
Published as a conference paper at ICLR 2021

Practical Real Time Recurrent Learning
with a Sparse Approximation to the Jacobian

Jacob Menick∗
DeepMind
University College London
jmenick@google.com

Erich Elsen∗
DeepMind
eriche@google.com

Utku Evci
Google

Simon Osindero
DeepMind

Karen Simonyan
DeepMind

Alex Graves
DeepMind

Abstract

Recurrent neural networks are usually trained with backpropagation through time,
which requires storing a complete history of network states, and prohibits updating
the weights ‘online’ (after every timestep). Real Time Recurrent Learning (RTRL)
eliminates the need for history storage and allows for online weight updates, but
does so at the expense of computational costs that are quartic in the state size. This
renders RTRL training intractable for all but the smallest networks, even ones that
are made highly sparse. We introduce the Sparse n-step Approximation (SnAp)
to the RTRL influence matrix. SnAp only tracks the influence of a parameter on
hidden units that are reached by the computation graph within n timesteps of the
recurrent core. SnAp with n = 1 is no more expensive than backpropagation
but allows training on arbitrarily long sequences. We find that it substantially
outperforms other RTRL approximations with comparable costs such as Unbiased
Online Recurrent Optimization. For highly sparse networks, SnAp with n = 2
remains tractable and can outperform backpropagation through time in terms of
learning speed when updates are done online.

1 Introduction

Recurrent neural networks (RNNs) have been successfully applied to a wide range of sequence
learning tasks, including text-to-speech (Kalchbrenner et al., 2018), language modeling (Dai et al.,
2019), automatic speech recognition (Amodei et al., 2016), translation (Chen et al., 2018) and
reinforcement learning (Espeholt et al., 2018). RNNs have greatly benefited from advances in
computational hardware, dataset sizes, and model architectures. However, the algorithm used to
compute their gradients in almost all practical applications has not changed since the introduction
of Back-Propagation Through Time (BPTT). The key limitation of BPTT is that the entire state
history must be stored, meaning that the memory cost grows linearly with the sequence length. For
sequences too long to fit in memory, as often occurs in domains such as language modelling or long
reinforcement learning episodes, truncated BPTT (TBPTT) (Williams & Peng, 1990) can be used.
Unfortunately the truncation length used by TBPTT also limits the duration over which temporal
structure can be realiably learned.

Forward-mode differentiation, or Real-Time Recurrent Learning (RTRL) as it is called when applied
to RNNs (Williams & Zipser, 1989), solves some of these problems. It doesn’t require storage
of any past network states, can theoretically learn dependencies of any length and can be used to
update parameters at any desired frequency, including every step (i.e. fully online). However,
its fixed storage requirements are O(k · |θ|), where k is the state size and |θ| is the number of
parameters θ in the core. Perhaps even more daunting, the computation it requires is O(k2 · |θ|).
This makes it impractical for even modestly sized networks. The advantages of RTRL have led
to a search for more efficient approximations that retain its desirable properties, whilst reducing
its computational and memory costs. One recent line of work introduces unbiased, but noisy
approximations to the influence update. Unbiased Online Recurrent Optimization (UORO) (Tallec

1

Published as a conference paper at ICLR 2021

& Ollivier, 2018) is an approximation with the same cost as TBPTT – O(|θ|) – however its gradient
estimate is severely noisy (Cooijmans & Martens, 2019) and its performance has in practice proved
worse than TBPTT (Mujika et al., 2018). Less noisy approximations with better accuracy on a
variety of problems include both Kronecker Factored RTRL (KF-RTRL) (Mujika et al., 2018) and
Optimal Kronecker-Sum Approximation (OK) (Benzing et al., 2019). However, both increase the
computational costs to O(k3).

The last few years have also seen a resurgence of interest in sparse neural networks – both their
properties (Frankle & Carbin, 2019) and new methods for training them (Evci et al., 2019). A
number of works have noted their theoretical and practical efficiency gains over dense networks (Zhu
& Gupta, 2018; Narang et al., 2017; Elsen et al., 2019). Of particular interest is the finding that
scaling the state size of an RNN while keeping the number of parameters constant leads to increased
performance (Kalchbrenner et al., 2018).

In this work we introduce a new sparse approximation to the RTRL influence matrix. The approx-
imation is biased but not stochastic. Rather than tracking the full influence matrix, we propose to
track only the influence of a parameter on neurons that are affected by it within n steps of the RNN.
The algorithm is strictly less biased but more expensive as n increases. The cost of the algorithm
is controlled by n and the amount of sparsity in the Jacobian of the recurrent cell. We study the
nature of this bias in Appendix C. Larger n can be coupled with concomitantly higher sparsity to
keep the cost fixed. This enables us to achieve the benefits of RTRL with a computational cost per
step comparable in theory to BPTT. The approximation approaches full RTRL as n increases. Our
contributions are as follows:

• We propose SnAp – a practical approximation to RTRL, which is is applicable to both dense
and sparse RNNs, and is based on the sparsification of the influence matrix.

• We show that parameter sparsity in RNNs reduces the costs of RTRL in general and SnAp
in particular.

• We carry out experiments on both real-world and synthetic tasks, and demonstrate that
the SnAp approximation: (1) works well for language modeling compared to the exact
unapproximated gradient; (2) admits learning temporal dependencies on a synthetic copy
task and (3) can learn faster than BPTT when run fully online.

2 Background

We consider recurrent networks whose dynamics are governed by ht = fθ(ht−1, xt) where ht ∈ Rk
is the state, xt ∈ Ra is an input, and θ ∈ Rp are the network parameters. It is assumed that at each
step t ∈ {1, ..., T}, the state is mapped to an output yt = gφ(ht), and the network receives a loss
Lt(yt, y∗t). The system optimizes the total loss L =

∑
t
Lt with respect to parameters θ by following

the gradient ∇θL. The standard way to compute this gradient is BPTT – running backpropagation
on the computation graph “unrolled in time” over a number of steps T :

∇θL =

T∑
t=1

∂L
∂ht

∂ht
∂θt

=

T∑
t=1

(
∂L
∂ht+1

∂ht+1

∂ht
+
∂Lt
∂ht

)
∂ht
∂θt

(1)

The recursive expansion ∂L
∂ht

= ∂L
∂ht+1

∂ht+1

∂ht
+ ∂Lt

∂ht
is the backpropagation rule. The slightly

nonstandard notation θt refers to the copy of the parameters used at time t, but the weights are shared
for all timesteps and the gradient adds over all copies.

2.1 Real Time Recurrent Learning (RTRL)

Real Time Recurrent Learning (Williams & Zipser, 1989) computes the gradient as:

∇θL =

T∑
t=1

∂Lt
∂ht

∂ht
∂θ

=

T∑
t=1

∂Lt
∂ht

(
∂ht
∂θt

+
∂ht
∂ht−1

∂ht−1
∂θ

)
(2)

2

Published as a conference paper at ICLR 2021

This can be viewed as an iterative algorithm, updating ∂ht

∂θ from the intermediate quantity ∂ht−1

∂θ . To
simplify equation 2we introduce the following notation: have Jt := ∂ht

∂θ , It :=
∂ht

∂θt
andDt :=

∂ht

∂ht−1
.

J stands for “Jacobian”, I for “immediate Jacobian”, and D for “dynamics”. We sometimes refer to
J as the “influence matrix”. The recursion can be rewritten Jt = It +DtJt−1.

Cost analysis Jt is a matrix in Rk×|θ|, which can be on the order of gigabytes for even modestly
sized RNNs. Furthermore, performing the operationDtJt−1 involves multiplying a k× k matrix by
a k × |θ| matrix each timestep. That requires |θ| times more computation than the forward pass of
the RNN core. To make explicit just how expensive RTRL is – this is a factor of roughly one million
for a vanilla RNN with 1000 hidden units.

2.2 Truncated RTRL and stale Jacobians

In analogy to Truncated BPTT, one can consider performing a gradient update partway through a
training sequence (at time t) but still passing forward a stale state and a stale influence Jacobian Jt
rather than resetting both to zero after the update. This enables more frequent weight updating at the
cost of a staleness bias. The Jacobian Jt becomes “stale” because it tracks the sensitivity of the state
to old parameters. Experiments (section 5.2) show that this tradeoff can be favourable toward more
frequent updates in terms of data efficiency. In fact, much of the RTRL literature assumes that the
parameters are updated at every step t (“fully online”) and that the influence Jacobian is never reset,
at least until the start of a new sequence. All truncated BPTT experiments in our paper pass forward
a stale state if an update is done before the end of the sequence.

2.3 Sparsity in RNNs

One of the early explorations of sparsity in the parameters of RNNs (i.e. many entries of θ are
exactly zero) was Ström (1997), where one-shot pruning based on weight magnitude with subsequent
retraining was employed in a speech recognition task. The current standard approach to inducing
sparsity in RNNs (Zhu&Gupta, 2018) remains similar, except that magnitude based pruning happens
slowly over the course of training so that no retraining is required.

Kalchbrenner et al. (2018) discovered a powerful property of sparse RNNs in the course of investi-
gating them for text-to-speech – for a constant parameter and flop budget sparser RNNs have more
capacity per parameter than dense ones. This property has so far only been shown to hold when the
sparsity pattern is adapted during training (in this case, with pruning). Note that parameter parity is
achieved by simultaneously increasing the RNN state size and the degree of sparsity. This suggests
that training large sparse RNNs could yield powerful sequence models, but the memory required
to store the history of (now much larger) states required for BPTT becomes prohibitive for long
sequences. In this paper, we use a fixed sparsity pattern rather than pruning (see Appendix B), for
simplicity. In particular, we pick uniformly at random which indices of weight matrices to force to
zero and hold this sparsity pattern constant over the course of training.

3 The Sparse n-Step Approximation (SnAp)

Ourmain contribution in this work is the development of an approximation to RTRL called the Sparse
n-Step Approximation (SnAp) which reduces RTRL’s computational requirements substantially.

SnAp imposes sparsity on J even though it is in general dense. We choose the sparsity pattern to be
the locations that are non-zero after n steps of the RNN (Figure 1). We also choose to use the same
pattern for all steps, though this is not a requirement. This means that the sparsity pattern of Jt is
known and can be used to reduce the amount of computation in the product DtJt−1. See Figure 2
for a visualization of the process. The costs of the resulting methods are compared in Table 1. We
note an alternative strategy would be to perform the full multiplication ofDtJt−1 and then only keep
the top-k values. This would reduce the bias of the approximation but increase its cost.

More formally, we adopt the following approximation for all t:

(Jt)ij ≈
{
(Jt)ij if (θt)j influences hidden unit (ht+n)i
0 otherwise

3

Published as a conference paper at ICLR 2021

Figure 1: SnAp in dense (bottom) and sparse (top) graphs: As the figure proceeds to the right we
propagate the influence of the red connection i on the nodes j of the graph through further RNN
steps. Nodes are colored in pink if they are influenced on or before that step. The entry Ji,j is kept if
node j is colored pink, but all other entries in row i are set to zero. When n = 1 in both cases only
one node is influenced. In the dense case the red connection influences all nodes when n >= 2.

3.1 Sparse One-Step Approximation (SnAp-1)

Even for a fully dense RNN, each parameter will in the usual case only immediately influence the
single hidden unit it is directly connected to. This means that the immediate Jacobian It tends to
be extremely sparse. For example, a Vanilla RNN will have only one nonzero element per column,
which is a sparsity level of k−1k . Storing only the nonzero elements of It already saves a significant
amount of memory without making any approximations; It is the same shape as the daunting Jt
matrix whereas the nonzero values are the same size as θ.

It can become more dense in architectures (such as GRU and LSTM) which involve the composition
of parameterised layers within a single core step (see Appendix A for an in-depth discussion of
the effect of gating architectures on Jacobian sparsity). In the Sparse One-Step Approximation, we
only keep entries in Jt if they are nonzero in It. After just two RNN steps, a given parameter has
influenced every unit of the state through its intermediate influence on other units. Thus only SnAp
with n = 1 is efficient for dense RNNs because n > 1 does not result in any sparsity in J ; for
dense networks SnAp-2 already reduces to full RTRL. (N.b.: SnAp-1 is also applicable to sparse
networks.) Figure 1 depicts the sparse structure of the influence of a parameter for both sparse and
fully dense cases.

SnAp-1 is effectively diagonal, in the sense that the effect of parameter j on hidden unit i ismaintained
throughout time, but ignoring the indirect effect of parameter j on unit i via paths through other units
i′. More formally, it is useful to define u(j) as the one component in the state ht connected directly
to the parameter j (which has at the other end of the connection some other entry i′ within ht−1 or
xt). Let i = u(j). The imposition of the one-step sparsity pattern means only the entry in row i will
be kept for column j in Jt. Inspecting the update for this particular entry, we have

(Jt)ij = (It)ij +

n∑
m=1

(Dt)im(Jt−1)mj = (It)ij + (Dt)ii(Jt−1)ij (3)

The equality follows from the assumption that (Jt−1)mj = 0 if m 6= i. Diagonal entries in Dt are
thus crucial for this approximation to be expressive, such as those arising from skip connections.

3.2 Optimizations for full RTRL with sparse networks
When the RNN is sparse, the costs of even full (unapproximated) RTRL can be alleviated to a
surprising extent; we save computation proportional to a factor of the sparsity squared. Assume a
proportion s of the entries in both θ and Dt are equal to zero and refer to this number as “the level
of sparsity in the RNN”. For convenience, d := 1 − s. With a Vanilla RNN, this correspondence
between parameter sparsity and dynamics sparsity holds exactly. For popular gating architectures
such as GRU and LSTM the relationship is more complicated so we include empirical measurements
of the computational cost in FLOPS (Table 2) in addition to the theoretical calculations here. More

4

Published as a conference paper at ICLR 2021

Figure 2: Depiction of RTRL, RTRL with spar-
sity and SnAp. White indicates zeros. (a)
It +DtJt−1 (b) It +DtJt−1 whenW is sparse
(c) Ĩt + DtJ̃t−1 (d) SnAp-2 (e) SnAp-1. Rose
colored squares are non-zero in Dt but not used
in updating Jt.

Method memory time per step
BPTT Tk + p k2 + p
UORO k + p k2 + p
RTRL k + kp k2 + k2p

Sparse BPTT Tk + dp d(k2 + p)
Sparse RTRL k + dkp d(k2 + dk2p)
SnAp-1 k + dp d(k2 + p)
SnAp-2 k + d2kp d(k2 + d2k2p)

Table 1: Computational costs (up to a proportion-
ality constant) of gradient calculation methods for
dense and sparse RNNs. Below T refers to the se-
quence length, k the number of hidden units, p the
number of dense recurrent parameters, s the level
of sparsity, and d = 1 − s. The first term of the
compute cost is for going forward and the second
term is for either going backward or updating the
influence matrix.

complex recurrent architectures involving attention (Rae et al., 2016) would require an independent
mechanism for inducing sparsity in Dt; we leave this direction to future work and assume in the
remainder of this derivation that sparsity in θ corresponds to sparsity in Dt.

If the sparsity level of θ is s, then so is the sparsity in J because the columns corresponding to
parameters which are clamped to zero have no effect on the gradient computation. We may extract
the columns of J containing nonzero parameters into a new dense matrix J̃ used in place of J
everywhere with no effect on the gradient computation. We make the same optimization for It and
use the dense matrix Ĩt in its place, leaving us with the update rule (depicted in Figure 2) :

J̃t = Ĩt +DtJ̃t−1 (4)

These optimizations taken together reduce the storage requirements by 1
d (because J̃ is d times the

size of J) and the computational requirements by 1
d2 becauseDt in the sparse matrix multiplication

DtJ̃t−1 has density d, saving us an extra factor of 1
d .

3.3 Sparse N Step Approximation (SnAp-N)

Even when Dt is sparse, the computation “graph” linking nodes (neurons) in the hidden state over
time should still be connected, meaning that J̃ eventually becomes fully dense because after enough
iterations every (non-zero) parameter will have influenced every hidden unit in the state. Thus sparse
approximations are still available in this setting and indeed required to obtain an efficient algorithm.
For sparse RNNs, SnAp simply imposes additional sparsity on J̃t rather than Jt. SnAp-N forN > 1
is both strictly less biased and strictly more expensive, but its costs can be reduced by increasing the
degree s of sparsity in the RNN. SnAp-2 is comparable with UORO and SnAp-1 if the sparsity of
the RNN is increased so that d < n−

2
3 , e.g. 99% or higher sparsity for a 1000-unit Vanilla RNN. If

this level of sparsity is surprising, the reader is encouraged to see our experiments in Appendix B.

4 Related Work

SnAp-1 is actually similar to the original algorithm used to train LSTM (Hochreiter & Schmidhuber,
1997), which employed forward-mode differentiation to maintain the sensitivity to each parameter
of a single cell unit, over all time. This exposition was expressed in terms coupled to the LSTM
architecture whereas our formulation is general. SnAp-1 was also described in (Bellec et al., 2019)
as eprop-1. The exposition in that paper goes into great depth regarding its biological plausibility and

5

Published as a conference paper at ICLR 2021

relation to spiking neural networks and may be somewhat unfamiliar to readers from a pure machine
learning background. The -1 postfix in eprop refers to it being the first of three present algorithms,
not the number of connections as in SnAp. Biological plausibility of RTRL variants has also been
studied in (Zenke & Neftci, 2021). An idea similar to SnAp was also proposed in (Bradbury, 1997),
aiming to overcome poor local minima during optimization.

Random Feedback Local Online (Murray, 2019) (RFLO) amounts to accumulating It terms in
equation 4 whilst ignoring the product DtJt−1. It admits an efficient implementation through
operating on Ĩt as in section 3.2 but is strictly more biased than the approximations considered in
this work and performs worse in our experiments. The original paper also used random matrices
to propagate errors backward, thus avoiding the weight transport problem (Lillicrap et al., 2016).
However, for a fair comparison, our re-implementation uses the same weights that are used for the
forward pass, as in standard backpropagation. As mentioned in section 1, stochastic approximations
to the influence matrix are an alternative to the methods developed in our work, but suffer from
noise in the gradient estimator (Cooijmans & Martens, 2019). A fruitful line of research focuses on
reducing this noise (Cooijmans & Martens, 2019), (Mujika et al., 2018), (Benzing et al., 2019).

It is possible to reduce the storage requirements of TBPTT using a technique known as “gradient
checkpointing” or “rematerialization”. This reduces thememory requirements of backpropagation by
recomputing states rather than storing them. First introduced in Griewank&Walther (2000) and later
applied specifically to RNNs in Gruslys et al. (2016), these methods are not compatible with the fully
online setting where T may be arbitrarily large as even the optimally small amount of re-computation
can be prohibitive. For reasonably sized T , however, rematerialization is a straightforward and
effective way to reduce the memory requirements of TBPTT, especially if the forward pass can be
computed quickly.

5 Experiments

We include experimental results on the real world language-modelling task WikiText103 (Merity
et al., 2017) and the synthetic ‘Copy’ task (Graves et al., 2016) of simply repeating an observed binary
string. Whilst the first is important for demonstrating that our methods can be used for real, practical
problems, language modelling doesn’t directly measure a model’s ability to learn structure that spans
long time horizons. The Copy task, however, allows us to parameterize exactly the temporal distance
over which structure is present in the data. In terms of, respectively, task complexity and RNN state
size (up to 1024) these investigations are considerably more “large-scale” than much of the RTRL
literature.

5.1 WikiText103
All of our WikiText103 experiments tokenize at the character (byte) level and use SGD to optimize
the log-likelihood of the data. We use the Adam optimizer (Kingma & Ba, 2014) with default hyper-
parameters β1 = 0.9, β2 = 0.999, and ε = 1e−8. We train on randomly cropped sequences of length
128 sampled uniformly with replacement and do not propagate state across the end-of-sequence
boundary (i.e. no truncation). Results are reported on the standard validation set.

5.1.1 Language Modelling with dense RNNs: SnAp-1
In this section, we refrain from performing a weight update until the end of a training sequence (see
section 2.2) so that BPTT is the gold standard benchmark for performance, assuming the gradient
is the optimal descent direction. The architecture is a Gated Recurrent Unit (GRU) network (Cho
et al., 2014) with 128 recurrent units and a one-layer readout MLP mapping to 1024 hidden relu
units before the final 256-unit softmax layer. The embedding matrix is not shared between the input
and output. All weights are initialized from a truncated normal distribution with standard deviation
equal to the inverse square root of the fan in. Learning curves in Figure 3 (Left) show that SnAp-1
outperforms RFLO and UORO, and that in this setting UORO fails to match the surprisingly strong
baseline of not training the recurrent parameters at all and instead leaving them at their randomly
initialized value. This random baseline is closely related to the Echo-State network (Jaeger, 2001),
and the strong readout network is intended to help keep the comparison to this baseline fair.

5.1.2 Language Modeling with Sparse RNNs: SnAp-1 and SnAp-2
Here we use the same architecture as in section 5.1.1, except that we introduce 75% sparsity into
the weights of the GRU, in particular the weight matrices (more sparsity levels are considered in

6

Published as a conference paper at ICLR 2021

Figure 3: Left: Comparing various RTRL approximations based upon their ability to train a dense
GRU network to do character-level language modelling. On the y-axis is Negative Log Likelihood.
Right: Same as left with 75% parameter-sparsity.

later experiments). Biases are always kept fully dense. In order to induce sparsity, we generate a
sparsity pattern uniformly at random and fix it throughout training. As would be expected because
it is strictly less biased, Figure 3 (Right) shows that SnAp-2 outperforms SnAp-1 but only slightly.
Furthermore, both closely match the (gold-standard) accuracy of a model trained with BPTT. Table
2 shows that SnAp-2 actually costs about 600x more FLOPs than BPTT/SnAp-1 at 75% sparsity, but
higher sparsity substantially reduces FLOPs. It’s unclear exactly how the cost compares to UORO,
which though O(|θ|) does have constant factors required for e.g. random number generation, and
additional overheads when approximations use rank higher than one.

5.2 Copy Task
Our experiments on the Copy task (Graves et al., 2016) aim to investigate the ability of the proposed
sparse RTRL approximations to learn about temporal structure. In this synthetic task, a sequence of
bits bt ∈ {0, 1} is presented one at a time, and then a special token is presented, denoting the end
of the input pattern. Subsequently, the network receives a series of special tokens indicating that an
output is desired, at which time it must output, one token at a time, the same binary string it received
as input. Unlike language modelling, there is nothing going on in this problem except for (simple)
temporal structure over a known temporal distance: the length of the input sequence.

We follow (Mujika et al., 2018) and adopt a curriculum-learning approach over the length L of
sequences to be copied, starting with L = 1. When the average bits per character of a training
minibatch drops below 0.15, we increment L by one. We sample the length of target sequences
uniformly between [max(L− 5, 1), L] as in previous work. We measure performance versus ‘data-
time’, i.e. we give each algorithm a time budget in units of the cumulative number of tokens seen
throughout training. A consequence of this scheme is that full BPTT is no longer an upper bound on
performance because, for example, updating once on a sequence of length 10 with the true gradient
may yield slower learning than updating twice on two consecutive sequences of length 5, with
truncation.

In these experiments we examine SnAp performance for multiple sparsity levels and recurrent archi-
tectures including Vanilla RNNs, GRU, and LSTM. Table 2 includes the architectural details. The
sparsity pattern is again chosen uniformly at random. As a result, comparison between sparsity levels
is discouraged. For each configuration we sweep over learning rates in {10−2.5, 10−3, 10−3.5, 10−4}
and compare average performance over three seeds with the best chosen learning rate (all methods
performed best with learning rate 10−3). The minibatch size was 16. We train with either full unrolls
or truncation with T = 1. This means that the RTRL approximations update the network weights at
every timestep and persist the RNN state along with a stale Jacobian (see section 2.2).

Fully online training One striking observation is that Truncated BPTT completely fails to learn
temporal structure in the fully online (T = 1) regime. Interestingly, the SnAp methods perform
better with more frequent updates. Compare solid versus dotted lines of the same color in Figure
4. Fully online SnAp-2 and SnAp-3 mostly outperform or match BPTT for training LSTM and
GRU architectures despite the “staleness” noted in Section 2.2. We attribute this to the hypothesis

7

Published as a conference paper at ICLR 2021

advanced in the RTRL literature that Jacobian staleness can be mitigated with small learning rates
but leave a more thorough investigation of this phenomenon to future work.

Bias versus computational expense For SnAp there is a tradeoff between the biasedness of the
approximation and the computational costs of the algorithm. We see that correspondingly, SnAp-1
is outperformed by SnAp-2, which is in turn outperformed by SnAp-3 in the Copy experiments. The
RFLO baseline is even more biased than SnAp-1, but both methods have comparable costs. SnAp-1
significantly outperforms RFLO in all of our experiments. The nature of the bias introduced by
SnAp is investigated in Appendix C.

Empirical FLOPs requirements Here we augment the asymptotic cost calculations from Table 1
with empirical measurements of the FLOPs, broken out by architecture and sparsity level in Table
2. Gating architectures require a high degree of parameter sparsity in order to keep a commensurate
amount of of Jacobian sparsity due to the increase in density brought about by composing linear maps
with different sparsity patterns (see Appendix A). For instance, the 75% sparse GRU considered in
the experiments from Section 5.1.2 lead to SnAp-2 parameter Jacobian that is only 70.88% sparse.
With SnAp-3 it becomes much less sparse – only 50%. This may partly explain why SnAp performs
best compared to BPTT in the LSTM case (Figure 4), though it still significantly outperforms BPTT
in the high sparsity regime when SnAp-2 becomes practical. Also, LSTM is twice as costly to train
with RTRL-like algorithms because it has two components to its state, requiring the maintenance of
twice as many jacobians and the performance of twice as many jacobian multiplications (Equations
3/5). For a 75% sparse LSTM, the SnAp-2 Jacobian is much denser at 38.5% sparsity and SnAp-3
has essentially reached full density (so it is as costly as RTRL).

Figure 4 also shows that for Vanilla RNNs, increasing n improves performance, but SnAp does not
outperform BPTT with this architecture. In summary, Increasing n improves performance but costs
more FLOPs.

Architecture Vanilla GRU LSTM
Number of Units 128 256 512 128 256 512 128 256 512
Param. Sparsity 75.0% 93.8% 98.4% 75% 93.8% 98.4% 75.0% 93.8% 98.4%
SnAp-2 J Sparsity 83.0% 95.6% 98.9% 70.9% 91.1% 97.8% 38.5% 79.9% 95.1%
SnAp-3 J Sparsity 33.3% 59.2% 92.8% 50.0% 52.5% 71.6% 2.4% 5.9% 38.7%
SnAp-1 vs BPTT 1x 1x 1x 1x 1x 1x 2x 2x 2x
SnAp-2 vs BPTT 349x 90.4x 22.1x 597x 183x 44.8x 2518x 824.8x 200.1x
SnAp-3 vs BPTT 1365x 835.8x 147.5x 1024x 972x 582x 3996x 3855x 2513x
SnAp-2 vs RTRL 0.17x 0.044x 0.011x 0.291x 0.089x 0.022x 0.615x 0.201x 0.049x

Table 2: Empirical computational costs of SnAp, determined by the sparsity level in the Jacobians.
The “X vs BPTT” rows express the FLOPS requirements of X as a multiple of BPTT training
FLOPs. The “SnAp-2 vs RTRL” row shows the FLOPS requirements of SnAp-2 as a multiple of
those required by optimized Sparse RTRL (section 3.2). Lower is better for all of these entries.

6 Conclusion
We have shown how sparse operations can make a form of RTRL efficient, especially when replacing
dense parameter Jacobians with approximate sparse ones. We introduced SnAp-1, an efficient
RTRL approximation which outperforms comparably-expensive alternatives on a popular language-
modeling benchmark. We also developed higher orders of SnAp including SnAp-2 and SnAp-3,
approximations tailor-made for sparse RNNs which can be efficient in the regime of high parameter
sparsity, and showed that they can learn temporal structure considerably faster than even full BPTT.

Our results suggest that training very large, sparse RNNs could be a promising path toward more
powerful sequencemodels trained on arbitrarily long sequences. This may prove useful for modelling
whole documents such as articles or even books, or reinforcement learning agents which learn over
an entire lifetime rather than the brief episodes which are common today.

A few obstacles stand in the way of scaling up our methods further:

• The need for a high-performing sparse training strategy that does not require dense gradient
information.

8

Published as a conference paper at ICLR 2021

Figure 4: Copy task results by sparsity and architecture. Solid lines indicate that updates are done
fully online (at every step). Dotted lines indicate that updates are done at the end of a sequence. See
the heading “Fully online training” within section 5.2 for more details.

• Sparsity support in both software and hardware that enables better realization of the theo-
retical efficiency gains of sparse operations.

It may also be fruitful to further develop our methods for hybrid models combining recurrence and
attention (Dai et al., 2019; Rae et al., 2016) or even feedforward architectures with tied weights
(Lan et al., 2019) (Dehghani et al., 2018).

References
Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl
Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, and et al. Deep speech
2: End-to-end speech recognition in english and mandarin. In Proceedings of the 33rd Interna-
tional Conference on International Conference on Machine Learning - Volume 48, ICML’16, pp.
173–182. JMLR.org, 2016.

Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert Legenstein, andWolfgang Maass.
Biologically inspired alternatives to backpropagation through time for learning in recurrent neural
nets. arXiv.org e-Print archive, 2019:1–37, 1 2019.

Frederik Benzing, Marcelo Matheus Gauy, Asier Mujika, Anders Martinsson, and Angelika Steger.
Optimal kronecker-sum approximation of real time recurrent learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 604–613. PMLR, 2019. URL http://proceedings.mlr.
press/v97/benzing19a.html.

David Bradbury. A methodology for the development of recurrent networks for sequence processing
tasks. October 1997. URL http://oro.open.ac.uk/65146/.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, and SkyeWanderman-Milne. JAX: composable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax.

Mia XuChen, Orhan Firat, Ankur Bapna, Melvin Johnson,WolfgangMacherey, George Foster, Llion
Jones, Mike Schuster, Noam Shazeer, Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz

9

http://proceedings.mlr.press/v97/benzing19a.html
http://proceedings.mlr.press/v97/benzing19a.html
http://oro.open.ac.uk/65146/
http://github.com/google/jax

Published as a conference paper at ICLR 2021

Kaiser, Zhifeng Chen, Yonghui Wu, and Macduff Hughes. The best of both worlds: Combining
recent advances in neural machine translation. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pp. 76–86, Melbourne,
Australia, July 2018. Association for Computational Linguistics. doi: 10.18653/v1/P18-1008.
URL https://www.aclweb.org/anthology/P18-1008.

KyunghyunCho, Bart vanMerriënboer, CaglarGulcehre, DzmitryBahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://www.aclweb.org/
anthology/D14-1179.

Tim Cooijmans and James Martens. On the variance of unbiased online recurrent optimization.
CoRR, abs/1902.02405, 2019. URL http://arxiv.org/abs/1902.02405.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, Florence,
Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1285. URL
https://www.aclweb.org/anthology/P19-1285.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. CoRR, abs/1807.03819, 2018. URL http://arxiv.org/abs/1807.03819.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast Sparse ConvNets. ArXiv, 2019.
URL https://arxiv.org/abs/1911.09723.

Jesse Engel. Optimizing rnns with differentiable graphs. URL https://svail.github.io/diff_
graphs/. Accessed: 2020-06-02.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. IMPALA: Scalable Distributed Deep-RL
with Importance Weighted Actor-Learner Architectures. In Proceedings of the International
Conference on Machine Learning (ICML), 2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the Lottery:
Making All Tickets Winners, 2019.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019. URL https://openreview.net/forum?id=rJl-b3RcF7.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
AdriàPuigdomènech Badia, Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain,
Helen King, Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis Hassabis.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016. doi: 10.1038/nature20101. URL https://doi.org/10.1038/nature20101.

Andreas Griewank and Andrea Walther. Algorithm 799: Revolve: An implementation of check-
pointing for the reverse or adjoint mode of computational differentiation. ACM Trans. Math.
Softw., 26(1):19–45, March 2000. ISSN 0098-3500. doi: 10.1145/347837.347846. URL
https://doi.org/10.1145/347837.347846.

Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-
efficient backpropagation through time. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29,
pp. 4125–4133. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6221-memory-efficient-backpropagation-through-time.pdf.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–
1780, November 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735. URL http://dx.
doi.org/10.1162/neco.1997.9.8.1735.

10

https://www.aclweb.org/anthology/P18-1008
https://www.aclweb.org/anthology/D14-1179
https://www.aclweb.org/anthology/D14-1179
http://arxiv.org/abs/1902.02405
https://www.aclweb.org/anthology/P19-1285
http://arxiv.org/abs/1807.03819
https://arxiv.org/abs/1911.09723
https://svail.github.io/diff_graphs/
https://svail.github.io/diff_graphs/
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.1038/nature20101
https://doi.org/10.1145/347837.347846
http://papers.nips.cc/paper/6221-memory-efficient-backpropagation-through-time.pdf
http://papers.nips.cc/paper/6221-memory-efficient-backpropagation-through-time.pdf
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Published as a conference paper at ICLR 2021

Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks.
GMD-Report 148, German National Research Institute for Computer Science, 01 2001.

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, SebNoury, NormanCasagrande, Edward Lockhart,
Florian Stimberg, Aäron van den Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient Neu-
ral Audio Synthesis. In Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 2415–2424, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. URL http:
//arxiv.org/abs/1412.6980. cite arxiv:1412.6980Comment: Published as a conference paper
at the 3rd International Conference for Learning Representations, San Diego, 2015.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut,
Google Research, and Mailton de Carvalho. Albert: A lite bert for self-supervised learning of
language representations. 10 2019.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature communications, 7(1):
1–10, 2016.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Asier Mujika, Florian Meier, and Angelika Steger. Approximating real-time recurrent learning
with random kronecker factors. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems
31, pp. 6594–6603. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7894-approximating-real-time-recurrent-learning-with-random-kronecker-factors.
pdf.

James M Murray. Local online learning in recurrent networks with random feedback. eLife, 8:
e43299, may 2019. ISSN 2050-084X. doi: 10.7554/eLife.43299. URL https://doi.org/10.
7554/eLife.43299.

Sharan Narang, Gregory F. Diamos, Shubho Sengupta, and Erich Elsen. Exploring sparsity in
recurrent neural networks. In International Conference on Learning Representations, 2017.

JackWRae, Jonathan J Hunt, TimHarley, Ivo Danihelka, Andrew Senior, GregWayne, Alex Graves,
and Timothy P Lillicrap. Scaling memory-augmented neural networks with sparse reads and
writes. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, pp. 3628–3636, Red Hook, NY, USA, 2016. Curran Associates Inc. ISBN
9781510838819.

Nikko Ström. Sparse connection and pruning in large dynamic artificial neural networks. In
EUROSPEECH, 1997.

Corentin Tallec and Yann Ollivier. Unbiased online recurrent optimization. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=
rJQDjk-0b.

R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural Computation, 1(2):270–280, June 1989. ISSN 0899-7667. doi: 10.1162/neco.
1989.1.2.270.

Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural Computation, 2:490–501, 1990.

F. Zenke and E. O. Neftci. Brain-inspired learning on neuromorphic substrates. Proceedings of the
IEEE, pp. 1–16, 2021. doi: 10.1109/JPROC.2020.3045625.

Michael Zhu and Suyog Gupta. To Prune, or Not to Prune: Exploring the Efficacy of Pruning for
Model Compression. In International Conference on Learning Representations Workshop, 2018.

11

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
http://papers.nips.cc/paper/7894-approximating-real-time-recurrent-learning-with-random-kronecker-factors.pdf
http://papers.nips.cc/paper/7894-approximating-real-time-recurrent-learning-with-random-kronecker-factors.pdf
http://papers.nips.cc/paper/7894-approximating-real-time-recurrent-learning-with-random-kronecker-factors.pdf
https://doi.org/10.7554/eLife.43299
https://doi.org/10.7554/eLife.43299
https://openreview.net/forum?id=rJQDjk-0b
https://openreview.net/forum?id=rJQDjk-0b
https://arxiv.org/abs/1710.01878
https://arxiv.org/abs/1710.01878

Published as a conference paper at ICLR 2021

Appendix A: Jacobian Sparsity of GRUs and LSTMs

Unlike vanilla RNNs whose dynamics Jacobian Dt has sparsity exactly equal to the sparsity of the
weight matrix, GRUs and LSTMs have inter-cell interactions which increase the Jacobians’ density.
In particular, the choice of GRU variant can have a very large impact on the increase in density. This
is relevant to the “dynamics” jacobian Dt and the parameter jacobians It and Jt.

Consider a standard formulation of LSTM.

it = σ(Wiixt +Whiht−1 + bi)

ft = σ(Wifxt +Whfht−1 + bf)

ot = σ(Wioxt +Whoht−1 + bo)

gt = φ(Wigxt +Whght−1 + bg)

ct = ft � ct−1 + it � gt
ht = ot � φ(ct)

(5)

Looking at LSTM’s update equations, we can see that an individual parameter (W, b) will only
directly affect one entry in each gate (it, ft, ot) and the candidate cell gt. These in turn produce the
next cell ct and next hidden state ht with element-wise operations (σ is the sigmoid function applied
element-wise and φ is usually hyperbolic tangent). In this case Figure 1 is an accurate depiction of
the propagation of influence of a parameter as the RNN is stepped.

However, for a GRU there are multiple variants in which a parameter or hidden unit can influence
many more units of the next state. The original variant (Cho et al., 2014) is as follows:

zt = σ(Wizxt +Whzht−1 + bz)

rt = σ(Wirxt +Whrht−1 + br)

at = φ(Wiaxt +Wha(rt � ht−1) + ba)

ht = (1− zt)� ht−1 + zt � at

(6)

For our purposes the main thing to note is that the parameters influencing rt further influence every
unit of at because of the matrix multiplication by Wha. They therefore influence every unit of
ht within one recurrent step, which means that the dynamics jacobian Dt is fully dense and the
immediate parameter jacobian It forWir,Whr, and br are all fully dense as well.

An alternative formulation which was popularized by Engel, and also used in the CuDNN library
from NVIDIA is given by:

zt = σ(Wizxt +Whzht−1 + bz)

rt = σ(Wirxt +Whrht−1 + br)

at = φ(Wiaxt + rt �Whaht−1 + ba)

ht = (1− zt)� ht−1 + zt � at

(7)

The second variant has moved the reset gate after the matrix multiplication, thus avoiding the
composition of parameterized linear maps within a single RNN step. As the modeling performance
of the two variants has been shown to be largely the same, but the second variant is faster and results
in sparser Dt and It, we adopt the second variant throughout this paper.

Appendix B: Sparsity Strategy

Our experiments do not use state-of-the-art strategies for inducing sparsity because there is no such
strategy compatible with SnAp at the time of writing. The requirement of a dense gradient in Evci
et al. (2019) and Zhu & Gupta (2018) prevents the use of the optimization in Equation 4, which
is strictly necessary to fit the RTRL training computations on accelerators without running out of
memory.

12

Published as a conference paper at ICLR 2021

Figure 5: BPC vs Sparsity for Constant Param-
eter Count. Shows the same results as Table 3.
The biggest, sparsest GRU performs better than
a dense network with 6.25x as many (nonzero)
parameters.

units bpc θ sparsity |θ|
base 1.55 0% 1x
2x 1.48 75% 1x
4x 1.43 93.75% 1x
8x 1.42 98.4% 1x
16x 1.40 99.6% 1x
32x 1.38 99.9% 1x
2.5x 1.39 0% 6.25x

Table 3: Final performance of
sparse WikiText103 language mod-
eling GRU networks trained with
progressive pruning. Each row rep-
resents a single training run. The
‘bpc’ column gives the validation
set negative log-likelihood in units
of bits per character. The |θ| col-
umn gives the number of parameters
in the network as a multiple of the
‘base’ 128-unit model.

To further motivate the development of sparse training strategies that do not require dense gradients,
we show that larger sparser networks trained with BPTT and magnitude pruning monotonically
outperform their denser counterparts in language modelling, when holding the number of parameters
constant. This provides more evidence for the scaling law observed in Kalchbrenner et al. (2018).

The experimental setup is identical to the previous section except that all networks are trained with
full BPTT. To hold the number of parameters constant, we start with a fully dense 128-unit GRU.
We make the weight matrices 75% sparse when the network has 256 units, 93.8% sparse when the
network has 512 units, 98.4% when the network has 1024 units, and so on. The sparsest network
considered has 4096 units and over 99.9% sparsity, and performed the best. Indeed it performed
better than a dense network with 6.25x as many parameters (Figure 5). Pruning decisions are made
on the basis of absolute value every 1000 steps, and the final sparsity is reached after 350,000 training
steps.

Appendix C: Analysis of the bias introduced by SnAp

Finally, we examine the empirical magnitudes of entries which are nonzero in the true, unapprox-
imated influence matrix but set to zero by SnAp. For the benefit of visualization we train a small
GRU network (8 units, 75% sparsity) on a non-curriculum variant of the Copy-task with target
sequences fixed in length to 16 timesteps. This enables us to measure and display the bias of SnAp.
The influence matrix considered is the final value after processing an entire sequence. The network
is optimized with full (untruncated) BPTT. We find (Table 4) that at the beginning of training the
influence entries ignored by SnAp are small in magnitude compared to those kept, even after the
influence has had many RNN iterations to fill in.

This analysis complements the experimental results concerning how useful the approximate gradients
are for learning; instead it shows where — and by how much — the sparse approximation to
the influence differs from the true accumulated influence. Interestingly, despite the strong task
performance of SnAp, the magnitude of ignored entries in the influence matrix is not always small
(see Figure 6). The accuracy, as measured by such magnitudes, trends downward over the course of
training. We speculate that designing methods to temper the increased bias arising later in training
may be beneficial but leave this to future work.

13

Published as a conference paper at ICLR 2021

Figure 6: Influence matrix for 75% sparse GRU
with 8 units after processing a full sequence with
35 timesteps (target length 16), at various points
during training (“step” corresponds to training
step, not e.g. the step within a sequence). This
Hinton-diagram shows the magnitude of an entry
with the size of a square. Grey entries are near
zero. Entries filled in with red are those included
by SnAp-1. Blue entries are those included by
SnAp-2, and white ones are ignored by both ap-
proximations.

Training Step SnAp-1 SnAp-2
100 1.0E-2 (73%) 4.0E-3 (97%)
5k 2.3E-1 (22%) 2.6E-1 (78%)
10k 1.1E-1 (23%) 1.2E-1 (85%)
50k 3.3E-1 (34%) 2.5E-1 (87%)
100k 2.4E-1 (6%) 6.5E-1 (51%)

Table 4: Approximation Quality of SnAp-1 and
SnAp-2. Average magnitudes in the influence ma-
trix versus whether or not they are kept by an ap-
proximate method. The “SnAp-1” and “SnAp-2”
columns show the average magnitude of entries
kept by the SnAp-1 and SnAp-2 approximations
respectively. In parentheses is the sum of the mag-
nitudes of entries in this category divided by the
sum of all entry magnitudes in the influence ma-
trix.

Appendix D: Code Snippet for SnAp-1

We include below a code snippet showing how RTRL and SnAp can be implemented in Jax
(Bradbury et al., 2018). While it is real and working Jax code, this is just a sketch for pedagogical
purposes and does not take full advantage of the optimizations in section 3.2.

Please take note of the license at the top of the snippet.

Copyright The Authors of "Practical Real Time Recurrent Learning
with a Sparse Approximation to the Jacobian", 2020
SPDX-License-Identifier: Apache-2.0
import jax
import jax.numpy as jnp

def get_fwd_and_update_influence_func(core_f, use_snap1_approx=False):
"""Transform core_f into a one which maintains influence jacobian w/ RTRL."""

def fwd_and_update_influence(prev_infl, params, state, inpt):
Run the forward pass on a batch of data.
batched_model_fn = jax.vmap(lambda s, i: core_f(params, s, i))
f_out, state_new = batched_model_fn(state, inpt)

Compute jacobians of state w.r.t. prev state and params.
jac_fn = jax.jacrev(lambda p, s, i: core_f(p, s, i)[1], argnums=(0, 1))
batched_jac_fn = jax.vmap(lambda s, i: jac_fn(params, s, i))
p_jac, s_jac = batched_jac_fn(state, inpt)

Update the influence matrix according to RTRL learning rule.
new_infl = jax.tree_multimap(
lambda j_i, infl_i: j_i + jnp.einsum(’bHh,bh...->bH...’, s_jac, infl_i),
p_jac, prev_infl)

SnAp-1: Keep only the entries of the influence matrix which are nonzero
after a single core step. This is not an efficient implementation.
if use_snap1_approx:
onestep_infl_mask = jax.tree_map(
lambda t: (jnp.abs(t) > 0.).astype(jnp.float32), p_jac)

14

Published as a conference paper at ICLR 2021

new_infl = jax.tree_multimap(
lambda matrix, mask: matrix * mask, new_infl, onestep_infl_mask)

return f_out, state_new, new_infl
return fwd_and_update_influence

def compute_gradients(influence_nest, delta):
grads = jax.tree_map(
lambda influence_i: jnp.einsum(’bH...,bH->...’, influence_i, delta),
influence_nest)

return grads

def make_zero_infl(param_exemplar, state_exemplar):
def make_infl_for_one_state(t):
return jax.tree_map(
lambda p: jnp.zeros(shape=list(t.shape) + list(p.shape)),
param_exemplar)

infl = jax.tree_map(make_infl_for_one_state, state_exemplar)
return infl

def get_rtrl_grad_func(core_f, readout_f, loss_f, use_snap1_approx):
"""Transform functions into one which computes the gradient via RTRL."""
fwd_and_update_influence = get_fwd_and_update_influence_func(
core_f, use_snap1_approx=use_snap1_approx)

def rtrl_grad_func(core_params, readout_params, state, data):
def rtrl_scan_func(carry, x):
"""Function which can be unrolled with jax.lax.scan."""
Unpack state and input.
old_state, infl_acc, core_grad_acc, readout_grad_acc, loss_acc = carry
inpt, targt, msk = x

Update influence matrix.
h_t, new_state, new_infl_acc = fwd_and_update_influence(
infl_acc, core_params, old_state, inpt)

Compute output, loss, and backprop gradients for RNN state.
def step_loss(ps, h, t, m):
"""Compute the loss for one RNN step."""
y = readout_f(ps, h)
return loss_f(y, t, m), y
step_out_and_grad_func = jax.value_and_grad(
step_loss, has_aux=True, argnums=(0, 1))

step_out, step_grad = step_out_and_grad_func(
readout_params, h_t, targt, msk)

loss_t, y_out = step_out
readout_grad_t, delta_t = step_grad

Update accumulated gradients.
core_grad_t = compute_gradients(new_infl_acc, delta_t)
new_core_grad_acc = jax.tree_multimap(
jnp.add, core_grad_acc, core_grad_t)

new_readout_grad_acc = jax.tree_multimap(
jnp.add, readout_grad_acc, readout_grad_t)

Repack carried state and return output.
new_carry = (new_state, new_infl_acc,

new_core_grad_acc, new_readout_grad_acc, loss_acc + loss_t)
return new_carry, y_out

zero_infl = make_zero_infl(core_params, state)
zero_core_grad = jax.tree_map(jnp.zeros_like, core_params)

15

Published as a conference paper at ICLR 2021

zero_readout_grad = jax.tree_map(jnp.zeros_like, readout_params)
final_carry, output_seq = jax.lax.scan(
rtrl_scan_func,
init=(state, zero_infl, zero_core_grad, zero_readout_grad, 0.0),
xs=(data[’input_seq’], data[’target_seq’], data[’mask_seq’]))

final_state, _, core_grads, readout_grads, loss = final_carry
return (loss, (final_state, output_seq)), (core_grads, readout_grads)
return rtrl_grad_func

16

	Introduction
	Background
	Real Time Recurrent Learning (RTRL)
	Truncated RTRL and stale Jacobians
	Sparsity in RNNs

	The Sparse n-Step Approximation (SnAp)
	Sparse One-Step Approximation (SnAp-1)
	Optimizations for full RTRL with sparse networks
	Sparse N Step Approximation (SnAp-N)

	Related Work
	Experiments
	WikiText103
	Language Modelling with dense RNNs: SnAp-1
	Language Modeling with Sparse RNNs: SnAp-1 and SnAp-2

	Copy Task

	Conclusion

