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Abstract

Stochastic sampling algorithms such as Langevin Monte Carlo are inspired by physical sys-
tems in a heat bath. Their equilibrium distribution is the canonical ensemble given by a
prescribed target distribution, so they must balance fluctuation and dissipation as dictated
by the fluctuation-dissipation theorem. We show that the fluctuation-dissipation theorem
is not required because only the configuration space distribution, and not the full phase
space distribution, needs to be canonical. We propose a continuous-time Microcanoni-
cal Langevin Monte Carlo (MCLMC) as a dissipation-free system of stochastic differential
equations (SDE). We derive the corresponding Fokker-Planck equation and show that the
stationary distribution is the microcanonical ensemble with the desired canonical distribu-
tion on configuration space. We prove that MCLMC is ergodic for any nonzero amount
of stochasticity, and for smooth, convex potentials, the expectation values converge expo-
nentially fast. Furthermore, the deterministic drift and the stochastic diffusion separately
preserve the stationary distribution. This uncommon property is attractive for practical
implementations as it implies that the drift-diffusion discretization schemes are bias-free,
so the only source of bias is the discretization of the deterministic dynamics. We apply
MCLMC to a ϕ4 model on a 2d lattice, where Hamiltonian Monte Carlo (HMC) is currently
the state-of-the-art integrator. MCLMC converges 12 to 32 times faster than HMC on an
8 × 8 to 64 × 64 lattice, and we expect even higher improvements for larger lattice sizes,
such as in large scale lattice quantum chromodynamics.

1. Introduction

Sampling from a known probability distribution e−S(x)/Z with a possibly unknown nor-
malization constant Z is an important problem in many scientific disciplines, ranging from
Bayesian statistics to statistical physics and quantum field theory. If x is high-dimensional,
methods that use the gradient ∇S(x) are vastly more efficient than gradient-free MCMC,
such as random walk Metropolis-Hastings (Metropolis et al., 2004).

Golden standard gradient-based methods are Hamiltonian Monte Carlo (HMC) (Duane
et al., 1987) and (underdamped) Langevin Monte Carlo (LMC) (see e.g. (Leimkuhler and
Matthews, 2015)). Both are based on the physics of a particle with position x(t), momentum
Π(t), moving in an external potential S(x). The dynamics is encoded in the Hamiltonian
function H(x, Π) = 1

2 |Π|2 + S(x) which gives rise to the Hamiltonian equations, a de-
terministic system of ordinary differential equations (ODE) for the phase space variables
z = (x,Π). HMC adds on top of that the occasional momentum resampling. Langevin
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dynamics on the other hand, additionally models microscopic collisions with a heat bath by
introducing damping and the diffusion process, giving rise to a set of Stochastic Differential
Equations (SDE). Damping and diffusion are tied together by the fluctuation-dissipation
theorem, ensuring that the probability distribution ρt(z) of finding the particle at location z
in the phase space converges to exp[−H(z)], which is known as the canonical ensemble. The
marginal configuration space distribution is then ρ(x) ∝ exp[−S(x)], i.e. the distribution
that we wanted to sample from.

An interesting question is what is the complete framework of possible ODE/SDE whose
equilibrium solution corresponds to the target density ρ(x) ∝ exp[−S(x)]. It has been
argued (Ma et al., 2015) that the complete framework is given by a general form of the drift
term B(z) = [D(z)+Q(z)]∇H(z)+Γ(z), where H(z) is the Hamiltonian, D(z) is positive
definite diffusion matrix and Q(z) is skew-symmetric matrix. Γ(z) is specified by derivatives
of D(z) and Q(z). This framework implicitly assumes that the equilibrium distribution is
canonical on the phase space, ρ(z) ∝ exp[−H(z)]. In general, however, we only need to
require the marginal x distribution to be canonical, ρ(x) ∝ exp[−S(x)], giving rise to
the possibility of additional formulations for which the stationary distribution matches the
target distribution, but without the phase space distribution being canonical. One such
general class of models is the Microcanonical Hamiltonian Monte Carlo (Robnik et al.,
2022) (MCHMC), where the energy is conserved throughout the process, and a suitable
choice of the Hamiltonian enforces the correct marginal configuration space distribution.
MCHMC extends the deterministic dynamics (Ver Steeg and Galstyan, 2021) by adding
momentum resampling, which is necessary for ergodicity. In this work, we will study the
variable-mass MCHMC dynamics, which after rescaling time (coinciding with the inverse
Sundman transformation (Skeel, 2009; Leimkuhler and Reich, 2004)) is the same dynamics
as the isokinetic sampler (Evans et al., 1983; Tuckerman et al., 2001). In this paper, we
explore the continuous-time limit, with and without diffusion. In Section 2 we derive the
Liouville equation for continuous deterministic dynamics directly from the ODE, and show
that its stationary solution is the target distribution. However, the deterministic dynamics
of Tuckerman et al. (2001); Ver Steeg and Galstyan (2021) is not generically ergodic, even
if additional variables are introduced as in Minary et al. (2003a,b), and even if it were,
the convergence to equilibrium can be slow (Robnik et al., 2022). A possible solution is
stochastic isokinetic dynamics (Leimkuhler et al., 2013), where the original phase space
variables are coupled with 2d additional variables whose dynamics is stochastic, such that
ergodicity can be rigorously established. However, the deterministic limit of this model no
longer equals the deterministic isokinetic sampler and the variable mass MCHMC. In fact,
it lives on a 3d-dimensional manifold, not 2d-1 dimensional manifold. With this approach,
three additional hyperparameters are introduced, two masses and a damping parameter.

In section 3, we instead propose Microcanonical Langevin Monte Carlo (MCLMC),
which directly adds stochasticity to the acceleration of the deterministic dynamics. This is
a continuous-time analog of partially stochastically reorienting the velocity direction after
every step of the deterministic dynamics, and is easy to integrate. MCLMC introduces
one additional free parameter, the strength of the stochastic perturbation, whose optimal
value can be determined by a short prerun (Robnik et al., 2022) and is anologus to the
bounce rate in MCHMC. In contrast to the standard Langevin dynamics and stochastic
isokinetic dynamics, the energy conservation in MCLMC leads to dynamics that does not
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have a velocity damping term associated with the stochastic term, such that the noise is
energy conserving. We derive the associated Fokker-Planck equation and show its stationary
solution is the same as for the Liouville equation. In section 5 we prove that SDE is ergodic
and in section 6 we demonstrate that it is also geometrically ergodic for smooth, log-convex
target distributions. In section 7 we apply MCLMC to study the statistical ϕ4 field theory
and compare it with Hamiltonian Monte Carlo.

2. Deterministic dynamics

We will study the ODE
ẋ = u u̇ = P (u)f(x), (1)

where x is the position of a particle in the configuration space and u is its velocity.
P (u) ≡ I − uuT is the projector to the direction perpendicular to the velocity and
f(x) ≡ −∇S(x)/(d − 1) is the force1. One can arrive at this equation from at least
two perspectives: (i) particle in external potential, being constrained to unit velocity, also
known as the isokinetic ensemble (ii) energy-conserving dynamics of a particle with non-
standard kinetic energy and external potential in natural time parameterization (Robnik
et al., 2022; Ver Steeg and Galstyan, 2021), also known as the microcanonical ensemble.

The dynamics preserves the norm of u if we start with u · u = 1,

d

dt
(u · u) = 2u · u̇ = u · P (u)f = (1− u · u)(u · f) = 0, (2)

so the particle is confined to the 2d − 1 dimensional manifold M = Rd × Sd−1, i.e. the
velocity is defined on a sphere of unit radius. We will denote the points on M by z.

In this section we will briefly introduce the differential geometry formalism and show
that exp{−S(x)} is the stationary distribution of Equation (1). In language of differential
geometry, the dynamics of Equation (1) induces a flow on the manifold, which is a 1-
parametrical family of maps from the manifold onto itself φt : M −→ M, such that φt(z) is
the solution of Equation (1) with the initial condition z. The flow induces the drift vector
field B(z), which maps scalar observables on the manifold O(z) to their time derivatives
under the flow,

B(z)(O) =
d

dt
O
(
φt(z)

)
|t=0. (3)

We will be interested in the evolution of the probability density distribution of the particle
under the flow. In differential geometry, the density is described by a volume form, which
is a differential (2d− 1)-form,

ρ̂(z) = ρ(z) dz1 ∧ dz2 ∧ ... dz2d−1. (4)

Volume form ρ̂t at time t can be formally translated in time by the push-forward map φs∗,
ρ̂t+s = φs∗ρ̂t. The infinitesimal form of the above equation gives us the differential equation

1. The force in Robnik et al. (2022); Ver Steeg and Galstyan (2021) was defined with a factor of d rather
than d − 1, which required weights, proportional to e−S(x)/d, meaning that the sampler without the
weights converged to e−S/e−S/d. If we replace S −→ Sd/(d − 1) this distribution becomes e−S and the
weights are not required. This is equivalent to redefining the force as done here. In d = 1 this reweighting
does not work and the original Hamiltonian formulation should be used.
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for the density:

d

dt
ρ̂t =

d

ds

(
φs∗ρ̂t

)
|s=0 =

d

ds

(
φ∗
−sρ̂t

)
|s=0 ≡ −LB ρ̂t = −

(
divρ̂tB

)
ρ̂t, (5)

which is also known as the Liouville equation. Here, φ∗
−s = φs∗ is the pull-back map,

LB is the Lie derivative along the drift vector field B and div is the divergence. This is
the continuity equation for the probability in the language of differential geometry. The
Liouville equation in coordinates is

ρ̇(z) = −∇ ·
(
ρB

)
≡ −

2d−1∑
i=1

∂

∂zi
(
ρ(z)Bi(z)

)
(6)

We will work in the Euclidean coordinates {xi}di=1 on the configuration space and spherical
coordinates {ϑµ}d−1

µ=1 for the velocities on the sphere, such that the manifold is parametrized
by z = (x,ϑ). We will adopt the Einstein summation convention and use the Latin letters
(i, j, ...) to indicate the sum over the Euclidean coordinates and the Greek letters (µ, ν,
...) for the sum over the spherical coordinates. The spherical coordinates are defined by
the inverse transformation,

(u1, u2, . . . ud) = (cosϑ1, sinϑ1 cosϑ2, . . . , sinϑ1 · · · sinϑd−2 cosϑd−1, sinϑ1 · · · sinϑd−2 sinϑd−1)
(7)

which automatically ensures u·u = 1. The metric on the sphere in the spherical coordinates
is

gµν =
∂uk
∂ϑµ

∂uk
∂ϑν

= Diag[1, sin2(ϑ1), sin2(ϑ1) sin2(ϑ2), ...]ij , (8)

and the volume element is
√
g = detg

1/2
µν = Πd−2

k=1(sinϑ
k)d−1−k. The drift vector field is

B = ui(ϑ)
∂

∂xi
+ ∂µ(u · f(x)) ∂

∂ϑµ
, (9)

where the second term results from Bν = ∂ui
∂ϑν Pijfj =

∂ui
∂ϑν fi.

Theorem 1 The stationary solution of Liouville equation (6) is

ρ∞ ∝ e−S(x)
√
g(ϑ). (10)

Proof Inserting ρ∞ in the Liouville equation (6) gives

ρ̇∞ = − ∂

∂xi
(ρ∞B

i)− ∂

∂ϑµ
(ρ∞B

µ) = −u · ∂xρ∞ − 1
√
g
∂µ

(√
gBµ

)
ρ∞.

The first term is u · ∂xρ∞ = (d− 1)u · fρ∞. In the second term we recognize Laplacian of
u · f , so it transforms as a scalar under the transformations of the spherical coordinates.
We can use this to simplify the calculation: at each fixed x we will pick differently oriented
spherical coordinates, such that ϑ1 = 0 always corresponds to the direction of f(x) and
fi = δ1i|f |. We then compute Bµ = (∂µu1)|f | = − sinϑ1δ1µ|f |, so

1
√
g
∂µ

(√
gBµ

)
=

−|f |
sind−2 ϑ1

∂

∂ϑ1
sind−1 ϑ1 = −(d− 1)|f | cosϑ1 = −(d− 1)u · f .
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The last expression transforms as a scalar with respect to transformations on the sphere and
is therefore valid in all coordinate systems, in particular, in the original one. Combining
the two terms gives ρ̇∞ = 0, completing the proof.

3. Stochastic dynamics

In Robnik et al. (2022) it was proposed that adding a random perturbation to the momentum
direction after each step of the discretized deterministic dynamics boosts ergodicity, but the
continuous-time version was not explored. Here, we consider a continuous-time analog and
show this leads to Microcanonical Langevin SDE for the particle evolution and to Fokker-
Planck equation for the probability density evolution. We promote the deterministic ODE
of Equation (1) to the following Microcanonical Langevin SDE:

dx = udt (11)

du = P (u)f(x)dt+ ηP (u)dW .

Here, W is the Wiener process, i.e. a vector of random noise variables drawn from a
Gaussian distribution with zero mean and unit variance, and η is a free parameter. The
last term is the standard Brownian motion increment on the sphere, constructed by an
orthogonal projection from the Euclidean Rd, as in Elworthy (1998a).

More formally, we may write Equation (11) as a Stratonovich degenerate diffusion on
the manifold (Elworthy, 1998b; Baxendale, 1991; Kliemann, 1987),

dz = B(z)dt+
d∑

i=1

σi(z) ◦ dWi, (12)

whereWi are independent R-valued Wiener processes and σi are vector fields, in coordinates
expressed as

σi(ϑ) = gµν(ϑ)
∂ui
∂ϑν

(ϑ)
∂

∂ϑµ
(ϑ). (13)

With the addition of the diffusion term, the Liouville equation (6) is now promoted to
the Fokker-Planck equation (Elworthy, 1998a),

ρ̇ = −∇ · (ρB) +
η2

2
∇̂2ρ, (14)

where ∇̂2 = ∇µ∇µ is the Laplace-Beltrami operator on the sphere and ∇µ is the covariant
derivative on the sphere. In coordinates, the Laplacian can be computed as 1√

g∂µ
(√
g∂µρ

)
.

Theorem 2 The distribution ρ∞ of Equation (10) is a stationary solution of the Fokker-
Planck equation (14) for any value of η.

Proof Upon inserting ρ∞ into the right-hand-side of the Fokker-Planck equation, the first
term vanishes by Theorem 1. The second term also vanishes,

∇̂2ρ∞ ∝ ∇µ∇µ
√
ge−S(x) = e−S(x)∇µ∇µ

√
g = 0,

since the covariant derivative of the metric determinant is zero.
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4. Discretization

Consider for a moment Equation (11) with only the diffusion term on the right-hand-side.
This SDE describes the Brownian motion on the sphere and the identity flow on the x-space
(Elworthy, 1998a). Realizations from the Brownian motion on the sphere can be generated
exactly (Li and Erdogdu, 2020). Let us denote by ψη

s the corresponding density flow map,
such that ψη

s [ρt] = ρt+s. The flow of the full SDE (11) can then be approximated at discrete
times {nϵ}∞n=0 by the Euler-Maruyama scheme (Øksendal and Øksendal, 2003):

ρ(n+1)ϵ = ψη
ϵ [φϵ∗ ρnϵ]. (15)

For a generic SDE, this approximation leads to bias in the stationary distribution. This is
however not the case in MCLMC:

Theorem 3 The distribution ρ∞ of Equation (10) is preserved by the Euler-Maruyama
scheme (15) for any value of η.

Proof The deterministic push forward map preserves ρ∞ by the Theorem 1. The Fokker-

Planck equation for the stochastic-only term is ρ̇ = η2

2 ∇̂ρ which preserves ρ∞ by the The-
orem 2.

In the standard Langevin equation, the fluctuation term is accompanied by a dissipation
term, and the strength of both is controlled by damping coefficient. The deterministic and
stochastic parts do not preserve the stationary distribution separately. In contrast, for
MCLMC an exact deterministic ODE integrator would remain exact with SDE, so the
integration scheme for the deterministic dynamics is the only bias source.

Furthermore, in the discrete scheme (15) it is not necessary to have the Brownian motion
on the sphere as a stochastic update in order to have ρ∞ as a stationary distribution. In
fact, any discrete stochastic process on the sphere, which has the uniform distribution as
the stationary distribution will do, for example the one used in Robnik et al. (2022).

5. Ergodicity

We have established that ρ∞ is the stationary distribution of the MCLMC SDE. Here we
demonstrate the uniqueness of the stationary distribution.

Let’s define S(z) = {B(z), σ1(z), σ2(z), . . . σd(z)}. The Hörmander’s condition (Leimkuh-
ler and Matthews, 2015) is satisfied at z ∈ M if the smallest Lie algebra containing S(z)
and closed under v 7→ [B, v] is the entire tangent space Tz(M). Here [·, ·] is the Lie bracket,
in coordinates [X,Y ] = Xi∂iY

k∂k − Y i∂iX
k∂k.

Lemma 4 (Hörmander’s property) MCLMC SDE satisfies the Hörmander’s condition for
all z ∈ M.

Proof Fix some z = (x,u). The tangent space at z is a direct sum Tz(M) = Tx(Rd) ⊕
Tu(S

d−1). σi span Tu(S
d−1) by construction: they were obtained by passing the basis of

Rd through the orthogonal projection, P (u), which has rank d−1. For convenience we may
further decompose Tx(Rd) = U ⊕ U⊥, where U = {λu|λ ∈ R} is the space spanned by u
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and U⊥ is its orthogonal complement. We can write B = Bx +Bu, such that Bx ∈ Tx(Rd)
and Bu ∈ Tu(S

d−1), see also Equation (9). Bx = ui∂xi spans U , so we are left with covering
U⊥. [Bu, σi] ∈ Tu(S

d−1), so it does not interest us anymore. However,

[Bx, σi] = −σi(Bx) = gµν
∂ui
∂ϑµ

∂uj
∂ϑν

∂j ,

so [Bx, σi] span U
⊥, completing the proof.

Lemma 5 (Path accessibility of points): For every two points zi, zf ∈ M there exists a
continuous path γ : [0, T ] → M, γ(0) = zi, γ(T ) = zf and values 0 = t0 < t1 < · · · <
tN = T with a corresponding sequence of vectors vn ∈ S, such that for each 0 ≤ n < N ,
γ̇(t) = vn(γ(t)) for tn < t < tn+1.

Proof Starting at zi, we will reach zf in three stages. In stage I, we will use σi to reorient
ui to the desired direction ū (as determined by the stage II). In stage II we will then follow
B to reach the final destination xf in the configuration space. In stage III, we will reorient
the velocity from the end of stage II to the desired uf .

Stage I: First we note that σk = − sinϑk ∂
∂ϑk if ϑi = π/2 for all i < k. In this case,

γ̇ = σk has a solution t = t0 + log tanϑl(t)/2
tanϑl(t0)/2

and keeps ϑl(t) = ϑl(t0) for l ̸= k. This means

that we can first recursively set ϑn to π/2 by selecting tn+1 = tn + log tanπ/4
tanϑn

i /2
and vn = σn

for n = 1, 2, . . . d − 1. Then we go back and set all θn to their desired final value, by

selecting tn+1 = tn + tan ϑ̄2d−1−n/2
tanπ/4 for n = d, d+ 1, . . . 2(d− 1).

Stage II: As shown in Robnik et al. (2022), up to time rescaling, the trajectories of (1)
(flows under B) are the trajectories of the Hamiltonain H = |Π2|/m(S(x)) and are in turn
also the geodesics on a conformally flat manifold (Robnik et al., 2022). Any two points can
be connected by a geodesic and therefore B connects any two points xi and xf .

Stage III: use the program from stage I.

Lemma 6 (Smooth, nonzero density) The law of z(t) admits a smooth density. For every
zi ∈ M and every Lebesgue-positive measure Borel set Uf ∈ B(M), there exists T (zi,Uf ) ≥
0, such that P (z(T ) ∈ Uf |z(0) = zi) > 0.

Proof Fix zf ∈ M, such that every neighborhood of zf has a positive-measure intersection
with Uf . By the Hörmander’s theorem, Lemma 4 implies that there exist t1 > 0, m > 0
and a non-empty open subset Ui of a chart on M, such that the law of z(t1) has a Lebesgue
density of at least m on Ui. Now let t2 be the time T from Lemma 5, when applied to zf

and any point in Ui. T from this theorem will be t1 + t2. For k = 1, 2 let (Ik, Ik, µk) be
the Wiener space defined over [0, tk] and Φk be the time-tk mappings of the SDE. Since Ui

is open, applying the ”support theorem” (Theorem 3.3.1(b) of Baras et al. (1990)) to the
reverse-time SDE gives that µ2(zf ∈ Φ2(Ui)) > 0. Hence the Lemma 10 gives the desired
result.
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Theorem 7 (ergodicity) MCLMC SDE (11) admits a unique stationary distribution.

Proof This follows immediately from Lemma 6 and Theorem 6 in Noorizadeh (2010).

6. Geometric ergodicity

Geometric ergodicity is a statement that the convergence to the stationary distribution is
exponentially fast. In this section we will assume that the target S(x) is M -smooth and
m-convex meaning that mI < ∂ijS(x) < MI. As in Leimkuhler and Matthews (2015)
we will also assume periodic boundary conditions at large x, implying that the gradient is
bounded, ∇S(x) < gmax.

Let L be the infinitesimal generator of the MCLMC SDE:

Lϕ = B(ϕ) +
η2

2
∇̂2ϕ. (16)

Lemma 8 (Lyapunov function) ϕ(x,u) = u · ∇S(x) + gmax is a Lyapunov function:

• ϕ(z) > 0

• ϕ(z) −→ ∞ as |z| −→ ∞.

• Lϕ < −aϕ+ b for some a, b > 0.

Proof The first property follows by

u · ∇S > −|u||∇S| > −gmax.

The second property is trivially satisfied because the phase space is bounded.
For the third property, let’s compute terms one by one:

• The x-part of the drift gives u · ∂xϕ = uiuj∂ijS(x) < M |u|2 =M .

• The u-part of the drift gives ∂µ(u · f(x))∂µ(u · ∇S(x)) = − 1
d−1 |∂ν(u · ∇S)|2g ≤ 0

where |v|2g = gµνvµvν is the metric induced norm.

• The Laplacian of u1 = cosϑ is

∇̂2u1 =
1
√
g
∂µ(

√
g∂µu1) =

1

(sin θ)
d
2
−1

(
(sin θ)

d
2
−1(cos θ)′

)′
= −d

2
cosϑ = −d

2
u1

so by symmetry ∇̂2u = −d
2u and ∇̂2ϕ = −d

2u · ∇S.

Combining everything together, we get:

Lϕ < M − η2d

4
u · ∇S = −aϕ+ b

for a = η2d/4 and b =M + agmax.

With Lyapunov function in hand the result is immediate:
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Theorem 9 (Geometric ergodicity) There exist constants C > 0 and λ > 0, such that for
all observables O(z) for which |O(z)| < ϕ(z) the expected values ⟨O⟩ρ =

∫
O(z)ρ(z)dz

under the MCLMC SDE (11) converge at least exponentially fast:

|⟨O⟩ρ(t) − ⟨O⟩ρ∞ | < Ce−λtϕ(z0). (17)

Proof This follows directly from theorem 6.2 in Leimkuhler and Matthews (2015), given
the Lyapunov function from Lemma 8 and smooth positive density from Lemma 6.

7. Applications

To show the promise of MCLMC as a general purpose MCMC tool, we apply it to the
scalar ϕ4 field theory in two Euclidean dimensions and to benchmark hierarchical Bayesian
inference problems.

In the discrete scheme (15) it is not necessary to have the Brownian motion on the sphere
as a stochastic update in order to have ρ∞ as a stationary distribution. In fact, any discrete
stochastic process on the sphere, which has the uniform distribution as the stationary
distribution and acts as an identity on the x-space will do. In the practical algorithm, we
therefore avoid generating the complicated Brownian motion on the sphere and instead use
the generative process u(n+1)ϵ = (unϵ + νr)/|unϵ + νr|, where r is a random draw from
the standard normal distribution and ν is a parameter with the same role as η. We tune
the parameter η by estimating the effective sample size (ESS) (Robnik et al., 2022). We
approximate the deterministic flow φt with the Minimal Norm integrator (Omelyan et al.,
2003; Robnik et al., 2022) and tune the step size by targeting a predefined energy error
variance per dimension, as in (Robnik et al., 2022). For ϕ4 field theory, the tuning of the
step size and η is done at each λ level separately and is included in the sampling cost. It
amounts to around 10% of the sampling time.

7.1. Lattice ϕ4 field theory

This is one of the simplest non-trivial lattice field theory examples. The scalar field in a
continuum is a scalar function ϕ(x, y) on the plane with the area V . The probability density
on the field configuration space is proportional to e−S[ϕ], where the action is

S[ϕ(x, y)] =

∫ (
− ϕ∂2ϕ+m2ϕ2 + λϕ4

)
dxdy. (18)

The squared mass m2 < 0 and the quartic coupling λ > 0 are the parameters of the theory.
The system is interesting as it exhibits spontaneous symmetry breaking, and belongs to the
same universality class as the Ising model. The action is symmetric to the global field flip
symmetry ϕ −→ −ϕ. However, at small λ, the typical set of field configurations splits in two
symmetric components, each with non-zero order parameter ⟨ϕ̄⟩, where ϕ̄ = 1

V

∫
ϕ(x, y)dxdy

is the spatially averaged field. The mixing between the two components is highly unlikely,
and so even a small perturbation can cause the system to acquire non-zero order parameter.
One such perturbation is a small external field h, which amounts to the additional term
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Figure 1: Top left: susceptibility in the vicinity of the phase transition. We follow Gerdes
et al. (2022) and rescale the susceptibility and the quartic coupling by the Ising
model critical exponents ν = 1, γ = 7/4 and the critical coupling λC = 4.25
from Vierhaus (2010). The rescaling removes most of the lattice size dependence
(Goldenfeld, 2018). MCLMC agrees with the truth (obtained by a very long
NUTS run). Top right: effective sample size (ESS) per action gradient evaluation
for MCLMC. Higher is better. MCLMC tuning cost is included. Bottom: same
for NUTS and HMC. The dotted lines are the corresponding results if the tuning
cost of 500 warm-up samples is taken into account.

−h
∫
ϕ(x, y)dxdy in the action. The susceptibility of the order parameter to an external

field is defined as

χ = V
∂ϕ̄

∂h
|h=0 = lim

h→0+
V ⟨

(
ϕ̄− ⟨ϕ̄⟩

)2⟩, (19)

which diverges at the critical point, where the second order phase transition occurs.

The ϕ4 theory does not admit analytic solutions due to the quartic interaction term.
A standard approach is to discretize the field on a lattice and make the lattice spacing
as fine as possible (Gattringer and Lang, 2009). The field is then specified by a vector of
field values on a lattice ϕij for i, j = 1, 2, . . . L. The dimensionality of the configuration
space is d = L2. We will impose periodic boundary conditions, such that ϕi,L+1 = ϕi1 and
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ϕL+1,j = ϕ1j . The h = 0 lattice action is (Vierhaus, 2010)

Slat[ϕ] =

L∑
i,j=1

2ϕij
(
2ϕij − ϕi+1,j − ϕi,j+1

)
+m2ϕ2ij + λϕ4ij . (20)

As common in the literature (Albergo et al., 2019, 2021; Gerdes et al., 2022), we will fix
m2 = −4 (which removes the diagonal terms ϕ2ij in the action) and study the susceptibility

as a function of λ. The susceptibility estimator is χ = L2⟨
(
ϕ̄−⟨ϕ̄⟩

)2⟩, where ϕ̄ = 1
L2

∑
ij ϕij ,

and the expectation ⟨·⟩ is over the samples (Gerdes et al., 2022).
A measure of the efficiency of sampling performance is the number of action gradient calls

needed to have an independent sample. Often we wish to achieve some accuracy of expected
second moments (Robnik et al., 2022). We define the squared bias b22 as the relative error

of the expected second moments in the Fourier basis, b22 = 1
L2

∑L
k,l=1

(
1 − ⟨|ϕ̃kl|2⟩sampler

⟨|ϕ̃kl|2⟩truth

)2
,

where ϕ̃ is the scalar field in the Fourier basis, ϕ̃kl =
1√
L2

∑L
nm=1 ϕnme

−2πi(kn+lm)/L. In

analogy with Gaussian statistics, we define the effective sample size to be 2/b22. Here, we
report the effective sample size per action gradient evaluation at the instant when b2 = 0.1,
which corresponds to 200 effective samples. The number we report is ESS per action
gradient evaluation, such that its inverse gives the number of gradients needed to achieve
one independent sample.

In Figure 1 we compare MCLMC to standard HMC (Duane et al., 1987) and to a
self-tuned HMC variant NUTS (Hoffman et al., 2014), both implemented in NumPyro
(Phan et al., 2019). For HMC, we find that the optimal number of gradient calls between
momentum resamplings to be 20, 30, 40 and 50 for lattice sizes L = 8, 16, 32 and 64. The
step size is determined with the dual averaging algorithm, targeting acceptance rate of 0.8
(NumPyro default), which adds considerably to the overall cost (Figure 1).

For all samplers, we use an annealing scheme, starting at high λ and using the final
state of the sampler as an initial condition at the next lowest λ level. The initial condition
at the highest λ level is a random draw from the standard normal distribution on each
lattice site. There is a near perfect agreement between a very long NUTS run (denoted as
truth) and MCLMC in terms of susceptibility. Above the phase transition (λ̄ ≳ 1), ESS for
MCLMC and HMC is relatively constant with λ̄. ESS for NUTS and HMC scales with L as
d−1/4 = L−1/2, as expected from adjusted HMC (Neal et al., 2011). At the phase transition,
NUTS and HMC suffer from the critical slowing down, resulting in lower ESS. In contrast,
ESS for MCLMC is almost independent of λ̄ and L. Overall, MCLMC outperforms HMC
and NUTS by 10-100 at L = 64 if HMC and NUTS tuning is not included, and by at least
40 if tuning is included (MCLMC auto-tuning is cheap and included in the cost, and we use
the recommended 500 warm up samples for tuning of NUTS and HMC). We thus expect
that for d = 108, typical of state-of-the-art lattice quantum chromodynamics calculations,
the advantage of MCLMC over HMC and NUTS will be 2–3 orders of magnitude due to
d1/4 scaling. MCLMC also significantly outperforms recently proposed Normalizing Flow
(NF) based samplers (Albergo et al., 2019; Gerdes et al., 2022). NFs scale poorly with
dimensionality, and the training time increases by about one order of magnitude for each
doubling of L, e.g. of order 10 hours for L = 32 to reach 90% acceptance, and 60 hours to
reach 60% acceptance at L = 64 (Gerdes et al., 2022). In contrast, the wall-clock time of
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MCLMC at L = 64 on a GPU is a fraction of a second, while even at L = 8096 (completely
out of reach of current NF based samplers) it is only 15 seconds.

7.2. Hierarchical Bayesian inference

We here test MCLMC on two Bayesian inference problems, taken from the Inference gym
(Sountsov et al., 2020). Brownian Motion is a 32 dimensional problem, where Brownian
motion with unknown innovation noise is fitted to the noisy and partially missing data.
Item Response theory is a 501 dimensional hierarchical problem where students’ ability is
inferred, given their test results. We follow Hoffman and Sountsov (2022) and define the
error of the expectation value of f(x) as b2f = (⟨f⟩sampler − ⟨f⟩)2/Var[f ], where ground

truth expectation values ⟨f⟩ and Var[f ] = ⟨(f − ⟨f⟩)2⟩ are computed by very long NUTS
runs. We will measure samplers’ efficiency as the number of gradient evaluations needed
to achieve low average second moment error b2 ≡

∑d
i=1 b

2
x2
i
/d < 0.01, where averaging was

performed over parameters of the model and we also average over 128 independent chains.
The results are shown in Table 1.

problem MCLMC NUTS

Brownian Motion 2032 6369
Item response theory 3312 11140

Table 1: Number of gradient evaluations to low bias, lower value is better. MCLMC out-
performs NUTS by more than a factor of three in both examples.

8. Conclusions

We introduced an energy conserving stochastic Langevin process in the continuous time
limit that has no damping, derived the corresponding Fokker-Planck equation. Its equi-
librium solution is microcanonical in the total energy, yet its space distribution equals the
desired target distribution given by the action, showing that the framework of Ma et al.
(2015) is not a complete recipe of all SDEs whose equilibrium solution is the target density.
We have also proven ergodicity demonstrating that the stationary solution is unique, and
geometric ergodicity, demonstrating that the convergence to the stationary distribution is
exponentially fast.

MCLMC is also of practical significance: we show it vastly outperforms the state-of-the-
art HMC on a lattice ϕ4 model. In lattice quantum chromodynamics (Gattringer and Lang,
2009; Degrand and DeTar, 2006) the computational demands are particularly intensive, and
numerical results presented here suggest that MCLMC could offer significant improvements
over HMC in the setting of high dimensional models. We have also demonstrated that
MCLMC offers significant (factor of three) improvements over the state-of-the-art algorithm
NUTS (a variant of HMC) on hierarchical Bayesian inference problems, suggesting MCLMC
outperforms HMC/NUTS over a wide range of problems.
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tonian monte carlo. arXiv preprint arXiv:2212.08549, 2022.

Robert D Skeel. What makes molecular dynamics work? SIAM Journal on Scientific
Computing, 31(2):1363–1378, 2009.

Pavel Sountsov, Alexey Radul, and contributors. Inference gym, 2020. URL https://

pypi.org/project/inference_gym.

Mark E Tuckerman, Yi Liu, Giovanni Ciccotti, and Glenn J Martyna. Non-hamiltonian
molecular dynamics: Generalizing hamiltonian phase space principles to non-hamiltonian
systems. The Journal of Chemical Physics, 115(4):1678–1702, 2001.

Greg Ver Steeg and Aram Galstyan. Hamiltonian dynamics with non-newtonian momentum
for rapid sampling. Advances in Neural Information Processing Systems, 34:11012–11025,
2021.

Ingmar Vierhaus. Simulation of phi 4 theory in the strong coupling expansion be-
yond the ising limit. Master’s thesis, Humboldt-Universität zu Berlin, Mathematisch-
Naturwissenschaftliche Fakultät I, 2010.

Appendix A.

We here include a supplementary lemma, needed in the proof of lemma 6:

Lemma 10 Let M be a C1 manifold. Let (I, I, µ) and (J,J , ν) be probability spaces,
and over these probability spaces respectively, let (Φα)α∈I and (Ψβ)β∈J be random C1 self-
embeddings of M . Fix x1, x2 ∈ M , let p be the law over µ of α 7→ Φα(x1), and let p̃ be the
law over µ⊗ ν of (α, β) 7→ Ψβ(Φα(x1)). Suppose there exists m > 0 and an open subset U
of a chart on M such that

• for every A ∈ B(U), p(A) ≥ mLeb(A);

• ν(β ∈ J |x2 ∈ Ψβ(U)) > 0.

Then there exists m̃ > 0 and a neighborhood Ũ of x2 contained in a chart on M such that
for every A ∈ B(Ũ), p̃(A) ≥ m̃Leb(A).
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Proof One can find a ν-positive measure set J ′ ⊂ J , a neighborhood Ũ of x2 contained in
a chart on M , and a value r > 0, such that for all β ∈ J ′ and x ∈ Ũ , we have Ψ−1

β (x) ∈ U

and | det(D(Ψ−1
β )(x))| ≥ r. Now take any A ∈ B(Ũ) and let

E = {(α, β) ∈ I × J ′|Ψβ(Φα(x1)) ∈ A}

then

p̃(A) ≥ (µ⊗ ν)(E) =

∫
J ′
µ(α ∈ I|Ψβ(Φα(x1)) ∈ A) ν(dβ) =

∫
J ′
p(Ψ−1

β (A)) ν(dβ)

≥ m

∫
J ′
Leb(Ψ−1

β (A)) ν(dβ) ≥ mν(J ′)r = m̃Leb(A).

Therefore, p̃(A) ≥ m̃Leb(A). ■
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