
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENT EVOLUTIONARY SEARCH OVER
CHEMICAL SPACE WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Molecular discovery, when formulated as an optimization problem, presents sig-
nificant computational challenges because optimization objectives can be non-
differentiable. Evolutionary Algorithms (EAs), often used to optimize black-box
objectives in molecular discovery, traverse chemical space by performing random
mutations and crossovers, leading to a large number of expensive objective evalua-
tions. In this work, we ameliorate this shortcoming by incorporating chemistry-
aware Large Language Models (LLMs) into EAs. Namely, we redesign crossover
and mutation operations in EAs using LLMs trained on large corpora of chemical
information. We perform extensive empirical studies on both commercial and
open-source models on multiple tasks involving property optimization, molecular
rediscovery, and structure-based drug design, demonstrating that the joint usage
of LLMs with EAs yields superior performance over all baseline models across
single- and multi-objective settings. We demonstrate that our algorithm improves
both the quality of the final solution and convergence speed, thereby reducing the
number of required objective evaluations.

1 INTRODUCTION

Molecular discovery is a complex and iterative process involving the design, synthesis, evaluation,
and refinement of molecule candidates. This process is often slow and laborious, making it difficult to
meet the increasing demand for new molecules in domains such as pharmaceuticals, optoelectronics,
and energy storage (Tom et al., 2024). One significant challenge is that evaluating molecular
properties often requires expensive evaluations (oracles), such as wet-lab experiments, bioassays, and
computational simulations (Gensch et al., 2022; Stokes et al., 2020). Even approximate computational
evaluations require substantial resources (Gensch et al., 2022). Consequently, the development of
efficient algorithms for molecular search, prediction, and generation has gained traction in chemistry
to accelerate the discovery process. These advancements in computational techniques, particularly
machine learning-driven methods, have facilitated the rapid identification and proposal of promising
molecular candidates for real-world experiments (Kristiadi et al., 2024; Atz et al., 2021; Du et al.,
2024).

Several current approaches used to generate molecular candidates are based on Evolutionary Al-
gorithms (EAs) (Holland, 1992), which do not require the evaluation of gradients and are thus
well-suited for black-box objectives in molecular discovery. However, a major downside is that they
generate proposals randomly without leveraging task-specific information. Consequently, producing
reasonable candidates requires numerous evaluations of the objective function, limiting the practical
application of these algorithms. Thus, proposals generated by operators that incorporate task-specific
information can help reduce the number of evaluations required to optimize the objective function.

Natural language processing (NLP) has increasingly been utilized to represent molecular struc-
tures (Chithrananda et al.; Schwaller et al., 2019; Öztürk et al., 2020) and extract chemical knowledge
from literature Tshitoyan et al. (2019). The connection between NLP and molecular systems is
facilitated by molecular representations such as the Simplified Molecular Input Line Entry System
(SMILES) and Self-Referencing Embedded Strings (SELFIES) (Weininger, 1988; Daylight Chemical
Information Systems, 2007; Krenn et al., 2020). These methods convert 2D molecular graphs into
text, allowing molecular structures to be represented in the same modality as their textual descriptions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0.83

0.85

0.86

Final population

Initial pool of molecules

0.03

0.03

0.010.01

TERMINATION

Mating
pool

selection

Add select
molecules
to pool JNK3 binding

calculator

0.16

0.00

0.18

Oracle scoring

"Generate a mol-
ecule that inhi-
bits JNK3 more."

C[C@H](CNC1=NC... [CNC(=O)..., C1=CC2=...]

C[C@@H](CNC1CN... CNC(=O)C1=CC=C(C=C1F)...

LLM LLM
"I have two molecules and
their JNK3 inhibition sc-
ores. Propose a new ..."

MUTATION MODE

CROSSOVER MODE
or

Mating

NH2

H
N

N

H
N

N
N
H

H2N
N

N
H

N
H

ON

F

H
N NH

N

H
N

F

N HN

O
HN

O
N

N

N+O
O- F

H
N

N
H

NH
NH

NO

HN O

HN O
HN

N N

F

F
H2N

H
N

O
NH

N+
O

O-

N

H
N

N
H

NH

H
NN

O

NHO
N

O

O

H
N

O
O

Br

H
N

N N

N
NH

O
N

Cl

NH2

N
H

O

O

H
N

Cl

S
O

N
H

O

N
H

O N

N

N+ OO-

F

Candidate generation:
x_t = A(text_prompt,

 molecule_pool)

Black-box oracle: y_t = f(x_t)

Update:
molecule_pool
 += [x_t, y_t]

H
N

N N

N
NH

O

Figure 1: Overview of MOLLEO. Given an initial pool of molecules, mates are selected using default
Graph-GA (Jensen, 2019) heuristics and converted to SMILES or SELFIES strings. LLMs then
function as mutation or crossover operators, editing the molecules string representations based on
text prompts that describe the target objective(s). The offspring molecules are then evaluated using
an oracle, and the best-scoring ones are passed to the next generation. This process is repeated until
the maximum number of allowed molecule evaluations is performed.

Recently, the performance of Large Language Models (LLMs) has been investigated in several
chemistry-related tasks, such as predicting molecular properties (Guo et al., 2023b; Jablonka et al.,
2024), retrieving optimal molecules (Kristiadi et al., 2024; Ramos et al., 2023; Ye et al., 2023),
automating chemistry experiments Bran et al. (2023); Boiko et al. (2023); Yoshikawa et al. (2023);
Darvish et al. (2024), and generating molecules with target properties (Flam-Shepherd & Aspuru-
Guzik, 2023; Liu et al., 2024; Ye et al., 2023). Because LLMs have been trained on large corpora of
text that include a wide range of tasks, they demonstrate general-purpose language comprehension
as well as knowledge of basic chemistry, making them interesting tools for chemical discovery
tasks (White, 2023). However, many LLM-based approaches depend on in-context learning and
prompt engineering (Guo et al., 2023b). This can pose issues when designing molecules with strict
numerical objectives, as LLMs may struggle to satisfy precise numerical constraints or optimize for
specific numerical targets (AI4Science & Quantum, 2023). Furthermore, methods that solely depend
on LLM prompting may produce molecules with lower fitness due to a lack of physical grounding, or
they may produce invalid SMILES that cannot be decoded into chemical structures (Skinnider, 2024).

In this work, we propose Molecular Language-Enhanced Evolutionary Optimization (MOLLEO),
which incorporates LLMs into EAs to enhance the quality of generated proposals and accelerate the
optimization process (see Figure 1). MOLLEO leverages LLMs as genetic operators to produce new
proposals through crossover or mutation. To our knowledge, this is the first demonstration of how
LLMs can be incorporated into EA frameworks for molecular generation. In this work, we consider
three LLMs: GPT-4 (Achiam et al., 2023), BioT5 (Pei et al., 2023), and MoleculeSTM (MolSTM) (Liu
et al., 2023b). We integrate each LLM into separate crossover and mutation procedures, justifying
our design choices through ablation studies. We empirically demonstrate the superior performance
of MOLLEO across multiple black-box optimization tasks, including single-objective and multi-
objective optimization. For all tasks, including more challenging ones like protein-ligand docking,
MOLLEO outperforms the baseline EA and other optimization algorithms based on reinforcement
learning (RL) and Bayesian Optimization (BO). To further illustrate how our model can be used in
novel molecular discovery settings, we show that MOLLEO can improve on the best existing JNK3
inhibitor molecules in ZINC 250K (Sterling & Irwin, 2015).

2 RELATED WORK

2.1 MOLECULAR OPTIMIZATION

The molecular design field, encompassing multiple fundamental problems in chemistry, has developed
numerous methods. In general, all the existing approaches define the space of possible molecular

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

structures and run a combinatorial search to find the molecule with the target properties. Namely,
conventional methods include Monte Carlo Tree Search (MCTS) (Yang et al., 2017), Reinforcement
Learning (RL) (Olivecrona et al., 2017a; Guo & Schwaller, 2023), and Genetic Algorithms (GA)
(Jensen, 2019; Fu et al., 2021; Nigam et al., 2022; Fu et al., 2022).

Due to existing challenges such as searching through exponentially large chemical space and evaluat-
ing expensive objectives (Bohacek et al., 1996; Stumpfe & Bajorath, 2012), conventional algorithms
have recently recoursed to machine learning techniques, especially generative modeling (Du et al.,
2024). Generative models learn a probability distribution of the observed data which can be later used
to propose new molecular structures, thereby concentrating the search space around valid molecular
structures. Depending on the type of the data and necessary properties for the search algorithms,
different generative models have been considered: autoregressive models (ARs) (Popova et al., 2019;
Gao et al., 2021), variational autoencoders (VAEs) (Gómez-Bombarelli et al., 2018; Jin et al., 2018),
flow-based models Madhawa et al. (2019); Shi et al. (2020), diffusion models Hoogeboom et al.
(2022); Schneuing et al. (2022).

Despite concentrating the search space around valid molecules by the usage of generative modeling,
the optimization of necessary properties can remain infeasible. To narrow down the search space
further, one can consider the conditional generative modeling, where the molecular structures are
sampled from the conditional distribution having some predefined properties (Gómez-Bombarelli
et al., 2018; Griffiths & Hernández-Lobato, 2020; Zang & Wang, 2020; Du et al., 2022; Wei et al.,
2024). In this paper, we demonstrate the use of chemistry-aware LLMs as conditional generative
models that improve the efficiency of combinatorial search in the molecular space.

2.2 LANGUAGE MODELS IN CHEMISTRY

LLMs have been widely investigated for their applicability in scientific domains (Achiam et al., 2023;
AI4Science & Quantum, 2023), as well as their ability to leverage chemistry tools for chemical dis-
covery and characterization (Bran et al., 2023; Boiko et al., 2023). Several works have benchmarked
LLMs such as GPT-4 on chemistry tasks and found that while LLMs can outperform human chemists
in some zero-shot question-answering settings, they still struggle with chemical reasoning (Mirza
et al., 2024; Guo et al., 2023b). Several smaller, open-source models have been trained or fine-tuned
specifically on chemistry text (Taylor et al., 2022; Christofidellis et al., 2023; Pei et al., 2023).

Recently, language models have also been used to guide a given input molecular structure towards
specific objective properties; a widely-used term used for this is molecular editing (Liu et al., 2023b;
Ye et al., 2023). Modifying structures towards specified properties is important so that they can satisfy
potentially many required criteria, a requirement in pharmaceutical development where molecules
need to be non-toxic and effective against their target (among other things), or in battery design,
where molecules need to have a large energy capacity and a long lifespan. In this paper, we focus on
molecular optimization to find molecules with desired properties, rather than editing. For interested
readers, we provide additional related works about how LLMs have been combined with EAs for
code and text generation, as well as benchmarking LLMs in chemical tasks in Appendix A.1.

3 THE MOLLEO FRAMEWORK

3.1 PROBLEM STATEMENT

Black-box optimization. Molecule discovery with a given property can be formulated as an
optimization problem

m∗ = arg max
m∈M

F (m) (1)

where m is a molecular structure and M denotes the set of valid molecules constituting the entire
chemical space. The objective F (m) : M → R is a black-box scalar-valued function that measures a
certain molecule property m.

The measurement of chemical properties can involve complicated simulations or in vivo experiments,
making it impossible to evaluate the gradients of the objective function F . Additionally, we assume
that the main computational expense of the optimization procedure comes from the objective eval-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

uation (oracle call). Therefore, we design algorithms to minimize the number of oracle calls and
compare all the algorithms with the same call budget.

Multi-objective black-box optimization. Oftentimes, molecules need to meet multiple, potentially
competing objectives simultaneously. Multi-objective optimization aims to find the Pareto-optimal
solution, where none of the objectives can be improved without deteriorating any of them (Lin et al.,
2022). The naive approach to optimize given objectives {Fi(·)}ni=1 jointly is to consider an aggregate
objective, such as the sum of all individual objectives, i.e.

m∗ = arg max
m∈M

∑
i

wiFi(m) , (2)

where wi is the weight of i-th objective, which can be considered a hyperparameter. However,
determining the weight of each objective function might be nontrivial (Kusanda et al., 2022).

The rigorous approach to multi-objective optimization is the introduction of partial order and consid-
ering the solutions from the Pareto frontier (Geoffrion, 1968; Ekins et al., 2010). In this context, the
partial order is defined by comparing all the objectives {Fi(·)}ni=1 for the given molecules, i.e., m′

surpasses m if every objective evaluated on m′ is greater than the same objective evaluated on m
(assuming the maximization of objectives). Formally,

m′ ⪰ m ⇐⇒ ∀i Fi(m
′) ≥ Fi(m) . (3)

For the given set of molecules S = {mj}mj=1, the Pareto frontier P (S) is defined as the set of
non-dominated solutions. Namely, for every molecule m ∈ P (s) there is no other molecule in S
surpassing m, i.e.

P (S) = {m ∈ S : {m′ ∈ S : m′ ⪰ m, m′ ̸= m} = ∅} . (4)

When jointly optimizing several objectives, we use the Pareto frontier to select candidates during the
evolutionary search and compare algorithms. Namely, assuming that the objectives are bounded (e.g.,
F (·) ∈ [0, 1]), one can compare two Pareto frontiers by evaluating their hypervolume

Volume(P (S)) = Volume
(
∪m∈P (s)H(m)

)
, H(m) = {x ∈ [0, 1]n : xi ≤ Fi(m) ,∀i} , (5)

where H(m) is the hyperrectangle associated with the objectives evaluated on molecule m, and
Volume(·) evaluates the Euclidean volume of the input set.

3.2 EVOLUTIONARY ALGORITHMS

We build our MOLLEO framework upon the Graph-GA algorithm (Jensen, 2019) — an evolutionary
algorithm that operates as follows. An initial pool of molecules is randomly selected, and their fit-
nesses are calculated using a black-box oracle, F (·). Two parents are then sampled with a probability
proportional to their fitnesses and combined using a CROSSOVER operator to generate an offspring,
followed by a random MUTATION with probability pm. This process is repeated num_crossover times,
and the children are added to the pool of offspring. Finally, the fitnesses of the offspring are measured
using F (·) and the offspring are added to the population. For single-objective optimization, the nc

fittest members from the population at a given step are selected to pass on to the next generation.
For multi-objective optimization, two strategies are investigated: (1) Objective summation, where
the summation of individual objectives is used as a single objective, and the nc fittest members are
retained; and (2) Pareto set selection, where only the Pareto frontier of the current population is kept.
This process is repeated until the maximum allowed oracle calls (oracle budget) have been made.
This process is outlined in Algorithm 1.

We incorporate chemistry-aware LLMs into the structure of Graph-GA by using them as proposal
generators at CROSSOVER and MUTATION steps. That is, for the CROSSOVER step, instead of randomly
combining two parent molecules, we generate molecules that maximize the objective fitness function
guided by the objective description. For the MUTATION step, the operator mutates the fittest members of
the current population based on the target description. However, we noticed that LLMs do not always
generate candidates with higher fitness than the input molecule (demonstrated in Appendix C.1),
and so we constructed a selection pressure to filter edited molecules based on structural similarity to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: MOLLEO Algorithm
Data: the initial pool M0; the objective F ; the population size nc; the number of offspring no.
Result: Optimized molecule population M∗

begin
for m ∈M0 do

Compute F (m);
for t ∈ [1, oracle_budget] do

offspring = [];
for num_crossovers do

sample m0,m1 from Mt proportionally to objective value F (m);
offspring.append(CROSSOVER(m0,m1));

Mt ← sorted(Mt);
for i ∈ [1, num_mutations] do

offspring.append(MUTATION(Mt[i]));
offspring← search(offspring)[: no] ▷ smallest Tanimoto distance to Mt[0]
Mt ← offspring;
for m ∈Mt do

Compute F (m);
if Task_type == single_objective then

Mt ← sorted(Mt)[: nc];
else

Mt ← Pareto_Frontier(Mt);

Return Mt;

the top molecule (Nigam et al., 2022). That is, we sort the existing population by fitness, apply a
mutation to the top population members, and then add them to the pool of offspring. Then, we prune
the pool by selecting the no most similar offspring to the fittest molecule in the entire pool based on
Tanimoto distance. We ablate the impact of this filter in Appendix C.2.

For each LLM, we describe below the details of how we implement the CROSSOVER and MUTATION
operators. We empirically studied different combinations of models and hyperparameters (Ap-
pendix C.2), and in what follows, we describe the operators that resulted in the best performance.

Graph-GA The baseline algorithm that we build upon and compare against in our experiments.
▷ CROSSOVER: (default Graph-GA crossover): Two parent molecules are sampled with a probability
proportional to their fitness. Crossover takes place at a ring or non-ring position with equal likelihood.
Parents are cut at random positions into fragments, and then fragments from both parents are combined.
Invalid molecules are filtered out, and a randomly spliced molecule is returned Jensen (2019).
▷ MUTATION: (default Graph-GA mutation): Random operations such as bond insertion or deletion,
atom insertion or deletion, bond order swapping, or atom identity changes are done with predetermined
likelihoods Jensen (2019).

MOLLEO (GPT-4) GPT-4 is a proprietary LLM trained on a web-scale text corpus.
▷ CROSSOVER: Two parent molecules are sampled the same way as in Graph-GA. GPT-4 is then
prompted to generate an offspring with the template tin = “I have two molecules and their
[target_objective] scores: (sin,0, f0), (sin,1, f1). Propose a new molecule with a
higher [target_objective] by making crossover and mutations based on the given
molecules.” , where sin,x is an input SMILES and fx is its fitness score. This prompt template is
similar to those found in AI4Science & Quantum (2023); all prompts can be found in Appendix E.
We then obtain an edited SMILES molecule as an output: sout = GPT-4(tin). If sout cannot be
decoded to a valid molecule structure, we generate an offspring using the default crossover operation
from Graph-GA. We demonstrate the frequency of invalid LLM edits in Appendix C.1.
▷ MUTATION: While GPT-4 performs well as a MUTATION operator when paired with GPT-4 CROSSOVER
(Appendix C.2), we found that the default Graph-GA mutation achieves comparable performance
with fewer LLM queries. Therefore, we opt to use the default Graph-GA mutation here.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

MOLLEO (BIOT5) BioT5 was developed with a two-phase training process using a baseline T5
model (Raffel et al., 2020). Initially, the model was trained on molecule-text data (339K samples),
SELFIES structures, protein sequences, and general scientific text from multiple sources (Pei et al.,
2023) using language masking as a training objective. Following this, the model was fine-tuned on
specific downstream tasks, including text-based molecular generation, where molecules are generated
given an input description (Edwards et al., 2022).
▷ CROSSOVER: We use the default Graph-GA crossover.
▷ MUTATION: For the top Y molecules in the entire pool, we mutate them by prompting BioT5 with
the template tin = “Definition: You are given a molecule SELFIES. Your job is to
generate a SELFIES molecule that [target_objective]. Now complete the following
example - Input: <bom>[lin]<eom> Output”, where lin is the SELFIES representation of a
molecule. These prompts have the same format as those proposed in Pei et al. (2023); exact prompts
for all tasks are in Appendix E. We then obtain an edited SELFIES molecule as an output: lout =
BioT5(tin). We transform lout back to the SMILES representation and add it to the pool of offspring.
Since SELFIES can always be decoded into a molecular structure, there are no issues with BioT5
generating invalid molecules. With X offspring produced from crossover and Y offspring from
the editing procedure, we select the top nc offspring overall. This selection is based on structural
similarity determined using Tanimoto distance to the fittest molecule in the entire pool Nigam et al.
(2022).

MOLLEO (MOLSTM) MoleculeSTM was developed by jointly training molecule and text
encoders on molecule-text pairs from PubChem using a contrastive loss, which maximizes the
embedding similarity of each pair (Liu et al., 2023b). To enable molecular editing, they implemented
a simple adaptor module to align their molecule encoder with the encoder of a pre-trained generative
model. This alignment allowed them to utilize the generative model’s decoder for structure generation.
▷ CROSSOVER: We use the default Graph-GA crossover.
▷ MUTATION: For the top Y molecules in the entire pool, we edited them by following a single text-
conditioned editing step from (Liu et al., 2023b). Given the MoleculeSTM molecule and text encoders
(EMc and ETc, respectively), a pre-trained generative model consisting of an encoder EMg and
decoder DMg (Irwin et al., 2022), and an adaptor module (Agc) to align embeddings from EMc and
EMg, an input molecule SMILES (sin) is edited towards a text prompt describing the objective by
updating the embedding from EMg. First, the molecule embedding x0 is obtained from EMg(sin).
Then, x0 is updated using gradient descent for T iterations:

xt+1 = xt − α∇xtL(xt) , (6)

where α is the learning rate and L(xt) is defined as:

L(xt) = −cosine_sim (EMc(Agc(xt)), ETc(text_prompt)) + λ||xt − x0||2 . (7)

λ controls how much the embedding at iteration t can deviate from the input embedding. Finally,
xT is passed to the decoder DMg to generate a molecule SMILES sout. The text prompts follow
the format “This molecule {has/is/other verb property}", which follows Liu et al. (2023b);
exact prompts for all tasks are in Appendix E. We ablate MolSTM hyperparameter selection in
Appendix C.4. If sout cannot be decoded into a valid molecule (see Appendix C.1), we edit the next
best molecule (so that we have Y offspring after the editing has finished). Similarly to MOLLEO
(BIOT5), we combine the X crossover and Y mutated offspring and select the nc most similar
molecules to the top molecule overall to keep.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate MOLLEO on 26 tasks from two molecular generation benchmarks, Practical Molecular
Optimization (PMO) (Gao et al., 2022) and Therapeutics Data Commons (TDC) (Huang et al., 2021).
Exact task definitions can be found in TDC 1. We organize the tasks into the following categories:

1. Structure-based optimization, which optimizes for molecules based on target structures.
It includes isomer generation based on a target molecular formula (isomers_c7h8n2o2,
1https://github.com/mims-harvard/TDC/blob/main/tdc/chem_utils/oracle/oracle.py

6

https://github.com/mims-harvard/TDC/blob/main/tdc/chem_utils/oracle/oracle.py

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

isomers_c9h10n2o2pf2cl) and two tasks based on matching or avoiding scaffolds and sub-
structure motifs (deco_hop, scaffold_hop, valsartan_smarts).

2. Name-based optimization. These tasks involve finding compounds similar to known drugs (Mes-
tranol, Albuterol, Thiothixene, Celecoxib, troglitazone) and seven multi-property optimization
tasks (MPO) that aim to rediscover drugs (Perindopril, Ranolazine, Sitagliptin, Amlodipine, Fex-
ofenadine, Osimertinib, Zaleplon) while optimizing for other properties such as hydrophobicity
(LogP) and permeability (TPSA). Two tasks, median1 and median2, aim to generate molecules
with properties similar to several known drugs simultaneously. Successfully completing these
tasks means that LLMs can make perturbations toward desired molecules when given a chemical
optimization goal.

3. Property optimization. We first consider the trivial property optimization task QED (Bickerton
et al., 2012), which measures the drug-likeness of a molecule based on a set of simple heuristics.
We then focus on the three tasks that measure a molecule’s activity against the following proteins:
DRD2 (Dopamine receptor D2), GSK3β (Glycogen synthase kinase-3 beta), and JNK3 (c-Jun
N-terminal kinase-3). For these tasks, molecular inhibition is determined by pre-trained classifiers
that take in a SMILES string and output a value p ∈ [0, 1], where p ≥ 0.5 predicts that a molecule
inhibits protein activity. Finally, we include three protein-ligand docking tasks from TDC (Graff
et al., 2021) (also referred to as structure-based drug design (Kuntz, 1992)), which are more
difficult tasks closer to real-world drug design compared to simple physicochemical properties
(Cieplinski et al., 2020). The proteins we consider are DRD3 (dopamine receptor D3, PDB ID:
3PBL), EGFR (epidermal growth factor receptor, PDB ID: 2RGP), and Adenosine A2A receptor
(PDB ID: 3EML). Molecules are docked against the protein using AutoDock Vina (Eberhardt
et al., 2021), with the output being the docking score of the binding process.

To evaluate our method, we follow (Gao et al., 2022) and report the area under the curve of top-k
average property values versus the number of oracle calls (AUC top-k), which takes into account
both the objective values and the computational budget spent. For this study, we set k = 10 in order
to identify a small, distinct set of top molecular candidates. For the multi-objective optimization, we
consider two metrics: top-10 AUC for summing all optimized objectives and the hypervolume of the
Pareto frontier (see Equation (5)).

For baselines, we use the highest three ranking models from the PMO benchmark (Gao et al., 2022),
including REINVENT (Olivecrona et al., 2017b), an RNN that utilizes a reinforcement learning-based
policy to guide generation; Graph-GA; and Gaussian process Bayesian optimization (GP BO) (Tripp
et al., 2021), where a GP acquisition function is optimized with methods from Graph-GA. We also
include Augmented Memory (Guo & Schwaller, 2024), which combines data augmentation with
experience replay to enhance the reinforcement learning-based policy for guiding generation, as
well as Differentiable Scaffolding Tree for Molecule Optimization (DST, (Fu et al., 2021)), which
optimizes a molecule structure using gradient ascent in the latent space of a graph neural network
trained to predict a target property.

For the initial population of molecules, we randomly sample 120 molecules from ZINC 250K (Sterling
& Irwin, 2015). In all runs, we restrict the budget of oracle calls to 10, 000 but terminate the algorithm
early if the average fitness of the top-100 molecules does not increase by 10−3 within 5 epochs, as
was done in (Gao et al., 2022). For the docking experiments, we restrict the budget to 1000 calls due
to higher evaluation costs. Additional experimental details and the choice of hyperparameters are
provided in Appendix B.

4.2 EMPIRICAL STUDY

First, we motivate the idea of why incorporating chemistry-aware LLMs in GA pipelines is effective.
In Figure 2, we show the fitness distribution of an initial pool of random molecules inhibiting JNK3.
We then perform a single round of edits to all molecules in the pool using each LLM and plot the
resulting fitness distribution of the edited molecules. We find that the distribution for each LLM shifts
to slightly higher fitness values, indicating that LLMs do provide useful modifications. However, the
overall objective scores are still low, so single-step editing is not sufficient. We then show the fitness
distributions of the populations as the genetic optimization progresses and find that the fitness in-
creases to higher values on average, given the same number of oracle calls. We show the performance
of direct LLM querying versus the optimization procedure for additional tasks in Appendix C.1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 2: Population fitness over increasing number of iterations for JNK3 inhibition. In the lightest
blue, we plot the fitness distribution of the initial molecule pool. We then pass the molecules through
a single round of LLM edits (pink curve), or a single round of random crossover/mutation operations
(yellow curve). We then show the fitnesses of the top-10 molecules after 1000-4000 oracle calls.

Table 1: Top-10 AUC of single-objective tasks. The best model for each task is bolded and the top
three are underlined. We also report the sum of all tasks (total) and the rank of each model overall.

Task type Method
objective (↑) REINVENT Augmented

Memory Graph GA GP BO MOLLEO
(MolSTM)

MOLLEO
(BioT5)

MOLLEO
(GPT-4)

Property
optimization

QED 0.941 ± 0.000 0.941 ± 0.000 0.940 ± 0.000 0.937 ± 0.000 0.937 ± 0.002 0.937 ± 0.002 0.948 ± 0.000
JNK3 0.783 ± 0.023 0.773 ± 0.073 0.553 ± 0.136 0.564 ± 0.155 0.643 ± 0.226 0.728 ± 0.079 0.790 ± 0.027

DRD2 0.945 ± 0.007 0.962 ± 0.005 0.964 ± 0.012 0.923 ± 0.017 0.975 ± 0.003 0.981 ± 0.002 0.968 ± 0.012
GSK3β 0.865 ± 0.043 0.889 ± 0.027 0.788 ± 0.070 0.851 ± 0.041 0.898 ± 0.041 0.889 ± 0.015 0.863 ± 0.047

Name-based
optimization

mestranol_similarity 0.618 ± 0.048 0.764 ± 0.035 0.579 ± 0.022 0.627 ± 0.089 0.596 ± 0.018 0.717 ± 0.104 0.972 ± 0.009
albuterol_similarity 0.896 ± 0.008 0.918 ± 0.026 0.874 ± 0.020 0.902 ± 0.019 0.929 ± 0.005 0.968 ± 0.003 0.985 ± 0.024

thiothixene_rediscovery 0.534 ± 0.013 0.562 ± 0.028 0.479 ± 0.025 0.559 ± 0.027 0.508 ± 0.035 0.696 ± 0.081 0.727 ± 0.052
celecoxib_rediscovery 0.716 ± 0.084 0.784 ± 0.011 0.582 ± 0.057 0.728 ± 0.048 0.594 ± 0.105 0.508 ± 0.017 0.864 ± 0.034

troglitazone_rediscovery 0.452 ± 0.048 0.556 ± 0.052 0.377 ± 0.010 0.405 ± 0.007 0.381 ± 0.025 0.390 ± 0.044 0.562 ± 0.019
perindopril_mpo 0.537 ± 0.016 0.598 ± 0.008 0.538 ± 0.009 0.493 ± 0.011 0.554 ± 0.037 0.738 ± 0.016 0.600 ± 0.031
ranolazine_mpo 0.760 ± 0.009 0.802 ± 0.003 0.728 ± 0.012 0.735 ± 0.013 0.725 ± 0.040 0.749 ± 0.012 0.769 ± 0.022
sitagliptin_mpo 0.021 ± 0.003 0.479 ± 0.039 0.433 ± 0.075 0.186 ± 0.055 0.548 ± 0.065 0.506 ± 0.100 0.584 ± 0.067

amlodipine_mpo 0.642 ± 0.044 0.686 ± 0.046 0.625 ± 0.040 0.552 ± 0.025 0.674 ± 0.018 0.776 ± 0.038 0.773 ± 0.037
fexofenadine_mpo 0.769 ± 0.009 0.686 ± 0.010 0.779 ± 0.025 0.745 ± 0.009 0.789 ± 0.016 0.773 ± 0.017 0.847 ± 0.018

osimertinib_mpo 0.834 ± 0.046 0.856 ± 0.013 0.808 ± 0.012 0.762 ± 0.029 0.823 ± 0.007 0.817 ± 0.016 0.835 ± 0.024
zaleplon_mpo 0.347 ± 0.049 0.438 ± 0.082 0.456 ± 0.007 0.272 ± 0.026 0.475 ± 0.018 0.465 ± 0.026 0.510 ± 0.031

median1 0.372 ± 0.015 0.335 ± 0.012 0.287 ± 0.008 0.325 ± 0.012 0.298 ± 0.019 0.338 ± 0.033 0.352 ± 0.024
median2 0.294 ± 0.006 0.290 ± 0.006 0.229 ± 0.017 0.308 ± 0.034 0.251 ± 0.031 0.259 ± 0.019 0.275 ± 0.045

Structure-
based

optimization

isomers_c7h8n2o2 0.842 ± 0.029 0.954 ± 0.033 0.949 ± 0.036 0.662 ± 0.071 0.948 ± 0.036 0.928 ± 0.038 0.984 ± 0.008
isomers_c9h10n2o2pf2cl 0.642 ± 0.054 0.830 ± 0.016 0.719 ± 0.047 0.469 ± 0.180 0.871 ± 0.039 0.873 ± 0.019 0.874 ± 0.053

deco_hop 0.666 ± 0.044 0.688 ± 0.060 0.619 ± 0.004 0.629 ± 0.018 0.613 ± 0.016 0.827 ± 0.093 0.942 ± 0.013
scaffold_hop 0.560 ± 0.019 0.565 ± 0.008 0.517 ± 0.007 0.548 ± 0.019 0.527 ± 0.019 0.559 ± 0.102 0.971 ± 0.004

valsartan_smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.867 ± 0.092

Total (↑) 14.036 15.356 13.823 13.182 14.557 15.424 17.862
Rank (↓) 5 3 6 7 4 2 1

The results of single-objective optimization across 23 tasks in PMO are shown in Table 1, reporting
the AUC top-10 for each task and the overall rank of each model. We show the performance of
additional baselines in Appendix D.1. The results indicate that employing any of the three LLMs we
tested as genetic operators improves performance over the default Graph-GA. Notably, MOLLEO
(GPT-4) outperforms all models in 15 out of 23 tasks and ranks first overall, demonstrating its utility
in molecular generation tasks. MOLLEO (BIOT5) achieves the second-best results out of all the
models tested, obtaining a total score close to that of MOLLEO (GPT-4), and has the benefit of
being free to use. We observe that MOLLEO (BIOT5) generally performs better than MOLLEO
(MOLSTM), producing a higher percentage of molecules with improved fitness after editing, as
shown in Appendix C.1. For the tasks deco_hop and scaffold_hop, there is only a small gain for
the open-source MOLLEO models. We speculate that this is because these models have not been
trained on molecular descriptions containing SMARTS patterns. Also, it is unclear how well these
models perform with negative matching (e.g., This molecule does not contain the scaffold
[#7]-c1n[c;h1]nc2 [c;h1]c(-[#8])[c;h0][c;h1]c12). We were also interested in knowing
whether the open-source models were generating molecules that could have been seen during training.
We took ZINC20 (Irwin et al., 2020), a database of 1.4 billion compounds that were used to generate
the training set for BioT5, and PubChem (Kim et al., 2023)(∼250K molecules), which was used
to generate the training set for MoleculeSTM, and checked if the final molecules for the JNK3 task

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Number of oracle calls

-14.0

-13.0

-12.0

-11.0

-10.0

-9.0

-8.0

-7.0

D
oc

ki
ng

 s
co

re

DRD3

Graph-GA MolLEO(BioT5) MolLEO(GPT-4) MolLEO(MolSTM) Convergence reached

0 200 400 600 800 1000
Number of oracle calls

-14.0

-13.0

-12.0

-11.0

-10.0

-9.0

-8.0

-7.0

EGFR

0 200 400 600 800 1000
Number of oracle calls

-16.0
-15.0
-14.0
-13.0
-12.0
-11.0
-10.0

-9.0
-8.0
-7.0

Adenosine A2AR

Figure 3: Average docking score of top-10 molecules when docked against DRD3, EGFR, or
Adenosine A2A receptor proteins. Lower docking scores are better. For each model, we show the
convergence point (the moment of stabilization of the population scores) with a star, if the model
converges before 1000 oracle calls have been made. Here, the model is considered to have converged
if the mean score of the top 100 molecules does not increase by at least 1e-3 within 5 epochs.

Table 2: Summation and hypervolume scores of multi-objective tasks. We report the results for
two aggregation methods: Summation (Sum) and Pareto optimality (PO). Sum(AUC) refers to the
summation of top-10 AUC for all optimized objectives. The best results for each task are bolded.

Task 1: QED (↑), JNK3 (↑),
SAscore (↓)

Task 2: QED (↑), GSK3β (↑),
SAscore (↓)

Task 3: QED (↑), JNK3 (↑),
SAscore (↓),GSK3β (↓),
DRD2 (↓)

Aggregate
objective Model Sum(AUC) Hypervolume Sum(AUC) Hypervolume Sum(AUC) Hypervolume

Sum

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 2.186 ± 0.069 0.719 ± 0.055 3.856 ± 0.075 0.162 ± 0.048
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 2.349 ± 0.132 0.303 ± 0.024 4.040 ± 0.097 0.474 ± 0.193

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 2.306 ± 0.120 0.693 ± 0.093 3.904 ± 0.092 0.266 ± 0.201
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 2.543 ± 0.014 0.832 ± 0.024 4.017 ± 0.048 0.606 ± 0.086

PO

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 2.339 ± 0.139 0.640 ± 0.034 4.051 ± 0.155 0.606 ± 0.052
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 2.340 ± 0.254 0.202 ± 0.054 3.989 ± 0.145 0.381 ± 0.204

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 2.299 ± 0.203 0.645 ± 0.127 3.946 ± 0.115 0.367 ± 0.177
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 2.631 ± 0.023 0.820 ± 0.024 4.212 ± 0.034 0.696 ± 0.029

from each model appeared in the respective datasets. We found that this was not the case; there was
no overlap between the generated molecules and the datasets.

We demonstrate empirically that MOLLEO algorithms consistently converge faster than all the
considered baselines, i.e., for any given budget of oracle calls, MOLLEO achieves better objective
values (see Appendix C.3). This is important when considering how these models can translate to
real-world experiments to reduce the number of experiments needed to find ideal candidates. We also
study the computational cost of MOLLEO in Appendix D.4.

In Figure 3, we present results for more challenging protein-ligand docking tasks, which better
approximate real-world molecular generation scenarios compared to those in Table 1. We plot the
average docking scores of the top-10 best molecules for MOLLEO and Graph-GA against the number
of oracle calls. We observe that nearly all LLMs in MOLLEO generate molecules with lower (better)
docking scores than the baseline model for all three proteins, and they converge faster to the optimal
set. Among the three LLMs, MOLLEO (BIOT5) achieves the best performance. Surprisingly,
MOLLEO (GPT-4) performs worse than Graph-GA in the Adenosine A2A receptor docking task. In
practice, better docking scores and faster convergence rates could result in requiring fewer bioassays
to screen molecules, making the process both more cost- and time-effective. We visualize the top-10
molecules found by MOLLEO in EGFR docking and deco_hop tasks in Appendix D.8.

In Table 2, we show the results of our multi-objective optimization for three tasks. Tasks 1 and 2
are inspired by goals in drug discovery and aim for simultaneous optimization of three objectives:
maximizing a molecule’s QED, minimizing its synthetic accessibility (SA) score (meaning that it is
easier to synthesize), and maximizing its binding score to either JNK3 (Task 1) or GSK3β (Task 2).
Task 3 is more challenging as it targets five objectives simultaneously: maximizing QED and JNK3
binding, as well as minimizing GSK3β binding, DRD2 binding, and SAScore. We find that MOLLEO
(GPT-4) consistently outperforms the baseline Graph-GA in all three tasks in terms of hypervolume
and summation. In Figure 4, we visualize the Pareto optimal set (in objective space) for MOLLEO

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model JNK3 Top-10 AUC

Initial fitness 0.373±0.079

Graph-GA 0.787±0.035

MOLLEO (MOLSTM) 0.815±0.048

MOLLEO (BIOT5) 0.799±0.036

MOLLEO (GPT-4) 0.844±0.052

Table 3: Initializing MOLLEO with the best molecules from
ZINC 250K (Sterling & Irwin, 2015). The results of three
different LLMs in MOLLEO and Graph-GA are compared.
For all molecules in ZINC 250K, we run the JNK3 oracle
and select the top 120 molecule pool. We run MOLLEO
initializing from this pool of molecules and optimizing JNK3.
We report the top-10 AUC on the output of MOLLEO.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0QED 0.0
0.2

0.4
0.6

0.8
1.0

JNK3

0.00
0.05
0.10
0.15
0.20
0.25

SA

(a)
MolLEO(GPT-4)
Graph-GA
MolLEO(BioT5)
MolLEO(MOLSTM)
Utopian Point

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0QED 0.0
0.2

0.4
0.6

0.8
1.0

GSK
3B

0.0

0.1

0.2

0.3

0.4

SA

(b)
MolLEO(GPT-4)
Graph-GA
MolLEO(BioT5)
MolLEO(MOLSTM)
Utopian Point

Figure 4: Pareto frontier visualizations for Graph-GA and MOLLEO on the following multi-objective
tasks: (a) Task 1 (min SAscore, max JNK3 binding, max QED) and (b) Task 2 (min SAscore, max
GSK3β binding, max QED). The utopian point corresponds to the maximum (best) possible values
across all objectives. SA scores are rescaled to [0, 1].

and Graph-GA for Tasks 1 and 2. In Table 2, we see that the performance of open-source LLMs
degrades when introducing multiple objectives into the prompt. We speculate that this performance
drop may come from their inability to capture large, information-dense contexts. We also analyze the
structural diversity and objective diversity of the Pareto optimal set in Appendix D.7.

Given that the goal of EAs is to improve upon the properties of an initial pool of molecules and
discover new molecules, we showcase these abilities by generating a set of molecules with higher
objective values than the best-known molecules from ZINC 250K (Sterling & Irwin, 2015). That is,
we initialize the molecular pool with the best molecules from ZINC 250K and run the optimization
with MOLLEO and Graph-GA. We report the top-10 AUC on the JNK3 task in Table 3 and find
that MOLLEO algorithms are consistently able to outperform the baseline model and improve upon
the best values found in the existing dataset. We briefly investigate the use of retrieval augmented
search in Appendix C.5 and find that incorporating information from existing databases is helpful. To
further validate the effectiveness of the LLM-based genetic operators, we compare the molecules
before and after LLMs’ editing in Appendix D.5 and check whether the optimization objectives are in
the open-source LLMs training data in Appendix D.6. We also incorporate MOLLEO into other GAs
and generative models to validate its generalization capability in Appendix D.2 and Appendix D.3.

5 CONCLUSION

Herein, we propose MOLLEO: the first demonstration of incorporating LLMs into evolutionary algo-
rithms for molecular discovery. We show that chemistry-aware LLMs can serve as informed proposal
generators, resulting in superior optimization performance across multiple molecular optimization
benchmarks, including protein-ligand docking. Furthermore, we show that both open-source and com-
mercial versions of MOLLEO can be used in scenarios that involve numerous objective evaluations
and can generate higher-ranked candidates with fewer evaluation calls compared to baseline models.
Because the structural perturbations of MOLLEO are more effective than random perturbations in
a genetic algorithm, it will become more feasible to deploy oracles that are computationally more ex-
pensive but more accurate in representing the target property, generating candidates that show greater
promise for real-life applications. This is an important consideration due to the high experimental
costs of testing candidates. As LLMs continue to advance, we anticipate that the performance of
the MOLLEO framework will also continue to improve, making MOLLEO a promising tool for
applications in generative chemistry. We introduce the future work in Appendix A.2.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6 REPRODUCIBILITY STATEMENT

Our code is available at https://github.com/AnonymousSubmission-code-reproduce/
MolLEO-reproduce. The complete code will be made publicly available upon acceptance. We
provide the experimental details and the choice of hyperparameters in Section 4.1 and Appendix B.
The pseudocode of MOLLEO algorithm is in Algorithm 1.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Microsoft Research AI4Science and Microsoft Azure Quantum. The impact of large language models
on scientific discovery: a preliminary study using gpt-4. arXiv preprint arXiv:2311.07361, 2023.

Kenneth Atz, Francesca Grisoni, and Gisbert Schneider. Geometric deep learning on molecular
representations. Nature Machine Intelligence, 3(12):1023–1032, 2021.

Nikhil Behari, Edwin Zhang, Yunfan Zhao, Aparna Taneja, Dheeraj Nagaraj, and Milind Tambe. A
decision-language model (dlm) for dynamic restless multi-armed bandit tasks in public health.
arXiv preprint arXiv:2402.14807, 2024.

G Richard Bickerton, Gaia V Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L Hopkins.
Quantifying the chemical beauty of drugs. Nature chemistry, 4(2):90–98, 2012.

Regine S Bohacek, Colin McMartin, and Wayne C Guida. The art and practice of structure-based
drug design: a molecular modeling perspective. Med. Res. Rev., 16(1):3–50, 1996.

Daniil A Boiko, Robert MacKnight, Ben Kline, and Gabe Gomes. Autonomous chemical research
with large language models. Nature, 624(7992):570–578, 2023.

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D White, and Philippe
Schwaller. Chemcrow: Augmenting large-language models with chemistry tools. arXiv preprint
arXiv:2304.05376, 2023.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. Chemberta: Large-scale self-
supervised pretraining for molecular property prediction.

Dimitrios Christofidellis, Giorgio Giannone, Jannis Born, Ole Winther, Teodoro Laino, and Matteo
Manica. Unifying molecular and textual representations via multi-task language modelling. In
International Conference on Machine Learning, pp. 6140–6157. PMLR, 2023.

Tobiasz Cieplinski, Tomasz Danel, Sabina Podlewska, and Stanislaw Jastrzebski. We should at least
be able to design molecules that dock well. arXiv preprint arXiv:2006.16955, 2020.

Kourosh Darvish, Marta Skreta, Yuchi Zhao, Naruki Yoshikawa, Sagnik Som, Miroslav Bogdanovic,
Yang Cao, Han Hao, Haoping Xu, Alán Aspuru-Guzik, et al. Organa: A robotic assistant for
automated chemistry experimentation and characterization. arXiv preprint arXiv:2401.06949,
2024.

Inc. Daylight Chemical Information Systems. Smarts-a language for describing molecular patterns,
2007.

Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm
using reference-point-based nondominated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.

Yuanqi Du, Xian Liu, Nilay Mahesh Shah, Shengchao Liu, Jieyu Zhang, and Bolei Zhou. Chemspace:
Interpretable and interactive chemical space exploration. Transactions on Machine Learning
Research, 2022.

11

https://github.com/AnonymousSubmission-code-reproduce/MolLEO-reproduce
https://github.com/AnonymousSubmission-code-reproduce/MolLEO-reproduce

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuanqi Du, Arian R. Jamasb, Jeff Guo, Tianfan Fu, Charles Harris, Yingheng Wang, Chenru
Duan, Pietro Liò, Philippe Schwaller, and Tom L. Blundell. Machine learning-aided generative
molecular design. Nature Machine Intelligence, June 2024. ISSN 2522-5839. doi: 10.1038/
s42256-024-00843-5. URL https://doi.org/10.1038/s42256-024-00843-5.

Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina 1.2. 0:
New docking methods, expanded force field, and python bindings. Journal of chemical information
and modeling, 61(8):3891–3898, 2021.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language. arXiv preprint arXiv:2204.11817, 2022.

Sean Ekins, J Dana Honeycutt, and James T Metz. Evolving molecules using multi-objective
optimization: applying to adme/tox. Drug discovery today, 15(11-12):451–460, 2010.

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023.

Tianfan Fu, Wenhao Gao, Cao Xiao, Jacob Yasonik, Connor W Coley, and Jimeng Sun. Differentiable
scaffolding tree for molecular optimization. arXiv preprint arXiv:2109.10469, 2021.

Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. Reinforced genetic algorithm for structure-
based drug design. Advances in Neural Information Processing Systems, 35:12325–12338, 2022.

Wenhao Gao, Rocío Mercado, and Connor W Coley. Amortized tree generation for bottom-up
synthesis planning and synthesizable molecular design. arXiv preprint arXiv:2110.06389, 2021.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
for practical molecular optimization. Advances in neural information processing systems, 35:
21342–21357, 2022.

Tobias Gensch, Gabriel dos Passos Gomes, Pascal Friederich, Ellyn Peters, Théophile Gaudin, Robert
Pollice, Kjell Jorner, AkshatKumar Nigam, Michael Lindner-D’Addario, Matthew S Sigman, et al.
A comprehensive discovery platform for organophosphorus ligands for catalysis. Journal of the
American Chemical Society, 144(3):1205–1217, 2022.

AM Geoffrion. Proper efficiencyand the theory of vector optimization. J. Math. Anal. Appl, 22, 1968.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

DE Graff, EI Shakhnovich, and CW Coley. Accelerating high-throughput virtual screening through
molecular pool-based active learning, chem. Sci, 12:7866–7881, 2021.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577–586,
2020.

Jeff Guo and Philippe Schwaller. Augmented memory: Capitalizing on experience replay to accelerate
de novo molecular design. arXiv preprint arXiv:2305.16160, 2023.

Jeff Guo and Philippe Schwaller. Augmented memory: Sample-efficient generative molecular design
with reinforcement learning. Jacs Au, 2024.

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian,
and Yujiu Yang. Connecting large language models with evolutionary algorithms yields powerful
prompt optimizers. In The Twelfth International Conference on Learning Representations, 2023a.

12

https://doi.org/10.1038/s42256-024-00843-5

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh Chawla, Olaf Wiest, Xiangliang
Zhang, et al. What can large language models do in chemistry? a comprehensive benchmark on
eight tasks. Advances in Neural Information Processing Systems, 36:59662–59688, 2023b.

John H Holland. Genetic algorithms. Scientific american, 267(1):66–73, 1992.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf H Roohani, Jure Leskovec, Connor W
Coley, Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics data commons: Machine learning
datasets and tasks for drug discovery and development. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track, 2021.

John J Irwin, Khanh G Tang, Jennifer Young, Chinzorig Dandarchuluun, Benjamin R Wong,
Munkhzul Khurelbaatar, Yurii S Moroz, John Mayfield, and Roger A Sayle. Zinc20—a free
ultralarge-scale chemical database for ligand discovery. Journal of chemical information and
modeling, 60(12):6065–6073, 2020.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-trained
transformer for computational chemistry. Machine Learning: Science and Technology, 3(1):
015022, 2022.

Kevin Maik Jablonka, Philippe Schwaller, Andres Ortega-Guerrero, and Berend Smit. Leveraging
large language models for predictive chemistry. Nature Machine Intelligence, pp. 1–9, 2024.

Jan H Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chemical science, 10(12):3567–3572, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. In International conference on machine learning, pp. 2323–2332.
PMLR, 2018.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided gflownets for sample
efficient molecular optimization. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian He, Qingliang Li, Benjamin A
Shoemaker, Paul A Thiessen, Bo Yu, et al. Pubchem 2023 update. Nucleic acids research, 51(D1):
D1373–D1380, 2023.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (selfies): A 100% robust molecular string representation. Machine
Learning: Science and Technology, 1(4):045024, 2020.

Agustinus Kristiadi, Felix Strieth-Kalthoff, Marta Skreta, Pascal Poupart, Alán Aspuru-Guzik, and
Geoff Pleiss. A sober look at llms for material discovery: Are they actually good for bayesian
optimization over molecules? arXiv preprint arXiv:2402.05015, 2024.

Irwin D Kuntz. Structure-based strategies for drug design and discovery. Science, 257(5073):
1078–1082, 1992.

Nathanael Kusanda, Gary Tom, Riley Hickman, AkshatKumar Nigam, Kjell Jorner, and Alan Aspuru-
Guzik. Assessing multi-objective optimization of molecules with genetic algorithms against
relevant baselines. In AI for Accelerated Materials Design NeurIPS 2022 Workshop, 2022.

Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy Yeh, and Kenneth O Stanley.
Evolution through large models. In Handbook of Evolutionary Machine Learning, pp. 331–366.
Springer, 2023.

Xi Lin, Zhiyuan Yang, and Qingfu Zhang. Pareto set learning for neural multi-objective combinatorial
optimization. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=QuObT9BTWo.

13

https://openreview.net/forum?id=QuObT9BTWo
https://openreview.net/forum?id=QuObT9BTWo

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. arXiv preprint arXiv:2310.19046, 2023a.

Shengchao Liu, Weili Nie, Chengpeng Wang, Jiarui Lu, Zhuoran Qiao, Ling Liu, Jian Tang, Chaowei
Xiao, and Animashree Anandkumar. Multi-modal molecule structure–text model for text-based
retrieval and editing. Nature Machine Intelligence, 5(12):1447–1457, 2023b.

Shengchao Liu, Jiongxiao Wang, Yijin Yang, Chengpeng Wang, Ling Liu, Hongyu Guo, and Chaowei
Xiao. Conversational drug editing using retrieval and domain feedback. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=
yRrPfKyJQ2.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman,
Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design via coding
large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=IEduRUO55F.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nakago, and Motoki Abe. Graphnvp: An invertible
flow model for generating molecular graphs. arXiv preprint arXiv:1905.11600, 2019.

Adrian Mirza, Nawaf Alampara, Sreekanth Kunchapu, Benedict Emoekabu, Aswanth Krishnan, Mara
Wilhelmi, Macjonathan Okereke, Juliane Eberhardt, Amir Mohammad Elahi, Maximilian Greiner,
et al. Are large language models superhuman chemists? arXiv preprint arXiv:2404.01475, 2024.

AkshatKumar Nigam, Robert Pollice, and Alan Aspuru-Guzik. Janus: parallel tempered ge-
netic algorithm guided by deep neural networks for inverse molecular design. arXiv preprint
arXiv:2106.04011, 2021.

AkshatKumar Nigam, Robert Pollice, and Alán Aspuru-Guzik. Parallel tempered genetic algorithm
guided by deep neural networks for inverse molecular design. Digital Discovery, 1(4):390–404,
2022.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of cheminformatics, 9:1–14, 2017a.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de novo design
through deep reinforcement learning. CoRR, abs/1704.07555, 2017b. URL http://arxiv.org/
abs/1704.07555.

Hakime Öztürk, Arzucan Özgür, Philippe Schwaller, Teodoro Laino, and Elif Ozkirimli. Exploring
chemical space using natural language processing methodologies for drug discovery. Drug
Discovery Today, 25(4):689–705, 2020.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui
Yan. BioT5: Enriching cross-modal integration in biology with chemical knowledge and natural
language associations. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 1102–1123, 2023.

Mariya Popova, Mykhailo Shvets, Junier Oliva, and Olexandr Isayev. Molecularrnn: Generating
realistic molecular graphs with optimized properties. arXiv preprint arXiv:1905.13372, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Mayk Caldas Ramos, Shane S Michtavy, Marc D Porosoff, and Andrew D White. Bayesian optimiza-
tion of catalysts with in-context learning. arXiv preprint arXiv:2304.05341, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

14

https://openreview.net/forum?id=yRrPfKyJQ2
https://openreview.net/forum?id=yRrPfKyJQ2
https://openreview.net/forum?id=IEduRUO55F
http://arxiv.org/abs/1704.07555
http://arxiv.org/abs/1704.07555

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom Blundell,
Pietro Lió, Carla Gomes, Max Welling, et al. Structure-based drug design with equivariant diffusion
models. arXiv preprint arXiv:2210.13695, 2022.

Philippe Schwaller, Teodoro Laino, Théophile Gaudin, Peter Bolgar, Christopher A Hunter, Costas
Bekas, and Alpha A Lee. Molecular transformer: a model for uncertainty-calibrated chemical
reaction prediction. ACS central science, 5(9):1572–1583, 2019.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, and Jian Tang. Graphaf: a
flow-based autoregressive model for molecular graph generation. 2020.

Dong-Hee Shin, Young-Han Son, Ji-Wung Han, Tae-Eui Kam, et al. Dymol: Dynamic many-objective
molecular optimization with objective decomposition and progressive optimization. In ICLR 2024
Workshop on Generative and Experimental Perspectives for Biomolecular Design.

Michael A Skinnider. Invalid smiles are beneficial rather than detrimental to chemical language
models. Nature Machine Intelligence, pp. 1–12, 2024.

Teague Sterling and John J Irwin. Zinc 15–ligand discovery for everyone. Journal of chemical
information and modeling, 55(11):2324–2337, 2015.

Jonathan M Stokes, Kevin Yang, Kyle Swanson, Wengong Jin, Andres Cubillos-Ruiz, Nina M
Donghia, Craig R MacNair, Shawn French, Lindsey A Carfrae, Zohar Bloom-Ackermann, et al. A
deep learning approach to antibiotic discovery. Cell, 180(4):688–702, 2020.

Dagmar Stumpfe and Jürgen Bajorath. Exploring activity cliffs in medicinal chemistry: miniperspec-
tive. Journal of medicinal chemistry, 55(7):2932–2942, 2012.

Mengying Sun, Jing Xing, Han Meng, Huijun Wang, Bin Chen, and Jiayu Zhou. Molsearch: search-
based multi-objective molecular generation and property optimization. In Proceedings of the 28th
ACM SIGKDD conference on knowledge discovery and data mining, pp. 4724–4732, 2022.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony Hartshorn, Elvis Saravia,
Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model for science.
arXiv preprint arXiv:2211.09085, 2022.

Gary Tom, Stefan P. Schmid, Sterling G. Baird, Yang Cao, Kourosh Darvish, Han Hao, Stanley Lo,
Sergio Pablo-García, Ella M. Rajaonson, Marta Skreta, and et al. Self-driving laboratories for
chemistry and materials science. ChemRxiv, 2024. doi: 10.26434/chemrxiv-2024-rj946.

Austin Tripp, Gregor N. C. Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021. URL https:
//openreview.net/forum?id=gS3XMun4cl_.

Vahe Tshitoyan, John Dagdelen, Leigh Weston, Alexander Dunn, Ziqin Rong, Olga Kononova,
Kristin A Persson, Gerbrand Ceder, and Anubhav Jain. Unsupervised word embeddings capture
latent knowledge from materials science literature. Nature, 571(7763):95–98, 2019.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu Zhang, Satyen Subramaniam, Arjun R
Loomba, Shichang Zhang, Yizhou Sun, and Wei Wang. Scibench: Evaluating college-level
scientific problem-solving abilities of large language models. arXiv preprint arXiv:2307.10635,
2023.

Guanghao Wei, Yining Huang, Chenru Duan, Yue Song, and Yuanqi Du. Navigating chemical space
with latent flows. arXiv preprint arXiv:2405.03987, 2024.

David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical information and computer sciences, 28(1):31–36,
1988.

Andrew D White. The future of chemistry is language. Nature Reviews Chemistry, 7(7):457–458,
2023.

15

https://openreview.net/forum?id=gS3XMun4cl_
https://openreview.net/forum?id=gS3XMun4cl_

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=Bb4VGOWELI.

Xiufeng Yang, Jinzhe Zhang, Kazuki Yoshizoe, Kei Terayama, and Koji Tsuda. Chemts: an efficient
python library for de novo molecular generation. Science and technology of advanced materials,
18(1):972–976, 2017.

Geyan Ye, Xibao Cai, Houtim Lai, Xing Wang, Junhong Huang, Longyue Wang, Wei Liu, and
Xiangxiang Zeng. Drugassist: A large language model for molecule optimization. arXiv preprint
arXiv:2401.10334, 2023.

Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431–1434, 2018.

Naruki Yoshikawa, Marta Skreta, Kourosh Darvish, Sebastian Arellano-Rubach, Zhi Ji, Lasse
Bjørn Kristensen, Andrew Zou Li, Yuchi Zhao, Haoping Xu, Artur Kuramshin, et al. Large
language models for chemistry robotics. Autonomous Robots, 47(8):1057–1086, 2023.

Chengxi Zang and Fei Wang. Moflow: an invertible flow model for generating molecular graphs. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 617–626, 2020.

Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.

Yiheng Zhu, Jialu Wu, Chaowen Hu, Jiahuan Yan, Tingjun Hou, Jian Wu, et al. Sample-efficient
multi-objective molecular optimization with gflownets. Advances in Neural Information Processing
Systems, 36, 2024.

16

https://openreview.net/forum?id=Bb4VGOWELI

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix
A EXTENDED DESCRIPTIONS

A.1 EXTENDED RELATED WORK

Benchmarking LLMs on Chemistry Tasks ChemLLMBench benchmarked several widely-used
LLMs on a set of eight chemistry tasks, such as property prediction, reaction prediction, and
molecule captioning (Guo et al., 2023b). The results showed that while LLMs can perform well in
selection tasks, they struggle with tasks requiring more in-depth chemical reasoning, such as property-
conditioned generation. This motivates the need to improve how LLMs are used in generative tasks.
Similarly, SciBench evaluated LLMs on free-response college-level exam questions across various
science disciplines, including chemistry, which required complex, multi-step solutions (Wang et al.,
2023). Their results indicated that LLMs were unable to generate correct solutions for the majority
of questions (Wang et al., 2023). However, progress of LLMs has been noted in general question-
answering capabilities: a recent work introduced ChemBench, a dataset of over 7,000 question-answer
pairs aimed at providing a systematic understanding of LLM capabilities across different subdomains
in chemistry (Mirza et al., 2024). It was concluded that state-of-the-art LLMs such as GPT-4 and
Claude 3 were able to beat human chemists on these questions on average, although they still struggle
with physical and commonsense chemical reasoning.

LLMs and Evolutionary Algorithms Previous research has demonstrated that language models
can be incorporated as operators in evolutionary algorithms in applications such as code and prompt
generation (Lehman et al., 2023). For example, OPRO and LMEA use LLMs to optimize solutions
for different mathematical optimization problems (Yang et al., 2024; Liu et al., 2023a). Other
works have shown that LLMs can be used as crossover and mutation operators to directly optimize
prompts using a training set, outperforming human-engineered prompts (Fernando et al., 2023; Guo
et al., 2023a). Other applications of LLMs in evolutionary frameworks have been code synthesis
(FunSearch (Romera-Paredes et al., 2024)), generation of reward functions in RL for robot control
(Eureka (Ma et al., 2024), and resource allocation in public health settings (Behari et al., 2024).

Multi-objective optimization frameworks In our work, we study the effectiveness LLM-based
mutations in a multi-objective molecular optimization setting. To ensure simplicity and clarity in
our evaluation, we adopt straightforward approaches, such as the sum of objectives and Pareto set
selection as selection criteria. Classic methods like MOEA/D (Zhang & Li, 2007) and NSGA-III
(Deb & Jain, 2013) are designed to handle scenarios where the Pareto set exceeds the population
capacity. MOEA/D uses decomposition to assign each solution to a specific subproblem defined
by a weight vector. If the size of the Pareto set exceeds the population size, MOEA/D will select
solutions based on their contribution to specific subproblems, so that it can ensure a balance between
diversity and convergence. NSGA-III uses reference points in the objective space to maintain
diversity. When the Pareto front size exceeds the population, a clustering mechanism based on the
reference points is applied to select solutions that best represent different regions of the Pareto front.
Additionally, there are also some recent works focusing on this topic. For example, Sun et al. (2022)
developed a Monte Carlo tree search algorithm that evaluates rewards by comparing new molecular
structures against a maintained global Pareto set. Shin et al. introduced a method to decompose the
optimization process into a progressive sequence based on the order of objectives. Zhu et al. (2024)
integrated GFlowNets with a preference-conditioned sum of objective functions, further advancing
the optimization landscape.

A.2 FUTURE WORK

Molecular discovery and design is a rich field with numerous practical applications, many of which
extend beyond the current study’s scope but remain relevant to the proposed framework. Integrating
LLMs into evolutionary algorithms offers versatility through plain text specifications, suggesting
that the MOLLEO framework can be applied to scenarios such as drug discovery, expensive in silico
simulations, and the design of materials or large biomolecules. Future work will aim to further

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

improve the quality of proposed candidates, both in terms of their objective values and the speed with
which they are found.

A.3 COMPUTATIONAL RESOURCES

Our experiments were computed on NVIDIA A100-SXM4-80GB and T4V2 GPUs. Some of our
experiments utilized the GPT-4 model; this refers to the gpt-4-turbo checkpoint from 2023-07-01 2.
All GPT-4 checkpoints were hosted on Microsoft Azure3.

A.4 LIMITATIONS

All benchmarks and tasks evaluated in this study are proxies for real chemical properties and may not
correctly capture the true chemical performance of molecules in the real world. Thus, the effectiveness
of our model in real-world applications remains to be thoroughly validated.

A.5 BROADER IMPACT

The methods proposed in this paper aim to find compounds with desired properties more efficiently,
which can benefit many areas, including drug discovery and materials design. While we do not
foresee negative societal impacts from our methods, we acknowledge the potential of their dual
use for nefarious purposes. We encourage discussions around these issues and strongly support the
development and deployment of safeguards to prevent them.

B HYPERPARAMETERS AND ADDITIONAL EXPERIMENTAL DETAILS

For the choice of hyperparameters, we use the best practices from Graph-GA (Jensen, 2019), the
baseline genetic algorithm that we build our method upon. We kept the best hyperparameters that
were determined in (Gao et al., 2022). In each iteration, Graph-GA samples two molecules with
a probability proportional to their fitnesses for crossover and mutation and then randomly mutates
the offspring with probability pm = 0.067. This process is repeated to generate 70 offspring. The
fitnesses of the offspring are measured, and the top 120 most fit molecules in the entire pool are
kept for the next generation. For docking experiments, we reduce the number of generated offspring
to 7 and the population size to 12 due to long experiment runtimes. We set the maximum number
of oracle calls to 10,000 for all experiments except docking, where we set it to 1,000. We kept the
default early-stopping criterion the same as in PMO (Gao et al., 2022), which is that we terminate the
algorithm if the mean score of the top 100 molecules does not increase by at least 1e-3 within five
epochs.

In the multi-objective optimization tasks, we applied a simple transformation by using 1− score for
the objectives involving minimization. Also, we ensure all objectives remain within the range of 0 to
1 by using normalization. This approach allows for consistent scalarization and comparability across
objectives.

MOLLEO (MOLSTM) involves additional hyperparameters when doing gradient descent; we
investigate their selection in Appendix C.4. Additionally, we investigate design choices for MOLLEO
(GPT-4) in Appendix C.5. We use three tasks for model development: JNK3, perindopril_mpo, and
isomers_c9h10n2o2pf2cl; the rest are only evaluated during test-time. For each model, we show
the prompts we used in Appendix E. We created prompts similar to those demonstrated in the original
source code of each model, replacing each template with a task description. We briefly investigate
the impact of prompt selection in Appendix C.6.

All experiments are conducted with five random seeds. The computational resources we utilized are
described in Appendix A.3.

2.https://platform.openai.com/docs/models
3 *.openai.azure.com

18

https://platform.openai.com/docs/models

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table A1: Viability of LLM edits. We prompt different LLMs with descriptions of JNK3 and
perindopril_mpo target objectives on an initial random pool of molecules drawn from 5 random seeds.
We report the percentage of valid molecules (number of valid molecules/number of total molecules),
the percentage of molecules with higher fitness after editing, and the mean fitness increase of those
molecules.

Metric MoleculeSTM BioT5 GPT-4

Percent valid molecules

peridopril_mpo:
0.938
JNK3:
0.928

peridopril_mpo:
1.000
JNK3:
1.000

peridopril_mpo:
0.862
JNK3:
0.835

Percent molecules with
higher fitness after editting

peridopril_mpo:
0.456
JNK3:
0.206

peridopril_mpo:
0.568
JNK3:
0.513

peridopril_mpo:
0.240
JNK3:
0.263

Mean fitness increase

peridopril_mpo:
+0.033
JNK3:
+0.022

peridopril_mpo:
+0.208
JNK3:

+0.0320

peridopril_mpo:
+0.032
JNK3:

+0.0262

C ABLATION STUDIES

C.1 PERFORMANCE OF SINGLE-STEP MOLECULE EDITING

To motivate the incorporation of LLMs into a GA framework, we directly query the LLMs we
consider to edit a molecule towards a certain property and calculate: (1) the percentage of valid
molecules that are output (given that not all SMILES are valid molecules) and (2) which of the output
molecules have higher fitness. We show these results on the JNK3 inhibition task in Table A1 and
find that MolSTM and GPT-4 are not always able to produce valid molecules, whereas BioT5 always
is due to its use of SELFIES. We also found that BioT5 produced more molecules with higher fitness
values compared to the other LLMs.

In Table A3, we show the performance of directly querying LLMs with an initial pool of molecules
on additional tasks. We find that while LLMs are able to edit the molecule pool to improve fitness
marginally, using them in an optimization framework results in much better fitness values.

C.2 INCORPORATING LLM-BASED GENETIC OPERATORS INTO GRAPH-GA

There are many ways to incorporate LLMs as genetic operators in a GA framework. We investigate
several options. First, we investigate using LLMs as a crossover operator. For GPT-4 and BioT5,
we gave each model two parent molecules as input and a description of the objective, and asked the
model to produce a molecule as an output. Because MolSTM aligns molecule embeddings with text
embeddings, our crossover operation was to either take a linear or spherical interpolation of the parent
molecule embeddings and maximize the similarity of the resulting embedding to the text objective.
For the mutation operator, we prompted each LLM with a molecule and a description of the objective.
Finally, we investigated the impact of applying a selection pressure in the form of a filter, where we
only mutated the top Y molecules and pruned the resulting offspring by distance to the best molecule
overall. We show the results for all operator settings we tried in Table A2 and show which operators
we ended up using for each LLM in the final framework.

C.3 OPTIMIZATION TRENDS OVER SINGLE-OBJECTIVE TASKS.

In Figure A1, we show the optimization curves for three tasks: JNK3, perindopril_mpo, and iso-
mers_c9h10n2o2pf2cl.

C.4 MOLECULESTM HYPERPARAMETER SELECTION

MolSTM has several hyperparameters; in this section, we motivate our choices for the final model.
The first is the number of population members that are selected to undergo LLM-based mutations

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table A2: Top-10 AUC on 5 random seeds for the JNK3 and perindopril_mpo tasks using
different combinations of genetic operators. The operators used for each model to compute the

final results in the main paper are indicated with a symbol.

Operators Graph-GA
(Baseline) MOLLEO (MOLSTM) MOLLEO (BIOT5) MOLLEO (GPT-4)

(Default Graph-GA settings)
CROSSOVER:
Random
MUTATION:
Random, pm = 0.067

peridopril_mpo:
0.538 ± 0.009

JNK3:
0.553 ± 0.136

N/A N/A N/A

CROSSOVER:
LLM
MUTATION:
Random, pm = 0.067

N/A

peridopril_mpo:
0.499 ± 0.012 [linear]

0.505 ± 0.018 [spherical]
JNK3:

0.722±0.046 [linear]
0.744 ± 0.055 [spherical]

peridopril_mpo:
0.727 ± 0.013

JNK3:
0.436 ± 0.052

peridopril_mpo:
0.600 ± 0.031

JNK3:
0.790 ± 0.027

CROSSOVER:
Random
MUTATION:
LLM, pm = 0.067

N/A

peridopril_mpo:
0.532 ± 0.034

JNK3:
0.631 ± 0.327

peridopril_mpo:
0.676 ± 0.034

JNK3:
0.650 ± 0.096

peridopril_mpo:
0.552 ± 0.024

JNK3:
0.673 ± 0.047

CROSSOVER:
Random
MUTATION:
LLM, pm = 1

N/A

peridopril_mpo:
0.513 ± 0.040

JNK3:
0.553 ± 0.193

peridopril_mpo:
0.686 ± 0.343

JNK3:
0.708 ± 0.030

peridopril_mpo:
0.615 ± 0.058

JNK3:
0.762 ± 0.044

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
randomly mutated, pruned
offspring by distance to
top-1 molecule

peridopril_mpo:
0.579 ± 0.044

JNK3:
0.571 ± 0.109

N/A N/A N/A

CROSSOVER:
Random
MUTATION:
Selected top Y molecules,
mutated with LLM, pruned
offspring by distance to
top-1 molecule

N/A

peridopril_mpo:
0.554 ± 0.034

JNK3:
0.730 ± 0.188

peridopril_mpo:
0.740 ± 0.032

JNK3:
0.728 ± 0.079

peridopril_mpo:
0.575 ± 0.074

JNK3:
0.758 ± 0.031

CROSSOVER:
LLM
MUTATION:
Selected top Y molecules,
mutated with LLM, pruned
offspring by distance to
top-1 molecule

N/A

peridopril_mpo:
0.490 ± 0.016 [linear]

0.517 ± 0.006 [spherical]
JNK3:

0.692 ± 0.110 [linear]

peridopril_mpo:
0.736 ± 0.014

JNK3:
0.429 ± 0.110

peridopril_mpo:
0.592 ± 0.035

JNK3:
0.794 ± 0.026

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 2K 4K 6K 8K 10K
Number of oracle calls

0.0

0.2

0.4

0.6

0.8

1.0

Sc
al

ed
 fi

tn
es

s

JNK3

Augmented Memory Graph-GA MolLEO(BioT5) MolLEO(GPT-4) MolLEO(MolSTM) REINVENT Convergence reached

0 2K 4K 6K 8K 10K
Number of oracle calls

0.0

0.2

0.4

0.6

0.8

1.0
perindopril_mpo

0 2K 4K 6K 8K 10K
Number of oracle calls

0.0

0.2

0.4

0.6

0.8

1.0
isomers_C9H10N2O2PF2Cl

Figure A1: Average of top-10 molecules generated by MOLLEO and Graph-GA models for three
tasks over an increasing number of oracle calls. For each model, we show the convergence point with
a star. The model is considered to have converged if the mean score of the top 100 molecules does
not increase by at least 1e-3 within five epochs.

Table A3: Ablation studies of LLM editing based on direct user queries. Top-10 average objective
scores are reported.

JNK3 isomers_c9h10n2o2pf2cl perindopril_mpo

Initial population 0.085 ± 0.010 0.101 ± 0.025 0.281 ± 0.026

MolSTM - direct query 0.084 ± 0.008 0.201 ± 0.040 0.390 ± 0.008
MOLLEO (MOLSTM) 0.716 ± 0.240 0.905 ± 0.0372 0.572 ± 0.041

BioT5 - direct query 0.109 ± 0.012 0.260 ± 0.076 0.648 ± 0.019
MOLLEO (BIOT5) 0.883 ± 0.040 0.909 ± 0.015 0.759 ± 0.019
GPT-4 - direct query 0.164 ± 0.076 0.686 ± 0.127 0.388 ± 0.075
MOLLEO (GPT-4) 0.926 ± 0.052 0.935 ± 0.048 0.643 ± 0.094

(Algorithm 1). In Table A4, we show the Top-10 AUC after choosing different numbers of top-scoring
candidates for editing by MoleculeSTM. We find that 30 candidates resulted in the best performance.
Note that we used a different prompt for this experiment than the one used to obtain results in Table 1
(see Appendix C.6). We use 30 candidates anytime the filter is employed for all models, although this
hyperparameter can be ablated independently for each model.

MoleculeSTM has several hyperparameters related to molecule generation since it involves gradient
descent to optimize an input molecule embedding based on a text prompt. We look at two hyper-
parameters, the number of gradient descent steps (epochs) and learning rate, and plot the results in
Figure A2. We find that if the learning rate is too large (lr=1), the mean fitness changes unpredictably,
but if it is too small (lr=1e-2), there are minimal changes to the mean fitness. Setting the learning rate
to 1e-1 results in more consistent improvements in mean fitness. We also set the number of epochs to
30 since more epochs are too time-consuming and fewer do not result in noticeable fitness changes.

C.5 GPT-4 ABLATIONS

We conduct experiments to understand the performance of MOLLEO (GPT-4) in the following
settings: different numbers of offspring in each generation, different underlying GPT models,
incorporating retrieval augmentation methods, and different rules from Graph-GA and SMILES-GA
in Table A5 and Table A6, and describe the results in following sections.

Number of top-scoring
candidates selected for mutation Top-10 AUC

20 0.680±0.213

30 0.730±0.188

50 0.627±0.250

Table A4: Top-10 AUC on JNK3 bind-
ing task with varying numbers of top-
scoring candidates selected to undergo
LLM-based mutations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a)

(b)

Figure A2: Mean fitness and percent valid molecules with a varying number of gradient descent
epochs (plotted on log-scale) and learning rates in MoleculeSTM on two tasks: (a) molecular
similarity to Penicillin (based on Tanimoto distance) and (b) molecule hydrophobicity (logP).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table A5: Ablation study on MOLLEO (GPT-4). Impact of the number of offspring in each round
and retrieval-augmented search (RAG).

Number of offspring RAG Search

20 70 200 w. RAG w/o. RAG

jnk3 0.731±0.012 0.790±0.027 0.785±0.022 0.830±0.047 0.790±0.027
isomer_c9h10n2o2pf2cl 0.967±0.010 0.874±0.053 0.960±0.049 0.982±0.018 0.874±0.053

perindopril mpo 0.573±0.042 0.600±0.031 0.580±0.028 0.717±0.024 0.600±0.031

Table A6: Ablation study on MOLLEO (GPT-4). Impact of different versions of LLMs and rules
from different sources.

Different Versions of LLMs Rules

GPT-3.5 GPT-4 No rules Graph-GA rules SMILES-GA rules

jnk3 0.669±0.104 0.790±0.027 0.765±0.047 0.790±0.027 0.774±0.084
isomer_c9h10n2o2pf2cl 0.902±0.021 0.874±0.053 0.871±0.085 0.874±0.053 0.872±0.029

perindopril mpo 0.564±0.022 0.600±0.031 0.562±0.042 0.600±0.031 0.583±0.031

Number of offspring We vary the number of offspring generated in each iteration of MOLLEO
(GPT-4) on three tasks and find that 70 offspring produces, on average, the best results, which is also
the same number determined in (Gao et al., 2022)

Retrieval-augmented search To explore how retrieval can enhance LLMs in the optimization
process, we incorporate a retrieval-augmented search module into MOLLEO (GPT-4). Specifically,
after offspring are proposed, 1,000 molecules are randomly sampled from ZINC 250K. From these,
20 molecules are selected based on their Tanimoto similarity to the top 20 molecules in the current
population. These retrieved molecules then replace the 20 worst molecules in the population. In
Table A5, the results show that this approach is effective in improving the optimization results of
MOLLEO (GPT-4) for each task.

GPT-3.5 vs. GPT-4 We tested MOLLEO using both GPT-4 and GPT-3.5, an older version of the
model. In Table A6, we show that GPT-4 outperforms GPT-3.5 on two tasks, although GPT-3.5 still
beats the baseline Graph-GA algorithm (Table 1). Interestingly, GPT-3.5 beats GPT-4 on a task based
on structure-based optimization.

Different rules In Graph-GA, the default crossover and mutation operators are pre-defined by
domain experts based on chemical knowledge. These pre-defined operators can be considered as
rules guiding the generation process. Here we also consider rules from another source, SMILES-GA
(Yoshikawa et al., 2018), which defines rules that operate on SMILES strings instead of graphs. To
evaluate the impact of rules from different sources, we perform an ablation study on MOLLEO
and also conduct experiments without any rules, where LLMs are repeatedly queried to propose
molecules until the offspring size reaches the target number in each round. The results shown in
Table A6 indicate that both Graph-GA and SMILES-GA rules are better than not using results at all,
and Graph-based rules are better than SMILES-based rules.

C.5.1 GPT-4 IN AN ACTIVE LEARNING FRAMEWORK

We investigate the performance of GPT-4 when the EA framework is replaced with an active learning
setting. This can be thought of as testing the impact of the genetic operators in the underlying genetic
framework. In this setting, we initialize a population pool and randomly sample k molecules from
the pool. We then pass the molecules to GPT-4 and query it for a new molecule with better objective
values. After generating a batch of molecules, we integrate the batch back into the population without
selection, allowing the population to grow until it reaches the budget of oracle calls. In our experiment,
we set the budget to 10,000 oracle calls, the batch size to 100, and k to 2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

The results, shown in Table A7, indicate that the active learning setting achieves subpar performance
compared to MOLLEO (GPT-4). This demonstrates that while LLMs like GPT-4 can modify
existing molecules, they struggle to independently propose high-quality molecules, underscoring
the necessity of the evolutionary process. Interestingly, we observe that the active learning setting
performs relatively well on the isomer task compared to the other two; this can maybe be attributed
to the isomer task being simple.

Table A7: Ablation studies of active learning (AL) on GPT-4. We report the Top-10 AUC of single
objective results.

GPT4-AL MOLLEO (GPT-4)

JNK3 0.583±0.042 0.790±0.027

isomer_c9h10n2o2pf2cl 0.873±0.048 0.874±0.053

perindopril mpo 0.539±0.046 0.600±0.031

C.6 IMPACT OF PROMPT SELECTION

The choice of prompt for a given task is an important consideration, as some prompts can be
better aligned with information the model knows. For example, the prompt we used in MOLLEO
(MOLSTM) for the JNK3 inhibition task was “This molecule inhibits JNK3." However, there
are multiple ways of describing inhibition and multiple ways of identifying the enzyme (JNK3, c-Jun
N-terminal kinase 3). To that end, we investigate the impact of prompt selection on downstream
performance.

To generate a set of prompts, we prompted GPT-4 to generate ten synonymous phrases for an input
prompt. We then computed the Spearman rank-order correlation coefficient (Spearman’s ρ) of each
phrase on an initial molecule pool between the cosine similarity generated by MoleculeSTM and the
ground truth fitness values. Finally, we ran the genetic optimization using MOLLEO (MOLSTM)
with the input prompt and the prompt with the highest Spearman rank-order correlation coefficient.

On the JNK3 task, the default prompt we wrote was “This molecule inhibits JNK3.", which had
a Spearman’s ρ of -0.0161. The prompt with the largest Spearman’s ρ (0.1202) was “This molecule
acts as an antagonist to JNK3." When we ran MOLLEO (MOLSTM) with the default input
prompt, the top-10 AUC was 0.643 ± 0.226. When we ran MOLLEO (MOLSTM) using the prompt
with the largest Spearman’s ρ, the top-10 AUC was 0.730 ± 0.188. This demonstrates that prompt
selection can influence downstream results, especially for smaller models, and opens the door for
future work in this area.

Table A8: Top-10 AUC of single-objective tasks on additional baseline models. The best model for
each task is bolded and the top three are underlined.

Task type Method
objective (↑) DST REINVENT Augmented

Memory Graph GA GP BO MOLLEO
(MolSTM)

MOLLEO
(BioT5)

MOLLEO
(GPT-4)

Property
optimization

QED 0.939 ± 0.000 0.941 ± 0.000 0.941 ± 0.000 0.940 ± 0.000 0.937 ± 0.000 0.937 ± 0.002 0.937 ± 0.002 0.948 ± 0.000
JNK3 0.677 ± 0.157 0.783 ± 0.023 0.773 ± 0.073 0.553 ± 0.136 0.564 ± 0.155 0.643 ± 0.226 0.728 ± 0.079 0.790 ± 0.027

GSK3β 0.767 ± 0.103 0.865 ± 0.043 0.889 ± 0.027 0.788 ± 0.070 0.851 ± 0.041 0.898 ± 0.041 0.889 ± 0.015 0.863 ± 0.047

Name-based
optimization

mestranol_similarity 0.435 ± 0.015 0.618 ± 0.048 0.764 ± 0.035 0.579 ± 0.022 0.627 ± 0.089 0.596 ± 0.018 0.717 ± 0.104 0.972 ± 0.009
albuterol_similarity 0.614 ± 0.021 0.896 ± 0.008 0.918 ± 0.026 0.874 ± 0.020 0.902 ± 0.019 0.929 ± 0.005 0.968 ± 0.003 0.985 ± 0.024

thiothixene_rediscovery 0.352 ± 0.011 0.534 ± 0.013 0.562 ± 0.028 0.479 ± 0.025 0.559 ± 0.027 0.508 ± 0.035 0.696 ± 0.081 0.727 ± 0.052
perindopril_mpo 0.470 ± 0.015 0.537 ± 0.016 0.598 ± 0.008 0.538 ± 0.009 0.493 ± 0.011 0.554 ± 0.037 0.738 ± 0.016 0.600 ± 0.031
ranolazine_mpo 0.665 ± 0.010 0.760 ± 0.009 0.802 ± 0.003 0.728 ± 0.012 0.735 ± 0.013 0.725 ± 0.040 0.749 ± 0.012 0.769 ± 0.022

osimertinib_mpo 0.794 ± 0.007 0.834 ± 0.046 0.856 ± 0.013 0.808 ± 0.012 0.762 ± 0.029 0.823 ± 0.007 0.817 ± 0.016 0.835 ± 0.024

Structure-
based

optimization

isomers_c7h8n2o2 0.706 ± 0.033 0.842 ± 0.029 0.954 ± 0.033 0.949 ± 0.036 0.662 ± 0.071 0.948 ± 0.036 0.928 ± 0.038 0.984 ± 0.008
scaffold_hop 0.501 ± 0.006 0.560 ± 0.019 0.565 ± 0.008 0.517 ± 0.007 0.548 ± 0.019 0.527 ± 0.019 0.559 ± 0.102 0.971 ± 0.004

valsartan_smarts 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.867 ± 0.092

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table A9: Performance of Augmented Memory framework with and without LLM-based genetic
operators. We report the Top-10 AUC of single objective results.

Augmented Memory
Objective(↑) w/o LLM w/ BioT5 w/ GPT-4

JNK3 0.773 ± 0.073 0.781 ± 0.094 0.794 ± 0.087
albuterol_similarity 0.918 ± 0.026 0.925 ± 0.076 0.941 ± 0.033

Table A10: Performance of Genetic GFN with different genetic operators. We report the Top-10
AUC of single objective results.

Genetic GFN
Objective(↑) default GA MolLEO(BioT5) MolLEO(GPT-4)

JNK3 0.766 ± 0.077 0.775 ± 0.056 0.783 ± 0.034
albuterol_similarity 0.946 ± 0.013 0.962 ± 0.017 0.971 ± 0.020

D EXTENDED EXPERIMENT RESULTS

D.1 ADDITIONAL BASELINE MODELS

We report the performance of an additional baseline, DST (Fu et al., 2021), on randomly selected
tasks in Table A8.

D.2 INCOPORATING LLMS INTO AUGMENTED MEMORY

To further evaluate the effectiveness of LLM-based genetic operators, we integrate them into a
framework with augmented memory mechanisms (Guo & Schwaller, 2024) to refine the molecules
stored in a replay buffer. The results presented in Table A9 demonstrate that incorporating both BioT5
and GPT-4 into this framework improves performance, indicating the capability of LLM-based genetic
operators to effectively augment molecules in the replay buffer. The performance improvement is not
large, which is likely due to the application of only a single round of edits.

D.3 INCOPORATING LLMS INTO GENETIC GFN AND JANUS

We experiment with extending the MOLLEO framework to other genetic algorithms other than
Graph GA including Genetic GFN (Kim et al., 2024) and JANUS (Nigam et al., 2021). Genetic
GFN combines GAs with GFlowNet by first sampling molecules using the current policy during the
GFlowNet training stage. These sampled molecules are then refined into higher-reward ones using
GAs, after which the policy is fine-tuned using the refined samples. We replace the default GA in
Genetic GFN with MOLLEO and the results are shown in Table A10. Both MOLLEO (BIOT5) and
MOLLEO (GPT-4) outperform the default GA, which relies on predefined rules crafted by chemical
experts.

JANUS maintains two distinct populations of molecules that can exchange members, each governed
by specialized genetic operators—one set focused on exploration and the other on exploitation. The
exploitative genetic operators apply molecular similarity as an additional selection pressure, while
the explorative operators leverage guidance from a deep neural network (DNN) trained on molecules
across all previous generations. We replace these genetic operators with MOLLEO (MOLSTM) and
MOLLEO (BIOT5). The results of this approach are presented in Table A11. The results show that
MOLLEO can edit the molecules effectively in both Genetic GFN and JANUS, indicating the utility
of LLM-based genetic operators in several settings.

D.4 COMPUTATIONAL COST OF MOLLEO

The most expensive part of chemistry experiments is often the oracle call. In table A12, we show the
computational costs of MOLLEO vs Graph GA for two experiments: JNK3, which uses a lightweight
oracle, and docking against human dopamine D3 receptor (PDB ID 3pbl), which is more expensive.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table A11: Performance of JANUS with different genetic operators. We report the Top-10 AUC of
single objective results.

JANUS
Objective(↑) default GA MOLLEO (MOLSTM) MOLLEO (BIOT5)

JNK3 0.678 ± 0.031 0.680 ± 0.024 0.685 ± 0.044
albuterol_similarity 0.712 ± 0.049 0.779 ± 0.038 0.904 ± 0.051

Table A12: Average Running time of five seeds of MOLLEO framework

Task Model Avg time

Docking 3pbl
Graph GA 8h 23m 37s ± 1h 46m

MOLLEO (BIOT5) 6h 57m 14s ± 1h 24m
MOLLEO (GPT-4) 12h 14m 25s ± 2h 33m

JNK3
Graph GA 12m 17s ± 5m

MOLLEO (BIOT5) 1h 23m 6s ± 20m
MOLLEO (GPT-4) 4h 06m 12s ± 1h 15min

In this table, we show that for lightweight oracles, incorporating LLM edits indeed results in high
runtimes since calling the LLM is more expensive than random edits. However, as experiments
become more expensive, such as with docking, the cost of the LLM call becomes insignificant in
comparison to the docking time, hence the runtime is governed by the oracle call. For MOLLEO
(GPT-4), the runtime is further constrained by OpenAI API rate limits, which impose restrictions on
the number of input/output tokens processed per minute.

D.5 SIMILARITY ANALYSIS FOR MOLECULES BEFORE AND AFTER LLM EDITING

To investigate the types of LLM edits occurring to a molecule, we analyzed the Tanimoto similarity
between molecules before and after editing, comparing these values to the similarity with a random
molecule. This approach allows us to evaluate whether the edited molecules are as distant from their
original versions as they are from random molecules.

We present these similarities in Table A13 for all the LLMs included in our study. For GPT-4,
which employs crossover instead of mutations, we report both the maximum and minimum Tanimoto
similarities, where the maximum similarity corresponds to the closer parent and the minimum
similarity to the further parent. In all cases, the Tanimoto similarity between molecules before and
after editing is consistently higher than the similarity between edited molecules and random ones,
indicating that the edits effectively preserve molecular substructures.

Interestingly, molecules edited by BioT5 exhibit lower similarity to their pre-edit versions compared
to other LLMs, suggesting that BioT5 may reconstruct more of the sequences.

Table A13: Tanimoto similarity between molecules after LLM editing and molecules before LLM
editing/random sampled molecules

Tanimoto similarity
to molecules before editing

Tanimoto similarity
to random sampled molecules

MoleculeSTM 0.761 ± 0.235 0.120 ± 0.044

BioT5 0.173 ± 0.082 0.111 ± 0.038

GPT-4 0.433 ± 0.207 (max)
0.165 ± 0.089 (min) 0.123 ± 0.045

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table A14: Task keyword frequency in open-source LLM training data. We note that BioT5 has two
training phases (pre-training and fine-tuning), and so we include the frequency of keywords in both
datasets.

Prompt Keyword MolSTM hits BioT5 hits
(Pre-training+Fine-tuning)

“This molecule inhibits JNK3”
JNK3 0 0+0
kinase 1698 1698+271

Jun N-terminal kinase 17 17+0

“This molecule inhibits DRD3”

DRD3 0 0+0
Dopamine receptor 73 73+3

Dopamine receptor d 7 7+0
Dopamine receptor d3 0 0

“This molecule inhibits EGFR” EGFR 82 82+0

“This molecule binds to adenosine receptor A2a” adenosine receptor A2a 0 0+0
adenosine receptor 25 25+3

Table A15: Multi objective results. The best model for each task is bolded.

Task 1: maximize QED (↑),
minimize SA (↓), maximize JNK3 (↑)

Summation
(Top-10 AUC) (↑) Hypervolume (↑) Structural diversity (↑) Objective diversity (↑)

Summation

Graph-GA 1.967 ± 0.088 0.713 ± 0.083 0.741 ± 0.115 0.351 ± 0.079
MOLLEO (MOLSTM) 2.177 ± 0.178 0.625 ± 0.162 0.803 ± 0.011 0.362 ± 0.074

MOLLEO (BIOT5) 1.946 ± 0.222 0.592 ± 0.199 0.805 ± 0.196 0.341 ± 0.091
MOLLEO (GPT-4) 2.367 ± 0.044 0.752 ± 0.085 0.726 ± 0.063 0.292 ± 0.076

Pareto optimality

Graph-GA 2.120 ± 0.159 0.603 ± 0.082 0.761 ± 0.034 0.219 ± 0.117
MOLLEO (MOLSTM) 2.234 ± 0.246 0.472 ± 0.248 0.739 ± 0.015 0.306 ± 0.085

MOLLEO (BIOT5) 2.325 ± 0.164 0.630 ± 0.120 0.724 ± 0.020 0.339 ± 0.062
MOLLEO (GPT-4) 2.482 ± 0.057 0.727 ± 0.038 0.745 ± 0.057 0.322 ± 0.104

Task 2: maximize QED (↑),
minimize SA (↓), maximize GSKB3 (↑)

Summation

Graph-GA 2.186 ± 0.069 0.719 ± 0.055 0.778 ± 0.122 0.379 ± 0.101
MOLLEO (MOLSTM) 2.349 ± 0.132 0.303 ± 0.024 0.820 ± 0.010 0.440 ± 0.037

MOLLEO (BIOT5) 2.306 ± 0.120 0.693 ± 0.093 0.803 ± 0.013 0.384 ± 0.045
MOLLEO (GPT-4) 2.543 ± 0.014 0.832 ± 0.024 0.715 ± 0.052 0.391 ± 0.021

Pareto optimality

Graph-GA 2.339 ± 0.139 0.640 ± 0.034 0.816 ± 0.028 0.381 ± 0.071
MOLLEO (MOLSTM) 2.340 ± 0.254 0.202 ± 0.054 0.770 ± 0.017 0.188 ± 0.010

MOLLEO (BIOT5) 2.299 ± 0.203 0.645 ± 0.127 0.759 ± 0.022 0.371 ± 0.047
MOLLEO (GPT-4) 2.631 ± 0.023 0.820 ± 0.024 0.646 ± 0.017 0.191 ± 0.026

Task 3: maximize QED (↑), JNK3 (↑),
minimize SA (↓), GSKB3 (↓), DRD2 (↓)

Summation

Graph GA 3.856 ± 0.075 0.162 ± 0.048 0.821 ± 0.024 0.226 ± 0.057
MOLLEO (MOLSTM) 4.040 ± 0.097 0.474 ± 0.193 0.783 ± 0.027 0.413 ± 0.064

MOLLEO (BIOT5) 3.904 ± 0.092 0.266 ± 0.201 0.828 ± 0.005 0.243 ± 0.081
MOLLEO (GPT-4) 4.017 ± 0.048 0.606 ± 0.086 0.726 ± 0.064 0.289 ± 0.050

Pareto optimality

Graph GA 4.051 ± 0.155 0.606 ± 0.052 0.688 ± 0.047 0.294 ± 0.074
MOLLEO (MOLSTM) 3.989 ± 0.145 0.381 ± 0.204 0.792 ± 0.030 0.258 ± 0.019

MOLLEO (BIOT5) 3.946 ± 0.115 0.367 ± 0.177 0.784 ± 0.020 0.367 ± 0.177
MOLLEO (GPT-4) 4.212 ± 0.034 0.696 ± 0.029 0.641 ± 0.037 0.266 ± 0.062

D.6 CAPTION ANALYSIS FOR OPEN-SOURCE LLMS

To understand how well objective tasks are represented in the training data of the underlying open-
source LLMs used in this study, we examine the frequency of keywords related to those tasks in
Table A14. Based on our findings, the models have seen a small number of data points related to
molecules on objective tasks such as EGFR and Jun N-terminal kinase (although the latter uses a
different spelling than we indicated with our prompt). To our knowedlge, the LLMs do not contain
information explicitly on tasks such as DRD3 and Adenosine receptor A2a, but related concepts do
exist in the training data. Despite this, MOLLEO (BIOT5) achieves the best performance on these
docking experiments (see Figure 3). These results highlight the strong generalization capabilities of
LLMs.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.7 DIVERSITY ANALYSIS IN MULTI-OBJECTIVE OPTIMIZATION

We show the structural diversity and objective diversity for multi-objective optimization in Table A15.
Structural diversity reflects the chemical diversity of the Pareto set and is computed by taking the
average pairwise Tanimoto distance between Morgan fingerprints of molecules in the set. Objective
diversity illustrates the objective value coverage of the Pareto frontier and is computed by taking the
pairwise Euclidean distance between objective values of molecules in the Pareto set.

0.0 0.2 0.4 0.6 0.8 1.0

GSK3B

0.0

0.1

0.2

0.3

0.4

SA

GSK3B vs SA
MolLEO(GPT-4)
MolLEO(BIOT5)
MolLEO(MOLSTM)
Graph-GA
Utopian Point

(a) GSK3β vs. SAscore in task 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

QED

0.0

0.1

0.2

0.3

0.4

SA

QED vs SA
MolLEO(GPT-4)
MolLEO(BIOT5)
MolLEO(MOLSTM)
Graph-GA
Utopian Point

(b) QED vs. SAscore in task 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

QED

0.0

0.2

0.4

0.6

0.8

1.0

GS
K3

B

QED vs GSK3B

MolLEO(GPT-4)
MolLEO(BIOT5)
MolLEO(MOLSTM)
Graph-GA
Utopian Point

(c) QED vs. GSK3β in task 2

0.0 0.2 0.4 0.6 0.8 1.0

JNK3

0.00

0.05

0.10

0.15

0.20

0.25

SA

JNK3 vs SA
MolLEO(BIOT5)
MolLEO(MOLSTM)
Graph-GA
MolLEO(GPT-4)
Utopian Point

(d) JNK3 vs. SAscore in task 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

QED

0.00

0.05

0.10

0.15

0.20

0.25

SA

QED vs SA
MolLEO(BIOT5)
MolLEO(MOLSTM)
Graph-GA
MolLEO(GPT-4)
Utopian Point

(e) QED vs. SAscore in task 1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

QED

0.0

0.2

0.4

0.6

0.8

1.0

JN
K3

QED vs JNK3

MolLEO(BIOT5)
MolLEO(MOLSTM)
Graph-GA
MolLEO(GPT-4)
Utopian Point

(f) QED vs. JNK3 in task 1

Figure A3: 2D plots for multi-objective optimization in task 1 and task 2

D.8 CASE STUDY: SAMPLE MOLECULES FROM FINAL POOL

Below, we show the top ten molecules across all runs from the MOLLEO and Graph-GA for two
tasks: deco_hop and EGFR docking.

D.8.1 TASK 1: deco_hop

The goal of the deco_hop task is to generate molecules that contain specific substructures while not
containing others; these substructures are shown in Figure A4. The final deco_hop score is calculated
as the mean of substructure presence/absence (binary score) and Tanimoto distance to the target
molecule. We showcase our best-generated molecules from the deco_hop task in Figure A5.

N

N

S
S C
O

O
substructure(s) to avoid substructure(s) to include target molecule

similarity

N

N

c;h1
Nc;h1O

c;h0
c;h1

O N

N

HN

N

S
S
O

O

Figure A4: Substructures to be included or avoided in the deco_hop task.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0.596 0.581

0.574

0.574

0.569

0.570

0.578

0.576

0.586

0.583

OBr

O

HN

N
N

N

F

O

N

N

N
HN

N

H
N

N+
O

O-

O

NO

O

N

N N

O
O

N
H

N
N

N

Cl

N

N
N

O

H
N

O

O

O

O
O

HN

N
S
OO

S

F

O

N N

OH
N

SO

NH

N
O NH

O

N N
N

O

O

H2NCl

O

N F

HN
N

N
S

O-
N

N N N

N

Cl

Cl

S

(a) Graph-GA

0.661

0.652

0.647

0.6460.651

0.652

N+
O

O-

N

NHN

N

N

N

N+
O

O-

N N

H
N N N

NN

ON+
O

NN

N
H

NN
N N

O

N+
O

O-

NN

N
H

NN
N N

O

N+
O

O-

N N

H
N

N

N

N+
OO-

O

NN

N
H

NN
N N

N+
O

O-

N

0.644

O

O-

NN

H
NNN

N N

0.651

O

N N

H
N N N

NN

0.651
O
N+O-

O-

N N

H
N N N

NN

0.652

N+
O

O-

NN

H
NNN

N N

(b) MOLLEO (MOLSTM)

O HN O F

N

NO

0.983 0.981

0.961

0.961

0.977 0.974
0.981

O HN

F

F

N

NO

O HN

O

F

N

NOCl

O HN

F

O F

N

NO

O HN

O F

F

N

NO

O HN

F

F

N

NOF

O HN

F

F

N

NOO

0.959
O HN

O F

F

N

NOF

0.964
O HN O F

N

NOF

0.981

O HN

O

F

N

NO

(c) MOLLEO (BIOT5)

O N

N

HN

N

N
O

0.991 0.982

0.981

0.979

0.981

0.991

O N

N

HN

N

N
O

O N

N

HN

O

OO

O N

N

HN

N

N
FO

O N

N

HN

O

FO

O

HN

N

NO

O O
O N

N

HN N

F F
FO

N

0.978

O N

N

HN

NH2

OO
0.981

O

HN

N

NO

O O0.982

O N

N

HN

N

N
FO

0.981

(d) MOLLEO (GPT-4)

Figure A5: Molecules with best deco_hop scores generated by Graph-GA and each MOLLEO model.
The deco_hop score of each molecule is written beside it. Higher deco_hop scores are better.

D.8.2 TASK 2: EGFR docking

The goal of the EGFR docking task is to generate molecules that have a low binding affinity to
epidermal growth factor receptors in humans (EGFR, PBD ID: 2RGP. Molecules are docked against
EGFR using AutoDock Vina (Eberhardt et al., 2021), and the output is the docking score of the
binding process. We showcase our best-generated molecules from this task in Figure A6.

E PROMPTS

For each model, we show the prompts used for each task. When creating the prompts, we followed
the format of examples in the original source code as closely as possible.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

-14.4 -13.6
-13.5

F

F

HN
N

N
N
O

F
-13.5

-13.5

F

F

HN
N

N
N

F

F

O
N

N
N

N
HN

O O

-13.5F

F

NH

N

N

N

FF

N
N

F

H
N

N

-13.9

N

N
H
NN

H
N -13.7

F

O
N

N

F
HN

N

-13.5

F

ONNO

F

-13.6

F

N
N

F
N
H

N

(a) Graph-GA

-15.9
-15.2

-14.9

-14.9 -14.8

-14.8
-14.8

-14.6

-15.1

-15.0

F

O

F
O O

F

O

F

F

O

F

O

F

F

O

F

O

F

O
F

F
O

F

O

O
F

F

O

F

O

(b) MOLLEO (MOLSTM)

O-

O-
-15.3

-15.4

-15.4

-15.2

-15.1

-15.2

-15.0

-15.0

-15.0

O-

O-

-15.4

(c) MOLLEO (BIOT5)

-14.7

-14.5

-14.5 -14.4

-14.4
-14.2

-14.1
-14.2

H2N

S
O

O

H
N

O

H
N

N

N

HN

F

F
F

F

FF
F

F

F
F

O

H
N

N

N

HN
F

OH

FF

F

FFF
F

FH
NS

O

O
HO

F

O

H
N

N

N

HN
F

OH

FF

F

FFF
F

FH
NS

O

O
HO

F
F F

F

F
O

O
S

H
N

F

F
FFF

F

FF

HO
F

NH

N

N

H
N

O

O

H
N

N

N

NH
F

HO

F F

F

F F F
F

F H
N S

O

O
Cl

F

O

H
N

N

N

HN
F

OH

FF

F

FFF
F

FH
NS

O

O
F

F F F
F

NH2
F

HN

N

N

N
H

O

N
H

S
O

O

HO
F

Cl

F

FF
F

F F F
F

O

H
N

N

N

NH

F

F
F

F

F F
F

F H
N S

O

O
F

F
F

-14.4

NH2
F

HN

N

N

N
H

O

N
H

S
O

O

Cl

F

F

FF
F

F F F
F

O

H
N

N

N

HN
F

OH

FF

F

FFF
F

FH
NS

O

O
Cl

F
F

-14.5

(d) MOLLEO (GPT-4)

Figure A6: Molecules with best EGFR docking scores generated by Graph-GA and each MOLLEO
model. The docking score of each molecule is written beside it. Lower docking scores are better.

MOLLEO (MOLSTM) prompts

QED
This molecule is like a drug.

JNK3
This molecule inhibits JNK3.

GSK3β
This molecule inhibits GSK3B.

DRD2
This molecule inhibits DRD2.

mestranol_similarity
This molecule looks like Mestranol.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

albuterol_similarity
This molecule looks like Albuterol.

thiothixene_rediscovery
This molecule looks like Thiothixene.

celecoxib_rediscovery
This molecule looks like Celecoxib.

perindopril_mpo
This molecule looks like Perindopril and has 2 aromatic rings.

ranolazine_mpo
This molecule looks like Ranolazine, is highly permeable, is hydrophobic, and has 1 F
atom.

sitagliptin_mpo
This molecule has the formula C16H15F6N5O, looks like Sitagliptin, is highly permeable,
and is hydrophobic.

Isomers_C9H10N2O2PF2Cl
This molecule has the atoms C9H10N2O2PF2Cl.

deco_hop
This molecule does not contain the substructure [#7]-c1ccc2ncsc2c1, which is a
6-aminobenzothiazole, does not contain the substructure CS([#6])(=O)=O, which is a
dimethyl sulfone, contains the scaffold, which is a 4-amino-7-hydroxyquinazoline, and
is similar to CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C.

scaffold_hop
This molecule does not contain the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0]
[c;h1]c12, contains the substructure [#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]-
[#7]-c1ccc2ncsc2c1, and is similar to CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C.

maxjnk3_maxqed_minsa
This molecule is synthesizable, looks like a drug, and inhibits JNK3.

maxgsk3b_maxqed_minsa
This molecule is synthesizable, looks like a drug, and inhibits GSK3B.

maxjnk3_maxqed_minsa_mindrd2_mingsk3b
This molecule is synthesizable, does not inhibit GSKB3, does not inhibit DRD2, looks
like a drug, and inhibits JNK3.

3pbl_docking
This molecule inhibits DRD3.

2rgp_docking
This molecule inhibits EGFR.

3eml_docking
This molecule binds to adenosine receptor A2a.

MOLLEO (BIOT5) prompts

Template:

Definition: You are given a molecule SELFIES. Your job is to generate a
SELFIES molecule that {OBJECTIVE}. Now complete the following example - Input:
<bom>{selfies_input}<eom> Output:

QED
OBJECTIVE: looks more like a drug

JNK3
OBJECTIVE: inhibits JNK3 more

GSK3β
OBJECTIVE: inhibits GSK3B more

DRD2
OBJECTIVE: inhibits DRD2 more

mestranol_similarity
OBJECTIVE: looks more like Mestranol

albuterol_similarity

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

OBJECTIVE: looks more like Albuterol.

thiothixene_rediscovery
OBJECTIVE: looks more like Thiothixene

celecoxib_rediscovery
OBJECTIVE: looks more like Celecoxib.

perindopril_mpo
OBJECTIVE: looks more like Perindopril and has 2 aromatic rings

sitagliptin_mpo
OBJECTIVE: has the formula C16H15F6N5O, looks more like Sitagliptin, is highly
permeable, and is hydrophobic

ranolazine_mpo
OBJECTIVE: looks more like Ranolazine, is highly permeable, is hydrophobic, and has 1 F
atom

Isomers_C9H10N2O2PF2Cl
OBJECTIVE: has the formula C9H10N2O2PF2Cl

deco_hop
OBJECTIVE: does not contain the substructure [#7]-c1ccc2ncsc2c1, does
not contain the substructure CS([#6])(=O)=O, contains the scaffold
[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12, and is similar to
[C][C][C][O][C][=C][C][=N][C][=N][C][Branch1][#C][N][C][=C][C][=C][N][=C][S][C][Ring1]
[Branch1][=C] [Ring1][=Branch2][=C][Ring1][S][C][=C][Ring2][Ring1][Ring2][S][=Branch1]
[C][=O][=Branch1][C][=O][C][Branch1][C][C][Branch1][C][C][C]

scaffold_hop
OBJECTIVE: does not contain the scaffold [#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12,
contains the substructure [#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]-
[#7]-c1ccc2ncsc2c1, and is similar to the SELFIES [C][C][C][O][C][=C][C][=N][C][=N][C]
[Branch1][#C][N][C][=C][C][=C][N][=C][S] [C][Ring1][Branch1][=C][Ring1][=Branch2][=C]
[Ring1][S][C][=C][Ring2][Ring1][Ring2][S] [=Branch1][C][=O][=Branch1]
[C][=O][C][Branch1][C][C][Branch1] [C][C][C]

maxjnk3_maxqed_minsa
OBJECTIVE: is a greater inhibitor of JNK3, is more synthesizable and is more like a
drug.

maxgsk3b_maxqed_minsa
OBJECTIVE: inhibits GSK3B more, is more synthesizable and is more like a drug.

maxjnk3_maxqed_minsa_mindrd2_mingsk3b
OBJECTIVE: is a greater inhibitor of JNK3, is more like a drug, inhibits GSK3B less,
inhibits DRD2 less and is more synthesizable.

3pbl_docking
OBJECTIVE: inhibits DRD3 more

2rgp_docking
OBJECTIVE: inhibits EGFR more

3eml_docking
OBJECTIVE: binds better to adenosine receptor A2a

MOLLEO (GPT-4) prompts

Template:

I have two molecules and their {TASK}. {OBJECTIVE_DEFINITION}

(Smiles of Parent A, objective score of Parent A) (Smiles of Parent B, objective score
of Parent B)

Please propose a new molecule that {OBJECTIVE}. You can either make crossover and
mutations based on the given molecules or just propose a new molecule based on your
knowledge.
Your output should follow the format: {«<Explanation»>: $EXPLANATION, «<Molecule»>:
box{$Molecule}}. Here are the requirements:
1. $EXPLANATION should be your analysis.
2. The $Molecule should be the smiles of your propsosed molecule.
3. The molecule should be valid.

QED:

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

OBJECTIVE: has a higher QED score
TASK: QED scores
OBJECTIVE_DEFINITION: The QED score measures the drug-likeness of the molecule.

JNK3
OBJECTIVE: has a higher JNK3 score
TASK: JNK3 scores
OBJECTIVE_DEFINITION: The JNK3 score measures a molecular’s biological activity against
JNK3.

GSK3β
OBJECTIVE: has a higher GSK3β score
TASK: GSK3β scores
OBJECTIVE_DEFINITION: The GSK3β score measures a molecular’s biological activity
against GSK3β.

DRD2
OBJECTIVE: has a higher DRD2 score
TASK: DRD2 scores
OBJECTIVE_DEFINITION: The DRD2 score measures a molecule’s biological activity against
a biological target named the dopamine type 2 receptor (DRD2).

mestranol_similarity
OBJECTIVE: has a higher mestranol similarity score
TASK: mestranol similarity scores
OBJECTIVE_DEFINITION: The mestranol similarity score measures a molecule’s Tanimoto
similarity with Mestranol.

thiothixene_rediscovery
OBJECTIVE: has a higher thiothixene rediscovery score
TASK: thiothixene rediscovery scores
OBJECTIVE_DEFINITION: The thiothixene rediscovery score measures a molecule’s Tanimoto
similarity with thiothixene’s SMILES to check whether it could be rediscovered.

perindopril_mpo
OBJECTIVE: has a higher perindopril multi-objective score
TASK: perindopril multi-objective scores
OBJECTIVE_DEFINITION: The perindopril multi-objective score measures the geometric
means of several scores, including the molecule’s Tanimoto similarity to perindopril
and the number of aromatic rings.

sitagliptin_mpo
OBJECTIVE: has a higher sitagliptin multi-objective score
TASK: sitagliptin multi-objective scores
OBJECTIVE_DEFINITION: The sitagliptin multi-objective score measures the geometric
means of several scores, including the molecule’s Tanimoto similarity to sitagliptin,
TPSA score, LogP score and isomer score with C16H15F6N5O.

ranolazine_mpo
OBJECTIVE: has a higher ranolazine multi-objective score
TASK: ranolazine multi-objective scores
OBJECTIVE_DEFINITION: The ranolazine multi-objective score measures the geometric means
of several scores, including the molecule’s Tanimoto similarity to ranolazine, TPSA
score LogP score and number of fluorine atoms.

Isomers_C9H10N2O2PF2Cl:
OBJECTIVE: has a higher isomer score
TASK: isomer scores
OBJECTIVE_DEFINITION: The isomer score measures a molecule’s similarity in terms of
atom counter to C9H10N2O2PF2Cl.

deco_hop
OBJECTIVE: has a higher deco hop score
TASK: deco hop scores
OBJECTIVE_DEFINITION: The deco hop score is the arithmetic means of several scores,
including binary score about whether contain certain SMARTS structures (maximize
the similarity to the SMILE ’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’,
while excluding specific SMARTS patterns ’[#7]-c1ccc2ncsc2c1’ and
’CS([#6])(=O)=O’) and (2) the molecule’s Tanimoto similarity to PHCO
’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S(=O)(=O)C(C)(C)C’.

scaffold_hop
OBJECTIVE: has a higher scaffold hop score
TASK: scaffold hop scores
OBJECTIVE_DEFINITION: The scaffold hop score is the arithmetic means
of several scores, including (1) binary score about whether contains
certain SMARTS structures (maximize the similarity to the SMILE
’[#6]-[#6]-[#6]-[#8]-[#6]∼[#6]∼[#6]∼[#6]∼[#6]-[#7]-c1ccc2ncsc2c1’, while excluding
specific SMARTS patterns ’[#7]-c1n[c;h1]nc2[c;h1]c(-[#8])[c;h0][c;h1]c12’) and

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(2) the molecule’s Tanimoto similarity to PHCO ’CCCOc1cc2ncnc(Nc3ccc4ncsc4c3)c2cc1S
(=O)(=O)C(C)(C)C’.

maxjnk3_maxqed_minsa
OBJECTIVE: has a higher QED score, a higher JNK3 score, and a lower SA score
TASK: QED, SA (Synthetic Accessibility), and JNK3 scores.
OBJECTIVE_DEFINITION: None

maxgsk3b_maxqed_minsa
OBJECTIVE: has a higher QED score, a higher GSK3β score, and a lower SA score
TASK: QED, SA (Synthetic Accessibility), and GSK3β scores
OBJECTIVE_DEFINITION: None

maxjnk3_maxqed_minsa_mindrd2_mingsk3b
OBJECTIVE: has a higher QED score, a higher JNK3 score, a lower GSK3β score, a lower
DRD2 score and a lower SA score
TASK: QED, SA (Synthetic Accessibility), JNK3, GSK3β and DRD2 scores
OBJECTIVE_DEFINITION: None

2rgp_docking
OBJECTIVE: binds better to EGFR
TASK: docking scores to EGFR
OBJECTIVE_DEFINITION: The docking score measures how well a molecule binds to EGFR. A
lower docking score generally indicates a stronger or more favorable binding affinity.

3pbl_docking
OBJECTIVE: binds better to DRD3
TASK: docking scores to DRD3
OBJECTIVE_DEFINITION: The docking score measures how well a molecule binds to DRD3. A
lower docking score generally indicates a stronger or more favorable binding affinity.

3eml_docking
OBJECTIVE: binds better to adenosine receptor A2a
TASK: docking scores to adenosine receptor A2a
OBJECTIVE_DEFINITION: The docking score measures how well a molecule binds to adenosine
receptor A2a. A lower docking score generally indicates a stronger or more favorable
binding affinity.

34

	Introduction
	Related Work
	Molecular Optimization
	Language Models in Chemistry

	The MolLEO Framework
	Problem Statement
	Evolutionary Algorithms

	Experiments
	Experimental Setup
	Empirical Study

	Conclusion
	Reproducibility Statement
	Extended descriptions
	Extended related work
	Future work
	Computational Resources
	Limitations
	Broader Impact

	Hyperparameters and additional experimental details
	Ablation studies
	Performance of single-step molecule editing
	Incorporating LLM-based genetic operators into Graph-GA
	Optimization trends over single-objective tasks.
	MoleculeSTM hyperparameter selection
	GPT-4 ablations
	GPT-4 in an active learning framework

	Impact of prompt selection

	Extended experiment results
	Additional baseline models
	Incoporating LLMs into Augmented Memory
	Incoporating LLMs into Genetic GFN and JANUS
	Computational cost of MolLEO
	Similarity analysis for molecules before and after LLM editing
	Caption analysis for open-source LLMs
	Diversity analysis in multi-objective optimization
	Case study: Sample molecules from final pool
	Task 1: deco_hop
	Task 2: EGFR docking

	Prompts

