
IMP-MARL: a Suite of Environments for Large-scale
Infrastructure Management Planning via MARL

*Pascal Leroy1♯, *Pablo G. Morato2♭, Jonathan Pisane3, Athanasios Kolios2, Damien Ernst1,4

1Montefiore Institute, University of Liège, 2Technical University of Denmark, 3Thales Belgium
4LTCI, Telecom Paris, Institut Polytechnique de Paris

♯pleroy@uliege.be, ♭pgmdo@dtu.dk
*Authors contributed equally

Abstract

We introduce IMP-MARL, an open-source suite of multi-agent reinforcement
learning (MARL) environments for large-scale Infrastructure Management Plan-
ning (IMP), offering a platform for benchmarking the scalability of cooperative
MARL methods in real-world engineering applications. In IMP, a multi-component
engineering system is subject to a risk of failure due to its components’ damage con-
dition. Specifically, each agent plans inspections and repairs for a specific system
component, aiming to minimise maintenance costs while cooperating to minimise
system failure risk. With IMP-MARL, we release several environments including
one related to offshore wind structural systems, in an effort to meet today’s needs to
improve management strategies to support sustainable and reliable energy systems.
Supported by IMP practical engineering environments featuring up to 100 agents,
we conduct a benchmark campaign, where the scalability and performance of
state-of-the-art cooperative MARL methods are compared against expert-based
heuristic policies. The results reveal that centralised training with decentralised
execution methods scale better with the number of agents than fully centralised
or decentralised RL approaches, while also outperforming expert-based heuristic
policies in most IMP environments. Based on our findings, we additionally out-
line remaining cooperation and scalability challenges that future MARL methods
should still address. Through IMP-MARL, we encourage the implementation of
new environments and the further development of MARL methods.

1 Introduction

Intelligent agents trained with reinforcement learning (RL) have proven successful in solving com-
plex decision-making tasks, e.g., games [1–3], autonomous driving [4, 5], human healthcare [6],
nuclear fusion [7], among others. RL training approaches where multiple agents interact together are
commonly denoted as multi-agent reinforcement learning (MARL) methods. In certain applications,
these agents must cooperate to accomplish a common goal, leading to the special case of cooperative
MARL. To support the advancement of cooperative MARL methods, multiple environments based on
games and simulators have served as benchmark testbeds, e.g., the particle environment [8], StarCraft
Multi-Agent Challenge (SMAC) [9, 10], and MaMuJoCo [11]. Benchmarking on environments
based on games and simulators is useful for the development of MARL methods in specific collabo-
rative/competitive tasks, but additional challenges may still be encountered when deploying MARL
methods in real-world applications [12].

Infrastructure Management Planning (IMP) is a contemporary application that responds to current
societal and environmental concerns. In IMP, inspections, repairs, and/or retrofits should be timely
planned in order to control the risk of potential system failures, e.g., bridge and wind turbine failures,

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.

Actions

System failure risk

t t+1

R += 0R += Rrep

R += Rins

R += RinsR += 0

R += Rf R += Rf

R += 0

Damage size

Probability

Component 1

Component 2

Component n

Figure 1: Overarching representation of an infrastructure management planning (IMP) problem.
The system failure risk is defined as a function of the probability distribution over the components’
damage condition. To control the system failure risk, components can be inspected or repaired at
each time step t and, typically, an agent controls one component. The objective of IMP’s problem is
the maximisation of the expected sum of discounted rewards, by balancing the system failure risk
Rf against inspections Rins and repairs Rrep, all three being negative rewards. Here, we show three
components with the same damage probability at time step t. When a component is not inspected
nor repaired, its damage probability evolves according to a deterioration process. If a component is
inspected, information from the inspection is also considered when updating the damage probability,
and if a component is repaired, the damage probability resets to its initial damage distribution.

among many others [13]. Formally, the system failure risk is defined as the system failure probability
multiplied by the consequences associated with a failure event, typically defined in monetary units.
Due to model and measurement uncertainties, the components’ damage is not perfectly known,
and decisions are made based on a probability distribution over the damage condition, henceforth
denoted as damage probability. The system failure probability is defined as a function of components’
damage probabilities. Starting from its initial damage distribution, each component’s damage
probability transitions according to a deterioration stochastic process, but also according to the
decisions made [13]. Naturally, the damage probability transitions based on its deterioration model
when the component is neither inspected nor repaired, i.e., do-nothing action. If a component
is inspected, its damage probability is updated with respect to the inspection outcome. When a
component is repaired, its damage condition is directly improved and the damage probability resets
to its initial damage distribution. A schematic of a typical IMP problem is shown in Figure 1.

In an effort to generate more efficient strategies for managing engineering systems through the
application of cooperative MARL methods, we introduce IMP-MARL, a novel open-source suite of
multi-agent environments. In IMP-MARL, each agent is responsible for managing one constituent
component in a system, making decisions based on the damage probability of the component. Besides
seeking to reduce component inspection and maintenance costs, agents should effectively cooperate
to minimise the system failure risk. With IMP-MARL, our goal is to facilitate the definition and
implementation of new customisable environments. By jointly minimising system failure risks
and inspection/maintenance costs, more effective IMP policies contribute to a better allocation of
resources from a societal perspective. Furthermore, additional societal impact is also made by
controlling the risk of system failure events. For example, the failure of a wind turbine may affect
the available electricity production. Beyond economic considerations, our proposed IMP-MARL
framework can also be used to include sustainability and societal metrics within the objective function
by accounting for those directly in the reward model.

To assess the capability of cooperative MARL methods for generating effective policies for IMP
problems involving many components, we additionally benchmark here state-of-the-art cooperative
MARL methods in terms of scalability and optimality. Most of the benchmarked methods are
centralised training with decentralised execution (CTDE) methods [14, 15], in which each agent

2

acts based on only local information, while global information can be utilised during training.
Specifically, we benchmark five CTDE methods: QMIX [16], QVMix [17], QPLEX [18], COMA
[19], and FACMAC [11], along with a decentralised method, i.e., IQL [20], and a centralised one,
i.e., DQN [1]. All tested MARL methods are compared against expert-based heuristic policies,
which can be categorised as a state-of-the-art method to deal with IMP problems in the reliability
engineering community [13, 21]. In our study, three sets of IMP environments are investigated,
including one related to offshore wind structural systems, where MARL methods are tested with up to
100 agents. Additionally, these environments can be set up with two distinct reward models, and one
of them incorporates explicit cooperative objectives. For the sake of enabling the reproduction of any
published result, we have made our best effort to ensure that the necessary code is publicly available.

Our contributions can be outlined as follows:

• We introduce IMP-MARL, a novel open-source suite of environments, motivating the development
of scalable MARL methods as well as the creation of new IMP environments, enabling the effective
management of multi-component engineering systems and, as such, leading to a positive societal
impact.

• In an extensive benchmark campaign, we test state-of-the-art cooperative MARL methods in
very high-dimensional IMP environments featuring up to 100 agents. The resulting management
strategies are evaluated against expert-based heuristic policies. We publicly provide the source code
for reproducing our reported results and for easing direct comparisons with future developments.

• Based on our results, we draw relevant insights for both machine learning and reliability engi-
neering communities, further highlighting important challenges that must still be resolved. While
cooperative MARL methods can learn superior strategies compared to expert-based heuristic poli-
cies, the relative performance benefit decreases in environments with over 50 agents. In certain
environments, cooperative MARL policies are characterised by a high variance and sometimes
underperform expert-based heuristic policies, suggesting the need for further research efforts.

2 Related work

MARL environments Cooperative MARL has a long-standing history, and decentralised approaches
such as IQL were already originally proposed in 1993 [20]. There has been a recent interest in the
development of CTDE methods [14, 15] (see Section 4.1), inducing the creation of new environments
with cooperative tasks. With continuous action spaces, popular environments include the particle
environment [8], a suite of communication oriented environments with cooperative scenarios, and
MaMuJoCo [11], which aims at factorising the decision of MuJoCo [22], a physics-based simulator.
In contrast, the StarCraft multi-agent challenge (SMAC) [9] and its upgraded version SMACv2
[10] are probably the most studied environments with discrete action spaces. SMAC is based on
the StarCraft II Learning Environment [23] with a suite of micro-management challenges where
each game unit is an independent agent. Other cooperative environments based on game simulators
include the Hanabi Challenge [24], a "cooperative solitaire" between two and five players, and
Google Research Football [25], a football game simulator. Cooperative MARL methods are mostly
benchmarked on these games and simulators, but also on real-world applications: target coverage
control (MATE) [26], train scheduling (Flatland-RL) [27], traffic control (CityFlow) [28], multi-robot
warehouse (RWARE) [29][30]. Oroojlooy and Hajinezhad [12] provide a review of cooperative
MARL, including a more detailed list of applications. IMP-MARL introduces two key advancements:
support for environments with up to 100 agents and seamless creation of diverse IMP environments.
This enables the utilisation of RL in real-world scenarios, ranging from complex factories with
heterogeneous components to offshore wind farms with multiple homogeneous components.

Infrastructure management planning methods Recent heuristic-based inspection and maintenance
(I&M) planning methods generate IMP policies based on an optimised set of predefined decision
rules [21, 31]. By evaluating only a set of decision rules out of the entire policy space, the previously
mentioned approaches might yield suboptimal policies [13]. In the literature, one can also find
POMDP-based methods applied to the I&M planning of engineering components, in most cases,
relying on efficient point-based solvers [13, 32, 33]. When dealing with multi-component engineering
systems, solving point-based POMDPs becomes computationally complex. In that case, the policy and
value function can be approximated by neural networks, enabling the treatment of high-dimensional
engineering systems. Specifically, actor-critic, and value function-based methods have been proposed
in the literature for the management of engineering systems [34–36] with some of them relying on

3

CTDE methods [37, 38]. Note that no open-source methods nor publicly available environments
are provided in the above-mentioned references. This emphasises the importance of our efforts to
enhance comparison and reproducibility within the reliability engineering community.

3 IMP-MARL: A suite of Infrastructure Management Planning environments

In IMP, the damage condition of multiple components deteriorates stochastically over time, inducing
a system failure risk that is penalised at each time step. To control the system failure risk, components
can be inspected or repaired, yet, incurring additional costs. The objective is the minimisation of the
expected sum of discounted costs, including inspections, repairs, and system failure risk. This can be
achieved through the agents’ cooperative behaviour, assigning component inspections and repairs
while jointly controlling the system failure risk. The introduced IMP decision-making problem can
be modelled as a decentralised partially observable Markov decision process (Dec-POMDP).

3.1 Preliminaries

A Dec-POMDP [39] can be defined by a tuple [S,Z,U , n,O,R, P, γ], where n agents simultaneously
choose an action at every time step t. The state of the environment is st ∈ S where S is the set of states.
The observation function O : S × {1, .., n} → Z maps the state to an observation oat ∈ Z perceived
by agent a at time t, where Z is the observation space. Each agent a ∈ {1, .., n} selects an action
ua
t ∈ Ua, and the joint action space is U = U1 × ..× Un. After the joint action ut ∈ U is executed,

the transition function determines the new state with probability P (st+1|st,ut) : S2 × U → R+,
and rt = R(st+1, st,ut) : S2 ×U → R is the team reward obtained by all agents. An agent’s policy
is a function πa(ua

t |τat , oat) : (Z × Ua)
t → R+, which maps its history τat ∈ (Z × Ua)

t−1 and its
observation oat to the probability of taking action ua

t . The joint policy is denoted by π = (π1, .., πn).
The cumulative discounted reward obtained from time step t over the next T time steps is defined by
Rt =

∑T−1
k=0 γkrt+k and γ ∈ [0, 1) is the discount factor. The goal of agents is to find the optimal

joint policy that maximises the expected Rt during the entire episode: π∗ = argmaxπ E[R0|π].

3.2 Environments formulation

States and observations As introduced, each agent in IMP perceives oat , an observation corresponding
to its respective component damage probability and the current time step. Each component damage
probability transitions based on a deterioration model, defined according to physics-based engineering
models, e.g., numerical simulators and/or analytical laws [32]. The damage probability is also updated
based on maintenance decisions, as explained in Section 1. Since the components’ damage is not
perfectly known, the state of the Dec-POMDP is defined as the collection of all components’ damage
probabilities along with the current time step: st = (o1t , .., o

n
t , t).

Actions and rewards Each agent controls a component and collaborates with other agents in order to
minimise the system failure risk while minimising local costs associated with individual repair and/or
inspection actions. At each time step t, an agent decides ua

t between (i) do-nothing, (ii) inspect, or
(iii) repair actions, as described in Section 1. Both inspection and repair actions incur significant costs,
formally included in the Dec-POMDP framework as negative rewards, Rins and Rrep, respectively.
Moreover, the system failure risk is defined as Rf = cF · pFsys

where pFsys
is the system failure

probability and cF is the associated consequences of a failure event, encompassing economic,
environmental, and societal losses. In IMP, we include two reward models. The first is a campaign cost
model where a global cost, Rcamp, is incurred if at least one component is inspected or repaired, plus
a surplus, Rins + Rrep, per inspected/repaired component. This campaign cost explicitly incentivises
agents to cooperate. The second is a no campaign cost model, where the campaign cost is set equal
to 0 (i.e., Rcamp = 0), and only component inspections and repairs costs are considered. Acting on
finite-horizon episodes that span over T time steps, all agents aim at maximising the expected sum of
discounted rewards E[R0] = E

[∑T−1
t=0 γt

[
Rt,f +

∑n
a=1

(
Ra

t,ins +Ra
t,rep

)
+Rt,camp

]]
.

Real-world data While IMP policies are trained based on simulated data, they policies can then be
deployed to applications where real-world streams of data are available. In that case, the damage
condition of the components is updated based on collected real-world data, e.g., inspections.

4

system fails repair
inspection

campaign cost
component costcomponent fails

(a) A k-out-of-n system environment. (b) An offshore wind farm environment.

no correlation correlation

(c) Uncorrelated and correlated initial damage distribution.

++ + +

(d) A campaign cost environment.

Figure 2: Visual representation of available IMP-MARL environment sets and options. In 2a, a
4-out-of-5 system fails if 2 or more components fail. In 2b, a wind turbine fails if any constituent
component fails. In 2c, when the environment is under deterioration correlation, the information
collected by inspecting one component also influences uninspected components. In 2d campaign cost
environments, a global cost is incurred if any component is inspected and/or repaired plus a surplus
per inspected/repaired component.

3.3 IMP-MARL environments

With IMP-MARL, we provide three sets of environments to benchmark cooperative MARL methods.
For all three, components are exposed to fatigue deterioration during a finite-horizon episode, inducing
the growth of a crack over T time steps. The first set of environments is named k-out-of-n system
and refers to systems for which a system failure occurs if (n-k+1) components fail. Those systems
have been widely studied in the reliability engineering community [40]. The second type of generic
environment is named correlated k-out-of-n system and is a variation of the first one for which
the initial components’ damage distributions are correlated. The last one is named offshore wind
farm and allows the definition of environments for which a group of offshore wind turbines must
be maintained. The proposed IMP-MARL environment sets and options are graphically illustrated
in Figure 2, and we hereafter provide details about these sets of environments. Additionally, the
deterioration processes and implementation details are formally described in Appendices B and C.

k-out-of-n system In this set of environments, the components’ damage probability distribution,
p(dat), is defined as a vector of 30 bins, with each bin representing a crack size interval. Here, the
failure probability of one component is defined as the probability indicated in the last bin. The
specificity of a k-out-of-n system is that it fails if (n-k+1) components fail, establishing a direct
link between the system failure probability and the component failure probabilities. For this first
system, the initial damage distribution is statistically independent among components and the time
horizon is T = 30 time steps. Since it is finite, we normalise each time step input and we define
st = (p(d1t), ..., p(d

n
t), t/T) and oat = (p(dat), t/T). The interest of this system is that, in many

practical scenarios, the reliability of an engineering system can be modelled as a k-out-of-n system.

Correlated k-out-of-n system The second set of environments is the same as the first one previously
defined, with the difference that the initial damage distribution is correlated among all components.
Therefore, inspecting one component also provides information about other uninspected components,
depending on the specified degree of correlation. This setting is particularly challenging when
approached from a decentralised scheme without providing components’ correlation information
to individual agents. To further address this issue, and in addition to their 30-bin local damage
probability, the agents perceive correlation information αt common to all, which is updated based on
inspection outcomes collected from all components. We thus have: st = (p(d1t), ..., p(d

n
t), αt, t/T)

5

and oat = (p(dat), αt, t/T). This damage correlation structure is inspired by practical engineering
applications where initial defects among components are statistically correlated due to the fact that
components undergo similar manufacturing processes [13].

Offshore wind farm The third set of environments is different from the previous ones as it considers
a system with a certain number of wind turbines. Specifically, each wind turbine contains three
representative components: (i) the top component located in the atmospheric zone, (ii) the middle
component in the underwater zone, and (iii) the mudline component submerged under the seabed. In
this case, we consider that the mudline component cannot be inspected nor repaired, as it is installed
under the seabed in an inaccessible region and, since only the top and middle components can be
inspected or repaired, two agents are assigned for each wind turbine. Furthermore, the damage
probability, p(dat), is a vector with 60 bins and transitions differently depending on the component
location in the wind turbine, as corrosion-induced effects accelerate deterioration in certain areas.
Besides individual component damage models, inspection techniques and their associated costs also
depend on the component location: it is cheaper to inspect or repair the top components than the
middle one [41]. Moreover, while the mudline component cannot be directly maintained, its damage
probability also impacts the failure risk of a wind turbine. In offshore wind farm environments, a
wind turbine fails if any of its three constituent components fails, and the overall system failure risk
is defined as the sum of all individual wind turbine failure risks. In this case, p(dat) is modelled as a
60-bin vector and the time horizon is T = 20. In this set of environments st = (p(d1t), ..., p(d

n
t), t/T)

and oat = (p(dat), t/T).

Implementation All defined IMP environments are integrated with well-known MARL ecosystems,
i.e., Gym [42], Gymnasium [43], PettingZoo [44] and PyMarl [9], through wrappers. The tested
MARL methods are adopted from PyMarl’s library, but other libraries are also compatible with our
wrappers, e.g., RLlib [45], CleanRL [46], MARLlib [47], or TorchRL [48]. All developments are
available on a public GitHub repository, https://github.com/moratodpg/imp_marl, featuring
an open-source Apache v2 license.

4 Benchmark campaign of MARL methods

4.1 Tested methods

In an extensive benchmark campaign, we test seven RL methods: one fully centralised, one fully
decentralised, and five CTDE approaches. The centralised controller, which has an action space that
scales exponentially with the number of agents, is trained with the fully centralised method DQN [1]
and is the only method taking st as input. Furthermore, the fully decentralised method we test is IQL
[20], in which all agents are independently trained. Regarding the five CTDE methods, we investigate
three value-based methods: QMIX [16], QVMix [17], and QPLEX [18]. They factorise the value
function during training, allowing agents to independently select actions during execution after a
centralised value function is jointly learnt during training. The last two are the CTDE actor-critic
methods COMA [19] and FACMAC [11]. They train independent policy networks and rely on a
single centralised critic during training. Appendix D provides a detailed description of each method as
well as a discussion of other methods of interest that are not included in the benchmark. We selected
these methods for our benchmark study because they are well established and their implementations
are open-sourced and available within the PyMarl framework [9].

All investigated MARL methods are compared against a representative baseline in the reliability
engineering community [21, 36]. This baseline, referred to as expert-based heuristic policy, consists
of a set of heuristic decision rules that are defined based on expert knowledge. The heuristic
policy includes both parametric and non-parametric rules. Parametric decision rules depend on two
parameters: (i) the inspection interval and (ii) the number of inspected components. On the other
hand, non-parametric rules involve taking a repair action after detecting a crack and prioritising
component inspections with higher failure probability. To determine the best heuristic policy, and for
each environment, we evaluate all parametric rule combinations over 500 policy realisations, thereby
identifying the heuristic policy that maximises the expected sum of discounted rewards among all
policies evaluated.

6

https://github.com/moratodpg/imp_marl

Table 1: Number of agents specified in all investigated IMP environments.
IMP environments Number of agents

k-out-of-n system 3 5 10 50 100
Correlated k-out-of-n system 3 5 10 50 100
Offshore wind farm 2 4 10 50 100

4.2 Experimental setup

The above-mentioned seven MARL methods are tested in the three sets of IMP environments defined
in Section 3.3. The environments differ by the number of agents and by whether or not they include a
campaign cost model. The numbers of agents tested in the six types of environments are presented
in Table 1. To objectively interpret the variance associated with the examined MARL methods, 10
training realisations with different seeds are executed in each environment. As explained in Section 3,
an agent makes decisions based on its local damage probability, the current normalised time step,
and sometimes correlation information is additionally provided; while the state, used by DQN and
CTDE methods, encompasses all of the information combined. In all cases, the action space features
three possible discrete actions per agent, except for DQN, where the centralised controller selects an
action among the 3n possible combinations. For complexity reasons, we only test DQN in k-out-of-n
environments featuring 3 and 5 components, as well as in environments with 1 and 2 wind turbines.
Detailed information on rewards, observations, and states can be found in Appendix C.

Given the importance of hyperparameters on the performance of RL methods [49], we initially selected
their values reported by the original authors. In an attempt to objectively compare the examined
methods, parameters that play the same role across methods are equal. Notably, the learning rate and
gamma, among others, are identical in all experiments. The controller agent network features the
same architecture in all methods, consisting of a single GRU layer with a hidden state composed of
64 features encapsulated between fully-connected layers and three outputs, one per action, except
for DQN, where the network output includes 3n actions. In our case, DQN’s architecture includes
additional fully-connected layers and a larger size of hidden GRU states. Moreover, following
common practice, agent networks are shared among agents, and thus a single agent network is trained.
Specifically, we train only one network that is used for all agents, instead of training n distinct agent
networks. The training process with a single agent network improves data efficiency because the
same episode can be used to perform n backpropagations through the same agent network, using n
different observations. In contrast, only one backpropagation per agent network would be possible
with a single episode if training is performed with n different agent networks. To allow diversity
in agents’ behaviour, a one-hot encoded vector is also added to the input of this common network
to indicate which one of the n agents is making the decision. In CTDE methods, critics or mixers
are also incorporated at the training stage with specific architectures according to each method and
environment configuration. In most cases, the neural networks are updated after each played episode
based on 64 episodes sampled from the replay buffer, which contains the latest 2,000 episodes. The
only exception is COMA, which follows an on-policy approach, where the network parameters are
updated every four episodes. For value-based methods, the training episodes are played following an
epsilon greedy policy, whereas test episodes are executed with a greedy policy. The epsilon value
is initially specified as 1 and linearly decreases to 0.05 after 5,000 time steps. This is different for
COMA and FACMAC. Appendix E and the source code list more details and all parameters.

The number of time steps allocated for one training realisation is 2 million time steps for all methods.
These 2 million training time steps are executed with training policies, e.g. epsilon greedy policy,
saving the networks every 20,000 training time steps. To evaluate them, we execute 10,000 test
episodes and obtain the average sum of discounted rewards per episode per saved network. These test
episodes are executed with testing policies, e.g. greedy policy. We show in Appendix E.3 that 10,000
test episodes are needed due to the variance induced in the implemented environments. We emphasise
that 10 training realisations are executed with different seeds for the same parameter values. All
parameters are listed in Appendix E and in the source code.

7

5 Benchmark results and discussion

The results from the benchmark campaign are presented in Figure 3, showcasing the relative perfor-
mance of MARL methods with respect to expert-based heuristic policies in terms of their expected
sum of discounted rewards. In each boxplot of Figure 3, each of the 10 seeds is represented by its
best policy, which achieved the highest average sum of discounted rewards during evaluation. We
further explain the connection between learning curves and boxplots in Appendix F, Figure 10. Our
analysis relies on relative performance metrics because the optimal policies are not available in the
environments investigated. Additionally, the corresponding learning curves and the best-performing
policy realisations can be found in Appendix F.

MARL-based strategies outperform expert-based heuristic policies. While heuristic policies
provide reasonable infrastructure management planning policies, the majority of the tested MARL
methods yield substantially higher expected sum of discounted rewards, yet the variance over
identical MARL experiments is still sometimes significant. In environments with no campaign cost,
the performance achieved by MARL methods with respect to the baseline differs in configurations
with a high number of agents, as shown at the top of Figure 3. In contrast, MARL methods reach
better relative results in environments with a high number of agents when the campaign cost model is
adopted, as illustrated at the bottom of Figure 3. In general, the superiority of MARL methods with
respect to expert-based heuristic policies is justified by the complexity of defining decision rules in
high-dimensional multi-component engineering systems, where the sequence of optimal actions is
very hard to predict based on engineering judgment [36].

IMP challenges. In correlated k-out-of-n IMP environments, the variance over identical MARL
experiments is higher than in the uncorrelated ones, emphasising a specific IMP challenge. Under cor-
relation, inspecting one component also provides information to uninspected components, impacting
their damage probability and thus hindering cooperation between MARL agents. Another challenge
is imposed in offshore wind farm environments, where the benefits achieved by MARL methods with
respect to the baseline are also reduced in environments with a high number of agents. This can be
explained by the fact that each wind turbine is controlled by two agents, being independent of other
turbines in terms of rewards. Each agent must then cooperate closely with only one of all agents,
hence complicating global cooperation in environments featuring an increasing number of agents.

Campaign cost environments. Yet another challenge can be observed in campaign cost environments
under 50 agents, where MARL methods’ superior performance with respect to heuristic policies
is more limited. The aforementioned environments are challenging for MARL methods because
agents should cooperate in order to group component inspection/repair actions together, saving global
campaign costs. In addition, the heuristic policies are designed to automatically schedule group
inspections, being favourable in this case. This is confirmed by the learning curves presented in
Figures 11 and 12. On the other hand, in environments with more than 50 agents, MARL methods
substantially outperform heuristic policies. At least one component is inspected or repaired at each
time step and the results reflect that avoiding global annual campaign costs becomes less crucial.

Centralised RL methods do not scale with the number of agents. DQN reaches better results
than heuristic policies, though achieving lower rewards than CTDE methods in most environments,
despite benefiting from larger networks during execution. This highlights the scalability limitations
of such centralised methods, mainly due to the fact that they select one action out of each possible
combination of component actions.

IMP demands cooperation among agents. The results reveal that CTDE methods clearly outperform
IQL in all tested environments, especially those with a high number of agents. This confirms that
realistic infrastructure management planning problems demand coordination among component
agents. Providing only independent local feedback to each IQL agent during training leads to a
lack of coordination in cooperative environments, also shown by Rashid et al. [16]. However, the
performance may be improved by enhancing networks’ representation capabilities by including more
neurons, yet this is true for all investigated methods.

Infrastructure management planning via CTDE methods. Overall, CTDE methods generate
more effective IMP policies than the other investigated methods, demonstrating their capabilities for
supporting decisions in real-world engineering scenarios. While Figure 3 presents the variance of the
best results across runs, the learning curves further confirm this finding in Appendix F. In particular,
QMIX and QVMIX generally learn effective policies with low variability over runs. Slightly more

8

-100% -50% 0 50%

 H | n
 -12.5| 3
 -25.2| 5
 -63.7| 10
 -268.1| 50
 -262.4| 100

uncorrelated k-out-of-n

-100% -50% 0 50%

Normalised relative reward (x-H)/H

 H | n
 -13.0| 3
 -28.1| 5
 -67.7| 10
 -240.0| 50
 -218.1| 100

correlated k-out-of-n

-100% -50% 0 50%

 H | n
 -58.3| 2
 -116.9| 4
 -292.3| 10
-1463.8| 50
-2925.0| 100

offshore wind farm

-100% -50% 0 50%

 H | n
 -15.1| 3
 -28.6| 5
 -64.5| 10
 -232.7| 50
 -231.5| 100

uncorrelated k-out-of-n; campaign cost

-100% -50% 0 50%

Normalised relative reward (x-H)/H

 H | n
 -15.2| 3
 -30.5| 5
 -68.5| 10
 -211.0| 50
 -194.0| 100

correlated k-out-of-n; campaign cost

-100% -50% 0 50%

 H | n
 -62.2| 2
 -115.2| 4
 -267.2| 10
-1248.2| 50
-2436.3| 100

offshore wind farm; campaign cost

QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristic

Figure 3: Performance reached by MARL methods in terms of normalised discounted rewards with
respect to expert-based heuristic policies in all IMP environments, H referring to the heuristics result.
Every boxplot gathers the best policies from each of 10 executed training realisations, indicating
the 25th-75th percentile range, median, minimum, and maximum obtained results. The coloured
boxplots are grouped per method, vertically arranging environments with an increasing number of n
agents, as indicated in the top-left legend boxes. Note that the results are clipped at -100%.

9

unstable, QPLEX also yields similar results to QMIX and QVMIX in terms of achieved results.
While being able to outperform heuristic policies in almost every environment, FACMAC exhibits a
high variance among runs. However, FACMAC effectively scales up with the number of agents and
environment complexity (as reported in [11]), achieving some of the best results in IMP environments
with over 50 agents as well as in correlated IMP environments. The results also suggest that COMA
is the least scalable MARL method in our benchmark. This can be attributed to the fact that the
computation of the critic’s counterfactual becomes challenging with an increasing number of agents.

6 Conclusions

This work offers an open-source suite of environments for testing scalable cooperative multi-agent re-
inforcement learning methods toward the efficient generation of infrastructure management planning
(IMP) policies. Through our publicly available code repository, we also encourage the implementation
of additional IMP environments, e.g., bridges, transportation networks, pipelines, and other relevant
engineering systems, whereby specific disciplinary challenges can be identified in a common simula-
tion framework. Based on the reported benchmark results, we can conclude that centralised training
with decentralised execution methods are able to generate very effective infrastructure management
policies in real-world engineering scenarios. While the results reveal that MARL methods outperform
expert-based heuristic policies, additional research efforts should still be devoted to the development
of scalable cooperative MARL methods. While we model the IMP decision-making problem as
a Dec-POMDP, modelling IMP problems as mean-field games [50] is a promising direction to be
considered in environments with an increasing number of agents. Moreover, specific improvements
are still required in environments where a global cost is triggered from the actions taken by any local
agent, e.g., global campaign cost. Besides, more stable training is still needed in environments where
local information perceived by one agent can influence the damage condition probabilities of others,
as in the correlated IMP environments. In the future, more realistic and challenging environments for
cooperative MARL methods could be investigated. One example would be assigning campaign costs
to specific groups of components, instead of specifying only one global campaign cost.

10

Acknowledgments and Disclosure of Funding

The authors acknowledge the computational resources provided by the Consortium des Équipements
de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-
FNRS) under Grant No. 2.5020.11 and by the Walloon Region. We further acknowledge the
insightful comments provided by our colleagues Adrien Bolland, Victor Dachet, Nandar Hlaing,
Gaspard Lambrechts, Gilles Louppe, Matthias Pirlet, and Maurizio Vassallo.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.

Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[2] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[3] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap,
Karen Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[4] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey.
IEEE Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

[5] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. End-to-end learning of driving models
from large-scale video datasets. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2174–2182, 2017.

[6] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T Dudley. Deep learning for
healthcare: review, opportunities and challenges. Briefings in bioinformatics, 19(6):1236–1246,
2018.

[7] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey, Francesco
Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego de las Casas, Craig
Donner, Leslie Fritz, Cristian Galperti, Andrea Huber, James Keeling, Maria Tsimpoukelli,
Jackie Kay, Antoine Merle, Jean-Marc Moret, Seb Noury, Federico Pesamosca, David Pfau,
Olivier Sauter, Cristian Sommariva, Stefano Coda, Basil Duval, Ambrogio Fasoli, Pushmeet
Kohli, Koray Kavukcuoglu, Demis Hassabis, and Martin Riedmiller. Magnetic control of
tokamak plasmas through deep reinforcement learning. Nature, 602(7897):414–419, 2022.

[8] Ryan Lowe, YI WU, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in Neural
Information Processing Systems (NIPS), 30, 2017.

[9] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

[10] Benjamin Ellis, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan, Jakob N.
Foerster, and Shimon Whiteson. SMACv2: An improved benchmark for cooperative multi-agent
reinforcement learning. arXiv:2212.07489, 2022.

[11] Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Boehmer, and Shimon Whiteson. FACMAC: Factored multi-agent centralised policy
gradients. Advances in Neural Information Processing Systems (NeurIPS), 34, 2021.

11

[12] Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforce-
ment learning. Applied Intelligence, 53:13677–13722, 2023.

[13] Pablo G. Morato, Konstantinos G. Papakonstantinou, Charalampos P. Andriotis, Jannie Søn-
derkær Nielsen, and Philippe Rigo. Optimal inspection and maintenance planning for deteriorat-
ing structural components through dynamic Bayesian networks and Markov decision processes.
Structural Safety, 94:102140, 2022.

[14] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:289–353,
may 2008.

[15] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning as a rehearsal for
decentralized planning. Neurocomputing, 190:82–94, 2016.

[16] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. QMIX: Monotonic value function factorisation for deep multi-agent
reinforcement learning. Proceedings of the 35th International Conference on Machine Learning,
80:4295–4304, 2018.

[17] Pascal Leroy, Damien Ernst, Pierre Geurts, Gilles Louppe, Jonathan Pisane, and Matthia
Sabatelli. QVMix and QVMix-Max: extending the deep quality-value family of algorithms to
cooperative multi-agent reinforcement learning. AAAI-21 Workshop on Reinforcement Learning
in Games, 2020.

[18] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: Duplex dueling
multi-agent Q-learning. In International Conference on Learning Representations, 2021.

[19] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. Proceedings of the AAAI Conference on
Artificial Intelligence, 2018.

[20] Ming Tan. Multi-agent reinforcement learning: Independent versus cooperative agents. In
Proceedings of the Tenth International Conference on International Conference on Machine
Learning, ICML’93, page 330–337, 1993.

[21] Jesus Luque and Daniel Straub. Risk-based optimal inspection strategies for structural systems
using dynamic Bayesian networks. Structural Safety, 76:68–80, 2019.

[22] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In IEEE/RSJ international conference on intelligent robots and systems, pages 5026–
5033, 2012.

[23] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, Julian Schrittwieser, John
Quan, Stephen Gaffney, Stig Petersen, Karen Simonyan, Tom Schaul, Hado van Hasselt, David
Silver, Timothy Lillicrap, Kevin Calderone, Paul Keet, Anthony Brunasso, David Lawrence,
Anders Ekermo, Jacob Repp, and Rodney Tsing. StarCraft II: A new challenge for reinforcement
learning. arXiv:1708.04782, 2017.

[24] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Francis Song,
Emilio Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, Iain Dunning, Shibl
Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael Bowling. The Hanabi challenge: A
new frontier for AI research. Artificial Intelligence, 280:103216, 2020.

[25] Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał Zając, Olivier Bachem, Lasse Espeholt,
Carlos Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research
football: A novel reinforcement learning environment. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34-04, pages 4501–4510, 2020.

[26] Xuehai Pan, Mickel Liu, Fangwei Zhong, Yaodong Yang, Song-Chun Zhu, and Yizhou Wang.
Mate: Benchmarking multi-agent reinforcement learning in distributed target coverage control.
In Advances in Neural Information Processing Systems, volume 35, pages 27862–27879, 2022.

12

[27] Sharada Mohanty, Erik Nygren, Florian Laurent, Manuel Schneider, Christian Scheller, Nilabha
Bhattacharya, Jeremy Watson, Adrian Egli, Christian Eichenberger, Christian Baumberger, et al.
Flatland-RL : Multi-agent reinforcement learning on trains. arXiv:2012.05893, 2020.

[28] Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, Yichen Zhu, Zihan Zhou, Weinan
Zhang, Yong Yu, Haiming Jin, and Zhenhui Li. CityFlow: A multi-agent reinforcement learning
environment for large scale city traffic scenario. In The world wide web conference, pages
3620–3624, 2019.

[29] Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmark-
ing multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS),
2021.

[30] Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Shared experience actor-critic for
multi-agent reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, 2020.

[31] Elizabeth Bismut and Daniel Straub. Optimal adaptive inspection and maintenance planning for
deteriorating structural systems. Reliability Engineering & System Safety, 215:107891, 2021.

[32] Konstantinos G. Papakonstantinou and Masanobu Shinozuka. Planning structural inspection
and maintenance policies via dynamic programming and Markov processes. Part I: Theory.
Reliability Engineering & System Safety, 130:202–213, 2014.

[33] Konstantinos G. Papakonstantinou and Masanobu Shinozuka. Planning structural inspection
and maintenance policies via dynamic programming and Markov processes. Part II: POMDP
implementation. Reliability Engineering & System Safety, 130:214–224, 2014.

[34] Charalampos P. Andriotis and Konstantinos G. Papakonstantinou. Managing engineering
systems with large state and action spaces through deep reinforcement learning. Reliability
Engineering & System Safety, 191:106483, 2019.

[35] Charalampos P. Andriotis and Konstantinos G. Papakonstantinou. Deep reinforcement learning
driven inspection and maintenance planning under incomplete information and constraints.
Reliability Engineering & System Safety, 212:107551, 2021.

[36] Pablo G. Morato, Charalampos P. Andriotis, Konstantinos G. Papakonstantinou, and Philippe
Rigo. Inference and dynamic decision-making for deteriorating systems with probabilistic de-
pendencies through bayesian networks and deep reinforcement learning. Reliability Engineering
& System Safety, 235:109144, 2023.

[37] Van-Thai Nguyen, Phuc Do, Alexandre Voisin, and Benoit Iung. Weighted-QMIX-based
optimization for maintenance decision-making of multi-component systems. PHM Society
European Conference, 7(1):360–367, 2022.

[38] Mohammad Saifullah, Charalampos P. Andriotis, Konstantinos G. Papakonstantinou, and
Shelley M. Stoffels. Deep reinforcement learning-based life-cycle management of deteriorating
transportation systems. In Bridge Safety, Maintenance, Management, Life-Cycle, Resilience
and Sustainability, pages 293–301. CRC Press, 2022.

[39] Frans A. Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs,
volume 1. Springer, 2016.

[40] Richard E Barlow and Klaus D Heidtmann. Computing k-out-of-n system reliability. IEEE
Transactions on Reliability, 33(4):322–323, 1984.

[41] Felipe Giro, Jose Mishael, Pablo G. Morato, and Philippe Rigo. Inspection and maintenance
planning for offshore wind support structures: Modelling reliability and inspection costs at
the system level. In International Conference on Offshore Mechanics and Arctic Engineering,
volume 85864, 2022.

[42] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

13

[43] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan
Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-
Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.
Younis. Gymnasium, 2023.

[44] J Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Pettingzoo:
Gym for multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 34:15032–15043, 2021.

[45] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph
Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement
learning. Proceedings of the 35th International Conference on Machine Learning, 80:3053–
3062, 2018.

[46] Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18,
2022.

[47] Siyi Hu, Yifan Zhong, Minquan Gao, Weixun Wang, Hao Dong, Zhihui Li, Xiaodan Liang,
Xiaojun Chang, and Yaodong Yang. Marllib: A scalable multi-agent reinforcement learning
library. arXiv preprint arXiv:2210.13708, 2022.

[48] Albert Bou, Matteo Bettini, Sebastian Dittert, Vikash Kumar, Shagun Sodhani, Xiaomeng Yang,
Gianni De Fabritiis, and Vincent Moens. TorchRL: A data-driven decision-making library for
PyTorch. arXiv:2306.00577, 2023.

[49] Rihab Gorsane, Omayma Mahjoub, Ruan John de Kock, Roland Dubb, Siddarth Singh, and
Arnu Pretorius. Towards a standardised performance evaluation protocol for cooperative marl.
Advances in Neural Information Processing Systems, 35:5510–5521, 2022.

[50] Mathieu Laurière, Sarah Perrin, Matthieu Geist, and Olivier Pietquin. Learning mean field
games: A survey. arXiv:2205.12944, 2022.

[51] Ove Ditlevsen and Henrik O. Madsen. Structural reliability methods, volume 178. Wiley New
York, 1996.

[52] Nandar Hlaing, Pablo G Morato, Jannie S Nielsen, Peyman Amirafshari, Athanasios Kolios, and
Philippe Rigo. Inspection and maintenance planning for offshore wind structural components:
integrating fatigue failure criteria with Bayesian networks and Markov decision processes.
Structure and Infrastructure Engineering, 18(7):983–1001, 2022.

[53] Inge Lotsberg, Gudfinnur Sigurdsson, Arne Fjeldstad, and Torgeir Moan. Probabilistic methods
for planning of inspection for fatigue cracks in offshore structures. Marine Structures, 46:
167–192, 2016.

[54] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[55] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. QTRAN:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
Proceedings of the 36th International Conference on Machine Learning, 2019.

[56] David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. 5th International Conference on
Learning Representations, 2016.

[57] Matthia Sabatelli, Gilles Louppe, Pierre Geurts, and Marco A Wiering. Deep quality-value
(DQV) learning. Advances in Neural Information Processing Systems, Deep Reinforcement
Learning Workshop, 2018.

[58] Matthia Sabatelli, Gilles Louppe, Pierre Geurts, and Marco Wiering. The deep quality-value
family of deep reinforcement learning algorithms. In International Joint Conference on Neural
Networks (IJCNN), 2020.

14

[59] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas.
Dueling network architectures for deep reinforcement learning. In International conference on
machine learning, pages 1995–2003. PMLR, 2016.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[61] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Reinforcement learning, pages 5–32, 1992.

[62] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[63] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 12, 1999.

[64] Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement
learning. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence,
page 538–545, 2001.

[65] Yu-Han Chang, Tracey Ho, and Leslie Kaelbling. All learning is local: Multi-agent learning in
global reward games. Advances in neural information processing systems, 16, 2003.

[66] David H. Wolpert and Kagan Tumer. Optimal payoff functions for members of collectives.
Advances in Complex Systems, 4(2/3):265–279, 2001.

[67] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: Ex-
panding monotonic value function factorisation for deep multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 33:10199–10210, 2020.

[68] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. MAVEN: Multi-
agent variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

[69] Raphaël Avalos, Mathieu Reymond, Ann Nowé, and Diederik M. Roijers. Local advantage
networks for cooperative multi-agent reinforcement learning. In Proceedings of the 21st
International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22, page
1524–1526, 2022.

[70] Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. LIIR: Learning indi-
vidual intrinsic reward in multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

[71] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and
Yaodong Yang. Trust region policy optimisation in multi-agent reinforcement learning. Interna-
tional Conference on Learning Representations, 2021.

[72] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[73] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[74] Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and
Yaodong Yang. Multi-agent reinforcement learning is a sequence modeling problem. In
Advances in Neural Information Processing Systems, 2022.

[75] Andy B. Yoo, Morris A. Jette, and Mark Grondona. Slurm: Simple linux utility for resource
management. In Job Scheduling Strategies for Parallel Processing: 9th International Workshop,
pages 44–60. Springer, 2003.

15

A IMP-MARL public repository, license, data, and documentation

The new assets we provide in this paper are listed hereafter. IMP-MARL’s suite of environments
is publicly available on the GitHub repository https://github.com/moratodpg/imp_marl, fea-
turing an open-source Apache v2 license. Moreover, IMP-MARL contains wrappers to facilitate
its implementation on typical MARL ecosystems, i.e., Gym [42], RLLib [45], and PyMarl [9], as
detailed in Section 4.

To reproduce the work reported in this paper, the following process can be executed: (i) cloning the
repository, (ii) installing a virtual environment with the package requirements, and (iii) executing
the script instructions of the corresponding method and IMP-MARL environments. In addition to
the instructions for reproducing our results, we also provide tutorials to add new environments or
wrappers.

We also provide the data files resulting from our experiments, enabling the reproduction of any
reported result without re-running the experiments, as well as the corresponding implementation
code, hence facilitating future cross-comparisons. The readily available results include Figures 3, 11,
and 12, along with Tables 13, 14, 15.

Configuration, execution, and results files are permanently stored at Zenodo, accessible via https://
zenodo.org/record/8032339. Additionally, the controller networks’ weights of the best policies
presented in Figure 3 are also stored there, thus fostering further interpretability studies of MARL-
based strategies. The dataset is open-access and registered with the Digital Object Identifier (DOI)
10.5281/zenodo.8032339. More information and dedicated tutorials can be found on the repository.

B Modelling infrastructure management in IMP-MARL

In this appendix, we thoroughly describe the deterioration, inspection, and transition models imple-
mented in this work. These models drive the dynamics of the IMP-MARL environments provided in
this paper. Based on this information, one can easily learn how to create new environments.

B.1 Deterioration models

The deterioration processes introduced here specifically correspond to fatigue deterioration mecha-
nisms, yet corrosion, erosion, and many other practical infrastructure management problems can be
similarly modelled.

Correlated and uncorrelated k-out-of-n systems Throughout the text and the code, the set of
environments related to correlated and uncorrelated k-out-of-n systems are abbreviated as struct_c
and struct_uc, respectively, or denoted as struct when referring to both of them. In the k-out-of-n
environments currently included in IMP-MARL, the structural components are exposed to fatigue
deterioration, and unless a repair is undertaken, the crack size dt (i.e., damage condition) evolves
over time t as [51]:

dt+1 =

[(
1− m

2

)
CFMSm

R πm/2nS + d
1−m/2
t

]2/(2−m)

, (1)

where ln(CFM) ∼ N (µ = −35.2, σ = 0.5) and m = 3.5 stand for material variables, which
directly influence the crack growth. Due to environmental and operational conditions, the components
are subject to a dynamic load characterised by the stress range, SR ∼ N (µ = 70, σ = 10 N/mm2),
over nS = 106 annual stress cycles, i.e., the number of load cycles experienced by the structural
component in one year. At the initial step or after a component is repaired, the initial crack size is at
its intact condition, defined by its initial distribution d0 ∼ Exp(µ = 1 mm), and a component level
failure occurs when the crack size exceeds a critical size of dc = 20 mm. The component failure
probability pF , defined as pF = p[g ≤ 0], can be computed following a through-thickness failure
criterion [52], where the failure limit at time step t is formulated as gt = dc − dt. At the system level,
a failure event occurs if k (out of n) components fail, and its corresponding system failure probability,
pFsys

, can be efficiently computed as a function of all components failure probabilities, as proposed
in [40].

The continuous crack size is discretised into a certain number of discrete bins in order to enable
efficient Bayesian inference once inspection indications are available. Further details can be found in

16

https://github.com/moratodpg/imp_marl
https://zenodo.org/record/8032339
https://zenodo.org/record/8032339

Table 2: Description of the discretisation scheme implemented.
Environment Variable Interval boundaries Bins

struct dt [0, exp{ln(10−4) : (ln(dc)− ln(10−4))/28 : ln(dc)},∞] 30
owf dt [0, d0 : (dc − d0)/(60− 2) : dc,∞] 60

Table 3: Variables specified in the offshore wind farm deterioration models.
Upper component Middle component Mudline component

ln(CFM)
µ = −26.45 µ = −26.04 µ = −26.12
σ = 0.12 σ = 0.4 σ = 0.39

m 3 3 3

q
µ = 10.21 µ = 7.40 µ = 6.74

CoV = 25% CoV = 25% CoV = 25%
dc 20 60 60
nS 5,049,216 5,049,216 5,049,216

[13]. If the initial crack size among components is correlated (i.e., we are dealing with a correlated
k-out-of-n system), the damage condition of each component is defined conditional on a common
correlation factor, α, via a Gaussian hierarchical structure [36]. In that case, the discretised damage
bins should be defined conditional on the correlation factor. The specific discretisation implemented
in our environments is defined in Table 2.

Offshore wind farm In this set of environments, a group of n_comp offshore wind substructures is
considered, in which three representative structural components are modelled at different locations of
the wind turbine: (i) at the atmospheric zone - upper level, (ii) at the splash zone - middle level, (iii)
below the seabed - mudline. The deterioration, inspection, and cost models hence differ for each of
the three considered components. While the fatigue deterioration is calculated according to Eq. 1, the
expected dynamic load, Sr, is in this case defined based on industrial standards [53], as:

Sr = qΓ(1 + 1/λ)Y , (2)

corresponding to the expected value of a Weibull distribution defined by the scale parameters listed
in Table 3, q ∼ N , and shape factor, λ = 0.8, weighted by a geometric parameter, Y ∼ LN (µ =
0.1, σ = 0.1). The initial crack size distribution is specified for all wind turbine components as
d0 ∼ Exp(µ = 0.11) and the remaining specific fatigue variables associated with each wind turbine
component are listed in Table 3. At the wind turbine level, the failure event occurs if one component
of the wind turbine fails. The wind turbine failure risk is then defined as the wind turbine failure
probability multiplied by the consequences associated with a wind turbine failure event. At the wind
farm level, the damage condition of a wind turbine does not influence the condition of the other wind
turbines, and the wind farm system failure risk is defined as the sum of all turbines’ failure risk.

B.2 Inspection models

The inspection models implemented in IMP-MARL are hereafter described, defining the likelihood
of retrieving a certain inspection outcome as a function of the damage size.

Correlated and uncorrelated k-out-of-n systems The inspection model is normally characterised
depending on the accuracy of the measurement instrument, formally specified through probability
of detection (PoD) curves, in which the probability of observing a crack is defined as a function of
the crack size [13]. In this case, the inspection model is described by an exponential distribution
p(idt |dt) ∼ Exp(µ = 8), defining the probability of observing a crack during an inspection.

Offshore wind farm In this more practical set of environments, an eddy current inspection technique
is here considered, whose PoD can be modelled according to industrial standards [53], as:

p(idt
|dt) = 1− 1

1 + (dt/χ)b
, (3)

where the factors χ and b are specified as 0.4 and 1.43, respectively, for the upper component, but
considered as 1.16 and 0.90, for the middle component. Naturally, less accurate inspection outcomes

17

can be expected for the middle component, as it is located in a region below the water level, where
the visibility is reduced.

B.3 Transition models

An overview of the transition model is explained hereafter. For a more detailed description, we refer
the reader to [36]. Since the crack size is discretised in this work, the transition and inspection models
can be stored in tables. In our code, they are encoded in Numpy files, which are stored in the reposi-
tory folder pomdp_models. In particular, the files are named Dr3031C10.npz, Dr3031_H08.npz,
and owf6021.npz, for k-out-of-n system, correlated k-out-of-n system, and offshore wind farm,
respectively. By relying on already stored transition and inspection models, the environments can
be simulated efficiently. Alternatively, the crack size evolution could also be directly computed at
execution time, yet an additional computational expense would be then incurred.

The transition model can be defined based on the deterioration and inspection models previously
described. If no inspection and maintenance are taken (i.e. do-nothing action), the damage condition
progresses each time step according to the fatigue deterioration model formulated in Eq. 1. Note that
in our three sets of environments, a time step represents a year. Considering that the damage follows
a non-stationary deterioration process, the crack size distribution dt+1 can be efficiently encoded
as a function of the annual deterioration rate, τt+1, and the crack size at the previous time step dt
as p(dt+1|dt, τt+1). Starting from τ0 = 0, the deterioration rate increases by one unit every year,
unless a component is repaired, in which case the deterioration rate returns to the initial value. The
deterioration evolution over a time step can be computed as:

p(dt+1) =
∑
τt+1

∑
dt

p(dt+1|dt, τt+1)p(dt)p(τt+1) . (4)

If an inspection action is planned, a damage indication idt+1
is collected, and the crack size distribution

can be updated via Bayes’ rule:

p(dt+1|idt+1) ∝ p(idt+1 |dt+1)p(dt+1) , (5)

where the likelihood corresponds to the specific inspection model, described by a probability of
detection curve, as mentioned before. Since the damage probabilities are discrete, the normalisation
constant can be straightforwardly computed by simply summing the unnormalised bins [13].

To enable efficient computation of the deterioration evolution under correlation, a Gaussian hier-
archical structure is adopted [36], in which the crack size probability is defined conditional on a
common factor, α as p(dt|α). In this work, we consider that the initial damage probabilities are
equally correlated among components with a Pearson coefficient equal to 0.8.

The damage transitions, in this case, are formulated as:

p(dt+1|α) =
∑
τt+1

∑
dt

p(dt+1|dt, τt+1)p(dt|α)p(τt+1) . (6)

Once an inspection outcome is available, the common correlation factor is also updated based on
the new information, thus influencing all components. The likelihood of collecting one inspection
indication given α can be computed as:

p(idt+1 |α) =
∑
dt+1

[
p(dt+1|α) p(idt+1 |dt+1)

]
, (7)

and the correlation factor can then be updated:

p(α|idt+1
) ∝ p(α)p(idt+1

|α). (8)

Finally, the marginal damage probabilities are computed as:

p(dt+1) =
∑
α

[
p(dt+1|α) p(α)

]
. (9)

18

Table 4: Main options available in IMP-MARL.
Option name Environment Dict key Type

Number of components struct n_comp int
k components struct k_comp int
Correlation struct env_correlation bool
Campaign cost struct campaign_cost bool
Number of wind turbines owf n_comp int
Number of components per wind turbine owf lev int
Campaign cost owf campaign_cost bool

Table 5: Observations options available in IMP-MARL.
Option name Env. Dict key Type Dimensionality

Component damage probability struct *by default float 30
Component deterioration rate struct obs_d_rate float 1
All components damage probability struct obs_multiple float n_comp · 30
All components deterioration rate struct obs_all_d_rate float n_comp
Correlation condition struct obs_alphas float 80
Component damage condition owf *by default float 60
Component deterioration rate owf obs_d_rate float 1
All components damage condition owf obs_multiple float n_comp · 60
All components deterioration rate owf obs_all_d_rate float n_comp

C Options available in IMP-MARL and reward model

In IMP-MARL, the environments can be easily set up with specific options, from the definition of the
number of agents to the observation information perceived by the agents and the state information
received by mixers/critics. This can be straightforwardly specified through the configuration files
provided on IMP-MARL’s GitHub repository. These options are in fact parameters included in
IMP-MARL’s classes. In particular, Table 4 lists the main options available.

In addition to the main options previously mentioned, it is also possible to tailor the information
encoded in the observations and states. One can choose which local information, oat , the agents will
receive, as well as the global information, st, available during training. Tables 5 and 6 list all possible
options. Since these options are coded as booleans, the selected configuration can be easily defined
by assigning a True value. Additional details can be found in the code.

In the experiments conducted in this work, the selected parameters are listed in Table 7. Through
the code provided in IMP-MARL, future works may investigate alternative observation and state
information options.

C.1 Reward model

The goal of the agents is to maximise the expected sum of discounted rewards, E[R0] =

E
[∑T−1

t=0 γt
[
Rt,f +

∑n
a=1

(
Ra

t,ins +Ra
t,rep

)
+Rt,camp

]]
, as stated in Section 3.2. The rewards

Table 6: States options available in IMP-MARL.
Option name Environment Dict key Type Dimensionality

All component damage condition struct state_obs float n_comp · 30
All components deterioration rate struct state_d_rate float n_comp
Correlation condition struct state_alphas float 80
All component damage condition owf state_obs float n_comp · 60
All components deterioration rate owf state_d_rate float n_comp

19

Table 7: Options set up in our experiments.
Option name struct_uc struct_c owf

state_obs True True True
state_d_rate True True False
state_alphas False True False
obs_d_rate False False False
obs_multiple False False False
obs_all_d_rate False False False
obs_alphas False True False
env_correlation False True False
campaign_cost True & False True & False True & False

Table 8: Rewards specified in our experiments.
Component Campaign cost Rins Rrep cf Rcamp

struct False -1 -20 -10,000 0
True -0.2 -20 -10,000 -5

owf upper level False -1 -10 -1,000 0
True -0.2 -10 -1,000 -5

owf middle level False -4 -30 -1,000 0
True -1 -30 -1,000 -5

collected at each time step may include inspection Rins and repair Rrep costs for all considered
components, along with the system failure risk, which is defined as the system failure probability
pfsys

multiplied by the associated consequences of a failure event cf , formulated as Rf = pfsys
· cf .

Additionally, a campaign cost Rcamp may also be included if that option is active. The discount
factor is defined as γ = 0.95 in our experiments and the specific rewards are listed in Table 8.

D Cooperative MARL methods

We considered methods from two families of algorithms in MARL: value-based and policy-based.
Here, we propose a brief description of these methods, starting from single-agent RL (SARL)
definitions to MARL. However, for more detailed information, we refer the reader to the original
papers. Furthermore, in addition to the definition of Dec-POMDP in Section 3.1, we define the value
function, also V function, which evaluates the current joint policy V π(s) = E[Rt|st = s,π]. Another
function of interest is the state-joint-action value function Qtot = Qπ(s,u) = E[Rt|st = s,ut = u],
also called Q function. The individual Q function is defined by Qπ,a(s, u) = E[Rt|st = s, ua

t =
u,π] or Qa for short. The reward is common to all agents and implies that Qtot = Qa∀a. The
advantage function is defined as A(s, u) = Q(s, u)− V (s).

Value-based methods aim to learn the optimal Q function defined as Qπ∗
(s, u) = maxπ Q

π(s, u).
This enables the agent to greedily select the action π∗(s) = argmaxu Q

π∗
(s, u). In SARL, this is

accomplished through Q-learning [54], originally designed for tabular settings. However, as the
size of the state-action space increases, it becomes impractical to compute Q for each state-action
pair. A solution, named DQN [1], approximates Q with a neural network θ and learn Q(s, u; θ) by
minimising the loss L(θ) = E⟨.⟩∼B

[(
rt + γmaxu∈U Q(st+1, u; θ

′) − Q(st, ut; θ)
)2]

where B is
a replay buffer composed of transitions ⟨st, ut, rt, st+1⟩ and θ′ is the target network, a copy of θ
updated periodically. This approach can train a centralised learner in a Dec-POMDP if all agents can
access the state s during execution, resulting in the learning of Qtot = Qπ(s,u). Issues are that the
joint action space scales exponentially with n, and in practice, agents select their action based only
on their history of observation (o, τ) and not the state s. There is a decentralised solution, named
IQL [20], which consists in learning independently Qa. However, there are also CTDE methods that
take the state s into account during training. A solution proposed in QMIX [16] is to approximate
Qtot as a function of all Qa and s during training. Agents select actions based on their Qa, which
are now utility functions that factorise Qtot and not Q function. One condition is that individual

20

Qa satisfy the individual global max (IGM): argmaxut
Q(st,ut) =

⋃
a argmaxua

t
Qa(τ

a
t , u

a
t) [55].

In QMIX, the factorisation is achieved by a constrained hypernetwork [56] which links s and Qa

to Qtot. QVMix [17] extends QMIX with the Deep Quality-Value method [57, 58], learning both
V and Q, using the former as the target of the latter. QPLEX [18] extends QMIX with the dueling
structure Q = V +A [59], learning a factorisation of V and A with transformers [60]. We selected
these methods based on their IGM consistency, code availability, and results in the literature.

Policy-based methods learn directly the optimal policy through a neural network π(s, u; θ) that
maximises J(θ) = Eπθ

[R0]. The well-known REINFORCE method [61] ascends the gradient
∇θJ = E[

∑
t Rt∇θ log π(ut|st; θ)] to find π∗. Actor-critic methods [62, 63] expand upon this

method by incorporating a parameterised critic that estimates Q(st, ut;ϕ), replacing Rt, with the
actor serving as the parameterised policy. To reduce variance, a baseline b(s) is injected into
the gradient, usually b(s) = V (s), and Q(s, u;ϕ) is replaced by A(s, u;ϕ) [64], leading to the
new gradient expression ∇θJ = E[

∑
t A(st, ut;ϕ)∇θ log π(st, ut; θ)]. Advantage estimation is

accomplished either by A(st, ut;ϕ) = Q(st, ut;ϕ)−
∑

u π(u|st; θ)Q(st, u;ϕ) or by A(st, ut;ϕ) =
rt+γV (st+1;ϕ)−V (st;ϕ). Extending these methods to MARL is a straightforward process and the
decentralised solution is named IAC [19]. This approach involves each agent learning independently
an actor and a critic, based only on the tuple (τ, o). However, this solution does not exploit the
additional information provided by the state s. During training, the critic may exploit the full state
s, which would result in a centralised critic. However, this approach provides the same feedback to
all agents, missing out on the crucial aspect of credit assignment [65]. To address this, MADDPG
[8] allows each agent to learn its own critic Qa(s,u;ϕ) that is considered centralised since its use
of s and u. On the other hand, COMA [19] and FACMAC [11] propose solutions with a single
centralised critic. FACMAC suggests using a central but factored critic by employing the value
function factorization of QMIX. The joint-action Q(s,u;ϕ) is built as a function of Qa(τ, u

a),
without the need to satisfy IGM and without the constraints on the hypernetwork. COMA, inspired
by difference reward [66], proposes having the centralised critic compute a counterfactual baseline
for each agent. For an agent a, the difference reward is R(st+1, st,ut) − R(st+1, st, (u

−a
t , cat))

where c is a default action. Computing this requires simulating the environment steps several
times. But in COMA, the centralised critic computes the advantage Aa(st,ut;ϕ) = Q(st,u;ϕ)−∑

u′a π(u′a|τat ; θ)Q(st, (u
−a
t , u′a);ϕ) for each agent, allowing it to approximate A without more

environment steps. This has the cost of requiring to increase the input space of A as it additionally
takes u−a actions as input.

Other methods In addition to QMIX [16], QVMix [17] and QPLEX [18], QTRAN [55] and
Weighted-QMIX [67] factorise Qtot differently from QMIX, but do not always satisfy IGM [55].
Other methods, such as MAVEN [68] and LAN [69], also extend over QMIX. The first improves
exploration capabilities while the second learns to cooperate without factorising Qtot. There are
also policy-based methods that rely on the actor-critic paradigm, such as COMA [19] and FACMAC
[11] with a single centralised critic. MADDPG [8] is another well-established method, which does
not learn a single centralised critic, but one per agent and is designed for continuous action spaces.
Another method, LIIR [70], aims to provide credit assessment with individual intrinsic rewards, while
HATPRO and HAPPO [71] demonstrate that popular actor-critic methods like TRPO [72] and PPO
[73] can be extended to cooperative MARL tasks. HATRPO and HAPPO could have been a great
addition to our study but are unfortunately not implemented within the PyMarl library.

Another approach for dealing with cooperative multi-agent settings is to link the recent success of
sequence models and reinforcement learning by using a multi-agent transformer (MAT) that learns to
transform a sequence of observations into a sequence of actions, one per agent [74].

E Experimental details

E.1 Description of the parameters set up in the experiments

In this section, we provide the information required to reproduce the results reported in this paper.
Since the neural networks are trained via MARL using PyMarl’s [9] library, the parameters are here
described following PyMarl’s convention. However, their purpose can be easily deduced from the
names themselves. The experimental parameters set up equal across all experiments are presented in
Table 9, while the parameters specific to each method are hereafter detailed. Note that in Table 9,
some parameters are not used by all methods, e.g., RMS parameters. Besides, target update intervals,

21

Table 9: Parameters set in our experiments.
Parameter name Parameters value Parameter name Parameters value

γ 0.95 Time max 2,050,000
Target update 200 RMS epsilon 10−5

RMS alpha 0.99 Grad norm clip 10
Learning rate 0.0005 Obs last action True
Agent network [] - 64 GRU - [] Save model interval 20,000

Table 10: Exploration parameters.
Epsilon start Epsilon finish Epsilon anneal time

Value-base methods 0.5 .01 5000
FACMAC 0.3 0.005 50000

buffer size, and batch size are specified based on the number of episodes. When the number of
agents increases, we only augment the number of trainable parameters of the mixer/critic networks,
while the actor networks and other parameters are not modified. All the parameters can be found
in the configuration files available on the GitHub repository and can be used to launch any of the
experiments conducted in this paper.

Regarding the agent network representation for CTDE methods and IQL, it consists of one GRU
layer with a hidden state that includes 64 features. This means that the input is fully connected to the
64 hidden states, which are then fully connected to the outputs, one per action. We represent it as "[] -
64 GRU - []". Since the number of actions, and hence the number of outputs, of the DQN network is
3n, a network with more representation capacity is needed. In that case, linear layers, whose number
of output features are specified between brackets, are also included in the agent network surrounding
the GRU layer. With n = 2 or n = 3 agents, the network is set as "[128] - 128 GRU - [128,64]"
while for n = 4 or n = 5 agents, it is set as "[256] - 256 GRU - [256,256]". Note that the linear
layers before the GRUs include a Relu activation function and the last taken action is also added to
the observation of the agents as an additional input.

As mentioned previously, some parameters are common to almost all methods. For instance, the
optimiser selected is RMSProp for all methods, except for FACMAC, which is trained with ADAM.
In nearly all methods, the buffer stores the latest 2, 000 episodes, and at each episode, 64 episodes
are sampled to update the network. However, since COMA is an on-policy method, the networks
are updated with the episodes just played. Therefore, in our experiments, COMA’s networks are
updated every four episodes based on these last experienced ones. This update is performed four
times to ensure a fair amount of network updates with respect to the other methods, which are, in
turn, updated every episode.

During training, the value-based methods rely on an epsilon-greedy policy, whose parameters are
specified in Table 10, while they act following a greedy policy at testing. Note, however, that COMA
and FACMAC utilise different training policies. FACMAC samples discrete actions through a Gumbel
softmax for its actor, whereas exploration is performed via an epsilon, whose values are specified
in Table 10. On the other hand, COMA follows a classic stochastic policy during training. At the
testing stage, FACMAC and COMA select actions adhering to a greedy approach, selecting the action
associated with the maximum probability.

In the conducted experiments, the parameters set up in the environments differ with respect to the
number of agents and we distinguish three cases (i) n <= 10, (ii) n = 50, and (iii) n = 100. Starting
with QMIX, the parameters are all the same when increasing n, except for the architecture of the
mixing network, whose embedding size in the middle of the mixer is: (i) 32, (ii) 64, and (iii) 128.
QMIX relies on a double-Q feature, i.e., the loss computed to update θ differ from the original. While
in the original loss function, the target Q value used for the update is selected with the action that
maximises the target Q value parameterised by θ′, in double-Q, the action is the one that maximises
the Q value parameterised by θ. Therefore, we have: L(θ) = E⟨.⟩∼B

[(
rt + γQ(st+1, u∗; θ′) −

Q(st, ut; θ)
)2]

where u∗ = argmaxu Q(st+1, u; θ). This target network is updated every 200

22

Table 11: Number of trainable parameters in uncorrelated k-out-of-n systems.
Method Network n = 3 n = 5 n = 10 n = 50 n = 100

QMIX Agent 27,587 27,715 28,035 30,595 33,795
Mixer 18,657 41,249 133,569 5,430,657 42,202,113

QVMix Agent 27,587 27,715 28,035 30,595 33,795
Mixer 64,771 110,083 295,043 10,891,779 84,437,891

QPLEX Agent 27,587 27,715 28,035 30,595 33,795
Mixer 58,249 83,289 155,269 1,830,933 4,901,797

COMA Agent 27,587 27,715 28,035 30,595 33,795
Critic 35,971 45,955 70,915 1,195,907 10,840,323

FACMAC Agent 27,587 27,715 28,035 30,595 33,795
Critic 48,002 72,706 134,466 1,042,370 3,313,218

IQL Agent 27,587 27,715 28,035 30,595 33,795
/ 0 0 0 0 0

DQN Agent 157,979 758,003 / / /
/ 0 0 / / /

episodes. QVMix is a variant of QMIX and the parameter values are similarly specified. In particular,
QVMix contains two networks: (i) a Q network with the same architecture as QMIX, and (ii) a V
network that is a copy of the Q network, but with only one output. As for QPLEX, we try to be close
to the parameters selected for the SMAC experiments they conduct in their paper. When n increases,
we change only the attention layer size composed of a layers and b heads. In particular, we set up (i)
1L4H , (ii) 2L4H , and (iii) 2L10H . The mixer embedding is 64 for all experiments.

With respect to COMA, which is an actor-critic method, a few specific parameters should be addi-
tionally set up. The agent network, here denoted as the actor, is the same as for the other previously
described. However, the critic varies with n because the input of the critic becomes rather large,
and its architecture is fully linear: (i) [128, 128], (ii) [512, 256, 128, 128], and (iii) [2048, 1024,
512, 256, 128]. A TD-λ used to update the critic is set to 0.8 and the learning rate to train the critic
is the same as the one of the actor, specified in Table 9. In terms of FACMAC, the parameters of
interest are those at the critic, as its size increases with the number of agents n. FACMAC features a
2-layer-mixing network and, therefore, we specify the size for both: (i) 64-64, (ii) 128-64, and (iii)
128-128. As in COMA, the TD-λ parameter is set to 0.8. The critic has a target network, similar to
those included in value-based methods, that is also updated every 200 episodes with a soft target
update with τ = 0.001. Moreover, we follow the optimiser selection made in FACMAC’s original
paper and used ADAM, with an epsilon equal to 10−8.

Regarding IQL, which is a decentralised method, the parameters are identical in all tested environ-
ments. IQL also has the double-Q feature activated and learns independently individual Q values
via DQN’s algorithm. For DQN, we only run experiments with less than five agents, i.e., n <= 5.
The main difference between tested environments is the size of their networks. Since DQN features
3n outputs, only 64 GRU cells are not enough in terms of network capacity. In our experiments,
we increase the network size and confirm that DQN manages to achieve similar results as the other
MARL methods. In DQN, the network architecture is the only parameter that is adjusted with the
number of agents n.

Finally, we list in Table 11 the number of trainable parameters of the networks. The input is slightly
different between the tested sets of IMP-MARL environments and, therefore, we show in the table
only the parameters for one of them. Note that there is an agent network taking actions for all agents
and we purposely duplicate the agent network row to emphasise that all agent’s networks are identical
across experiments.

E.2 Hardware and experiments duration

Our experiments are all run on different clusters managed by SLURM [75]. They are executed
with specific hardware requirements based on the number of agents: experiments with up to 10
agents are run on only CPUs, while we execute experiments on GPUs with 50 and 100 agents. The
efficiency does not substantially improve when running experiments with less than 10 agents on

23

Table 12: Hardware configurations for training and testing experiments.
Parameters Train only on CPUs Train on GPUs Test only on CPUs Test on GPUs

Number of CPU 4 2 8 5
RAM 5 Gb 6 Gb 5Gb 10 Gb

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

2

4

6

8

10

12

14

Ti
m

e
(in

 h
ou

rs
)

2 or 3 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

5

10

15

20

25

30

Ti
m

e
(in

 h
ou

rs
)

4 or 5 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

5

10

15

20

25

30

Ti
m

e
(in

 h
ou

rs
)

10 agents
Experiments executed on CPUs only

Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
AMD EPYC 7763 64-Core Processor

Figure 4: Training duration for experiments with n <= 10 performed on only CPUs.

GPUs because training a GRU layer requires forwarding the whole episode sequentially. In contrast,
the computational time can be reduced when running experiments with 50 and 100 agents on GPUs
because we train all agents as a single network and the batch size increases with n. We categorise the
computational time required for the reported experiments according to whether (i) the experiment is
(or is not) run only on CPUs, and (ii) the value reported corresponds to the training or the testing
stage. In Table 12, we additionally provide the hardware requirements demanded during the training
and testing phases. Note that we benefit from more resources during testing because 10 environments
are running in parallel. Moreover, we intentionally demand more RAM to avoid problems. These
reported RAM configurations are indicative and can be seen as requirements, yet not as exact memory
usage numbers.

We represent the computational time required for the experiments during training in Figures 4 and
5 as well as during testing in Figures 6 and 7. To avoid overloading the figures, the markers do
not explicitly indicate which experiment they correspond to, yet the experiments are all vertically
grouped based on the method and the environment. For each abscissa, 20 experiments, with and
without campaign cost, are represented. The first three sets of experiments represent QMIX in the
uncorrelated k-out-of-n setting, followed by QMIX in the correlated k-out-of-n environment which
is followed by QMIX in the offshore wind farm one. The methods are ordered as QMIX, QVMIX,
QPLEX, COMA, FACMAC, IQL, and DQN, while the environments are ordered as k-out-of-n setting,
correlated k-out-of-n, and offshore wind farm. It can be seen in Figures 4 and 6 that the two plots
with n < 10 additionally represent the three additional experiments related to DQN.

The first observation that may be addressed is the resulting high variance. The variation across runs
is logical because of the specific performance of the CPU/GPU models employed, but also due to
the additional activity of clusters at the time of our experiments. With respect to the computational
time required for training, testing episodes are not executed and we can see that, by running the
experiments on only CPUs, we manage to train the agents in less than 10 hours, except for some
occasional outliers. For experiments with 50 agents, and also relying on GPUs, the computational
time is overall very similar to those previously mentioned, requiring less than 10 hours, yet a longer
time is needed for those with 100 agents. The fastest training results correspond to COMA because
we are running four environments in parallel, instead of one during training. We can see that IQL
and QMIX follow closely, but QVMix, QPLEX, and FACMAC require additional computational
time due to their architecture complexity. Naturally, the testing stage needs more time compared

24

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

4

6

8

10

12

Ti
m

e
(in

 h
ou

rs
)

50 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ti
m

e
(in

 h
ou

rs
)

100 agents
Experiments executed on CPUs/GPUs

Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz / Quadro RTX 6000
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
AMD EPYC 7763 64-Core Processor / NVIDIA RTX A5000

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA GeForce GTX 1080 Ti
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz / Tesla V100-SXM2-32GB
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA RTX A5000

Figure 5: Training duration for experiments with n >= 50 performed on CPUs and GPUs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

5

10

15

20

25

30

Ti
m

e
(in

 h
ou

rs
)

2 or 3 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

5

10

15

20

Ti
m

e
(in

 h
ou

rs
)

4 or 5 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ti
m

e
(in

 h
ou

rs
)

10 agents
Experiments executed on CPUs only

AMD EPYC 7763 64-Core Processor
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

Figure 6: Testing duration for experiments with n <= 10 performed on only CPUs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

10

20

30

40

Ti
m

e
(in

 h
ou

rs
)

50 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

10

20

30

40

50

60

70

Ti
m

e
(in

 h
ou

rs
)

100 agents
Experiments executed on CPUs/GPUs

Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz / Quadro RTX 6000
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
AMD EPYC 7763 64-Core Processor / NVIDIA RTX A5000
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA GeForce GTX 1080 Ti

Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz / Tesla V100-SXM2-32GB
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA RTX A5000

Figure 7: Testing duration for experiments with n >= 50 performed on CPUs and GPUs.

25

2 3 4 5 10 50 100
Number of components

0

10

20

30

40

Ti
m

e
(in

 h
ou

rs
)

k-out-of-n
correlated k-out-of-n
offshore wind farm

Figure 8: Computational time required for executing expert-based heuristic policies as a function of
the number of components. The experiments are run on 2 AMD EPYC Rome 7542 CPUs @ 2.9GHz.

0 0.5 1 1.5 2

25

50

75

100

125

S
ta

nd
ar

d
de

vi
at

io
n

of
 R

_0

100 episodes

0 0.5 1 1.5 2
Timesteps (×10

6
)

25

50

75

100

125

1,000 episodes

0 0.5 1 1.5 2

25

50

75

100

125

10,000 episodes

Figure 9: Variance analysis of a given set of neural networks. We report the standard deviation of
the sum of discounted rewards obtained during the test phase. Each curve represents an entire test
experiment when executing 100, 1,000, or 10,000 test episodes.

to training for all experiments because it executes 10, 000 test episodes per stored network. The
correlated k-out-of-n environment slightly requires more time than the others because the correlation
information is updated at every inspection step.

Furthermore, we represent in Figure 8 the time required for the computation of expert-based heuristic
policies. The experiments are plotted as a function of the number of components and coloured based
on their corresponding environment. In this case, all experiments are run on CPUs. We can see that
heuristic policies can be efficiently computed for environments with less than 50 components, yet the
computational time significantly increases for experiments with 50 or 100 components. This result
is logical since the combination of evaluated parameters includes the number of components to be
inspected at each inspection interval. Besides, the overall computation time is directly influenced by
the time needed to run an episode, with the k-out-of-n environments taking longer compared to the
offshore wind farm ones because the episode’s finite horizon spans over 10 additional time steps.

E.3 Statistical analysis of the variance associated with the number of test episodes

As previously explained, we conduct 10,000 test episodes to reduce the variance related to the
expected sum of discounted rewards within a given environment. The choice is motivated by the
direct relationship between the variance associated with E[R0] and the number of test episodes. In
our experiments, we average over 10,000 policy realisations, but here, we show that the standard
deviation associated with E[R0] for each trainig time step can vary significantly if an insufficient
number of test episodes is simulated. Figure 9 illustrates the standard deviations observed when
executing with 100, 1,000, and 10,000 test episodes. To produce this figure, we take the neural
networks obtained with one FACMAC training run. These networks are trained over time in the
offshore wind farm environment with 100 components. From this single set of networks, we execute
10 times the 100, 1,000, and 10,000 test episodes to observe how the variance evolves with this
number of test episodes. We observe that the standard deviations of E[R0] obtained with 100 test
episodes significantly vary over the investigated test runs. Naturally, the variation of the standard
deviation is reduced with an increasing number of test episodes, obtaining very similar standard
deviations when testing with 10,000 episodes.

26

0 0.5 1 1.5 2
Timesteps (×10

6
)

400

350

300

250

200

150

R
ew

ar
d

310 300 290 280 270 260 250 240
Reward

-100% -50% 0 50%
Normalised relative reward

-100% -50% 0 50%
Normalised relative reward

QMIX Heuristic

Figure 10: Visual description of the iterative process followed to generate the boxplots showcased in
Figure 3. [Left] Learning curves corresponding to 10 QMIX training seeds in a k-out-of-n system with
50 agents. The markers highlight the policies that result in the highest expected sum of discounted
rewards during evaluation, i.e., one policy per seed. [Right] The 10 selected policies are displayed
at the top as a function of the expected sum of discounted rewards, along with the heuristic score
obtained in this environment. In the middle plot, we calculate and represent the 10 selected policies
as a function of normalised relative rewards, i.e., (x - h) / h. Finally, a boxplot is constructed at
the bottom based on the previously calculated ten normalised relative rewards, each representing a
different seed.

Moreover, one can also compute the largest difference that is observed between these 10 test runs at
a specific time step i.e., the absolute difference of the estimated E[R0] at a given time step. When
testing 100 episodes, the absolute difference is 231.89 at a time step where the maximum of the 10
provided E[R0] is −2786.1. If 1000 episodes are tested, the absolute difference is 99.8 where the
maximum is −2757.2 at this time step, whereas by testing 10,000 episodes, the difference equals
24.8 with a maximum of −2622.8. These numbers represent only a trained set of networks over 1920
training runs, and thus a final conclusion cannot be claimed, yet it motivates the need of simulating
10,000 test episodes, as with only 100 test episodes, the absolute difference can reach up to 10 %.

F Additional benchmark results

In this section, we present additional results and remarks beyond those reported in the main text. In
the first place, we provide the values of the expected sum of discounted rewards achieved by the best
runs over all experiments. We list the best policy for each conducted experiment in Tables 13, 14,
and 15. Note that the maximum values represented with markers at the right of each box in Figure 3
can be retrieved from these values by applying the normalisation (x-H)/H, with H being the value
achieved by the heuristic policies. In Figure 10, we also visually illustrate the normalisation process
that results in the boxplots presented in Figure 3.

Additionally, we represent in Figures 11 and 12 the learning curves corresponding to all our experi-
ments. The learning curves showcase the evolution of the expected sum of discounted rewards every
20,000 training time steps, computed at the testing stage with 10,000 test episodes. Since the training
is conducted with 10 different seeds for each environment and method, we also plot the corresponding
25th-75th percentiles around the median. These results confirm the variance observed between the
best results and presented in Figure 3.

Based on Tables 13 and 14, one may additionally infer that correlated environments result in lower
costs with respect to those uncorrelated. This is especially true for environments with n>=10 agents,
specified without campaign costs, and in all environments set up with campaign costs. While MARL
methods profit from the additionally provided correlation information, this is not always the case for
the heuristic policies.

One final remark is that the discrepancy between the expert-based heuristic policy and MARL
methods is more pronounced in offshore wind farm environments. This could be attributed to the
shorter decision horizon or the higher cost per inspection in this particular case (see Table 15).

27

Table 13: k-out-of-n system best policies (* = campaign cost).
n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

3 -9.7 -9.8 -9.7 -10.6 -10.4 -35.3 -9.9 -12.5
5 -20.4 -20.7 -20.4 -21.8 -22.1 -108.7 -24.0 -25.2

10 -51.0 -51.5 -51.0 -54.3 -61.3 -404.5 / -63.7
50 -229.7 -236.0 -212.8 -1190.6 -249.0 -1991.1 / -268.1
100 -222.6 -230.7 -220.6 -1770.1 -225.7 -1770.1 / -262.4

*3 -14.6 -14.7 -14.7 -15.0 -17.0 -35.3 -13.5 -15.1
*5 -27.4 -27.7 -27.4 -28.9 -33.0 -27.8 -26.6 -28.6
*10 -58.9 -63.0 -60.7 -70.0 -61.9 -404.5 / -64.5
*50 -169.5 -173.9 -168.4 -241.4 -160.7 -623.3 / -232.7

*100 -167.2 -175.8 -160.2 -1770.1 -144.8 -1770.1 / -231.5

Table 14: Correlated k-out-of-n system best policies (* = campaign cost).
n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

3 -9.7 -9.7 -9.6 -11.0 -10.6 -10.0 -10.0 -13.0
5 -20.4 -20.6 -18.4 -21.2 -21.6 -20.2 -23.4 -28.1

10 -47.6 -51.0 -45.2 -49.7 -46.1 -374.5 / -67.7
50 -214.3 -233.0 -212.3 -419.3 -143.4 -1339.9 / -240.0

100 -250.3 -289.0 -276.8 -486.9 -118.3 -1744.0 / -218.1

*3 -13.1 -12.9 -12.9 -14.8 -18.0 -34.7 -12.6 -15.2
*5 -23.5 -24.7 -23.5 -28.2 -29.2 -23.9 -26.8 -30.5

*10 -56.2 -53.4 -50.1 -52.8 -49.2 -56.0 / -68.5
*50 -132.6 -157.1 -121.2 -159.3 -106.6 -814.9 / -211.0
*100 -147.7 -147.5 -121.0 -339.1 -71.3 -723.8 / -194.0

Table 15: Offshore wind farm best policies (* = campaign cost).
n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

2 -23.3 -23.3 -23.2 -23.7 -40.5 -23.7 -23.2 -58.3
4 -47.1 -47.4 -47.1 -47.9 -122.4 -47.4 -47.7 -116.9

10 -118.4 -119.4 -118.5 -122.2 -235.2 -120.8 / -292.3
50 -604.4 -613.9 -604.6 -2805.8 -627.3 -2892.5 / -1463.8

100 -1224.1 -1238.8 -1213.2 -5785.1 -1625.2 -5785.1 / -2925.0

*2 -51.8 -52.0 -51.9 -60.1 -60.3 -52.0 -48.9 -62.2
*4 -80.5 -80.7 -80.7 -122.2 -118.6 -85.6 -76.0 -115.2

*10 -129.3 -133.3 -130.0 -314.5 -196.4 -132.0 / -267.2
*50 -432.9 -436.9 -434.5 -2892.5 -502.8 -1709.7 / -1248.2
*100 -808.1 -829.0 -852.3 -5785.1 -1280.5 -5785.1 / -2436.3

28

0 0.5 1 1.5 250

40

30

20

10

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 3

0 0.5 1 1.5 2
Timesteps (×10

6
)

50

40

30

20

10

0 correlated k-out-of-n; n = 3

0 0.5 1 1.5 2150

125

100

75

50

25

0 offshore win farm; n = 2
QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristic

0 0.5 1 1.5 2200

150

100

50

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 5

0 0.5 1 1.5 2
Timesteps (×10

6
)

200

150

100

50

0 correlated k-out-of-n; n = 5

0 0.5 1 1.5 2400

300

200

100

0 offshore win farm; n = 4

0 0.5 1 1.5 2600

500

400

300

200

100

R
ew

ar
d

uncorrelated k-out-of-n; n = 10

0 0.5 1 1.5 2
Timesteps (×10

6
)

600

500

400

300

200

100

correlated k-out-of-n; n = 10

0 0.5 1 1.5 2600

500

400

300

200

100

offshore win farm; n = 10

0 0.5 1 1.5 2

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 50

0 0.5 1 1.5 2
Timesteps (×10

6
)

2000

1500

1000

500

correlated k-out-of-n; n = 50

0 0.5 1 1.5 2

4000

3000

2000

1000

offshore win farm; n = 50

0 0.5 1 1.5 22500

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 100

0 0.5 1 1.5 2
Timesteps (×10

6
)

2500

2000

1500

1000

500

correlated k-out-of-n; n = 100

0 0.5 1 1.5 2

8000

6000

4000

2000

offshore win farm; n = 100

Figure 11: Learning curves in all environments with no campaign cost. Curves represent the sum
of discounted rewards obtained during test time. The bold line is the median while the error bands
are delimited by the 25th and 75th percentiles. Colours represent the different methods and the
parameters of each environment can be inferred from the title above its corresponding graph.

29

0 0.5 1 1.5 250

40

30

20

10

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 3

0 0.5 1 1.5 2
Timesteps (×10

6
)

50

40

30

20

10

0 correlated k-out-of-n; n = 3

0 0.5 1 1.5 2150

125

100

75

50

25

0 offshore win farm; n = 2
QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristic

0 0.5 1 1.5 2200

150

100

50

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 5

0 0.5 1 1.5 2
Timesteps (×10

6
)

200

150

100

50

0 correlated k-out-of-n; n = 5

0 0.5 1 1.5 2400

300

200

100

0 offshore win farm; n = 4

0 0.5 1 1.5 2600

500

400

300

200

100

R
ew

ar
d

uncorrelated k-out-of-n; n = 10

0 0.5 1 1.5 2
Timesteps (×10

6
)

600

500

400

300

200

100

correlated k-out-of-n; n = 10

0 0.5 1 1.5 2600

500

400

300

200

100

offshore win farm; n = 10

0 0.5 1 1.5 2

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 50

0 0.5 1 1.5 2
Timesteps (×10

6
)

2000

1500

1000

500

correlated k-out-of-n; n = 50

0 0.5 1 1.5 2

4000

3000

2000

1000

offshore win farm; n = 50

0 0.5 1 1.5 22500

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 100

0 0.5 1 1.5 2
Timesteps (×10

6
)

2500

2000

1500

1000

500

correlated k-out-of-n; n = 100

0 0.5 1 1.5 2

8000

6000

4000

2000

offshore win farm; n = 100

Figure 12: Learning curves in all environments with campaign cost. Curves represent the sum of
discounted rewards obtained during test time. The bold line is the median while the error bands
are delimited by the 25th and 75th percentiles. Colours represent the different methods and the
parameters of each environment can be inferred from the title above its corresponding graph.

30

	Introduction
	Related work
	IMP-MARL: A suite of Infrastructure Management Planning environments
	Preliminaries
	Environments formulation
	IMP-MARL environments

	Benchmark campaign of MARL methods
	Tested methods
	Experimental setup

	Benchmark results and discussion
	Conclusions
	IMP-MARL public repository, license, data, and documentation
	Modelling infrastructure management in IMP-MARL
	Deterioration models
	Inspection models
	Transition models

	Options available in IMP-MARL and reward model
	Reward model

	Cooperative MARL methods
	Experimental details
	Description of the parameters set up in the experiments
	Hardware and experiments duration
	Statistical analysis of the variance associated with the number of test episodes

	Additional benchmark results

