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ABSTRACT

Large language models (LLMs) are increasingly adopted for a variety of tasks,
including multi-hop question answering, knowledge probing, and symbolic com-
monsense reasoning. While LLMs have advanced the state-of-the-art in these ar-
eas, their ability to explicitly solve temporal logic reasoning problems—a com-
plex cognitive process involving the understanding, representation, and manip-
ulation of temporal information such as events, their durations, and relation-
ships—remains largely unexplored. To enhance understanding of LLM perfor-
mance in this common task widely explored in the traditional symbolic AI field,
we have developed a new set of synthetic benchmark for rule-based temporal logic
reasoning named TBEN. TBEN is developed within the context of DatalogMTL,
a powerful knowledge representation language designed for reasoning about the
properties of systems that evolve over time. Notably, this benchmark defined six
levels of rule complexity and provides flexible configurations, allowing for the
customization of temporal rules and task complexity to suit various needs.
We evaluated the close-sourced GPT-4o and the open-sourced Llama-31 using
three common prompting settings—zero-shot, few-shot, and zero-shot-CoT—on
our synthetic benchmark. Our key findings are as follows: (i) Without generating
the reasoning process (chain-of-thought), even advanced LLMs like GPT-4o ex-
hibited nearly random performance on these rule-based temporal logic reasoning
tasks. However, with chain-of-thought prompting, LLMs demonstrated prelim-
inary temporal logical reasoning abilities; (ii) Both GPT-4o and Llama-3 were
unable to solve temporal logical reasoning problems involving recursion, indicat-
ing a lack of advanced complex reasoning capabilities in understanding symbolic
representations involving time; (iii) There is significant room for improvement
in leveraging large language models to address problems widely explored in the
traditional logic-based AI domain. Prompts and datasets are available in the ap-
pendix, and a datasheet for TBEN is also provided.

1 INTRODUCTION

Time is a crucial and pervasive concept in our daily life and the real world that requires management
in various ways: events happen at specific moments, certain facts are valid over a time period, and
temporal relationships exist between facts and events Ozsoyoglu & Snodgrass (1995). Time must
be considered when representing information within computer-based systems, querying information
about the temporal features of the real world, and reasoning about time-oriented data. In traditional
logic-based AI (also known as symbolic AI), researchers have developed a variety of rich knowledge
representation rule languages, such as Linear Temporal Logic(LTL) Huth & Ryan (2004), Signal
Temporal Logic (STL) Donzé (2013) and DatalogMTL Brandt et al. (2018) to represent and reason
these timestamped events. he syntax, semantics, and complexity of these rule languages, along with
their corresponding solvers, have been well developed over the past several decades.

In recent years, there is evidence that current large language models (LLMs) can perform fundamen-
tal data analysis tasks Reid et al. (2024); Bai et al. (2023) such as visualization Maddigan & Susnjak

1We experimented with Meta-Llama-3-8B-Instruct.
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Temporal rules:(⇧ex):

Immune(x) �(10,183]Infected(x) ^ �[0,10]NoSympt(x)

Data (Dex):

Infected(Ben)@199 NoSympt(Ben)@(181, 242]

Temporal fact to be checked:

Immune(Ben)@(251, 252]

prompt

Reasoning Process (MeTeoR)
1.

�
Infected(Ben)@199, �(10,183]Infected(x)

�

#
(209, 382]

2.
�

NoSympt(Ben)@(181, 242], �[0,10]NoSympt(x)
�

#
(191, 242]

3.
�
191, 242] \ (209, 382]

�
! Immnue(Ben)@[209, 242]

#
4. Immnue(Ben)@(251, 252] is not entailed.

Chain-of-thought
To determine if Immune(Ben)@(251, 252] is entailed, we need to
analyze the given temporal data and the rule using the semantics
of DatalogMTL operators.
Data Analysis
1. Infected(Ben)@199: This means Ben was infected at time 199.
2. NoSympt(Ben)@(181, 242]: This means Ben showed no symp-
toms continuously from time 181 to 242.

Applying the Rule to the Data
We need to check if Immune(Ben)@(251, 252] is entailed, mean-
ing that the rule conditions must hold for some time t within the
interval (251, 252].

Condition 1: diamondminus(10, 183]Infected(Ben)
. . . . . .
Hence, diamondminus(10, 183]Infected(Ben) is satisfied.

Condition 2: boxminus[0, 10]NoSympt(Ben)
Given NoSympt(Ben)@(181, 242], Ben was symptom-free until
time 242. For t=251 and t=252, the intervals [241, 251] and
[242, 252] include times where NoSympt(Ben) must hold, but
NoSympt(Ben) is only assured up to 242. So, Immune(Ben)@(251,
252] is not entailed by the data and the rule.

Figure 2: Overview of two approaches (symbolic reasoner based and LLMs based) for solving the temporal
reasoning. The former can utilize an existing symbolic reasoner to derive temporal facts, which are then used to
judge whether the given facts are entailed. In contrast, the latter leverages the power of large language models
to complete the reasoning process and provide the answer. In particular, we need to provide some background
knowledge about the semantics of used notations, which is included in the prompt.
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Figure 1: Overview of two approaches (symbolic reasoner based and LLMs based) for solving the
temporal reasoning. The former can use an existing symbolic reasoner (e.g., MeTeoR Wang et al.
(2022)) to derive temporal facts, which are then used to judge whether the given facts are entailed. In
contrast, the latter leverages the power of large language models to complete the reasoning process
and provide the answer. In particular, we need to provide some background knowledge about the
semantics of used notations, which is included in the prompt.

(2023); Cheng et al. (2023), commonsense reasoning Wang & Zhao (2023a); Zhao et al. (2024)
and mathematical reasoning Ahn et al. (2024). However, little effort has been made to evaluate the
more challenging aspects of rule-based temporal logic reasoning, a long-standing research problem
in traditional logical artificial intelligence. While some studies have benchmarked or evaluated the
temporal reasoning abilities of LLMs Wang & Zhao (2023b); Xiong et al. (2024), they primarily fo-
cus on reasoning over temporal data expressed in natural language, without addressing the temporal
logic, which is typically represented as logical rules with well-established syntax and semantics.

In this paper, we evaluate the rule-based temporal logic reasoning abilities of large language models
(LLMs) from a logical perspective, considering the semantics of temporal logic. Our aim is to bridge
the gap between traditional logic-based AI and LLMs. Specifically, we focus on the classic tempo-
ral reasoning problem known as fact entailment Cheng (1996); Brandt et al. (2018); Wałęga et al.
(2023b). In our evaluation task, we consider temporal data of the symbolic form P (a1, . . . , an)@ϱ,
where P denotes a predicate (relation), ai is an entity, n denotes the arity2 and ϱ represents a punc-
tual time point or time interval. Given a set of temporal rules and a target temporal fact, the task is
to determine whether the fact is entailed by the temporal data and rules. To provide better intuition,
we use Example 1 togeter with Figure 2 to describe the problem.

Example 1. There is growing evidence that individuals develop COVID-19 immunity if they were
infected within the last 6 months (discounting the last ten days when they had no symptom) Feikin
et al. (2022). The condition can be captured by a DatalogMTL program Πex with the following rule:

Immune(x)← x(10,183]Infected(x) ∧ ⊟[0,10]NoSympt(x)

2If the arity is 0, then P is treated as a statement that is either true or false. This differs from temporal
knowledge graphs, which consist solely of quadruples (arity=2).
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The above rule checks whether an individual infected at some point in the last six months excluding
the last 10 days (operator x(10,183]) remained continuously without symptoms in the last 10 days
(using the ‘box past’ operator ⊟[0,10]).
Then, we assume a dataset contains some historical data about a person called Ben in the form of
facts stamped with validity intervals, where the first day of the year is given by the interval (0, 1], the
second day by (1, 2], and so on. Ben got vaccinated at July 19 (represented as 199). Moreover, Ben
had no symptoms since July 1 (i.e., 181) until August 30 (i.e., 242). This is represented by a dataset
Dex with the following facts:

Infected(Ben)@199, NoSympt(Ben)@(181, 242]

If we want to know whether Ben is immune between September 8 and September 9, represented
as a temporal fact Ben@(251, 252], we can formulate this as a fact entailment problem: Is
Ben@(251, 252] entailed by Dex and Πex?

Traditionally, a symbolic reasoner is used to check entailment by applying temporal rules to tempo-
ral data, deriving new facts, and verifying if the given fact is among the derived ones. As shown in
Figure 1, this process involves several steps before reaching a conclusion. We are exploring whether
large language models (LLMs) can solve such problems by providing correct answers along with
the reasoning process and human-readable textual explanations. On one hand, evaluating the tempo-
ral reasoning capabilities of LLMs could complement evaluations of other reasoning skills, such as
mathematical and commonsense reasoning. On the other hand, using LLMs as a tool or a comple-
mentary tool for temporal reasoning alongside symbolic reasoners could significantly contribute to
the development of traditional logic-based AI.

Our contributions are summarized as follows:

• We propose a new benchmark, TBEN, to test the rule-based temporal logic reasoning abili-
ties of large language models through synthetic tasks. Our benchmark generator allows for
the creation of benchmarks with varying data sizes and rule structures of differing com-
plexity, enabled by flexible configurations.

• We conduct preliminary experiments using two common large language models on our con-
structed benchmarks. Our results demonstrate that, without advanced prompting techniques
such as Chain-of-Thought (CoT), even GPT-4o performs almost at random. However, with
CoT, GPT-4o shows a significant performance boost, while open-source models like Llama-
3-8b continue to exhibit comparatively lower effectiveness in solving rule-based temporal
logical reasoning problems.

• We further conducted extensive analysis, including a detailed ablation study, natural
language-based3 temporal logic reasoning experiments, error analysis, and human evalua-
tion. Our analysis and key findings can serve as a foundation for LLM rule-based temporal
logic reasoning benchmarking, and motivate further work to enhance these capabilities.

We will open source our developed TBEN to spur future research in improving the temporal logic
reasoning ability of large language models.

2 DATALOGMTL

DatalogMTL Brandt et al. (2018); Wałęga et al. (2019) is a powerful knowledge representation lan-
guage, which extends Datalog Abiteboul et al. (1995), a widely used declarative logic programming
language, with operators from metric temporal logic (MTL) Koymans (1990). Different Datalog
designed to handle static facts and rules due to lack of built-in temporal constructs, DatalogMTL
equipped with MTL operators is enabled to reasoning about properties of systems that evolve over
time. These operators build upon the standard linear temporal logic (LTL) Huth & Ryan (2004) op-
erators, such asx standing for “sometime in the past”, ⊟ for “always in the past”, and S for “since”,

3Manually converting each rule into natural language requires substantial human effort. Therefore, we pro-
pose an alternative approach: using customized templates to verbalize the temporal rules. The verbalized ex-
amples could be found in the appendix.
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as well as their future counterparts| for “sometime in the future”, ⊞ for “always in the future”, and
U for “until”. In MTL, however, these LTL operators are annotated with intervals; for instance, the
expressionx[1,2]LiveIn(x, y) is true at time t if entity x lived in location y sometime between times
t − 1 and t − 2. Similarly, ⊟[1,2]LiveIn(x, y) holds at time t if x continuously lived in y through-
out the aforementioned time interval. In this section, we recapitulate the syntax, semantics, and key
temporal tereasoning problems in DatalogMTL.

Syntax We consider a signature consisting of pairwise disjoint countable sets of constants, vari-
ables, and predicates with non-negative integer arities. A term is either a constant or a variable. A
relational atom is an expression of the form P (s), with P a predicate and s a tuple of terms whose
length matches the arity of P . In this paper, we restrict ourselves to a fragment in which metric
atoms are generated by the following grammar, where P (s) is a relational atom and ϱ an interval
including only non-negative numbers:

M ::= P (s) | xϱM | |ϱM | ⊟ϱM | ⊞ϱM
A rule in this fragment is an expression of the form

P (s)←M1 ∧ · · · ∧Mn, for n ≥ 1, (1)

where the body atoms M1, . . . ,Mn are metric atoms and the head atom P (s) is relational. A pro-
gram is a finite set of rules.

Semantics An interpretation I is a function assigning truth values to ground relational atoms
P (c) and time points t ∈ Z. It determines if P (c) is satisfied at t, denoted as I, t |= P (c), or not,
denoted as I, t ̸|= P (c). This notion of truth assignment extends to other ground metric atoms in the
considered fragment as follows:

I, t |= xϱM iff I, t′ |= M for some t′ with t− t′ ∈ ϱ,

I, t |= |ϱM iff I, t′ |= M for some t′ with t′ − t ∈ ϱ,

I, t |= ⊟ϱM iff I, t′ |= M for all t′ with t− t′ ∈ ϱ,

I, t |= ⊞ϱM iff I, t′ |= M for all t′ with t′ − t ∈ ϱ.

For example, an interpretation making atom LiveIn(Ann, Paris) true everywhere within [10, 30]
and false elsewhere makes ⊟[1,2]LiveIn(Ann, Paris) true at the time point 31, but false at 32. An
interpretation can be alternatively seen as the (possibly infinite) set of facts that it satisfies, which
yields a natural meaning to containment and minimality of interpretations.

2.1 MAJOR TEMPORAL REASONING PROBLEMS

According to Brandt et al. (2018); Wałęga et al. (2019), temporal logic reasoning involves two major
problems: consistency checking and fact entailment. Consistency checking is the task of determining
whether a given program and dataset admit a common model Emerson (1990); Schnoebelen (2002).
Fact entailment involves checking whether a program and dataset together entail a specific relational
fact. Brandt et al. (2018) note that in DatalogMTL, consistency checking and fact entailment are
complementary problems. Consequently, this paper focuses solely on the fact entailment problem to
evaluate the temporal reasoning capabilities of large language models.

3 TBEN: A RULE-BASED TEMPORAL LOGIC REASONING BENCHMARK
WITH DATALOGMTL

DatalogMTL is a powerful knowledge representation language that can characterize complex tem-
poral conditions by defining various rules using combinations of different atoms and temporal oper-
ators (x,|,⊟,⊞) whose semantics has been described in Section 2. To some extent, the complexity
of a fact entailment problem is largely determined by the complexity of associated temporal rules.

Challenges Although DatalogMTL is a powerful knowledge representation language, editing such
rules requires considerable expertise and is very time-consuming. Currently, there are no suitable
benchmarks in terms of size and rule diversity available for research. In the era of large language
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models (LLMs), we are motivated to explore whether LLMs can assist in addressing temporal rea-
soning problems traditionally solved by symbolic reasoners. Therefore, developing data and rule
generators that enable the automatic construction of benchmarks with flexible configurations for
customized rule structures and task complexity is important and poses a substantial challenge.

R: A �[1,2]B
D: {B@[4, 5]}
Q: A@6 is entailed?

SingleAtom

R: A �[3]B ^ �[2, 3]C
D: {B@[1], C@[1, 3]}
Q: A@3 is entailed?

MultiAtoms

R: A �[1.2, 2.1]B ^ �[4.2, 5.1]B
D: {A@[1.1]}
Q: A@[2.4, 2.8]) is entailed?

Rational

R: A �[1, 2.4]B^�[1, 2]C
D: {B@[1], C@[2, 4]}
Q: A@2.3 is entailed?

MixedOperators
R: D �[2]B ^ �[1,2]C

A �[1.5, 2]D ^�[2]C
D: {B@[1], C@[2, 5]}
Q: A@[4.5, 5] is entailed ?

MultiRules

R: A �[1,2]A ^ �[1,10]C
D: {A@[1], C@[1, 100]}
Q: A@99 is entailed?

Recursive

Zero-shot Prompt Prefix

Given a dataset, temporal rules and a temporal fact, you need to apply the rules to the dataset and then judge
whether the given fact is entailed by the dataset and rules.

The rules are expressed as DatalogMTL, a language of temporal logic that extends Datalog with operators from
metric temporal logic (MTL). The semantics of four MTL operators are given as follows:

If �[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a.

If �[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a.

If �[a, b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b.

If �[a, b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b.

Now, we have a data, some DatalogMTL rules and a fact entailment question. You should only output true or false,
and please do not output other words.

Figure 2: Overview of the TLB Benchmark, featuring six levels of temporal reasoning problems with varying
complexity. We present an intuitive example representing each level, along with the corresponding rule, dataset, and
fact entailment problem. A zero-shot-prompt prefix is also provided (see Appendix for additional prompt prefixes
used in this paper). For better demonstration, we use the symbols �, , �, and �, which are replaced by < � >,
< + >, [�], and [+], respectively, in the actual prompts due to typing constraints.
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Figure 2: Overview of the TBEN Benchmark, featuring six levels of temporal reasoning problems
with varying complexity. We present an intuitive example representing each level, along with the
corresponding rule, dataset, and fact entailment problem. A zero-shot-prompt prefix is also provided
(see Appendix for additional prompt prefixes used in this paper). For better demonstration, we use
the symbols x, |, ⊟, and ⊞, which are replaced by < − >, < + >, [−], and [+], respectively, in
the actual prompts due to typing constraints.

3.1 LEVELING DATALOGMTL RULES

To address the aforementioned challenge and provide a more comprehensive evaluation of the tem-
poral reasoning abilities of large language models, we aim to create a new synthetic benchmark with
flexible configurations for customizing rule structures and task complexity. We classify DatalogMTL
rules into six classes (SingleAtom, . . . , Recursive) based on their structural representations, consid-
ering factors such as the number of body atoms, the number of temporal operators used, the number
of rules involved, and whether the rules are recursive. While we are unable to quantify the degree
of complexity of each level, we assume that higher levels correspond to greater complexity. This as-
sumption is based on the observation that more complex rule structures require additional temporal
reasoning steps when using a symbolic reasoner like MeTeoR Wang et al. (2022).

SingleAtom The most simplest form of a rule is A ← ⊘[ρ]B, where ⊘ could be one of the four
metric temporal operators ( ⊟, ⊞, x and |). In particular, we ensure that A and B are two different
atoms, so only one calculation operation. A SingleAtom example is given in Figure 2, where we
can derive A@[5, 7] based on the given dataset and the rule, entailing that A@6 is true. In particular,
we consider DatalogMTL over the integer timeline, a fragment of DatalogMTL Wałęga et al. (2020)
and use one type of MTL operator.

MultiAtoms In the SingleAtom, the body contains only one atom, so a single rule application is
sufficient to complete the derivation. In MultiAtoms, we increase the number of atoms in the rule
body, requiring not only the validation of each atom but also an intersection operation to obtain
the final valid interval. As the example shown in Figure 2, the rule contains two atoms. First, we
calculate the valid intervals for each atom. Based on the provided temporal facts, ⊟[3]B holds only
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at the punctual time point [4, 4]], and ⊟[2,3]A holds at the interval [4,5]. The intersection of these
intervals, [4, 4] and [4, 5], is [4, 4]. Thus, we derive that A is true at the time point 4, so A@4 is
entailed. As with SingleAtom, we consider DatalogMTL over the integer timeline Wałęga et al.
(2020) and use only one type of MTL operator.

Rational Both SingleAtom and MultiAtoms focus solely on the integer timeline, which repre-
sents a relatively limited time space and simplifies reasoning due to the integer semantics Wałęga
et al. (2020). In Rational, we build on top of MultiAtoms by expanding the timeline to include the
rational numbers, incorporating decimal time points. Intuitively, rational-based numerical operations
are more complex than their integer-based counterparts, and we aim to determine if large language
models exhibit similar behavior. We continue to use only one type of MTL operator at this level.e
type of MTL operator in the level.

MixedOperators Using only one operator limits the expressiveness of DatalogMTL, preventing
the definition of complex temporal conditions. Thus, a natural expansion is to allow the use of MTL
operators. The four types of MTL operators can be used to define temporal conditions associated
with both the past and the future. A MixedOperators example is shown in Figure 2, which involves
two MTL operators (x and ⊞). To complete the derivation, we first calculate the valid interval wherex[1,2.4]B with the past operator (x) holds, which is [2, 3.4]. Then, we calculate ⊞[1,2]C , whose valid
interval is [1, 2]. After performing the interval intersection, we obtain that A holds at the time interval
[2, 2]. Thus, the temporal A@2.3 is not entailed.

MultiRules In the previous four levels, fact entailment is associated with only one temporal rule.
However, in more practical scenarios, multiple temporal rules may be required to express complex
temporal conditions. In this level, we consider a multi-rule temporal reasoning case, where fact
entailment involves multiple temporal rules and rule applications must be executed across these
rules to complete the derivation. As the example in Figure 2, to derive the target atom A, we need
to know both D and C. However,the dataset only provides the information about C. We can derive
the D holds at 3 according to the first temporal rule D ← ⊟[2] ∧ ⊞[1,2]C; then, we can derive that A
holds at the interval [4.5, 5] according to the second rule. Hence, A@[4.5, 5] is entailed.

Recursive The fact entailment problem at this level is considered the hardest because it involves
recursion. Unlike static knowledge representation languages (e.g., Datalog), where all facts can be
derived after a certain number of rule applications, some recursive rules in DatalogMTL may require
an infinite number of applications. Even for symbolic-based approaches, this presents a significant
challenge, and researchers have devoted considerable effort to addressing it Wałęga et al. (2021;
2023a). According to Wałęga et al. (2023a), in the recursive scenarios, periodic structures will ul-
timately occur repeatedly, but calculating these periodic structures is challenging. From a human
perspective, however, identifying such periodic structures can be straightforward. For instance, con-
sider a recursive rule ⊞1yearBday(x)← Bday(x), which states that anyone having their birthday at
a time point t will also be having their birthday at the same time the following year. If we know that
Ben has his birthday on Jun 8, 1991, it is easy to know that he will have his birthday on Jun 8, 1992,
Jun 8, 1993 and so on. However, this is difficult for traditional symbolic-based approaches to handle.
Therefore, we design fact entailment problems associated with recursive rules to test whether large
language models can perform well in this setting.

Specifically, we use facts from both propositional logic Klement (2004) and first-order logic Barwise
(1977). The former contains declarative statements that are either ‘true’ or ‘false’, while the latter
includes expressions with one or more variables. For example, we allow both forms of temporal
facts: Raining and Immune(x). The former states that an event (raining) is occurring, while the
latter denotes that a property (immune) is associated with an entity, where x acts as a placeholder
that can be instantiated to any entity, such as Immune(Ben), indicating that Ben is immune.

3.2 GENERATING TEMPORAL DATA AND RULES

The benchmark generation process can be mainly divided into the following three steps: 1) Graph
construction, 2) Data generation, and 3) Rule generation. The pseudocode for this benchmark gen-
eration algorithm can be found in Part F of the appendix.
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Graph construction We employ a general-purpose random graph generator to generate a con-
nected directed random graph. The nodes in the random graph represent predicates, such as A, B,
and C. Each edge in this graph represents a body atom of a rule pointing to the corresponding head
in the rule. In particular, a predicate can appear in bodies of multiple different rules.

Data generation After the construction of the graph, the program will traverse each nodes in the
graph and randomly assign time points or time intervals to the chosen nodes. The time points or
intervals are generated based on a given range.

Rule Generation Once the temporal data is generated, the rule generator traverses the edges of
the graph, assigning random operators and intervals to the edges. To ensure the generated graph is
non-trivial, a reasoning process is performed across the entire graph after completing this step to
ensure new facts can be inferred. If multiple rules are required, the program repeats previous steps
until a sufficient number of rules are generated.

E

A

B

C

D

(1) Graph Generation

E

A

B@[1,2]

C

D@[2,3]

(2) Data Generation

A

B

D

x[1,2]

⊟[1,1]
(3) Rule Generation

Figure 3: An example of generating temporal data and rules. First, we randomly generate a graph.
Next, our program selects specific nodes to assign time points. In our example, nodes B and D are
chosen, resulting in two temporal facts:

{
B@[1,2], D@[2,3]

}
; Finally, we select a node as the head

atom, with body atoms derived from the previous step. We then randomly assign temporal operators
to these body atoms, resulting in the rule: A ← x[1,2]B ∧ ⊟[1,1]D. The number of body atoms, the
time range, and the temporal operators are specified as input parameters.

An example of generating temporal data and rules is shown in Figure 3. In particular, our program
will have a post-processing operation to scan all the data and rules to ensure they have been uti-
lized and removes any data and rules (in the ablation study, we will explore the impact of irrelevant
data and rules) that are not participated in the the temporal reasoning process. We define the fol-
lowing flags for the samples to be generated based on their characteristics: rational number ,
multiple body atoms , recursive and mixed operators . These flags control the rule
structures during the generation process.

Prompt type SingleAtom MultiAtoms Rational MixedOperators MultiRules Recursive

GPT-4o
Zero-shot 45.8 43.2 37.1 57.3 53.3 37.7
Few-shot 40.4 38.0 27.2 51.6 36.7 32.2
Zero-shot-CoT 85.6 85.1 85.7 90.3 74.0 58.0

Llama-3
Zero-shot 40.7 44.0 43.9 60.5 39.1 8.7
Few-shot 38.4 44.3 44.4 47.1 36.1 30.2
Zero-shot-CoT 59.9 58.4 68.2 64.1 59.0 48.5

Table 1: Model performance on the synthetic benchmarks across six rule structures, as defined
in Section 3.1, shows that GPT-4o with chain-of-thought prompting significantly outperforms its
counterparts—zero-shot and few-shot—by approximately 30% to 50. This indicates that it is crucial
for LLMs to generate the reasoning process before arriving at the final conclusion. Specifically, we
observe that the three prompting settings for Llama-3 achieve similar performance, suggesting that
Llama-3 struggles with temporal reasoning in symbolic forms.
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Figure 4: F1 score (%) on three benchmarks with rule-based and natural language (NL) based tem-
poral logic reasoning and using Zero-shot-CoT.

4 EXPERIMENTS AND RESULTS

Based on our synthesized benchmarks, we aim to investigate whether large language models can
solve temporal reasoning problems from the traditional logic-based AI domain by evaluating two
large language models (GPT-4o4 and Llama-35) with three different kinds of prompting settings.

Baselines We adopt three basic prompting approaches as baselines. Specifically, zero-shot prompt-
ing (ZERO-SHOT), few-shot in-context learning (FEW-SHOT) (Brown et al., 2020), chain-of-thought
prompting (COT) (Wei et al., 2022), and zero-shot chain-of-thought (0-COT) (Kojima et al., 2022)
are leveraged to tackle various temporal reasoning problems in our constructed benchmark.

Benchmark statistics and experimental settings Unless otherwise specified, each benchmark
level contains 200 samples selected from the facts derived using the chosen data and rule(s). For
negative samples, a random interval is chosen, ensuring that these intervals do not overlap with those
of the derived facts. Specifically, for all baselines, the temperature value is set to 0. For few-shot
prompting techniques, the input prompt includes two manually constructed exemplars. In this paper,
we use the F1 score as the evaluation metric. Details about the benchmark statistics, instructions,
exemplars, and other relevant experimental information can be found in the the Appendix part.

4.1 MAIN RESULTS

We observe that for GPT-4o, the zero-shot and few-shot prompting settings achieve extremely low
accuracy across the six benchmarks, with some experiencing more than a 50% accuracy drop com-
pared to zero-shot-CoT. This indicates the necessity of using the chain-of-thought strategy with
LLMs to solve temporal reasoning problems effectively. Notably, on the three benchmarks Sin-
gleAtom, MultiAtoms, and Rational, we observe similar accuracy with less than 2% variance
between them. Interestingly, we found that using multiple operators yields the best performance.
This is surprising because we assumed that employing more operators would require the model to
understand more semantics of DataloMTL, thus increasing the problem’s complexity compared to
using only one type of MTL operator. However, considering the reasoning process using the sym-
bolic reasoner, such results are also reasonable because if two rules contain the same number of
body atoms, the number of calculating operators is the same. From this perspective, LLMs exhibit
similar behavior to symbolic reasoner-based approaches.

In the MultiRules and Recursive benchmarks, we notice a significant performance drop, with
Recursive achieving the lowest performance at 64.5%. These results suggest that recursive rules are
particularly challenging for models, as they require not only understanding the language semantics
and performing step-by-step reasoning but also possessing strong inductive ability. Unfortunately,
the results achieved by Llama-3 are almost random, indicating that the model lacks the capability
to solve symbolic form temporal reasoning problems. One possible reason is the model size being
too small, preventing it from generalizing to unseen tasks. Additionally, the lack of relevant training
datasets during pre-training or fine-tuning stages could also contribute to this issue.

4https://openai.com/index/hello-gpt-4o/
5https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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4.2 RULE BASED VS. NATURAL LANGUAGE (NL) BASED TEMPORAL LOGIC REASONING

In this paper, our primary focus is on benchmarking and testing the temporal logic reasoning ca-
pabilities of LLMs by evaluating them in a rule-based format. However, it is also interesting to
compare this with another setting: verbalizing the rules before presenting them to the LLMs, as ex-
plored in many previous similar works like CronQuestions Saxena et al. (2021); Ismayilzada et al.
(2023). Given that manually converting each rule into its corresponding natural language expression
is a labor-intensive process, we adopt a template-based approach to automate this verbalization. Al-
though this method may result in expressions that are not entirely natural6, it provides a practical
alternative to manual translation.

From Figure 4, we observe that both the rule-based and natural language-based settings achieve
similar results, with the rule-based approach performing slightly better. The comparison indicates
that LLMs are also capable of understanding the semantics of input expressed in rules, provided
that each notation is clearly explained in the instructions. Notably, both settings struggle with the
MultiRulesand Recursivecases. One possible reason for this is that, while LLMs can understand
the semantics of temporal logic language, they still face significant challenges in executing multi-
ple deductions, retaining intermediate results, and recognizing repeated patterns—tasks that require
delicate algorithms to accomplish effectively in the field of temporal logic Wałęga et al. (2023a).

4.3 ABLATION STUDY

To explore which component of the rule structure most significantly impact the reasoning complex-
ity for LLMs, we designed four sets of ablation study experiments. These experiments explored the
effects of the number of relevant rules , the number of operators considered, the percentage of irrele-
vant data, and the percentage of irrelevant rules. From Figure 5 (a), we observe that as the lengths of
dependent rules increase, the model’s performance noticeably degrades.One possible reason is that
when multiple rules are mutually dependent, the model needs to store intermediate results during the
derivation process to complete subsequent steps that rely on previously derived outcomes. Unlike
symbolic reasoners, which can explicitly store intermediate results, it may be challenging for large
language models (LLMs) to retain such information in an auto-regressive manner. Additionally,
Figure 5 (b) demonstrates that using more types of operators does not affect reasoning complexity,
indicating that understanding the semantics of the temporal logic language is not a major issue for
the model. Lastly, the results in Figures 5 (c) and (d) show that the model’s performance is only
minimally affected by irrelevant information, whether in the form of temporal data or rules, demon-
strating its ability to correctly select relevant rules and remain resistant to distracting information.
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(d) irrelevant rules

Figure 5: Results of ablation study. (a) presents the benchmark results for temporal rules of varying
lengths; (b) illustrates the benchmark results for different operators; (c) displays the benchmark
results with varying percentages of irrelevant data relative to relevant data (e.g., if there are 10
temporal facts required for the temporal reasoning process, 100% denotes that an additional 10
irrelevant temporal facts are included in the input); (d) showcases the benchmark results with varying
percentages of irrelevant rules relative to target rules (the meaning of percentages in the x-axis is
similar to the setting of adding irrelevant temporal facts.

6Some examples of these conversions can be found in the Appendix.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORKS

Symbolic approaches for temporal reasoning Knowledge representation languages, such as Lin-
ear Temporal Logic (LTL) Huth & Ryan (2004) and DatalogMTL Brandt et al. (2018), have become
the de facto standard for specifying temporal properties in both formal verification and artificial in-
telligence. Many temporal reasoning problems have proven to be PSPACE-complete Wałęga et al.
(2019); Fionda & Greco (2018); Bauland et al. (2009); Wałęga et al. (2020). Satisfiability checking,
that is, the problem of deciding whether a given formula admits a satisfying model, is one of the most
important computational tasks associated with the logic, and one of the first that have been carefully
studied Sistla & Clarke (1985). Similarly, the main reasoning tasks considered in DatalogMTL are
fact entailment and consistency checking. These problems polynomially reduce to the complements
of each other Brandt et al. (2018). Despite this theoretically high computational complexity, numer-
ous techniques and tools have been developed to solve different temporal reasoning problems, which
range from tableau systems Goré & Widmann (2009); Bertello et al. (2016) to reductions to model
checking Cavada et al. (2014), to automata techniques Li et al. (2014); Wang et al. (2022).

Prompting LLMs for temporal reasoning Although the aforementioned temporal reasoning
problems have been widely explored in the traditional logic-based AI domain, they remain under-
explored in the regime of LLMs. There is a substantial body of research evaluating the reasoning
abilities of LLMs in an in-context learning setting, covering areas such as arithmetic reasoning, logi-
cal reasoning, and commonsense reasoning. Notably, simple math problem datasets like AQUA Ling
et al. (2017), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021) are frequently used to
assess arithmetic reasoning (Touvron et al., 2023; Shi et al., 2023). Welleck et al. (2021) developed
NaturalProofs, a multi-domain dataset for studying mathematical reasoning in natural language,
while Welleck et al. (2022) investigated LLMs’ abilities to generate the next step in mathemati-
cal proofs and complete full proofs. Additionally, LLMs have been evaluated on logical reasoning
tasks, including symbolic tasks like Coin Flip and Last Letter Concatenation (Wei et al., 2022), and
Logic Grid Puzzles on the BIG-BENCH (Srivastava et al., 2023). Commonsense reasoning datasets
(Talmor et al., 2019) have also been proposed for evaluating LLMs. Most relevant to our work are
various approaches to evaluating and enhancing the algorithmic reasoning abilities of LLMs (Zhou
et al., 2022). In this work, we focus on evaluating LLMs on temporal logic reasoning tasks.

6 CONCLUSION

We present TBEN, a new synthetic benchmark consisting of rule-based temporal logic reasoning
problems, designed to test the temporal reasoning abilities of LLMs. TBEN contains diverse tem-
poral reasoning problems of varying complexities, providing flexible configurations for customising
generated benchmarks. Our experimental results reveal that models have difficulties in understand-
ing symbolic data and performing temporal reasoning. Even though powerful LLMs like GPT-4o
have been trained on extensive data from across the Internet, they struggle with some simple tem-
poral reasoning tasks. By proposing this benchmark, we aim to draw attention to the data-based
temporal reasoning abilities of LLMs. Our goal is to facilitate the development of specialized meth-
ods to enhance these abilities, such as training models in the agent reasoning style with data as input
and equipping models with more temporal reasoning and symbolic knowledge.

7 LIMITATION

Our experiments were constrained by the speed, computational resources, and financial costs asso-
ciated with utilizing the closed-source GPT-4o. For instance, although our generator allows for the
creation of benchmarks of temporal data and rules with arbitrary sizes, we obtained results across
multiple temporal reasoning datasets of varying complexities on a relatively small scale due to the
financial costs associated with GPT-4o API calls.

Another limitation of this preliminary exploration into testing the temporal reasoning abilities of
LLMs is that we only present experimental results from three prompting settings, despite the avail-
ability of many other advanced prompting strategies. Furthermore, while we demonstrate that a
chain-of-thought approach is necessary for solving temporal reasoning problems, we do not offer an
effective method for enhancing the LLM’s ability to handle temporal logic reasoning problems.
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A PROMPTS USED IN THE BASIC EVALUATION

For all evaluations, we prepend a system message to introduce the syntax of DatalogMTL language
as below:

You are given a dataset and a temporal rule, and your task is to judge whether the given fact is
entailed by the dataset and the rule.
The rules are expressed as DatalogMTL, a knowledge representation language that extends Dat-
alog with operators from metric temporal logic (MTL). The semantics of four MTL operators are
given as follows:
If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time
between t-b and t-a.
If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between
t-b and t-a.
If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point
between t+a and t+b.
If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a
and t+b.

Zero-shot For zero-shot evaluations, the system prompt we uses is the above general introduction
plus the statement: You should not give any explanation and you should only output "true" or "false".
We are using the statement Now we have some temporal data and some rules, data: {data} rule:
{rule}, Is {inquiry} true or not? as the user prompt to evaluate LLM’s reasoning ability.

Here is an example of the complete prompt we constructed to do zero-shot evaluation.

System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule.
The rules are expressed as DatalogMTL, a knowledge representation lan-
guage that extends Datalog with operators from metric temporal logic
(MTL). The semantics of four MTL operators are given as follows:
If Diamondminus[a,b]A is true at the time t, it requires that A needs to be
true at some time between t-b and t-a.
If Boxminus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true
at some point between t+a and t+b.
If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.
You should not give any explanation and you should only output "true" or
"false"

User Prompt Now we have some temporal data and some rules, data: B@[3,10]
rule: A:-Diamondplus[6,10]B
Is A@[1,4] true or not?

LLM’s output false
Expected Answer true

Few-shot For few-shot evaluations, just like the zero-shot case, the system prompt we uses is the
above general introduction plus the statement: You should not give any explanation and you should
only output "true" or "false". However, in the user prompt, we are integrating some examples using
the following syntax:
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To help you better understand the task, I will provide two examples.
Example 1: data: {pos data} rule: {pos rule} in this case you should output "true" for {pos
inquiry}.
Example 2: data: {neg data} rule: {neg rule} in this case you should output "false" for {neg
inquiry}.
Now we have some temporal data and some rules, data: {data} rule: {rule}
Is {inquiry} true or not?"

{pos data}, {pos rule} and {pos inquiry} are from a positive sample, {neg data}, {neg rule} and {neg
inquiry} are from a negative sample. They are samples not in the testing set, but has the same type
as the testing samples.

Here is an example of the complete prompt we constructed to do few-shot evaluation.

System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule.
The rules are expressed as DatalogMTL, a knowledge representation lan-
guage that extends Datalog with operators from metric temporal logic
(MTL). The semantics of four MTL operators are given as follows:
If Diamondminus[a,b]A is true at the time t, it requires that A needs to be
true at some time between t-b and t-a.
If Boxminus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true
at some point between t+a and t+b.
If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.
You should not give any explanation and you should only output "true" or
"false"

User Prompt To help you better understand the task, I will provide two examples.
Example 1: data: B@[5,7]
rule: A:-Boxminus[10,12]B
in this case you should output "true" for A@[17,17]
Example 2: data: B@[1,9]
rule: A:-Diamondplus[3,3]B
in this case you should output "false" for A@[-25,-6]
Now we have some temporal data and some rules, data: B@[3,10]
rule: A:-Diamondplus[6,10]B
Is A@[1,4] true or not?"

LLM’s output false
Expected Answer true

Zero-shot-CoT For zero-shot-cot evaluations, the system prompt we uses is the above general
introduction without the additional the statement that we used in zero-shot or few-shot to ask LLM’s
to answer directly. We are going to put some directions to let LLM think step by step in the user
prompt below:

Now we have some temporal data and some rules, data: {data}
rule: {rule}
Is {inquiry} true or not? Do not answer directly, think step by step.

After that, we will put the LLM’s response in the context and then asks LLM again about the final
answer by Based on your previous response, without any explanation state your answers to the
question. You should only output "true" or "false".

Here is an example of the complete prompt we constructed to do zero-shot evaluation.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule.
The rules are expressed as DatalogMTL, a knowledge representation lan-
guage that extends Datalog with operators from metric temporal logic
(MTL). The semantics of four MTL operators are given as follows:
If Diamondminus[a,b]A is true at the time t, it requires that A needs to be
true at some time between t-b and t-a.
If Boxminus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true
at some point between t+a and t+b.
If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.

User Prompt Now we have some temporal data and some rules, data: B@[3,10]
rule: A:-Diamondplus[6,10]B
Is A@[1,4] true or not? Do not answer directly, think step by step.

LLM’s output First, let’s understand the rule: A:-Diamondplus[6,10]B. This rule means
that if B is true at some point between t+6 and t+10, then A is true at time t.
Now, let’s look at the data: B@[3,10]. This means that B is true at some
point between time 3 and time 10.
We are asked to determine if A@[1,4] is true or not. This means we are
looking to see if A is true at some point between time 1 and time 4.
Given the rule, for A to be true at time 1, B would need to be true at some
point between time 7 (1+6) and 11 (1+10). For A to be true at time 4, B
would need to be true at some point between time 10 (4+6) and 14 (4+10).
However, B is only true between time 3 and time 10. Therefore, B is not true
at any point between time 7 and 11 or between time 10 and 14.
So, A@[1,4] is not true.

User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output false
Expected Answer true

B PROMPTS USED IN THE NATURAL LANGUAGE EVALUATION

For the evaluations using natural language, we no longer need to introduce the syntax of Data-
logMTL language. Therefore there is no general system prompt.

Zero-shot For zero-shot setting, we change the system prompt to a simple sentence to ensure that
LLMs output in a desired format You should not give any explanation and you should only output
"true" or "false". We are using the statement Now we have some temporal data and some rules,
data: {data} rule: {rule}, Is {inquiry} true or not? as the user prompt to evaluate LLM’s reasoning
ability. {data}, {rule} and {inquiry} are all replaced by their verbalized representation.

Here is an example of the complete prompt we constructed to do zero-shot evaluation.

System Prompt You should not give any explanation and you should only output "true" or
"false"

User Prompt Now we have some temporal data and some rules, data:
A holds From 10.000 to 10.000
rule: B holds in each time such that A will hold sometime between 4.000
and 15.000 hours in the future
Is B holds From -5.000 to 1.000 true or not?

LLM’s output false
Expected Answer true
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Few-shot For few-shot evaluations, just like the zero-shot case, the system prompt we uses is the
same: You should not give any explanation and you should only output "true" or "false". However,
in the user prompt, we are integrating some examples using the following syntax:

To help you better understand the task, I will provide two examples.
Example 1: data: {pos data} rule: {pos rule} in this case you should output "true" for {pos
inquiry}.
Example 2: data: {neg data} rule: {neg rule} in this case you should output "false" for {neg
inquiry}.
Now we have some temporal data and some rules, data: {data} rule: {rule}

{pos data}, {pos rule} and {pos inquiry} are verbalized representations from a positive sample, {neg
data}, {neg rule} and {neg inquiry} are verbalized representations from a negative sample. They are
samples not in the testing set, but has the same type as the testing samples.

Here is an example of the complete prompt we constructed to do few-shot evaluation.

System Prompt You should not give any explanation and you should only output "true" or
"false"

User Prompt To help you better understand the task, I will provide two examples.
Example 1: data:
B holds From 5.000 to 7.000
rule: A holds in each time such that B did hold continuously for 10.000 and
12.000 hours before
in this case you should output "true" for A holds From 17.000 to 17.000
Example 2: data:
B holds From 1.000 to 9.000
rule: A holds in each time such that B will hold sometime between 3.000
and 3.000 hours in the future
in this case you should output "false" for A holds From -25.000 to -6.000
Now we have some temporal data and some rules, data:
B holds From 3.000 to 10.000
rule: A holds in each time such that B will hold sometime between 6.000
and 10.000 hours in the future
Is A holds From 1.000 to 4.000 true or not?

LLM’s output true
Expected Answer true

Zero-shot-CoT For verbalized zero-shot-cot evaluations, we no longer use system message since
we don’t need to introduce the synatx nor ask it to answer in a specific format. We organize our user
prompts in the following format:

Now we have some temporal data and some rules, data: {data}
rule: {rule}
Is {inquiry} true or not? Do not answer directly, think step by step.

where {data}, {rule} and {inquiry} refers to the verbalized rules.

After that, we will put the LLM’s response in the context and then asks LLM again about the final
answer by Based on your previous response, without any explanation state your answers to the
question. You should only output "true" or "false".

Here is an example of the complete verbalized prompt we constructed to do zero-shot evaluation.
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System Prompt
User Prompt Now we have some temporal data and some rules, data:

B holds From 3.000 to 10.000
rule: A holds in each time such that B will hold sometime between 6.000
and 10.000 hours in the future
Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think
step by step.

LLM’s output To determine if A holds from 1.000 to 4.000 based on the given rule and
data, let’s break it down step by step:
1. **Understand the Data:**
- B holds from 3.000 to 10.000.
2. **Understand the Rule:**
- A holds at each time such that B will hold sometime between 6.000 and
10.000 hours in the future.
3. **Analyze the Time Intervals:**
- We need to check if B holds in the interval [6.000, 10.000] hours in the
future from any time within [1.000, 4.000].
4. **Check Each Time Point in [1.000, 4.000]:**
- For time 1.000:
- 6.000 to 10.000 hours in the future from 1.000 is [7.000, 11.000].
- B holds from 3.000 to 10.000, which overlaps with [7.000, 10.000].
- Therefore, B holds sometime in [7.000, 11.000].
- For time 2.000:
- 6.000 to 10.000 hours in the future from 2.000 is [8.000, 12.000].
- B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000].
- Therefore, B holds sometime in [8.000, 12.000].
- For time 3.000:
- 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000].
- B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000].
- Therefore, B holds sometime in [9.000, 13.000].
- For time 4.000:
- 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000].
- B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000].
- Therefore, B holds sometime in [10.000, 14.000].
5. **Conclusion:**
- For each time point in the interval [1.000, 4.000], B holds sometime in the
future interval [6.000, 10.000] hours from that time point.
- Therefore, according to the rule, A holds from 1.000 to 4.000.
So, based on the given rule and data, A holds from 1.000 to 4.000.

User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output true
Expected Answer true

C DETAILED INFORMATION OF OUR BENCHMARK

We generated different number of samples based on the type of DatalogMTl, such as SingleAtom,
MultiAtoms, Rational, MixedOperators, MultiRules and Recursive.
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Type of Sample # of Positive Samples # of Negative Samples
SingleAtom 500 500
MultiAtoms 300 300
Rational 500 500
MixedOperators (with 2 operators) 1739 1739
MixedOperators (with 3 operators) 145 145
MixedOperators (with 3 operators) 126 126
MultiRules (with 2 rules) 250 250
MultiRules (with 4 rules) 250 250
MultiRules (with 6 rules) 150 150
Recursive 500 500

Table 2: The number of samples of different categories in our dataset

No matter how many samples are there in the our dataset, for each category, we only use the first 100
positive samples and the last 100 negative samples as the testing samples. For in-context/few-shot
evaluations, we use one additional positive sample (the 101-th sample) and one additional negative
sample (the last 101-th sample) as in-context learning sample to put into the context.

For MultiAtoms, we don’t specify the number of operators it has in the rule nor evaluate them
separately, while in general it follows the following distribution:

Type of Sample # of Positive Samples # of Negative Samples
MultiAtoms (with 2 atoms in the rule) 109 115
MultiAtoms (with 3 atoms in the rule) 79 79
MultiAtoms (with 4 atoms in the rule) 61 64
MultiAtoms (with 5 atoms in the rule) 51 42
Total 300 300

Table 3: The distribution of the number of atoms in our MultiAtoms subset of our dataset

D BAD CASE ANALYSIS

D.1 CASES THAT ARE INCORRECT IN SYMBOLIZED REPRESENTATION BUT ARE CORRECT IN
VERBALIZED REPRESENTATION

Symbolic Verbalized
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System Prompt You are given a dataset and a tem-
poral rule, and your task is to judge
whether the given fact is entailed by
the dataset and the rule.
The rules are expressed as Data-
logMTL, a knowledge representa-
tion language that extends Datalog
with operators from metric temporal
logic (MTL). The semantics of four
MTL operators are given as follows:
If Diamondminus[a,b]A is true at
the time t, it requires that A needs
to be true at some time between t-b
and t-a.
If Boxminus[a,b]A is true at the
time t, it requires that A needs to be
true continuously between t-b and t-
a.
If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be
true at some point between t+a and
t+b.
If Boxplus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t+a and t+b.

(No introduction to the syntax is
required for verbalized representa-
tions)

User Prompt Now we have some temporal data
and some rules, data: B@[3,10]
rule: A:-Diamondplus[6,10]B
Is A@[1,4] true or not? Do not an-
swer directly, think step by step.

Now we have some temporal data
and some rules, data:
B holds From 3.000 to 10.000
rule: A holds in each time such that
B will hold sometime between 6.000
and 10.000 hours in the future
Is A holds From 1.000 to 4.000 true
or not? Do not answer directly, think
step by step.
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LLM’s output First, let’s understand the rule:
A:-Diamondplus[6,10]B. This rule
means that if B is true at some point
between t+6 and t+10, then A is true
at time t.
Now, let’s look at the data:
B@[3,10]. This means that B is true
at some point between time 3 and
time 10.
We are asked to determine if
A@[1,4] is true or not. This means
we are looking to see if A is true at
some point between time 1 and time
4.
Given the rule, for A to be true at
time 1, B would need to be true at
some point between time 7 (1+6)
and 11 (1+10). For A to be true at
time 4, B would need to be true at
some point between time 10 (4+6)
and 14 (4+10).
However, B is only true between
time 3 and time 10. Therefore, B is
not true at any point between time 7
and 11 or between time 10 and 14.
So, A@[1,4] is not true.

To determine if A holds from 1.000
to 4.000 based on the given rule and
data, let’s break it down step by step:
1. **Understand the Data:**
- B holds from 3.000 to 10.000.
2. **Understand the Rule:**
- A holds at each time such that B
will hold sometime between 6.000
and 10.000 hours in the future.
3. **Analyze the Time Intervals:**
- We need to check if B holds in the
interval [6.000, 10.000] hours in the
future from any time within [1.000,
4.000].
4. **Check Each Time Point in
[1.000, 4.000]:**
- For time 1.000:
- 6.000 to 10.000 hours in the future
from 1.000 is [7.000, 11.000].
- B holds from 3.000 to 10.000,
which overlaps with [7.000,
10.000].
- Therefore, B holds sometime in
[7.000, 11.000].
- For time 2.000:
- 6.000 to 10.000 hours in the future
from 2.000 is [8.000, 12.000].
- B holds from 3.000 to 10.000,
which overlaps with [8.000,
10.000].
- Therefore, B holds sometime in
[8.000, 12.000].
- For time 3.000:
- 6.000 to 10.000 hours in the future
from 3.000 is [9.000, 13.000].
- B holds from 3.000 to 10.000,
which overlaps with [9.000,
10.000].
- Therefore, B holds sometime in
[9.000, 13.000].
- For time 4.000:
- 6.000 to 10.000 hours in the future
from 4.000 is [10.000, 14.000].
- B holds from 3.000 to 10.000,
which overlaps with [10.000,
10.000].
- Therefore, B holds sometime in
[10.000, 14.000].
5. **Conclusion:**
- For each time point in the interval
[1.000, 4.000], B holds sometime in
the future interval [6.000, 10.000]
hours from that time point.
- Therefore, according to the rule, A
holds from 1.000 to 4.000.
So, based on the given rule and data,
A holds from 1.000 to 4.000.
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User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output false true
Expected Answer true

D.2 CASES THAT ARE INCORRECT IN ZERO-SHOT BY ARE CORRECT WHEN CHAIN OF
THOUGHT IS APPLIED

Example 1:

Without CoT With CoT
System Prompt You are given a dataset and a tem-

poral rule, and your task is to judge
whether the given fact is entailed by
the dataset and the rule.
The rules are expressed as Data-
logMTL, a knowledge representa-
tion language that extends Datalog
with operators from metric temporal
logic (MTL). The semantics of four
MTL operators are given as follows:
If Diamondminus[a,b]A is true at
the time t, it requires that A needs
to be true at some time between t-b
and t-a.
If Boxminus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be
true at some point between t+a and
t+b.
If Boxplus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t+a and t+b.
You should not give any explanation
and you should only output "true" or
"false"

You are given a dataset and a tem-
poral rule, and your task is to judge
whether the given fact is entailed by
the dataset and the rule.
The rules are expressed as Data-
logMTL, a knowledge representa-
tion language that extends Datalog
with operators from metric temporal
logic (MTL). The semantics of four
MTL operators are given as follows:
If Diamondminus[a,b]A is true at
the time t, it requires that A needs
to be true at some time between t-b
and t-a.
If Boxminus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be
true at some point between t+a and
t+b.
If Boxplus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t+a and t+b.

User Prompt Now we have some temporal data
and some rules, data:
B@[6,9]
rule: A:-Diamondminus[6,15]B
Is A@[12,18] true or not?

Now we have some temporal data
and some rules, data:
B@[6,9]
rule: A:-Diamondminus[6,15]B
Is A@[12,18] true or not? Do not
answer directly, think step by step.
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LLM’s output First, let’s understand the rule: A:-
Diamondminus[6,15]B. This rule
means that if B is true at some point
between t-15 and t-6, then A is true
at time t.
Now, let’s consider the fact
A@[12,18]. This means we are
checking if A is true at some point
between time 12 and 18.
To check this, we need to see if B
is true at some point between (12-
15) and (12-6), i.e., between time -3
and 6, or between (18-15) and (18-
6), i.e., between time 3 and 12.
From the given data, we know that
B is true between time 6 and 9. This
falls within the required time range
for A to be true.
Therefore, A@[12,18] is true.

User Prompt Based on your previous response,
without any explanation state your
answers to the question. You should
only output "true" or "false"

LLM’s output false true
Expected Answer true

Example 2:

Without CoT With CoT
System Prompt You are given a dataset and a tem-

poral rule, and your task is to judge
whether the given fact is entailed by
the dataset and the rule.
The rules are expressed as Data-
logMTL, a knowledge representa-
tion language that extends Datalog
with operators from metric temporal
logic (MTL). The semantics of four
MTL operators are given as follows:
If Diamondminus[a,b]A is true at
the time t, it requires that A needs
to be true at some time between t-b
and t-a.
If Boxminus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be
true at some point between t+a and
t+b.
If Boxplus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t+a and t+b.
You should not give any explanation
and you should only output "true" or
"false"

You are given a dataset and a tem-
poral rule, and your task is to judge
whether the given fact is entailed by
the dataset and the rule.
The rules are expressed as Data-
logMTL, a knowledge representa-
tion language that extends Datalog
with operators from metric temporal
logic (MTL). The semantics of four
MTL operators are given as follows:
If Diamondminus[a,b]A is true at
the time t, it requires that A needs
to be true at some time between t-b
and t-a.
If Boxminus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t-b and t-a.
If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be
true at some point between t+a and
t+b.
If Boxplus[a,b]A is true at the time
t, it requires that A needs to be true
continuously between t+a and t+b.
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User Prompt Now we have some temporal data
and some rules, data:
A@[8,13]
rule: B:-Diamondminus[10,12]A
Is B@[21,24] true or not?

Now we have some temporal data
and some rules, data:
A@[8,13]
rule: B:-Diamondminus[10,12]A
Is B@[21,24] true or not? Do not an-
swer directly, think step by step.

LLM’s output First, let’s understand the rule: B:-
Diamondminus[10,12]A. This rule
means that if A is true at some point
between t-12 and t-10, then B is true
at time t.
Now, let’s look at the data:
A@[8,13]. This means that A
is true continuously from time 8 to
time 13.
Now, we need to check if
B@[21,24] is true or not. For
B to be true at any time between 21
and 24, A needs to be true at some
point between (t-12) and (t-10).
Let’s check for each time t in
[21,24]:
- For t=21, A needs to be true at
some point between 21-12=9 and
21-10=11. A is true at these times
according to the data.
- For t=22, A needs to be true at
some point between 22-12=10 and
22-10=12. A is true at these times
according to the data.
- For t=23, A needs to be true at
some point between 23-12=11 and
23-10=13. A is true at these times
according to the data.
- For t=24, A needs to be true at
some point between 24-12=12 and
24-10=14. A is true at time 12, but
not at time 14. However, the rule re-
quires A to be true at some point be-
tween these times, not at all times,
so this condition is satisfied.
Therefore, B@[21,24] is true.

User Prompt Based on your previous response,
without any explanation state your
answers to the question. You should
only output "true" or "false"

LLM’s output false true
Expected Answer true

D.3 SINGLEATOM ERROR CASES

False Negative Example:
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System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule. The rules are expressed
as DatalogMTL, a knowledge representation language that extends Datalog
with operators from metric temporal logic (MTL). The semantics of four
MTL operators are given as follows:If Diamondminus[a,b]A is true at the
time t, it requires that A needs to be true at some time between t-b and
t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be true at some point between t+a and
t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.

User Prompt Now we have some temporal data and some rules, data: A@[7,15]
rule: B:-Boxminus[3,5]A
Is B@[8,30] true or not? Do not answer directly, think step by step.

LLM’s output To determine whether ( B@[8,30] ) is true given the data and the rule, we
need to follow these steps:
1. **Understand the Rule**: The rule is ( B leftarrow Boxminus[3,5]A ).
This means that ( B ) is true at time ( t ) if ( A ) is true continuously in the
interval ([t-5, t-3]).
2. **Check the Interval for ( B@[8,30] )**: We need to check if ( B ) is
true for every time point in the interval ([8, 30]). For each time ( t ) in this
interval, ( A ) must be true continuously in the interval ([t-5, t-3]).
3. **Analyze the Data**: The data given is ( A@[7,15] ), which means ( A
) is true continuously from time 7 to time 15.
4. **Check Each Time Point in ([8, 30])**:
- For ( t = 8 ): The interval ([t-5, t-3]) is ([3, 5]). ( A ) is not true in this
interval because ( A ) is only true from 7 to 15.
- For ( t = 9 ): The interval ([t-5, t-3]) is ([4, 6]). ( A ) is not true in this
interval.
- For ( t = 10 ): The interval ([t-5, t-3]) is ([5, 7]). ( A ) is not true continu-
ously in this interval (it starts at 7).
- For ( t = 11 ): The interval ([t-5, t-3]) is ([6, 8]). ( A ) is true continuously
in this interval.
- For ( t = 12 ): The interval ([t-5, t-3]) is ([7, 9]). ( A ) is true continuously
in this interval.
- For ( t = 13 ): The interval ([t-5, t-3]) is ([8, 10]). ( A ) is true continuously
in this interval.
- For ( t = 14 ): The interval ([t-5, t-3]) is ([9, 11]). ( A ) is true continuously
in this interval.
- For ( t = 15 ): The interval ([t-5, t-3]) is ([10, 12]). ( A ) is true continuously
in this interval.
- For ( t = 16 ): The interval ([t-5, t-3]) is ([11, 13]). ( A ) is true continuously
in this interval.
- For ( t = 17 ): The interval ([t-5, t-3]) is ([12, 14]). ( A ) is true continuously
in this interval.
- For ( t = 18 ): The interval ([t-5, t-3]) is ([13, 15]). ( A ) is true continuously
in this interval.
- For ( t = 19 ): The interval ([t-5, t-3]) is ([14, 16]). ( A ) is not true in this
interval (it ends at 15).
- For ( t = 20 ) to ( t = 30 ): The intervals ([t-5, t-3]) will be ([15, 17]) to
([25, 27]). ( A ) is not true in any of these intervals.
5. **Conclusion**: ( B ) is not true for all time points in the interval ([8,
30]). Specifically, ( B ) is not true at ( t = 8, 9, 10, 19, ) and any ( t ) from 20
to 30. Therefore, ( B@[8,30] ) is not true.

User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output false
Expected Answer true
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False Positive Example:

System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule. The rules are expressed
as DatalogMTL, a knowledge representation language that extends Datalog
with operators from metric temporal logic (MTL). The semantics of four
MTL operators are given as follows:If Diamondminus[a,b]A is true at the
time t, it requires that A needs to be true at some time between t-b and
t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be true at some point between t+a and
t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.

User Prompt Now we have some temporal data and some rules, data: A@[0,3]
rule: B:-Diamondminus[2,4]A
Is B@[-34,8] true or not? Do not answer directly, think step by step.

LLM’s output To determine whether ( B@[-34,8] ) is true given the data and the rule, we
need to follow these steps:
1. **Understand the Rule**: The rule is ( B leftarrow Diamondminus[2,4]A
). This means that ( B ) is true at time ( t ) if ( A ) is true at some time between
( t-4 ) and ( t-2 ).
2. **Determine the Time Interval for ( B@[-34,8] )**: We need to check if
( B ) is true at any time within the interval ([-34, 8]).
3. **Apply the Rule to Each Time Point in the Interval**: - For each time
( t ) in the interval ([-34, 8]), we need to check if ( A ) is true at some time
between ( t-4 ) and ( t-2 ).
4. **Check the Data**: The data given is ( A@[0,3] ), which means ( A ) is
true from time 0 to time 3.
5. **Evaluate the Rule for Each Time Point**: - For ( t = -34 ): We need (
A ) to be true between ([-38, -36]). Since ( A ) is only true between ([0, 3]),
( A ) is not true in this interval. - For ( t = -33 ): We need ( A ) to be true
between ([-37, -35]). Again, ( A ) is not true in this interval. - Continue this
process up to ( t = 8 ): - For ( t = 0 ): We need ( A ) to be true between ([-4,
-2]). ( A ) is not true in this interval. - For ( t = 1 ): We need ( A ) to be true
between ([-3, -1]). ( A ) is not true in this interval. - For ( t = 2 ): We need (
A ) to be true between ([-2, 0]). ( A ) is not true in this interval. - For ( t = 3
): We need ( A ) to be true between ([-1, 1]). ( A ) is true at time 0, which is
within this interval. - For ( t = 4 ): We need ( A ) to be true between ([0, 2]).
( A ) is true in this interval. - For ( t = 5 ): We need ( A ) to be true between
([1, 3]). ( A ) is true in this interval. - For ( t = 6 ): We need ( A ) to be true
between ([2, 4]). ( A ) is true at time 2 and 3, which is within this interval. -
For ( t = 7 ): We need ( A ) to be true between ([3, 5]). ( A ) is true at time 3,
which is within this interval. - For ( t = 8 ): We need ( A ) to be true between
([4, 6]). ( A ) is not true in this interval.
6. **Conclusion**: Since ( A ) is true at some time between ( t-4 ) and ( t-2
) for ( t = 3, 4, 5, 6, ) and ( 7 ), ( B ) is true at these times. Therefore, ( B ) is
true at some points within the interval ([-34, 8]).
Thus, ( B@[-34,8] ) is true.

User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output true
Expected Answer false

D.4 RECURSIVE ERROR CASES

False Negative Example:
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System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule. The rules are expressed
as DatalogMTL, a knowledge representation language that extends Datalog
with operators from metric temporal logic (MTL). The semantics of four
MTL operators are given as follows:If Diamondminus[a,b]A is true at the
time t, it requires that A needs to be true at some time between t-b and
t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be true at some point between t+a and
t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.

User Prompt Now we have some temporal data and some rules, data: A@[10,12]
rule: A:-Diamondplus[4,13]A
Is A@[-469,-221] true or not? Do not answer directly, think step by step.

LLM’s output To determine whether ( A@[-469,-221] ) is true based on the given data
and rule, we need to follow a step-by-step reasoning process. Let’s break it
down:
### Step 1: Understand the Data The data given is: [ A@[10,12] ] This
means that ( A ) is true continuously from time 10 to time 12.
### Step 2: Understand the Rule The rule provided is: [ A leftarrow Dia-
mondplus[4,13]A ] This rule states that ( A ) is true at time ( t ) if ( A ) is
true at some point between ( t+4 ) and ( t+13 ).
### Step 3: Apply the Rule We need to check if ( A@[-469,-221] ) can be
derived using the rule and the given data.
#### Step 3.1: Check the Time Interval The interval ([-469, -221]) is quite
far from the interval ([10, 12]) where ( A ) is known to be true. However,
we need to see if the rule can propagate ( A ) backward or forward in time
to cover the interval ([-469, -221]).
#### Step 3.2: Propagate the Rule Forward Let’s start from the known in-
terval ([10, 12]) and see if we can propagate ( A ) forward using the rule.
- For ( A ) to be true at time ( t ), ( A ) must be true at some point between (
t+4 ) and ( t+13 ).
Starting from ( t = 10 ): - ( A ) is true at ( t = 10 ) if ( A ) is true at some
point between ( 10+4 ) and ( 10+13 ), i.e., between ( 14 ) and ( 23 ).
Starting from ( t = 12 ): - ( A ) is true at ( t = 12 ) if ( A ) is true at some
point between ( 12+4 ) and ( 12+13 ), i.e., between ( 16 ) and ( 25 ).
Since we do not have any data indicating that ( A ) is true in these new
intervals, we cannot propagate ( A ) forward from the interval ([10, 12]).
#### Step 3.3: Propagate the Rule Backward Now, let’s consider if we can
propagate ( A ) backward to cover the interval ([-469, -221]).
- For ( A ) to be true at time ( t ), ( A ) must be true at some point between (
t+4 ) and ( t+13 ).
To cover the interval ([-469, -221]), we would need to find a time ( t ) such
that ( t+4 ) to ( t+13 ) overlaps with ([10, 12]).
However, since ([10, 12]) is far in the future compared to ([-469, -221]),
there is no way to find such a ( t ) that satisfies the rule.
### Conclusion Given the data ( A@[10,12] ) and the rule ( A leftarrow
Diamondplus[4,13]A ), we cannot derive ( A@[-469,-221] ). Therefore, (
A@[-469,-221] ) is **not** true.

User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output false
Expected Answer true

False Positive Example:
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System Prompt You are given a dataset and a temporal rule, and your task is to judge whether
the given fact is entailed by the dataset and the rule. The rules are expressed
as DatalogMTL, a knowledge representation language that extends Datalog
with operators from metric temporal logic (MTL). The semantics of four
MTL operators are given as follows:If Diamondminus[a,b]A is true at the
time t, it requires that A needs to be true at some time between t-b and
t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
time t, it requires that A needs to be true at some point between t+a and
t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
continuously between t+a and t+b.

User Prompt Now we have some temporal data and some rules, data: A@[2,2]
rule: A:-Diamondminus[4,15]A
Is A@[-24,25] true or not? Do not answer directly, think step by step.

LLM’s output To determine whether ( A@[-24,25] ) is true given the data and the rule, we
need to analyze the rule and the data step by step.
### Step-by-Step Analysis
1. **Understanding the Rule:** - The rule is ( A leftarrow Diamondmi-
nus[4,15]A ). - This means that ( A ) is true at time ( t ) if ( A ) was true at
some time between ( t-15 ) and ( t-4 ).
2. **Given Data:** - ( A@[2,2] ) means ( A ) is true at time 2.
3. **Determine the Time Intervals:** - We need to check if ( A ) can be true
at any time ( t ) within the interval ([-24, 25]).
4. **Applying the Rule:** - For ( A ) to be true at any time ( t ) within ([-24,
25]), there must be some time ( t’ ) within ([t-15, t-4]) where ( A ) is true.
5. **Checking the Data:** - We know ( A ) is true at time 2. - We need to
find if there exists any ( t ) in ([-24, 25]) such that ( 2 ) lies within ([t-15,
t-4]).
6. **Finding the Valid ( t ):** - For ( 2 ) to be within ([t-15, t-4]): [ t-15 leq
2 leq t-4 ] - Solving these inequalities: [ t-15 leq 2 implies t leq 17 ] [ 2 leq
t-4 implies t geq 6 ] - Therefore, ( t ) must be in the interval ([6, 17]).
7. **Checking the Interval ([-24, 25]):** - The interval ([6, 17]) is within
the interval ([-24, 25]).
### Conclusion Since there exists a time ( t ) within ([-24, 25]) (specifically
within ([6, 17])) where the rule can be satisfied by the given data, ( A@[-
24,25] ) is true.

User Prompt Based on your previous response, without any explanation state your an-
swers to the question. You should only output "true" or "false"

LLM’s output true
Expected Answer false

E CAN LLM UNDERSTAND SYMBOLIC REPRESENTATION?

We ask LLM to translate generated natural language representations of logic rules to symbolic repre-
sentations and them compare the translated symbolic representations with the ground truth symbolic
representation to verify if LLM has the ability to understand symbolic representations. Specifically,
we passed the same prompt that used in our symbolic evaluations, "The rules are expressed as Data-
logMTL, a......If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously
between t+a and t+b.", into LLMs, along with few examples telling LLM the output format, then
ask LLM to translate verbalized samples into symbolic ones. If the translated symbolic rule from
the verbalized rule is exactly the same as the original symbolic rule, then we consider LLM has the
ability to understand both the symbolic rule and the verbalized rule.

We passed 50 samples selected from MultiRules subset, which is considered the most challenging,
into the LLMs. LLM accurately translated 96% of testing samples from verbalized representations
to symbolic representations, so we consider that LLM can understand the symbolic representation.
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F DETAILED BENCHMARK CONSTRUCTION PSEUDO CODE

Our dataset generation algorithm is driven by generating rules. In a high level view, it generate rules
one by one in a same context, while the generation process for each rule contains the context check,
ensuring the generated rules are non-trivial.

Algorithm 1: Generate
Parameters: f : The set of features Enabled
Parameters: N : The number of rules
Parameters: V : A boolean flag to control if the program should generate a positive sample or a

negative sample
Output: A problem instance I containing a set of rules, a set of data, a query and a boolean

value representing whether the query is valid or not.
G← EmptyGraph();
while i in 1.....N do

do
G← GenerateGraph(G);
while n in G.nodes do

Assign node with random values
end
G← GenerateRules(G)

while New Info can be Inferred from I;
end
Rules,Data← Extract Rules associted with G;
DeltaNew ← Facts Inferred From Graph G;
QueryEntity, Interval← Randomly Select From DeltaNew;
if V then

QueryInterval← A random sub-interval from Interval;
else

QueryInterval← A random sub-interval that is not in Interval;
end
return Rules, Data, QueryEntity, QueryInterval, V

The graph generation algorithm 2 will generate a graph where nodes in the graph represents predi-
cates such as A, B and C. We are going to attach details information about predicates and rules into
the corresponding nodes and edges of the graph, but at this time we only need the structure of the
graph, i.e. nodes and edges don’t have special information attached.
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Algorithm 2: Graph Generation
Input: G: The existing graph
Parameters: f : The set of features Enabled
Output: G: The generated graph (including the old information in the existing graph)
Output: List[V ]: The list of new nodes, representing predicates, in the new graph
Output: Vo: The output node which depends on the some other nodes (in case that recursive is

not enabled in f ) in List[V ]
NewNode← []
Determine the lowest possible number of nodes to add l and the highest number of possible
nodes to add r based on f .
N ← random(l, r);
while i in 1.....N do

p← A randomly assigned predicate;
G.AddNode(p);
NewNode.Push(p);

end
OutNode← RandomSelect(NewNode);
while p in NewNode do

if "recursive" not in f and p == OutNode then
continue;

end
G.AddEdge(p,OutNode)

end
return G, NewNode, OutNode

After the structure of the graph is generated, we are going to attach rule information to each edge
of the graph using the Rule Generation algorithm 3. Since we are doing Graph Generation and Rule
Generation alternately, in the rule generation we only care about edges that don’t already has a rule,
we will skip the edges that already has a rule associated with that.

Algorithm 3: Rule Generation
Input: G: The existing graph
Parameters: f : The set of features Enabled
Output: G: The generated graph (including the old information in the existing graph)
SelectedOp← Set()
SelectedOp.add(RandomSelect(Boxminus,Boxplus,Diamondplusm,Diamondminus))
if "mixed_operators" in f then

Randomly select and add more operators to SelectedOp;
end
while Edge in G do

u, v, a← G;
if No rule is associated with Edge then

Op← Randomly select an operator from SelectedOp;
Interval← Randomly create an interval;
Create an item literal with Op and Interval and associated that with Edge;

end
end
return G
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