence-like descriptions. Unlike traditional 3D retrieval
solutions that focus on isolated 3D objects with a single concept, 3D scenes contain numerous
potential views, each with multiple concepts. This necessitates a solution capable of extracting
different visual features from different parts of the scene. Moreover, the solution should efficiently
extract relatively compact embeddings to minimize storage and computational overhead. Third, the
presence of noise and floater artifacts in NGRs makes visual feature extraction from the scenes much
more challenging. These artifacts are primarily due to incomplete scene coverage during capture but
are also affected by factors such as image blurs, depth, and lighting ambiguities. For a 3D scene,
artifacts can significantly affect rendered 2D images from randomly selected viewpoints, even with
methods specifically designed to reduce floaters and artifacts in NGRs (Philip & Deschaintre, 2023).
The pre-trained NGRs are typically stored by itself without the images used for training (Polycam,
2024), making the selection of good viewpoints for understanding the scene crucial. We demonstrate
that these floaters severely impact visual feature extraction of the scenes, highlighting the need for a
solution that can efficiently detect and identify floater-free viewpoints in any pre-trained NGR.
In this work, we propose Retri3D, the first framework that addresses these challenges to enable
accurate and efficient retrieval of NGRs of any format using text queries. To enable generality
across various NGR formats, we propose to first render images from the 3DNGRs and then generate
visual semantic embeddings from the rendered images. We demonstrate that selecting random
viewpoints for rendering images from the 3D representations leads to artifacts, severely impacting the
quality of visual embeddings and, thus, the accuracy of the retrieval. To address this, we introduce
a novel Neural Graphics Noise Analysis technique, which can identify artifacts in an RGB image.
We compare with state-of-the-art NeRF uncertainty measurement work, and demonstrate that our
solution identifies the RGB pixel error in the rendered images with higher accuracy (Goli et al., 2023).
Coupled with a Smart Camera Movement Module, our system navigates the camera within the 3D
scene to viewpoints that ensure high-quality rendering by avoiding floater artifacts. We show that our
solution significantly improves the efficiency and accuracy of retrieval. Finally, we leverage recent
advances in pre-trained Vision Language Models (VLMs) to convert high-quality rendered images
into compact visual embeddings in an efficient manner. Our system utilizes the zero-shot capabilities
of pre-trained VLMs, allowing it to easily benefit from potential future improvements in VLMs.
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We demonstrate the effectiveness of Retri3D using the LERF and ScanNet++ datasets (Kerr et al.,
2023; Yeshwanth et al., 2023). For the LERF dataset, we show that our system can extract visual
features from highly varied 3D scenes with complex details. Compared with adapting existing NGR
semantic analysis solutions for retrieval, we demonstrate our system has higher accuracy while being
more general and orders of magnitude faster and storage-efficient. On the ScanNet++ dataset, we
show that our solution scales to hundreds of scenes, performing a scene lookup in 1 millisecond while
only requiring under 20 seconds for visual feature extraction of the scene during insertion.
This work makes the following contributions: (i) We present the first end-to-end framework for
accurate and efficient retrieval of 3D scenes represented as NGRs using text queries. (ii) We propose a
novel technique to detect NGR noise through rendered RGB images and pre-trained VLMs, achieving
superior RGB error measurement accuracy over existing methods. (iii) We develop a solution for rapid
camera movement to artifact-free viewpoints for high-quality embedding extraction. (iv) Through
LERF and ScanNet++ datasets, we show that Retri3D achieves efficient, scalable, and high-accuracy
3D scene retrieval.

2 RELATED WORK

To our knowledge, this is the first work that tackles the accurate and efficient retrieval of 3D scenes
represented as NGRs. Our proposed work leverages advances in pre-trained Vision-Language Models
(VLMs). It is inspired by research in related fields such as traditional 3D object retrieval and 3D
semantic understanding. We now describe the most relevant works in this section.

2.1 LEARNABLE 3D NEURAL GRAPHICS REPRESENTATIONS

In recent years, neural graphics methods have demonstrated great advances in 3D reconstruction and
novel view synthesis, with innovative methods, such as neural radiance fields (NeRFs) (Mildenhall
et al., 2020) and 3D Gaussian splatting (3DGS) (Kerbl et al., 2023), being proposed.
NeRF-based methods (Barron et al., 2021; Müller et al., 2022; Chen et al., 2022; Yu et al., 2021)
represent the 3D scene as spatial volumes with neural parameters (e.g., MLPs, feature grids, and
hashtables, etc.), optimized through volumetric rendering. 3DGS (Kerbl et al., 2023) uses trainable
3D Gaussians with alpha-blending rasterization to replace NeRF’s volumetric rendering, achieving
faster training and inference speed.
There are other types of 3D neural representations, such as neural signed distance fields (Wang
et al., 2021; Yariv et al., 2021) and differentiable meshes (Shen et al., 2021b; Munkberg et al.,
2021), also demonstrating great performance in 3D reconstruction tasks. Given different NGR
formats, formulating a completely general solution for analyzing the learned parameters is extremely
challenging. With Retri3D, we propose to use RGB image renderings for embedding generation to
enable a fully general solution.

2.2 PRE-TRAINED VISION LANGUAGE MODELS

The introduction of large-scale text-image contrastive learning by CLIP has significantly improved
the performance of pre-trained Vision Language Models (VLMs) (Radford et al., 2021). These large
models are capable of understanding and processing a wide range of natural language inputs and
images, making them highly versatile. Recent works apply similar large-scale pre-training approaches
to tasks such as object detection and (semantic) segmentation with open-vocabulary (Kirillov et al.,
2023; Liu et al., 2023b; Zhang et al., 2023a; Zou et al., 2022; 2023a). In this work, we leverage
different pre-trained VLMs (XDecoder and OpenCLIP) to demonstrate our solution’s applicability
when leveraging different VLMs (Zou et al., 2022; Cherti et al., 2022). We use the VLMs in two ways:
(i) we use their visual and textual embeddings for text-scene retrieval; (ii) we use their activations
to determine if a region contains NGR noise artifacts or not. To the best of our knowledge, we are
the first to demonstrate noise analysis for NGR can be performed with pre-trained VLM activation
features. Note that for all VLMs, We do not perform fine-tuning to demonstrate the noise analysis
and retrieval performance achievable through zero-shot learning, thereby allowing us to generalize
the performance to unseen scenes and leverage future advancements in VLMs.

2.3 TRADITIONAL 3D DATA RETRIEVAL

There is extensive work on the retrieval of 3D models represented in traditional explicit formats such
as point clouds (Sanghi, 2020; Qi et al., 2016; 2017; Qian et al., 2022; Zhao et al., 2022), voxel
grids (Wang et al., 2017; 2018), and meshes (Hanocka et al., 2019; Mitchel et al., 2021; Lahav &
Tal, 2020). Another popular method involves converting 3D models into multi-view images for
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retrieval (Jiang et al., 2019; Hamdi et al., 2020; Wei et al., 2020; He et al., 2018; Yavartanoo et al.,
2018). One common property of these methods is their focus on the retrieval of isolated 3D objects,
e.g., ModelNet (Wu et al., 2014) and ShapeNet (Chang et al., 2015). Prior works leverage deep
learning methods to convert the 3D model into a single embedding, with retrieval performed based
on embedding similarity. In contrast, 3D scenes encompass multiple semantic concepts/objects and
cannot be easily represented as a single embedding (Peng et al., 2022; Zhang et al., 2023b; Kerr et al.,
2023; Qin et al., 2023; Guan et al., 2025).

2.4 3D NEURAL GRAPHICS REPRESENTATIONS SEMANTIC UNDERSTANDING

Prior works integrate semantic analysis on the 2D images into NGR training. These methods often
modify the NGR architecture to jointly train semantics with RGB components (Vora et al., 2021; Zhi
et al., 2021; Xu et al., 2023; Liu et al., 2023a; Ye et al., 2022; Cheng et al., 2023; Fu et al., 2023;
Siddiqui et al., 2022; Bhalgat et al., 2023; Hu et al., 2023; Mazur et al., 2022; Shafiullah et al., 2022;
Li et al., 2022; Liu et al., 2023c; Kerr et al., 2023; Qin et al., 2023), which results in non-general,
architecture-specific solutions and increased computational and storage overhead (Liu et al., 2023c;
Kerr et al., 2023; Qin et al., 2023). Semantic understanding in NGRs is crucial for our work, as it is
necessary for scene retrieval. Existing works can be categorized into two groups: (i) NGR object
annotation and detection, and (ii) visual feature embedding. The annotation and detection methods
usually apply to a set of predefined object categories (Vora et al., 2021; Zhi et al., 2021; Xu et al.,
2023; Liu et al., 2023a; Ye et al., 2022; Cheng et al., 2023), which lacks rich semantic information
and limits the retrieval to specific object sets.
Most relevant to our work are methods that embed visual feature embeddings into NGRs, allowing
visual embeddings to be rendered and compared with any text embedding post-training. LERF (Kerr
et al., 2023) and LangSplat (Qin et al., 2023) generate visual embeddings during NGR training,
injecting them into NeRF and 3DGS, respectively. LERF uses multi-scale CLIP embeddings, while
LangSplat segments the scene into different objects and generates embeddings for each. At test
time, these visual embeddings can be rendered through volumetric rendering (LERF) or rasterization
(LangSplat), similar to RGB rendering. Liu et al. (Liu et al., 2023c) proposed a similar approach that
is limited to forward-facing scenes. Rashid et al. (Rashid et al.) applied LERF to a single changing
scene. N2F2 (Bhalgat et al., 2024) follows LERF’s methodology but explicitly encodes multi-scale
visual embeddings. LEGaussians adopts the same visual embedding method as LERF but records
embeddings using Gaussians instead of a NeRF field. TIGER (Xu et al., 2024) employs a visual
embedding similar to LangSplat and further introduces scene editability. ConDense (Zhang et al.,
2024) proposes training a 3D transformer to generate the visual embedding field, but it requires
thousands of GPU hours to train a 3D transformer that is limited to a specific NGR type. ConDense
also uses SuperPoint (DeTone et al., 2017) to sparsify the dense visual feature rendered from the
visual embedding field, but only applicable to the visual features from training views. Other works
embed visual embeddings into point clouds (Peng et al., 2022; Zhang et al., 2023b).
We adapt LERF and LangSplat methods for scene retrieval because they are open-sourced, have
settings closest to our work, and differ in both visual embedding generation and encoding methods.
Compared to our approach, LERF and LangSplat incur significant training and rendering overhead
and generate orders of magnitude more embeddings, which negatively impact storage and retrieval
speed. These limitations similarly apply to other works using similar methods. We discuss the
implications of these characteristics for retrieval solutions in more detail in Appendix B.9.

3 METHOD

3.1 OVERVIEW

Retri3D retrieves a learned 3D radiance field given user text queries, offering compatibility with
any pre-trained NGR format. The text query can be simple object labels or sentence descriptions.
We visualize our solution in Fig 1. We assume the pre-trained scenes are shared as is, containing
no information about the original training images or poses, which is typical for online sharing plat-
forms (Polycam, 2024). In Section 3.2, we discuss how to generate diverse but compact embeddings
from images. In Section 3.3, we propose a new method for detecting NGR noise and artifacts based
on images only, when combined with the Smart Camera Movement Module (Section 3.4), Retri3D
selects high-quality renderings to improve retrieval accuracy.
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Figure 2: 2D t-SNE visualization of clean (O) and noisy (X) pixel from XDecoder. Different colors
indicate different LERF scenes. The t-SNE was computed jointly using clean and noise features.
They are displayed separately for clarity. We make the following observations: (1) The noise features
are much more tightly clustered compared to the clean features; (2) A small amount of noise features
intrude into the clean features, but they constitute a small portion and have minimal impact on the
learned Gaussian; (3) The noise features from one scene are closer to the noise features from another
scene, compared to clean features from their own scene.

3.2 VISUAL EMBEDDING GENERATION

Existing NGR semantic analysis methods require extensive training to integrate an NGR with a visual
semantic field, typically represented as a NeRF or 3D Gaussian blobs. This approach necessitates
manual engineering of the visual semantic field for each NGR format. Additionally, rendering
the visual semantic field introduces significant computational and storage overhead, making these
methods unsuitable for general-purpose NGR databases.
To address this, we propose a general solution compatible with any pre-trained NGRs capable of
rendering RGB images. Our method leverages a VLM to generate visual embeddings, summarizing
the image or segments of the image from NGR renderings. These embeddings are stored in the
database upon acquiring the NGRs as is. During retrieval, using the same VLM, we create a text
embedding from user queries and retrieve the visual embedding (along with the associated scene and
image) that has the highest cosine similarity. We evaluate our approach with both an older VLM
(CLIP) and a more recent VLM (XDecoder) to demonstrate its flexibility. For a detailed description
of the VLMs and database indexing, please refer to Appendix A.1.

3.3 NEURAL GRAPHICS NOISE ANALYSIS

The existence of noise and floater artifacts in NGRs has been a longstanding problem observed by
many existing works in NGR (Mildenhall et al., 2020; Warburg et al., 2023; Goli et al., 2023). In
this section, we introduce Neural Graphics Noise Analysis, a method for distinguishing noise (and
floater artifact) regions of NGR renderings from clean regions. The goal is to use the detected noise
to redirect cameras to cleaner viewpoints to generate high-quality visual embeddings for improved
retrieval accuracy. We refer to noise and floater artifacts collectively as noise below.
We observe that the activation features of pre-trained VLM exhibit the ability to separate noise
regions from clean regions. In Figure 2, we show t-SNE plots of clean region features vs. noise
region features generated from a VLM. Figure 2 demonstrates that the pixel-wise1 noise features from
different NGR scenes are tightly clustered, and well-separated from the clean features. To obtain
these features, we pass a rendered image I ∈ R3×H×W through the visual encoder of a pre-trained
VLM. We obtain an intermediate activation map A = Φ′(I;ϕ′), where Φ′ is a section of the visual
encoder and A ∈ Rc×h×w is the activation with features of length c. Our solution is compatible with
different VLMs and VLM layers, see Appendix A.2.
To train a multivariate Gaussian distribution to represent the noise, we collectK training (tr) activation
features {atr,i}Ki=1 from random viewpoint renderings’ activations to represent noise features. The
renderings can be obtained from NGRs to be stored in the database, or other separate NGR scenes.
We compute the mean µ and covariance Σ of these features to fit a multivariate Gaussian distribution:

1By pixel-wise, we refer to the pixels of the activation map. This activation map can be downsampled from
the original image in spatial resolution.
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Figure 3: Noise analysis training and inference process. (a) We generate noisy images, which can be
done simply through rendering random viewpoints in pre-trained NGR scenes. Some content can
be noise-free, but they constitute only small portions of the images. (b) Using a pre-trained VLM’s
vision encoder, we generate the pixel-wise activation features. (c) We train a Multivariate Gaussian
distribution to represent the noise features. (d) During inference, we calculate Mahalanobis distance
of a RGB rendering’s activations to the trained noise Gaussian to produce a noise map.

µ =
1

K

K∑
i=1

atr,i, Σ =
1

K − 1

K∑
i=1

(atr,i − µ)(atr,i − µ)⊤ + ϵI (1)

where ϵ is a small regularization constant to ensure Σ is invertible. For an activation feature aan
during the analysis of an NGR scene, we calculate the Mahalanobis distance dm to the Gaussian:

dm =
√

(aan − µ)⊤Σ−1(aan − µ) (2)

We then compute a normalized clean score s using a sigmoid function σ:

s = σ (α (dm − c)) , σ(x) =
1

1 + e−x
(3)

where α is a scaling factor and c is a cutoff value. Pixels with larger Mahalanobis distances are
considered cleaner (higher s), while those with smaller distances are considered noisier (lower s).
Note that Existing NGR works’ visualizations typically use viewpoints close to the training points,
resulting in images that appear clean. We explain this further in Appendix C.5. Since noisy regions
dominate random viewpoints, we treat all regions from these renderings as "noise".
Our method offers several key advantages. First, it demonstrates strong generalizability: noise
features remain consistent across different scenes due to shared rendering artifacts, allowing our
Gaussian model, trained on random renderings, to generalize effectively to unseen scenes. We also
observe similarities in noise features across different models. We further discuss the similarity of
noise across models, and its impact on noise analysis in C.6. Second, it operates without requiring
training image viewpoints or clean pixel features, making the approach applicable even when such
data is unavailable. Third, it has low computational overhead, adding minimal processing time to the
activation feature generation during VLM inference. Lastly, it is highly versatile and compatible with
various pre-trained Visual Language Models (VLMs); we showcase its performance using XDecoder
and CLIP.
Depending on the scenario, our method can be applied in two main approaches. The first is self-
supervised noise analysis, where the Gaussian distribution is trained on random viewpoint renderings
from a set of scenes; and subsequently used to analyze new renderings from the same set of scenes.
We demonstrate this approach in our LERF dataset retrieval results. The second approach is cross-
scene transferred noise analysis, where the Gaussian model is trained on pre-existing scenes and
then applied to new, unseen scenes, leveraging the consistent nature of noise features across different
environments. This method is demonstrated in our ScanNet++ retrieval results.
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Figure 4: Application of our noise analysis method. (a) Starting from a random viewpoint rendering;
(b) Noise analysis creates a clean score map highlighting clean (bright) and noisy (dark) regions; (c)
Based on the noise analysis, the best next viewpoint is selected (visualized as a green box); (d) The
rendering from the new viewpoint shows reduced noise. This process can be iterated multiple times.

We provide additional noise analysis experiments with different VLM layers in Appendix A.2. We
demonstrate the superiority of our Noise Analysis method in identifying RGB error in rendered
images compared to state-of-the-art NeRF uncertainty estimation methods in Appendix A.5. Another
potential way to distinguish noise from clean pixels is to fine-tune a VLM to classify noise from
non-noise. We found such a method often treats the image content with high-frequency details as
noise. We provide further analysis in Appendix A.6.

3.4 SMART CAMERA MOVEMENT MODULE

We propose the Smart Camera Movement Module (SCMM), which discovers clean viewpoints for
rendering by iteratively redirecting the camera to less noisy views. The clean views enable higher-
quality visual embeddings from VLMs to improve the retrieval performance. SCMM is achieved by
moving the camera towards the less noisy pixels as predicted by our noise analysis algorithm. We
provide an example of such a camera movement in Figure 4.
The SCMM moves the camera to a cleaner view by estimating the noise level beyond the current
field of view. We apply an iterative "render, noise analysis, camera movement" process to refine the
camera viewpoint. Given a rendering, the clean score for the entire rendering is represented as S,
where the clean score per pixel is sj,i:

S = {sj,i | 1 ≤ j ≤ h, 1 ≤ i ≤ w} (4)
We estimate the clean score around the current field of view by extending it beyond the current image
border. We apply a linear-decay edge-padding to the current clean score:

S′ = {s′j′,i′ | −h ≤ j′ ≤ 2h,−w ≤ i′ ≤ 2w} (5)

s′j′,i′ =



(
|i′|
w

)
s∗j′,1 if 1 ≤ j′ ≤ h,−w ≤ i′ ≤ 0 (left pad)(

|j′|
h

)
s∗1,i′ if − h ≤ j′ ≤ 0, 1 ≤ i′ ≤ w (top pad)(

|i′|
w

)(
|j′|
h

)
s∗1,1 if − h ≤ j′ ≤ 0,−w ≤ i′ ≤ 0 (top left pad)

... (others)

(6)

where s∗ is an pixel of the Gaussian blurred version S∗ of the original clean score map S. Given a
blue kernel G with std σ and radius k, the Gaussian blurred clean score map S∗ is given by:

S∗
j,i =

k∑
m=−k

k∑
n=−k

G(m,n)sj−m,i−n = (S ∗G)j,i, G(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
(7)

The Gaussian blur is applied to reduce the effect of individual edge and corner pixels’ clean score
on the estimated clean score beyond the current view. Lastly, we efficiently find the maximum
sum submatrix (Figure 4(c)(f), green box), representing the highest expected clean score. Using
cumulative sum arrays, finding the submatrix only has a time complexity of O(hw), linear w.r.t. the
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Object Label LLaVA Caption
#

Img.
Viewpoint Viewpoint

Training SCMM Random Training SCMM Random
1 57.89 30.08 (-27.81) 17.29 (-40.60) 45.12 32.97 (-12.15) 15.28 (-29.84)
5 68.42 64.66 ( -3.76) 18.80 (-49.62) 55.07 57.17 (+2.10) 23.58 (-31.49)

10 78.95 67.67 (-11.28) 24.81 (-54.14) 67.07 61.23 (-5.84) 28.92 (-38.15)
20 83.46 73.68 ( -9.78) 34.59 (-48.87) 72.41 63.25 (-9.16) 33.01 (-39.40)
50 84.21 77.69 ( -6.52) 49.62 (-34.59) 71.80 65.82 (-5.98) 35.58 (-36.22)
100 84.95 80.02 ( -4.93) 57.89 (-27.06) 73.67 70.48 (-3.19) 43.04 (-30.63)

Table 1: Retrieval Accuracy (P@1) for Splatfacto Model on LERF Dataset

spatial resolution. The camera center is then rotated to point at the center of this new maximum sum
submatrix.
We observe that renderings at a lower resolution can still be robust for noise analysis and the SCMM
process. Therefore, to generate high-quality visual embeddings for retrieval, we propose to perform
SCMM with low-resolution renderings to discover the clean viewpoint first. Then, we perform
high-resolution rendering and visual embedding generation at a discovered clean viewpoint. See
Appendix A.4 for details.
We discussed the application of SCMM for camera viewpoint rotation. However, by rendering sets
of images that vary in depth (in the current viewpoint’s coordinate), we can find the next view with
the highest expected clean score in 3D. This allows our camera to both translate and rotate in 3D
and move in a trajectory that iteratively points to cleaner fields. We provide further discussion and
visualization in Appendix A.3.

4 EXPERIMENTS AND RESULTS

We perform experiments with LERF (13 scenes) and ScanNet++ (280 scenes) datasets (Kerr et al.,
2023; Yeshwanth et al., 2023). We use either the object labels that came with the dataset or queries
generated by the LLaVA model (using the prompt: Describe the image in detail in one sentence.) (Liu
et al., 2023b). A retrieval is successful if the retrieved scene contains the object, or is used to generate
the caption. We report retrieval accuracy P@k=1,5,10, corresponding to whether the top k retrievals
contain a correct scene. Due to space limitations, we focus our results on XDecoder + LERF dataset
+ Splatfacto model in the main paper. We provide more experiments details and results including the
testing platform, different/mixed NGR, and different VLMs in Appendix B.

4.1 COMPARISON BETWEEN DIFFERENT RENDERINGS

In this section, we compare retrieval accuracy between different rendering viewpoints. As the retrieval
accuracy significantly increases as more images are used, we report accuracy for different numbers of
renderings. Training Viewpoint Render is the best scenario where there is knowledge of the training
camera poses, creating the highest quality renderings. However, we do not assume the training poses
are available and use it as a best-case comparison. SCMM-chosen camera viewpoints utilizes our
novel solution SCMM detailed in Section 3.4 to choose high-quality viewpoints for clean renderings.
Random Viewpoint renders from a randomly selected viewpoint.
As shown in Table 1, the retrieval accuracy for SCMM is only a few percent lower than the retrieval
accuracy with Training Viewpoint. Compared to Random Viewpoint, our solution has more than 20%
higher accuracy in most cases. The accuracy differences hold for both object label text query and
LLaVA caption sentence query.

4.2 COMPARISON WITH BASELINES

In Table 2, we compare the retrieval accuracy of our method with the LangSplat and LERF methods.
As LangSplat and LERF cannot select viewpoints smartly, we render LERF and LangSplat at Training
Camera Viewpoints. At 100 rendered images, comparing our solution with LangSplat, we achieve
5.12% higher object label retrieval accuracy if training pose is also available to us, or 0.19% if not.
LangSplat encodes visual embeddings by first segmenting objects in the scene and then using the
CLIP visual encoder to encode objects individually. As a result, the embeddings are poor matches for
image-level sentence descriptions. Our solution has about 20% higher accuracy than LangSplat.
The LERF model’s embedding is particularly ineffective for cross-scene retrieval (explained further
in Appendix B.10). LERF, trained from multi-scale CLIP image embedding (without segmentation),
is very uniform and can not distinguish different objects effectively.
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Object Label LLaVA Caption
Ours Baselines Ours Baselines

# Img. Training SCMM LangSplat LERF Training SCMM LangSplat LERF
1 57.89 30.08 44.73 16.32 45.12 32.97 18.25 17.63
5 68.42 64.66 61.16 16.53 55.07 57.17 36.62 19.23
10 78.95 67.67 62.57 16.67 67.07 61.23 42.45 20.58
20 83.46 73.68 74.21 18.87 72.41 63.25 46.84 26.96
50 84.21 77.69 76.36 23.45 71.80 65.82 49.26 31.48

100 84.95 80.02 79.83 26.24 73.67 70.48 51.92 36.89

Table 2: Retrieval Accuracy (P@1) for Different Models on LERF Dataset
Ours Baselines

Stage Action or Storage SplatFacto Nerfacto LangSplat LERF
NGR

Training
Train Time (min) 6.82 8.24 90.5 40.1
Model Size (MB) 478.49 176.02 958.67 1282.4

NGR
Analysis

Generate
Visual Emb. (s) 17.25 19.23 152.5 53.6

Database
& Retrieval

Embedding Size 20.58MB 20.58MB 18.78GB 225.4GB
Retrieval Time (s) 5e−5 5e−5 1e−3 17

Table 3: Speed and storage comparison with 50 rendered images for a LERF scene

4.3 COMPUTATION AND STORAGE EFFICIENCY

In this section, we compare the speed and storage for different stages of the retrieval process with
LERF and LangSplat. As we use pre-trained NGRs as is, there is little overhead for training or storing
the NGRs. Our retrieval speed is achieved through using FAISS’s implementation of inverted file
index IVF1024 for efficient highest cosine similarity match (Douze et al., 2024). IVF1024 was also
used for LangSplat and LERF. As shown in Table 3, LERF and LangSplat have orders of magnitude
overhead in terms of speed and storage at multiple stages. This largely results from needing to train a
NGR to encode the visual embeddings, as well as the costly dense visual embedding rendering from
the trained NGR. We explain this further in Appendix B.9.

4.4 RETRIEVAL FROM SCANNET++

Our solution easily scales to hundreds of pre-trained NGR scenes, we demonstrate through testing
on the ScanNet++ dataset. We use the 280 ScanNet++ scenes with semantic labels. As the many
different ScanNet++ scenes contain similar objects (such as Sofa from different living rooms). We
measure the retrieval accuracy based on whether the retrieved scene contains the object label. As
demonstrated in the table, ours still has a high degree of accuracy for retrieval even with hundreds of
scenes. Using the IVF1024 index, the measured retrieval speed per query is 6e−4 second. We show
more results with LLaVA caption and comparison with LangSplat in Appendix B.7.

4.5 SCENE COVERAGE METRIC AND RESULT

To evaluate 3D scene coverage using rendered images, we collect average coverage statistics for
Nerfacto across 13 LERF scenes. Utilizing Nerfacto’s spatially contracted space, we partition it into
a 64 × 64 × 64 voxel grid and measure orientation based on the angle between camera rays and
voxel faces. A voxel is considered covered if any rendering ray passes through it before reaching the
estimated depth. Details are provided in Appendix A.7.
The %Grid in Table 5 shows the scene coverage (a voxel is also considered covered if the density is
greater than 0.5). The %Train shows that, for voxels covered by Training, the percentage of those
observed by SCMM or Random. We make two important observations. First, Training has low
coverage of the scene, which explains the existence of significant noise in the NGRs. Such a low
coverage is often due to the continuous video trajectory, which is how real-world NeRF datasets are
usually captured. Second, SCMM provides both high coverage of the scene (%Grid), and a high
coverage of the scene section that was observed by the training images (%Train). This indicates that
SCMM rendering tends to favor viewpoints similar to those of the training images, enhancing the
capture of semantic content present in the original video and improving the rendering quality for
better retrieval.
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# Img. Training SCMM Random
10 41.62 39.63 (-1.99) 18.39 (-23.23)
20 50.06 47.34 (-2.72) 23.58 (-26.48)
50 58.23 54.39 (-3.84) 27.93 (-30.30)

100 65.03 64.18 (-0.85) 29.04 (-35.99)

Table 4: Retrieval Accuracy (P@1) for Splatfacto Model with Object Labels for ScanNet++
Training SCMM Random

# Img. %Grid %Grid %Train %Grid %Train
xyz w/θ xyz w/θ xyz w/θ xyz w/θ xyz w/θ

0 9.9 9.9 9.9 9.9 0.0 0.0 9.9 9.9 0.0 0.0
1 13.0 11.4 15.3 12.7 11.3 8.3 16.2 14.3 12.7 9.3
5 14.3 12.2 32.8 16.5 42.7 23.6 35.6 19.6 29.5 14.4
10 17.2 13.9 44.2 24.9 65.0 46.0 53.7 32.4 49.4 24.5
20 20.6 15.8 56.4 29.8 83.3 58.1 61.7 41.5 64.7 39.2
50 41.6 17.5 71.1 46.9 87.5 69.3 78.2 54.7 73.7 65.0

100 46.7 30.7 79.3 53.3 87.9 79.4 83.6 61.0 85.6 78.6
Table 5: Scene Coverage statistics for Training, SCMM, and Random Renderings. Location-only
(xyz); Location-and-Orientation (w/θ)

4.6 RETRIEVAL VISUALIZATION

In this section, we present the visualization results of our retrievals. Figure 5 showcases successful
retrievals from various LERF scenes. As illustrated, the VLM used (XDecoder) accurately produces
masks, and the associated visual embeddings closely align with the corresponding text embeddings,
facilitating efficient matching. Importantly, these visual embeddings and masks are generated during
the scene analysis phase, independent of any user text query. This feature ensures that the visual
embeddings can be matched with any potential user query. We demonstrate additional failure cases
in Figure 26.

5 CONCLUSION

We introduced the first end-to-end framework for retrieval of pre-trained neural graphics represen-
tations. By performing visual analysis on rendered RGB images, it is compatible with any form of
pre-trained NGR. We propose novel techniques, Neural Graphics Noise Analysis and Smart Camera
Movement Module, for detection of noise, navigation in NGR scenes, and selection of viewpoints
for high-quality rendering. These high-quality renderings significantly improve retrieval accuracy.
As a result, our solution achieves significantly higher retrieval accuracy than baselines such as
LangSplat and LERF, even when training images are unavailable. Retri3D is thus general across
NGRs, while being orders of magnitude more efficient in terms of speed and storage compared to
existing techniques.

(a) big white crinkly flower (b) checkerboard pattern (c) espresso machine

(d) breakfast sandwich (Top 1) (e) breakfast sandwich (Top 2) (f) breakfast sandwich (Top 3)
Figure 5: Successful Retrievals from LERF dataset with object label queries.
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Figure 6: 3D t-SNE for clean pixel feature (O) and noisy pixel feature (X) for XDecoder’s Feature
Pyramid Network (Level 1, Activation Resolution: 512× 64× 88)

APPENDIX

A ADDITIONAL METHOD DETAILS

A.1 VISUAL EMBEDDING GENERATION

To enable zero-shot performance on unseen scenes, our system is compatible with pre-trained VLMs
without fine-tuning. This design choice contrasts with other NGR semantic analysis methods, which
have high training and engineering overhead for each NGR format. Given a visual encoder of a VLM
Φ parameterized by ϕ, we generate the visual embeddings Ev:

Ev = Φ(I;ϕ) ∈ RL×d (8)
where I ∈ R3×H×W is the rendered RGB image, and Ev are L visual embeddings of dimension d.
Different visual encoders produce varying numbers of embeddings per image. For example, CLIP
generates a single embedding (L = 1) for the entire image (Cherti et al., 2022). More recent works,
such as XDecoder produce multiple embeddings:

(Ewhole,Eseg,Mseg) = Φx(I;ϕx) (9)

where Φx is a pre-trained XDecoder visual encoder parameterized by ϕx. Ewhole ∈ R1×d represents
the whole image embedding, similar to a CLIP’s embedding for the entire image. XDecoder
also generates K image segment embeddings (Eseg ∈ RK×d) with masks Mseg ∈ RK×H×W

indicating the correspondence between the embedding and segments of the image. See Figure 5 for a
visualization of these segments and the associated concepts.
In our system, we do not utilize all image segment embeddings from XDecoder, as some masks may
not have a corresponding segment in the image. Specifically, we ignore image embeddings with a
corresponding mask of less than 10 pixels as they usually don’t correlate with any concepts in the
image.
Our dataset then stores all the image embeddings generated via VLMs given all rendered images
as inputs. During lookup, image embedding (and the associated scene) is retrieved based on the
highest cosine similarity with the text embedding, generated from the user query q via the VLM’s
text encoder Ψ, parameterized by ψ. Given scenes indexed by n ∈ N , rendered images of m ∈M
per scene, the top scene/image/embedding is given by:

argmax
n,m,l

cossim(en,m,l
v , et) (10)

where en,m,l
v ∈ Rd is the lth image (segment) embedding for the mth image of the nth scene, and

et = Ψ(q;ψ) ∈ Rd is the text embedding based on user query q.
Our system flexibly supports any VLM that employs image-text contrastive pre-training and is capable
of independently generating visual and text embeddings with Φ and Ψ. This adaptability allows the
system to benefit not only from advancements in pre-trained VLMs but also from fine-tuning on
domain-specific visual or textual concepts when necessary. In this work, however, we test without
fine-tuning to highlight the zero-shot performance while ensuring compatibility across any NGR
format capable of rendering RGB images.
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(a) t-SNE for XDecoder’s Feature Pyramid Network (Level 2, Activation Resolution: 512× 32× 44)

(b) t-SNE for XDecoder’s Feature Pyramid Network (Level 3, Activation Resolution: 512× 16× 22)
Figure 7: t-SNE visualization of clean pixel features (O) and noisy pixel features (X) for different
levels of XDecoder’s Feature Pyramid Network.

Figure 8: t-SNE for Nerfacto clean/noisy pixel feature (O/X) and Splatfacto clean/noisy pixel feature
(□/+)

A.2 NGR NOISE ANALYSIS VIA PRE-TRAINED VLMS

We demonstrate that the ability to generate well-separated features of clean pixels and noisy pixels
is not a property specific to a certain layer of the XDecoder VLM, but applies to different layers of
different VLMs. In addition, we also demonstrate that the noise features from NeRF (Nerfacto) and
3DGS (Splatfacto) are very close with each other, well-separated from the clean pixel features from
the respective NGRs.
The t-SNE visualizations in Figure 2 and the rest in this section are generated via sampling activation
features from the specified VLM layer given clean renderings and noise renderings. The clean
renderings are generated via sampling 10 images (linspace) from the training image sequence of
each scene; linspace is selected to ensure best diversification of the training clean images. The noise
renderings are generated with 10 renderings at random viewpoints for each scene. We sample 2
activations per rendering randomly to generate the t-SNE plot. We use all 13 LERF scenes for the
renderings. We select a small number of images and activations to avoid clustering and provide better
visualization.
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For calculation of the actual multivariate Gaussian distribution representing the noise as specified in
Eq 1, we use 50 renderings from random viewpoints for each scene, and 50 activations from each
of the renderings. The random viewpoints’ camera origins are sampled uniformly from the center
1× 1× 1 box of the scene. The view direction components x, y, and z are sampled uniformly from
[-1, 1], and the view direction vector is normalized. Note that we do not require the clean training
images for calculating the noise Multivariate Gaussian distribution. XDecoder’s image backbone ends
with a Feature Pyramid Network. We use XDecoder’s (variant: X-Decoder-oq201) Feature Pyramid
Network’s highest resolution level activation (as viewed in Figure 2 and 6) for noise multivariate
Gaussian distribution training unless otherwise specified.
First, we provide a 3D tSNE of the clean and noisy features in Figure 6. The randomly sampled
features are the same as the one demonstrated in the 2D t-SNE plot in Figure 2. We visualize them in
3D here to demonstrate that the clean features occupy a much larger volume. This shows that, in high
dimensions, the noise features are much more tightly clustered than the clean features.
In Figure 7, we demonstrate the t-SNE plot for activations from other layers of the XDecoder visual
encoder. Despite the lower resolution of the activation map for these feature pyramid network levels,
the noise features and clean features are still well-separated.
In Figure 8, we demonstrate the t-SNE plot of pixel features from Nerfacto renderings and Splatfacto
renderings. As seen in the plots, we observe that the noisy pixel features from the different NGRs
are close to each other, separated from the clean pixel features from their respective NGRs. This
means that using one type of NGR to train a multivariate Gaussian distribution to model the noisy
regions from another NGR is possible. We will demonstrate the impact on retrieval accuracy with
this cross-NGR noise Gaussian model training in Table 9.

Figure 9: t-SNE for clean pixel feature (O) and noisy pixel feature (X) for the open-clip model
ViT-L-14-336 (second to last transformer layer, Activation Resolution: 1024× 24× 24)

Lastly, we visualize the t-SNE embeddings from the OpenCLIP model (variant: ViT-L-14-336)
in Figure 9, which demonstrates a similar degree of separation between clean and noisy features.
ViT-L-14-336 divides the image into 14× 14 patches (tokens), and consists of 24 transformer layers.
We utilize the activations from the penultimate (23rd) transformer layer to calculate the Gaussian
distribution for noise. The final transformer layer is excluded as its patch-wise outputs are not
leveraged during the contrastive training process, and thus lack sufficient semantic information.
FLIP made a similar observation, and suggested performing token-wise contrastive learning to
ensure the final layer’s activations carry meaningful semantic content (?). However, we found this
alternative training scheme to be unnecessary for distinguishing between noise and clean features.
The activations from the penultimate layer of a standard contrastively trained vision transformer are
sufficient for this task.
In summary, we observed that the noise features can be separated from clean features given different
kinds of VLMs, as well as different kinds of NGRs.

A.3 SMART CAMERA MOVEMENT IN 3D

In Section 3.4, we discussed how to rotate the camera to a viewpoint containing cleaner pixels given
a single rendering. Here, we demonstrate that by rendering a set of images from viewpoints that vary
in depth (w.r.t. the center image in its local coordinate), we allow the camera to change viewpoints
for both translation and rotation, in order to navigate in 3D.
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Front Center Back

Splatfacto
(a) (b) (c)

XDecoder-
Splatfacto (d) (e) (f)

CLIP-
Splatfacto (g) (h) (i)

Nerfacto
(j) (k) (l)

XDecoder-
Nerfacto (m) (n) (o)

Figure 10: Splatfacto and Nerfacto Rendering with Varying Depth in Camera’s Coordinate; And the
Corresponding Clean Score Map from Different VLMs

Figure 10 visualizes a set of three images with identical rotation matrices but translated along the
z-axis (depth) in the camera’s local coordinates. Noise analysis is performed on all three images,
and the optimal next viewpoint is selected based on the noise analysis result, aiming for the highest
estimated clean score.
The result of this algorithm is a method for guiding the camera to move incrementally toward cleaner
views of the scene, starting from a random initialization point. While SCMM with depth variation
could be integrated into our retrieval system to produce higher-quality renderings and improve
retrieval accuracy, we opt not to use this approach. The depth variation requires rendering a set of
images instead of just one, and the associated computational cost is better allocated to selecting more
initialization points to achieve greater scene coverage. However, our SCMM with depth demonstrates
how navigation can be achieved using only a pre-trained NGR and VLM, which could benefit other
works that interact with NGRs such as robot navigation. We provide an example of SCMM recovering
from an extremely occluded viewpoint below.
In Figure 11, we show an example where the "center" current viewpoint is under extreme occlusion
by floater artifacts. The "back" viewpoint provides some hints regarding where should the camera
viewpoint point to for the next step. The SCMM algorithm leverages the analyzed noise to calculate
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Front Center Back

Image
(a) (b) (c)

Clean Score
(d) (e) (f)

Extended
Clean Score (g) (h) (i)

Figure 11: Visualization of Images, Clean Scores, and Extended Clean Scores for LERF Dozer Scene
Rendering Set (Front, Center, Back).

(a) location 1 (b) location 2 (c) location 3

(d) location 4 (e) location 5 (f) location 6
Figure 12: Dozer Scene Smart Camera Movement Recovering from Extremely Noisy Viewpoints via
Movement in Depth

the extended clean score map for translation and rotation. Figure 12 shows how SCMM recovers
from the poor initialization seen in Figure 11, iteratively moving the camera toward cleaner views.
While our algorithm cannot guarantee successful recovery in every case, it often requires only a small
hint, such as in this example, to complete the recovery process.

A.4 EFFICIENT NOISE ANALYSIS AND SMART CAMERA MOVEMENT VIA LOW-RESOLUTION
RENDERING

In order to render high-resolution clean images efficiently, we first render low-resolution images to
perform noise analysis. We visualize this process in Figure 13. Given the noise analysis result, we
move the camera to select viewpoints for cleaner images. From all the low-resolution images, we
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Figure 13: Process for Rendering of Clean and High Resolution Image from Noise Analysis and
Smart Camera Movement with Low Resolution Renderings
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Figure 14: Low and High Resolution Rendering and Noise Analysis Comparison for Ramen Scene.

select the top-k not-similar images (image embeddings with cosine similarity less than 0.9) to render
in high resolution. Note that most of the steps can be completed in the low-resolution space.
We visualize the noise analysis result for the same viewpoint, rendered in high resolution and low
resolution (1/16 of the high-resolution in pixel count) for comparison in Figure 14. We use the same
multivariate Gaussian distribution (trained through activations from high-resolution renderings). We
note that despite a much lower resolution, the predicted noise remains mostly the same. The different
predicted noises can lead to differences in terms of the exact camera movement, but both move the
camera towards cleaner regions.
Such low-resolution rendering allows us to efficiently navigate within the NGR scene, adding only a
few seconds overhead to the final high-resolution rendering and visual embedding generation. We
provide quantitative results on the speed in Appendix B.8.

A.4.1 CAMERA INITIALIZATION AND CONVERGENCE

We initialize the camera in SCMM by randomly sampling the camera origin components x, y, and
z independently from a Normal distribution with a standard deviation of 0.5. The view direction
components x, y, and z are sampled uniformly from [-1, 1], and the view direction vector is normalized.
The same sampling method is applied to random viewpoint rendering. The Normal distribution
sufficiently distributes the initial cameras, with a bias for more center views which is more likely
to have partially noise-free views. Combined with uniform sampling of the viewing direction, this
approach is more likely to provide different angles of the objects in the center while also capturing
objects in the periphery. This approach provides good coverage of the scenes, while enabling the
cameras to navigate to more noise-free views.
Our SCMM (rotation only, as used in the retrieval process described in the paper) is capable of
recovering from poor initializations if the camera can be rotated to a better viewing direction without
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(a) Nerfacto’s Depth (b) GT Depth (c) Depth Error

(d) Nerfacto’s RGB (e) GT RGB (f) RGB Error
Figure 15: Depth and RGB Error for Image 1 of ScanNet Scene 0001 (Red is higher error; Blue is
lower error.)

(a) BayesRays’ Uncertainty (b) Ours Uncertainty
Figure 16: Estimated Uncertainty for Bayes’ Rays and Ours. (Red is higher uncertainty; Blue is
lower uncertainty.)

moving. It converges to a local optimum as long as the estimation of the cleanliness level beyond
the current field of view is reasonable, which we found to be almost always the case in practice. To
recover from poor initializations where translation is required to achieve cleaner views (e.g., when the
camera origin is inside artifact clouds or objects), SCMM with rotation and translation must be used.
However, we do not use SCMM with rotation and translation for the retrieval accuracy measurements,
as we found that using rotation only results in shorter scene analysis time while maintaining the same
level of retrieval accuracy.
Should the ability to recover from poor initializations become critical, SCMM with rotation and
translation can be employed. It is important to note that both versions of SCMM may still result
in individual bad renderings. Therefore, sampling multiple renderings and rejecting bad ones is
necessary to improve the collective visual semantics quality for the scene.

A.5 COMPARISON OF NEURAL GRAPHICS NOISE ANALYSIS WITH NERF UNCERTAINTY
ESTIMATION

Our predicted noise level through Neural Graphics Noise Analysis can be interpreted as a measurement
of the uncertainty within the trained NGR scene. To evaluate this, we compare our noise (uncertainty)

Scene # 001 079 158 316
Depth - Bayes’ 0.28 0.35 0.20 0.29
Depth - Ours 0.42 0.40 0.34 0.49
RGB - Bayes’ 0.38 0.36 0.42 0.26
RGB - Ours 0.18 0.23 0.21 0.25

Table 6: AUSE for Bayes’ Rays and Ours (Measured against Depth and RGB Error), Lower is Better
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(a) Depth Sparsification Error (b) RGB Sparsification Error
Figure 17: Sparsification Error for Bayes’ Rays (Purple) and Ours (Green), Measured Against Depth
and RGB Error. (Solid line represents AUSE, Lower is Better)

prediction with Bayes’ Rays, the state-of-the-art method for uncertainty prediction in NeRF (Goli
et al., 2023).
We note that other uncertainty estimation methods exist. For example, several works modify the NGR
neural network to output uncertainty using Bayesian Neural Networks (Shen et al., 2021a; Pan et al.,
2022; Shen et al., 2022). Niko et al. proposed an ensemble of NeRFs to estimate uncertainty, which
is computationally expensive (Sünderhauf et al., 2022). FisherRF uses the Fisher information matrix
between learned parameters of NGRs, but this is only applicable to models like 3DGS and Plenoxels
with sparse, uncorrelated parameters (Jiang et al., 2023). Bayes’ Rays perform post-hoc training
on NeRFs, requiring both RGB and density information from the NeRF MLPs (Goli et al., 2023).
Since Bayes’ Rays achieved the state-of-the-art performance, we choose to compare our solution
with Bayes’ Rays.
Assessing the quality of estimated uncertainty is challenging. Bayes’ Rays proposed using the
Area Under Sparsification Error (AUSE), measured against depth. The idea is that the pixels are
sparsified (gradually removed) in two ways: first by removing pixels based on depth error (highest
depth uncertainty pixels are removed first), and second by removing pixels based on predicted
uncertainty (highest uncertainty pixels are removed first). Ideally, higher uncertainty predictions
should correspond to greater depth error, resulting in both sparsification processes retaining similar
errors. The gap of remaining errors between these two sparsification processes constitutes the AUSE-
Depth error. As shown in Figure 17(a), Bayes’ Rays achieves a lower (better) AUSE-Depth than
our method. This is expected since Bayes’ Rays estimates spatial uncertainty via neural network
perturbations within NeRF’s MLP.
However, when we conduct the same AUSE measured against RGB error, our method achieves a
lower (better) AUSE-RGB compared to Bayes’ Rays (Figure 17(b)). This indicates that our approach
more effectively estimates uncertainty that aligns with RGB rendering errors, which is reasonable
given that our uncertainty (noise) is derived from RGB renderings in the first place. We show the
quantitative comparison for the 4 scenes provided in Bayes’ Rays dataset in Table 6. On all four
scenes, we perform better for AUSE-RGB while Bayes’ Rays perform better for AUSE-Depth.
To generate our uncertainty predictions, we simply use the multivariate Gaussian distribution trained
with LERF scene noise renderings. Using this Gaussian distribution, we estimate the noise level for
the ScanNet scene’s rendering from a Nerfacto model. Our multivariate Gaussian distribution did
not use renderings from ScanNet scenes during training. Unlike Bayes’ Rays, our method does not
require access to or post-processing of the NGR model. Moreover, our approach is applicable to both
3DGS and NeRF, while Bayes’ Rays is limited to NeRF-based solutions.
While our method outperforms Bayes’ Rays in AUSE-RGB and Bayes’ Rays excels in AUSE-
Depth, we observe notable differences from all of the error by depth, error by RGB, and uncertainty
predictions from both Bayes’ Rays and our method. This highlights a need for further research into
uncertainty estimation and the development of appropriate metrics to assess their effectiveness.

23



Published as a conference paper at ICLR 2025

(a) Correct Noise Identification (b) Incorrect High-Frequency Object as Noise
Figure 18: Noise Identification via Finetuning of XDecoder Segmentation Head

(a) Location-based Coverage (b) Orientation-based Coverage

d   (0, 0, 1).

d   (1, 0, 0).

d   (0, 0, -1).

Figure 19: Coverage Map Visualization

A.6 NOISE ANALYSIS THROUGH VLM CLASSIFICATION

In addition to modeling noise with multivariate Gaussian distribution, another viable approach is to
fine-tune a segmentation model to segment the noise regions from clean regions. In summary, we find
that a fine-tuned XDecoder often treats high-frequency objects as noise, as seen in Figure 18. This is
particularly detrimental for scene retrieval as it will direct cameras away from interesting regions
containing high-frequency objects.
To test the idea, we fine-tune an XDecoder model’s segmentation head to classify between clean and
noisy. Specifically, we use the same random viewpoint renderings that were used to fit the multivariate
Gaussian distribution (50 from each of Splatfacto NGRs representing the 13 LERF scene), coupled
with 50 training viewpoint renderings from each scene. We modify the last layer of the segmentation
head so it only produces two classes, trained to predict all training viewpoint renderings as clean, and
all random viewpoint renderings as noise. We unfreeze the segmentation head parameter and train it
for 35 epochs with SGD (lr=1e-4, momentum=0.9, weight decay=1e-4). We also tried unfreezing the
Feature Pyramid Network but obtained similar results.
A more ideal fine-tuning solution would involve using images with proper segmentation of noise
and clean regions. However, we found this to be a very ambiguous task not easily carried out by
manual labor. As we have discussed in Appendix A.5, existing uncertainty estimation methods do
not generate high-quality segmentations (particularly when evaluated using RGB error) automatically
either.

A.7 SCENE COVERAGE CALCULATION

We evaluate scene coverage for different rendering methods within the spatially contracted space of
Nerfacto. Nerfacto uses a spatial contraction technique modified from MipNeRF-360 (Barron et al.,
2021), which warps infinite distance into a box of size 4× 4× 4. We divide the box into a grid of
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64× 64× 64 voxels. We did not evaluate the coverage with Splatfacto as it is difficult to measure
such a statistics in an infinite space, but we expect similar conclusions to hold for both NGRs.
To update the coverage statistics within this grid, we perform ray traversal for each rendering. Rays
are traced from the near plane of the rendering to the estimated depth predicted by Nerfacto, marking
any voxel they traverse through as covered. For the location+orientation statistics, we compute the
dot product between the ray and the normal vector of the voxel’s face. We visualize this in Figure 19.
If the dot product is positive, the orientation is recorded as observed. Although this is a relatively
relaxed criterion, it is consistently applied across all rendering types.
Before rendering, we also sample the density at the center of each voxel. If a voxel’s density exceeds
0.5, we mark the entire voxel, along with all its orientations, as covered.
For the %Train measurement, we track all voxels (and faces) covered by rays from the training
renderings, without pre-filling the grid with coverage information based on density. We then calculate
the percentage of voxels (and faces) covered by the training rays that are also covered by other
rendering types.

B ADDITIONAL RESULTS

B.1 EXPERIMENT SETTING

Dataset We utilize the LERF and ScanNet++ datasets, comprising 13 scenes and 280 scenes
respectively (Kerr et al., 2023; Yeshwanth et al., 2023). Only ScanNet++ scenes with object labels
are included.

Text Query We employ the original object labels from LERF and ScanNet++ as text queries.
Additionally, we generate image captions from the training images using the LLaVA (v1.5-13b)
model with the prompt: Describe the image in detail in one sentence. It is important to note that
the VLM used in our retrieval (XDecoder) never observes the exact training images at any point.
Furthermore, the LLaVA model is developed independently of XDecoder (Liu et al., 2023b; Zou
et al., 2022).

Neural Graphics Representations We use the nerfstudio implementations of 3D Gaussian Splat-
ting and NeRF, specifically Splatfacto and Nerfacto (Tancik et al., 2023). All models are trained using
the default configuration for 30,000 epochs. For Nerfacto, we also enable the "use-gradient-scaling"
option to scale the gradient near the camera, reducing artifacts and creating a stronger baseline for
rendering from random poses (Philip & Deschaintre, 2023). LERF employs the same Nerfacto as its
RGB rendering component. LangSplat uses the original 3DGS implementation, while the nerfstudio
Splatfacto aims to replicate 3DGS but may have minor implementation differences (Tancik et al.,
2023; Qin et al., 2023; Kerbl et al., 2023).

Metrics A retrieved scene is considered correct if it matches the user query. For object labels, this
means the scene contains the queried object. For LLaVA image captions, this means the scene was
used to generate the caption. Note that LERF has minimal label overlap between scenes, whereas
ScanNet++ has significant overlap. We measure precision P@k=1,5,10, indicating whether the top-k
retrieved scenes include the correct scene.

Experimental Platform Experiments are conducted on a desktop with an Intel i7-13700K CPU,
Nvidia RTX 4090 GPU, and 64GB of RAM. We use PyTorch 2.1.2 with CUDA 12.0 on Ubuntu
22.04 LTS.

B.2 DIFFERENT VLM

In addition to XDecoder, we also evaluate our system’s performance when other VLMs are used.
In particular, we select open-clip (Cherti et al., 2022) to generate the visual embeddings and text
embeddings. Compared to XDecoder, open-clip does not perform segmentation or generate multiple
embeddings (corresponding to different segments) per image. It involves a simple process of
generating one image embedding per image. We use this image embedding that describes the entire
image for retrieval in our system.
In Table 7, we compare the retrieval performance of our system when the XDecoder or CLIP model
is used. Regardless of the viewpoint choice, our system achieves higher performance when XDecoder
is used. This is understandable as XDecoder is a more recent solution, and it also captures sub-image
contents in addition to the whole image embedding. We note that the Random viewpoint rendering is
particularly difficult for CLIP to generate any meaningful embedding. Even with 100 images being
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XDecoder OpenCLIP
#

Img.
Viewpoint Viewpoint

Training SCMM Random Training SCMM Random
1 57.89 30.08 (-27.81) 17.29 (-40.60) 41.35 20.59 (-20.76) 11.63 (-29.72)
5 68.42 64.66 (-3.76) 18.80 (-49.62) 60.90 46.83 (-14.07) 13.45 (-47.45)

10 78.95 67.67 (-11.28) 24.81 (-54.14) 61.65 47.24 (-14.41) 16.43 (-45.22)
20 83.46 73.68 (-9.78) 34.59 (-48.87) 63.16 50.47 (-12.75) 18.24 (-44.92)
50 84.21 77.69 (-6.52) 49.62 (-34.59) 64.62 53.79 (-10.83) 22.49 (-42.13)
100 84.95 80.02 (-4.93) 57.89 (-27.06) 65.29 57.68 (-7.61) 24.93 (-40.36)

Table 7: Retrieval Accuracy (P@1) for Splatfacto Model on LERF dataset. Comparison between
XDecoder and OpenCLIP.

#
Img.

Viewpoint
Training SCMM Random

1 57.89 / 81.95 / 97.74 30.08 / 80.28 / 95.96 17.29 / 54.14 / 83.46
5 68.42 / 93.98 / 98.50 64.66 / 91.69 / 97.09 18.80 / 48.87 / 85.71

10 78.95 / 96.24 / 99.25 67.67 / 95.69 / 99.25 24.81 / 58.65 / 89.47
20 83.46 / 98.50 / 100.0 73.68 / 97.82 / 99.68 34.59 / 69.17 / 93.23
50 84.21 / 99.25 / 100.0 77.69/ 98.23 / 100.0 49.62 / 80.45 / 92.48

100 84.95 / 98.50 / 100.0 80.02/ 98.61 / 100.0 57.89 / 87.22 / 99.25

Table 8: Retrieval Accuracy (P@1/5/10) for Splatfacto on LERF Dataset with LERF Object Labels

rendered per scene, it still has a significant gap with the Training viewpoint rendering. This is due
to the noisy component in the images severely hindering CLIP’s ability to generate quality image
embedding. For XDecoder, even when large sections of the image are noise, it can still generate some
image embeddings highly associated with the clean regions in an image.
The CLIP model’s performance demonstrates the importance of selecting noise-free high quality
view when performing 3D NGR analysis with VLMs.

B.3 SPLATFACTO P@K RETRIEVAL ACCURACY

In Table 8, we report top-k retrieval accuracy for the Splatfacto model. As shown the in table, the
retrieval accuracy for k equals to 5 and 10 increases as the top 1 retrieval accuracy increases.

B.4 NERFACTO OBJECT LABEL AND LLAVA CAPTION RETRIEVAL

In Table 9, we show the result for Nerfacto model on the LERF dataset. Compared to Splatfacto’s
result in Table 1, we see comparable results. The object label retrieval accuracy slightly decreases
but the LLaVA caption accuracy slightly increases. We believe this is a result of the Nerfacto model
being worse at capturing small details of the objects but still having good overall image rendering
quality.
In addition, we also demonstrate the retrieval accuracy when different sources are used for training
the multivariate Gaussian distribution for noise. Specifically, we use either Gaussian distributions
trained from Nerfacto noise renderings or Splatfacto noise renderings. We found the training from the
same source as the model (Nerfacto) to work slightly better, but the different in accuracy is minimal.

B.5 MULTIPLE QUERIES RETRIEVAL

As the scenes are complex and may contain similar objects, users may want to retrieve a scene that
satisfies several descriptions or contains several objects. We perform another experiment allowing the
users to specify multiple queries at a time.
For evaluation purposes, we use combinations of 1, 2, or 5 object labels from LERF. To combine the
queries, we calculate the product of the exponential of the maximum cosine similarity for each scene
with respect to each query (q). The top scene, indexed by n, is identified as follows:

n = argmax
n

Q∏
q=1

(
exp(1 + max

l∈{1,...,L}
cossim(en,l, eq))

)
where L is the total number of visual embeddings for each scene. A notable challenge arises when
all embeddings are stored in a single database, requiring the calculation of cosine similarities for
all stored embeddings to retrieve the top scene, which is highly inefficient. To address this, we can

26



Published as a conference paper at ICLR 2025

Object Label LLaVA Caption
Training SCMM Random Training SCMM Random

Noise
Gaussian Nerfacto Splatfacto Nerfacto Splatfacto

1 52.79 24.24 23.89 14.86 55.37 23.03 21.46 17.6
5 63.60 61.45 59.36 19.37 64.08 67.64 66.73 21.54

10 67.21 65.74 64.68 19.82 69.30 71.52 70.25 29.64
20 76.76 65.52 63.60 34.23 71.42 73.84 72.01 40.76
50 75.86 72.43 71.92 40.09 75.09 75.18 74.55 49.73

100 78.50 72.23 72.50 44.59 75.51 75.63 74.15 55.86

Table 9: Retrieval Accuracy (P@1) for Nerfacto Model on LERF dataset; Noise Gaussian indicates
the Source of Training for the Noise Multivariate Gaussian Distribution

#
Img. Training SCMM Random

1 57.89 / 63.85 / 64.69 30.08 / 29.62 / 29.02 17.29 / 17.69 / 12.41
5 68.42 / 83.82 / 91.08 64.66 / 73.85 / 89.86 18.80 / 18.85 / 12.59

10 78.95 / 91.15 / 98.43 67.67 / 83.08 / 94.76 24.81 / 25.38 / 19.58
20 83.46 / 95.00 / 98.08 73.68 / 84.23 / 95.45 34.59 / 36.15 / 31.99
50 84.21 / 95.77 / 99.65 77.69 / 88.46 / 99.65 49.62 / 57.69 / 64.34

100 84.95 / 96.54 / 99.83 80.02 / 90.01 / 99.48 57.89 / 71.15 / 87.76

Table 10: Retrieval Accuracy (P@1) for Splatfacto on LERF dataset with Multiple Labels (1/2/5)

store a set of embeddings per scene, making the calculation scale linearly with the number of scenes
instead of the number of visual embeddings. If multiple query retrieval is unnecessary, storing all
visual embeddings in a single database remains an option.
Overall, accuracy significantly improves as the number of labels increases, achieving over 99%
accuracy when 5 labels are used.

B.6 MIXED NGR RETRIEVAL ACCURACY

In Table 11, we show the retrieval accuracy when a mixture of Splatfacto and Nerfacto models are
stored in the database. In our system, rendering, and then performing analysis from different models
is very easy. As shown in the table, our system achieves a high level of accuracy even when the stored
NGRs are different.

B.7 SCANNET++ RETRIEVAL ACCURACY COMPARED WITH LANGSPLAT

In Tables 12 and 13, we present a comparison between our method and LangSplat on the ScanNet++
dataset, using either object labels or LLaVA caption sentences as queries. To make the database
for storing LangSplat features manageable, we only store 200 embeddings per image, randomly
selected from all the embeddings. Our approach consistently achieves higher retrieval accuracy
than LangSplat, particularly when training viewpoints are available. The performance gap is even
more pronounced (almost double) when LLaVA captions are used, as LangSplat struggles to handle
whole image descriptions effectively. Given that ScanNet++ contains highly similar scenes (offices,
bedrooms, living rooms, etc.), we also adapt our multi-object-label approach (Appendix B.5), using it
on multiple sentences. This multi-sentence is unique to our system, as our efficient query process
leverages the small number of embeddings generated during scene analysis. The rapid querying
capability allows us to perform multiple queries with additional sentences, leading to a more robust
collective decision.

B.8 VIEW SELECTION EFFICIENCY ANALYSIS

In Table 14, we perform a speed comparison between the low/high resolution rendering and noise
analysis, as well as the total time for using and not using the hierarchical view selection process. As
seen in the table, rendering 80 additional low-resolution images for each set of 20 high-resolution
images adds less than 50% overhead. Since our algorithm is already very fast in analyzing a 3D scene,
such overhead is relatively small, and the retrieval accuracy is much better compared to rendering
more images from random viewpoints.
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Object Label LLaVA Caption
#

Img.
Viewpoint Viewpoint

Training SCMM Random Training SCMM Random
1 54.28 28.46 14.92 49.43 33.24 14.24
5 65.68 62.84 15.84 67.04 59.26 24.67
10 72.24 63.12 22.42 69.00 62.85 26.85
20 79.49 75.43 32.43 71.42 64.63 31.46
50 80.02 77.43 46.74 72.80 65.43 33.75

100 80.67 79.62 54.34 74.63 71.86 45.64
Table 11: Retrieval Accuracy (P@1) for a 7-to-6 mix of Splatfacto Model and Nerfacto Model
Representing the LERF scenes

Object Label
Ours LangSplat

#
Img.

Viewpoint Viewpoint
Training SCMM Training

10 41.62 39.63 38.19
20 50.06 47.34 43.68
50 58.23 54.39 51.52

Table 12: Retrieval Accuracy (P@1) for Splatfacto Model with Object Labels for ScanNet++ Scenes.
Comparison between ours and LangSplat.

B.9 LERF AND LANGSPLAT EXPLAINATIONS

In this section, we discuss the implementation of LERF and LangSplat and address the issues in
terms of computation and storage when adapting these methods to a retrieval system.

LERF LERF embeds multi-scale image embeddings from open-clip into a "semantic radi-
ance field" (Cherti et al., 2022). While the original RGB radiance field only outputs 4 values
(RGB+density), the semantic field outputs features of size 512 as open-clip image features have size
512. To encode such large features effectively, significantly larger MLPs and hash-tables are used
for the semantic field compared to the RGB field encoding. For LERF, overhead in computing and
storage for both training and rendering stems from this excessively large semantic field.

LangSplat LangSplat uses the 3D Gaussians to encode the semantic features. They used SAM
to segment the training images into different segments and used open-clip to encode each segment
into an embedding to train a "Semantic 3D Gaussian" (Kirillov et al., 2023). However, instead of
encoding features of size 512, they encode features of size 3. This is achieved via training a per-scene
autoencoder that maps the feature of size 512 to a feature of size 3 during training. The "Semantic
3D Gaussian" is relatively small since it only encodes feature size 3. However, such a feature is not
comparable between scenes as the autoencoders are trained on a per-scene basis. To perform retrieval
across different scenes, we decode the features to size of 512 using the trained autoencoders, and
store them in the database. In summary, for training, the LangSplat overhead comes for open-clip
embedding generation for a large number of segments created by SAM and training the autoencoder.
For rendering, the LangSplat overhead comes from converting pixel-wise size 3 feature to size 512
feature with the trained autodecoder.

B.9.1 LERF AND LANGSPLAT SPEED AND STORAGE

For NGR Training, our methods uses the nerfstudio’s Splatfacto and Nerfacto implementations as is.
Our training of the RGB-only NGRs resulted in significantly simpler pipelines and lower overhead
than LERF and LangSplat. Below, we will explain the LERF and LangSplat overhead at a high level,
and would refer readers to their paper for more details (Kerr et al., 2023; Qin et al., 2023).
LERF’s training overhead comes from training the field to output visual embeddings alongside the
RGB values. The visual embedding’s size (512) is significantly larger than the RGB’s size (3). As a
result, LERF chose to use a large hash-table feature grid to store and learn the visual embeddings. In
addition, they used a multi-scale visual embedding, which included 30 levels of scales. If one renders
all 30 levels of scales, the total embedding size for 1 image is 45GB (assuming a resolution of 994
x 738 as in the LERF data). In LERF, only one scale is selected during the interactive session for
visualization purposes. However, such a selection depends on the text prompt. In a retrieval setting
like ours, this is impossible. Therefore, to make implementation feasible, we chose 3 scales instead
of 30, which still leads to a very large size but experiments could be conducted.
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LLaVA Caption
Ours LangSplat

#
Img.

Viewpoint Viewpoint
Training
1 Sent

SCMM
1 Sent

SCMM
5 Sent

SCMM
10 Sent

SCMM
20 Sent Training

10 20.56 19.12 31.46 35.66 36.24 8.17
20 26.68 24.69 28.92 37.72 39.79 9.52
50 30.92 27.57 29.46 40.53 43.58 11.28

Table 13: Retrieval Accuracy (P@10) for Splatfacto Model with LLaVA Captions for ScanNet++
Scenes. We optionally use multiple sentences for retrieval. Comparison between ours and LangSplat.

1x Low Res 1x High Res 20x High Res 80x Low + 20 High
Rendering Time 0.0029 0.036 0.72 0.952

Noise Analysis Time 0.005 0.005 0.31 0.5
Total Time 0.0079 0.041 1.03 1.45

Table 14: Rendering Technique Speed Comparison

To further complicate things, LERF uses negative prompts to increase the relevancy of the positive
prompt. To calculate the relevancy in consideration of negative prompts, one need simultaneous
access to the positive prompt embedding, LERF field encoded visual embedding and negative
prompt embedding. From a retrieval perspective, this requires calculation between the positive query
embedding with all visual embeddings (which is 4GB per image assuming 3 scales and 45GB per
image assuming 30 scales). This is impossible to calculate directly. In our testing, we first select the
top 10 images that have the highest cosine similarity match, and then calculated the relevancy score
as specified in the LERF paper at 3 scales.
LangSplat’s actual 3DGS process is relatively fast, after the main RGB 3DGS is trained, a secondary
one that encodes the visual embeddings (in size 3) is trained on top of it. Its main overhead comes
from the segmentation of the images (with SAM), and encoding each segmentation separately (CLIP),
and training a per-scene autoencoder that maps the visual embedding from size 512 to 3. LangSplat is
slow as its rendered visual embedding (size 3) need to be decoded to size 512 with the autoencoders
cross-scene comparison. This is expensive as one visual embedding is rendered for every 4 pixels,
and the autoencoders need to be run many times.

B.10 LERF VISUALIZATIONS

As shown on the left of Figure 20, the cosine similarity exhibits almost no variation despite the
query coffee mug should respond to the "coffee mug" in the top scene and "coffee cup" in the bottom
scene. Variations in the cosine similarity only become visible in the middle column, where the min
and max cosine similarity is used to create the color scale. On the right column, we demonstrate a
relevancy map calculation based on the 3 multi-scale features we can store on disk for lookup (instead
of the 30 scales originally used in the LERF paper). As shown in the right column, the coffee mug
is incorrectly matched with the "coffee cup" in the incorrect scene. But most importantly, it is not
showing relevance with the coffee mug in the correct scene.
In summary, adapting solutions like LERF for the retrieval process is non-trivial, leading to significant
storage and speed overhead while reaching low accuracy.

C ADDITIONAL VISUALIZATIONS

C.1 ADDITIONAL SMART CAMERA MOVEMENT VISUALIZATION

In Figure 21, we visualize the smart camera movement allowing movement in depth for the camera
origin.
In Figure 22, we visualize smart camera movement without movement in depth, which is what we
use in the system for retrieval. As shown in the image, from a viewpoint looking at the ceiling, which
is an uncovered area during training image sequence capture, our solution moves to a clear view of
the scene in two steps.
In Figure 23, we show another challenging case where the initialization point is mostly random noise.
Our Smart Camera Movement efficiently moves the viewpoint to a location where the person can be
clearly viewed.
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Figure 20: LERF cosine similarity and relevancy map given query coffee mug. Left: cosine similarity
visualized in scale [-1, 1]. Middle: cosine similarity scaled [min cos-sim, max cos-sim] of the
individual image. Right: relevancy map calculated with the assist of negative prompts.

(a) location 1 (b) location 2 (c) location 3

(d) location 4 (e) location 5 (f) location 6

(g) location 7 (h) location 8 (i) location 9
Figure 21: Camera Movement Allowing Changes in Depth

C.2 SMART CAMERA MOVEMENT COMPARISON BETWEEN LOW AND HIGH RESOLUTION

In Figure 24 and Figure 25, we visualize the difference between low and high-resolution renderings
in terms of noise analysis and smart camera movement. We observe that the contrast of clean score
between clean and noisy regions is lower for the lower resolution, but there is still a difference
between the noisy and non-noisy regions, resulting in the camera moving in the right direction.
Therefore, we always use low-resolution rendering during Smart Camera Movement iterations.
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(a) Step 1 RGB (b) Step 1 Clean Score (c) Step 1 Extended Clean Score

(d) Step 2 RGB (e) Step 2 Clean Score (f) Step 2 Extended Clean Score

(g) Step 3 RGB (h) Step 3 Clean Score (i) Step 3 Extended Clean Score
Figure 22: Smart Camera steps for the bouquet scene in different views: RGB, Clean Score, and
Extended Clean Score.

C.3 FAILED RETRIEVAL VISUALIZATIONS

We demonstrated successful retrievals in the main paper. In this section, we demonstrate additional
retrieval failure cases. We observe that our framework generally avoids unreasonable matches. Most
incorrect matches are due to inherent difficulties and ambiguities in object labeling. Figure 26
visualizes these failure cases. In the first row, the prompt table from the bouquet scene matched with
a table in the donuts scene. This is a common issue with objects that appear in multiple scenes but
are labeled only once. In the second row, the lamp shade prompt retrieved the back of a camera
flash, which somewhat resembles a lamp shade. In the third row, the "incorrect" retrieval seems
more reasonable as the sheep in the groundtruth scene is very small. In the fourth row, the foam
darts prompt was misunderstood by the VLM, retrieving a completely unrelated item. Even the top
match from the groundtruth scene was incorrect, as the foam darts are small foam bullets for a NeRF
gun, as shown in Figure 26(e). We anticipate that our solution’s ability to understand foreign objects
will improve with future VLM advancements. However, additional research is needed to address
ambiguities.

C.4 LLAVA CAPTION AND RETRIEVAL VISUALIZATIONS

In Figure 27, we visualize the retrieved scene (image) given LLaVA captions as queries. As shown in
the figure, the retrieved image matches closely with the image used to generate the caption for the
success case. We visualize the failure cases in Figure 28, the failure cases show that the query is
misinterpreted by the XDecoder model. Note that the LLaVA caption itself can also be inaccurate,
for example, LLaVA referred to the donuts as orange.

C.5 RANDOM VIEWPOINT RENDERING VISUALIZATION

We visualize the random noise from pre-trained NGRs in Figure 29. Notice that across very different
scenes and datasets, the noise pattern is very similar (flat cloud region or elongated Gaussian blobs).
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(a) Step 1 RGB (b) Step 1 Clean Score (c) Step 1 Extended Clean Score

(d) Step 2 RGB (e) Step 2 Clean Score (f) Step 2 Extended Clean Score

(g) Step 3 RGB (h) Step 3 Clean Score (i) Step 3 Extended Clean Score
Figure 23: Smart Camera steps for the handhand scene in different views: RGB, Clean Score, and
Extended Clean Score.

Existing works evaluate novel view synthesis at viewpoints that are not far from the training image
viewpoints. For example, in previous studies, the quality of ScanNet novel view rendering is assessed
by using every 8th image in the video sequence for evaluation, with all other images used for training.
This approach results in evaluation images that are very close to the training images in terms of
viewpoint (Dai et al., 2017; Lao et al., 2023; Bian et al., 2022). Nerfbusters identified this issue
and proposed evaluating based on images captured from a second trajectory, different from the
training image trajectory. However, even with 3D diffusion modules designed to remove artifacts,
the rendering quality remains significantly lower than when rendering viewpoints along the training
image trajectory (Warburg et al., 2023). Although the second trajectory in Nerfbusters captures
different paths, it still includes similar areas of the scene. Our approach, using completely randomly
chosen viewpoints, is markedly different from the training images.
Some NGR works utilize diffusion models for 3D object generation from text or images or to enhance
the quality of 3D models given extremely sparse image captures (Liu et al., 2023d; Poole et al., 2022;
Zou et al., 2023b). We do not evaluate these methods, as the majority of NGRs do not employ them,
and these diffusion models tend to hallucinate the 3D scene rather than accurately capture it (Zou
et al., 2023b; Chen et al., 2023). In the datasets used by our work, each scene contains hundreds to
thousands of training images. This distinguishes our training setup from those focusing on sparsity.
The noise artifacts we observe are due more to incomplete coverage than to training image sparsity,
which we believe is an important issue for real-world use and understanding of NGRs not receiving
sufficient attention (Warburg et al., 2023).

C.6 NOISE ANALYSIS AND CAMERA MOVEMENT IN SPLATFACTO AND NERFACTO
COMPARISON

In Figure 30, we present additional visualizations of noise analysis and camera movement behavior for
Splatfacto and Nerfacto using the same noise distribution. Specifically, we employ the noise Gaussian
distribution trained on Splatfacto noise and evaluate it on renderings from the same viewpoints for
both Splatfacto and Nerfacto.
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(a) Step 1 RGB (b) Step 1 Clean Score (c) Step 1 Extended Clean Score

(d) Step 2 RGB (e) Step 2 Clean Score (f) Step 2 Extended Clean Score

(g) Step 3 RGB (h) Step 3 Clean Score (i) Step 3 Extended Clean Score
Figure 24: Smart Camera steps low resolution: RGB, Clean Score, and Extended Clean Score.

We observe two key results. First, the noise distribution consistently assigns significantly higher
clean scores to clean areas compared to noisy ones, irrespective of whether the noise originates
from Splatfacto or Nerfacto. Second, the noise distribution distinguishes slightly more sharply
between Splatfacto noise and clean content than between Nerfacto noise and clean content. While
this difference is observable, it is minor and has minimal impact on the eventual camera movement.

C.7 COMPLEX PROMPTS AND SCENE VISUALIZATION

In Figures 31, 32, 33, 34 and 35, we provide additional visualizations for different types of prompts.
Specifically, Figure 31 focuses on complex prompts describing subtle relationships between objects
(e.g., "a group of," "near," "attached to"). The query in Figure 31(a) also incorporates an environmental
style ("A garden"), which is distinct from the rest of the LERF scenes, highlighting the VLM’s ability
to generalize to diverse contexts. For the query in Figure 31(d), we demonstrate the retrieval result
when the object is partially occluded. In this case, the VLM successfully matches the text query with
an unoccluded viewpoint of the object as the top choice, while an occluded viewpoint is matched as
a non-top choice. This demonstrates the VLM’s ability to handle object occlusion to some extent
but also highlights the importance of providing high-quality renderings from multiple viewpoints
through SCMM.
Figure 32 presents visualizations for retrieving glass objects, which exhibit distinct lighting properties
compared to most other materials. Figure 35 retrieves "bright sunlight", which is a unique envi-
ronmental style and lighting condition that is applicable to outdoor scenes or scenes with windows.
Figure 33 illustrates retrieval results for the prompt "A wood object," showcasing the system’s
capability to identify various objects composed of a specific material. Lastly, Figure 34 evaluates the
system’s performance with the prompt "A round object," focusing solely on object shape. We note
that not all retrieved results are correct—for example, some "glass-like" objects, such as plastic cups,
are retrieved. These examples highlight challenges in resolving certain complex associations, which
could benefit from further advancements in VLMs. Retri3D, as a framework, is well-positioned to
take advantage of such advancements as more powerful VLMs become available.
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(a) Step 1 RGB (b) Step 1 Clean Score (c) Step 1 Extended Clean Score

(d) Step 2 RGB (e) Step 2 Clean Score (f) Step 2 Extended Clean Score

(g) Step 3 RGB (h) Step 3 Clean Score (i) Step 3 Extended Clean Score
Figure 25: Smart Camera steps for high resolution: RGB, Clean Score, and Extended Clean Score.

In summary, the VLM generally succeeds in associating complex queries with the objects described
in the images, effectively utilizing the renderings provided by Retri3D’s SCMM module. However,
certain cases reveal limitations, such as the misclassification of visually similar objects. The resolution
of these limitations could benefit from continued development in VLMs.

C.8 CLEAN SCENE SCMM AND RANDOM VIEWPOINT BEHAVIOR COMPARISON

In Figure 36, we present the blender lego scene as an example of a well-covered scene without
significant floater noise artifacts. While floater artifacts are minimal due to the high-quality training
image coverage, we demonstrate that SCMM still offers advantages over random viewpoint sampling.
Specifically, random viewpoint sampling may occasionally generate views that are extremely close to
the object or even inside it. Such views can cause the rendered object to appear "noise-like" because
Gaussian blobs, which are typically trained on external perspectives of objects, are not optimized to
represent these unconventional viewpoints.
SCMM mitigates this issue by guiding the camera to viewpoints that are more suitable for rendering
and analysis, avoiding positions where Gaussian blobs fail to represent the scene effectively. This
results in renderings that maintain higher visual quality and semantic consistency, even in scenes
that are otherwise well-covered and free from floater artifacts. This example highlights how SCMM
enhances the robustness of rendering and retrieval processes, particularly in challenging scenarios
involving suboptimal camera positions.
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(a) table groundtruth scene (b) table retrieved scene

(c) lamp shade groundtruth scene (d) lamp shade retrieved scene

(e) sheep groundtruth scene (f) sheep retrieved scene

(g) foam darts groundtruth scene (h) foam darts retrieved scene
Figure 26: Failed retrievals from LERF dataset. Groundtruth scene containing the label vs. Retrieved
scene.
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(Success) Query: A kitchen with a white piano, a table with a vase of flowers, and a chair.

(Success) Query: A table with a sandwich and a cup of coffee on it, along with a box of
donuts.

Figure 27: Successful retrievals with LLAVA. Left is the image that generated the LLaVA caption.
Right is the top match image from the retrieved scene. The blue mask over the entire image indicates
the whole image embedding is matched.

36



Published as a conference paper at ICLR 2025

(Fail) Query: A room with a glass door and a desk with a box of oranges on it.

(Fail) Query: A man is walking through a large room with a table full of donuts and a
laptop.

Figure 28: Failed retrievals with LLAVA. Left is the image that generated the LLaVA caption. Right
is the top match image from the retrieved scene. The blue mask over a section of the image indicates
the section image embedding is matched.
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Figure 29: Splatfacto Noise Visualization. One scene per row. From top to bottom: LERF scene
bouquet, donuts, fruit_aisle, sunnyside; ScanNet++ scene 036bce3393, 6cc2231b9c
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RGB Clean Score Clean Score Extended

Hand Hand GS
(a) (b) (c)

Hand Hand NeRF
(d) (e) (f)

Espresso GS
(g) (h) (i)

Espresso NeRF
(j) (k) (l)

Shoe Rack GS
(m) (n) (o)

Shoe Rack NeRF
(p) (q) (r)

Figure 30: Comparison of Noise Analysis and Camera Movement for Splatfacto and Nerfacto. We
note that the location of noise occurrence can be different due to different models and initializations.
We observe that the noise between Splatfacto and Nerfacto can be similar, and more importantly, the
noise Gaussian Distribution trained with Splatfacto noise can direct the camera to cleaner areas in
both Splatfacto and Nerfacto.

39



Published as a conference paper at ICLR 2025

1st choice 2nd choice
(a) Prompt: A garden with a statue of bird on rocks, a bamboo fence, and a statue of Buddha.

1st choice 2nd choice
(b) Prompt: A group of ducks are sitting on a pile of rocks near a tree and a pink flower bush.

1st choice 2nd choice
(c) Prompt: A metal railing is attached to a stone wall, and the railing is covered in black paint.

1st choice 5th choice
(d) Prompt: A duck on a cube.

Figure 31: Visualization of complex object relations within more intricate scenes. Prompts (a, b, c)
are generated by LLaVA, while prompt (d) is hand-designed. (a) Given a complex prompt describing
multiple objects, the XDecoder VLM successfully identifies the associated scene. The top choice
corresponds to the whole image embedding (hence the mask is associated with the entire image),
while the second choice focuses on the bird object in the scene. (b) For a prompt involving complex
object relations such as "group of" and "near," the VLM identifies multiple viewpoints associated
with the prompt. Since the segmentation masks are created during scene analysis (prior to prompt
availability), they may not perfectly align with the prompt’s description. (c) Although the LLaVA
caption’s object association "attached" may not be the most suitable description, the VLM still
identifies images closely related to the prompt. (d) The VLM successfully identifies the duck on
a cube from a cluster of objects. Its top choices highlight viewpoints where both the duck and the
cube are clearly visible. Additionally, we present a lower-ranked choice (d, right), where the VLM
identifies the combination of the duck and cube from an occluded perspective. The term "cube" was
hand-designed, as we found that XDecoder does not recognize "Rubik’s Cube."
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(a) 1st choice (b) 2nd choice (c) 3rd choice

(d) 4th choice (e) 5th choice (f) 6th choice
Figure 32: Top choices for the prompt "A glass mug," with repeated associations to the same object
within the scene ignored. Strictly speaking, the 1st and 4th choices are glass mugs. However, objects
similar to glass mugs, such as the glass cup in the 2nd choice and the (likely) plastic cup in the 3rd
choice, are selected first as they are more easily identifiable.

(a) Bouquet (b) Teatime (c) "Waldo Kitchen"

(d) Figurines (e) Sunnyside (f) "Dozer Nerfgun Waldo"
Figure 33: Selected retrievals for the prompt "A wood object" from different scenes. We observe that
the VLM successfully identifies various wood objects as well as wood-like objects, such as the table
in "Dozer Nerfgun Waldo."
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(a) 1st choice (b) 2nd choice

(c) 3rd choice (d) 4th choice
Figure 34: Retrievals in the scene "figurine" given the prompt "A round object." The scene "figurine"
is used to demonstrate the retrieval of a specific shape (round). While the scene contains multiple
round objects, and the VLM successfully identifies most of them, the system also misses some round
objects, such as the green apple.

(a) Sunnyside (b) Figurines (c) Teatime
Figure 35: The retrieval results for the prompt "Bright sunlight." Retrieved images either contain
outdoor sky, or windowed view of outdoor sky.
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(a) Renderings of blender lego object with SCMM (with translation and rotation)

(b) Renderings of blender lego object with random
Figure 36: Renderings from SCMM and random in an almost noise-free scene (nerf-synthetic blender
lego). Due to sufficient training image coverage, floater artifacts are minimal in the lego scene.
However, random viewpoint rendering may capture the object from undesirable angles, causing the
object itself to appear "noise-like."
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