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Abstract
Recent advances in Large Language Models (LLMs) are fos-
tering their integration into several reasoning-related fields,
including Automated Planning (AP). However, their integra-
tion into Hierarchical Planning (HP), a subfield of AP that
leverages hierarchical knowledge to enhance planning perfor-
mance, remains largely unexplored. In this preliminary work,
we propose a roadmap to address this gap and harness the po-
tential of LLMs for HP. To this end, we present a taxonomy
of integration methods, exploring how LLMs can be utilized
within the HP life cycle. Additionally, we provide a bench-
mark with a standardized dataset for evaluating the perfor-
mance of future LLM-based HP approaches, and present ini-
tial results for a state-of-the-art HP planner and LLM planner.
As expected, the latter exhibits limited performance (3% cor-
rect plans, and none with a correct hierarchical decomposi-
tion) but serves as a valuable baseline for future approaches.

Introduction
Hierarchical Planning (HP) is a subfield within Automated
Planning (AP) comprising planning methods that incorpo-
rate hierarchical knowledge. This hierarchical knowledge
can be leveraged to speed up planning and, also, to in-
tegrate human expert problem-solving knowledge. While
Large Language Models (LLMs) are being gradually inte-
grated in various AI domains, including AP, their application
to HP remains underexplored, with only a few studies tan-
gentially addressing this topic (Yang, Zhang, and Hou 2024;
Dai et al. 2024; Tse 2024; Song et al. 2023). Our contribu-
tion within this work, therefore, is a roadmap to fill this gap,
exploring the potential of LLMs for HP.

We have analyzed existing literature on AP with LLMs, as
well as current reviews (Pallagani et al. 2024; Huang et al.
2024; Valmeekam et al. 2022). Observing that most methods
in AP that are similarly applicable to HP, we have classi-
fied these methods, building a taxonomy to bring HP closer
to the existing LLM integration techniques. Our taxonomy
classifies the integration methods according to two different
dimensions: the Planning Process Role (in which part of the
HP life cycle is the LLM applied – i.e. problem definition,
plan elaboration or post-processing) and the LLM Improve-
ment Strategy (which LLM-based approach are used to im-
prove the LLM performance – i.e. giving extra knowledge
or making multiple calls). Given that HP is a subset of AP,
this classification is broadly applicable to AP as well.

To facilitate evaluation and comparisons among methods,
we propose a standardized dataset and benchmarking frame-
work based on the 2023 International Planning Competi-
tion (IPC-2023) HTN tracks, the most recent competition
for HP solvers. Specifically, we suggest using the total-order
track of the IPC-2023 dataset as a benchmark dataset.1 As a
baseline, we implement and evaluate a basic LLM Planner
(direct planning using an LLM without any improvement
strategies), the simplest method of our taxonomy, on this
dataset. We use Llama-3.1-Nemotron-70B-Instruct (Wang
et al. 2024), one of the highest-performing LLMs available,
and the model that we plan to use in subsequent experiments.
We also provide the results from PandaDealer-agile-lama
(Olz, Höller, and Bercher 2023), the IPC-2023 Total-Order
Satisficing track winner and state-of-the-art HP solver.

In summary, this work offers a roadmap to guide the fu-
ture research in the integration of LLMs and HP, which is
provided through two main contributions: the taxonomy of
LLM in HP integration methods, illustrating the magnitude
of this field and revealing how much work remains to be
done; and the proposed benchmark, providing a tool for the
evaluation and comparison of developed and future meth-
ods. We hope that this roadmap will inspire and guide future
research in this promising yet underexplored field.

Taxonomy
To bridge the gap between HP and existing LLM Integra-
tion techniques, and to explore this expansive field, we pro-
pose a taxonomic framework that highlights the identified
methods. This classification mainly draws from AP’s state-
of-the-art, so many of these methods also apply to AP. To
provide context for the subsequent sections, we include il-
lustrative examples of remarkable AP Integration methods
from current literature. Each of the methods within this tax-
onomy represents a subset of techniques rather than a precise
implementation, and may encompass multiple approaches.
Furthermore, these methods are non-exclusive, meaning that
planning agents can be designed to explore multiple combi-
nations, making this a huge field to explore. This classifica-
tion is intended to be a starting point, not a fixed framework,
with room for exploration and refinement.

1Website of the IPC-2023: https://ipc2023-htn.github.io



Our proposed taxonomy is structured along two dimen-
sions: the Planning Process Role, categorizing the stages of
the HP life cycle where an LLM can be applied: problem
definition, plan elaboration and post-processing (i.e., includ-
ing plan translation and explanation to final user). And LLM
Improvement Strategy, which encompasses general strate-
gies used to enhance LLM performance, which are appli-
cable regardless of the role they are used for: knowledge en-
hancement and multiple calls. In this last dimension, despite
several LLM Reasoning Strategies have been studied, we
have focused our classification on the main different strate-
gies that, we have observed, are commonly used in AP, as
we consider that are the most interesting techniques to ini-
tially explore and evaluate in HP. These strategies mainly
consist on using extra knowledge or augmenting the number
of LLM executions.

Planning Process Role
LLMs can assume various roles across the three general
steps of a planning process: (1) problem definition, (2) plan
elaboration, and (3) post-processing. Each step is further di-
vided into the distinctive LLM integration methods observed
in the literature. Table 1 summarizes this classification.

Problem Definition. An HP Problem includes the same
elements as an AP problem (Actions, Initial State and Goal),
along with the high-level actions (Tasks) that represents the
hierarchical information about the environment. Each ele-
ment can be generated using an LLM through two main ap-
proaches: Translation, when all necessary information is ex-
plicitly and previously provided and we only want the LLM
to restructure the provided information into a target format
(Liu et al. 2023); and Generation, when the information is
partially or implicitly provided, so the LLM is inferring or
assuming missing information based on reasoning (Gestrin,
Kuhlmann, and Seipp 2024).

Plan Elaboration We categorize this group based on the
role of the LLM in the problem solving process:

• LLM Planner. In this basic setup, the LLM itself
functions as the planner (Silver et al. 2022). While
LLM improvement strategies can be applied, there is not
external planner or explicit search process here, so the
LLM the model is responsible for the entire planning
process.

• Graph Search. The LLM is embedded in the planner,
which is done within an explicit search algorithm, where
the LLM can perform one or more roles, like Node Ex-
pansion (generating the next possible actions), Selec-
tion (choosing the next action), Heuristic provision (scor-
ing states), Model Elicitation, Backtracking, Aggregation
and Pruning. Some remarkable architectures are RAP
(Hao et al. 2023), integrating an LLM into a MCTS Plan-
ner; GoT (Besta et al. 2024), implementing an LLM in
most of the mentioned roles to solve reasoning problems;
and SayCan (Ahn et al. 2022), which utilizes an LLM as
a probabilistic relevance (heuristic) scorer.
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Post-Processing Translating the Plan
Explaining the Plan

Table 1: Summary of the possible roles that an LLM can per-
form during the HP life cycle. This classification is detailed
in the Planning Process Role section.

• Planning Guidance. Here, the LLM is external to the
planner, but assists it by providing assistance. This guid-
ance can be an initial plan that the planner can refine
(Valmeekam et al. 2023) or environment preferences to
narrow the search space (Sharan et al. 2023).

Post-Processing Once a plan is developed, an LLM can
be used to refine it, by Translating the plan into another data
structure or language, typically an executable format (e.g.
for a robot to run it) or natural language (Liu et al. 2023). Or
Explaining the Plan, where de LLM has to generate more
detailed information, commonly in natural language, based
on the provided plan (Simon and Muise 2022).

LLM Improvement Strategies
When performing any task using an LLM, it can be directly
executed to obtain an output. However, their results are of-
ten suboptimal. To address this, there are some strategies to
enhance the LLM performance which have been used in sev-
eral reasoning-related fields, as math, question answering
or AP. Building on this foundation, we have identified the
strategies commonly used in AP, and extended them to the
specific case of HP. In this section, we propose a classifica-
tion of strategies that can be employed in HP to improve the
LLM performance, regardless of the role they are used for.

LLM performance can be enhanced by either providing
more knowledge about the problem or increasing the number
of LLM calls used during problem-solving. Each of these
approaches is also categorized into the distinctive strategies.
This classification is detailed along next subsections and
summarized in Table 2. Note that these strategies are nei-
ther mandatory nor mutually exclusive, meaning that it is



possible to use none, some, or all of them simultaneously.

Knowledge Enhancement We can split the LLM knowl-
edge enhancement strategies into two main perspectives:
with previous knowledge (providing additional information
relevant to the problem before starting to solve it) or through
feedback (the model is iteratively provided with extra infor-
mation based on its previous outputs, while solving the task).
Both perspectives, moreover, may have different approaches
depending on the location where the knowledge is applied:

• Previous. This approach involves providing extra infor-
mation to the LLM before its execution. Fine-tuning is
the traditional method in the field of deep learning, which
involves adjusting the model’s internal weights with sup-
plementary data (Pallagani et al. 2022). Alternatively,
knowledge can be directly provided through the model’s
prompt, which is a more flexible and accessible option
than fine-tuning, as it does not require a training pro-
cess. Providing extra information is achieved through
input-output examples (shots) that enhance generated re-
sponses (Song et al. 2023). If the shots provide use-
ful environmental information (e.g., domain information)
this is called in-context prompting; if they only aim to
elicit an specific output structure, it is referred to as out-
of-context prompting. Furthermore, we can also provide
knowledge about how to reason, about the problem it-
self. Chain of Thoughts (CoT) (Wei et al. 2022) is the
best example of this, a different prompting strategy that
encourages the LLM to generate a reasoning process be-
fore providing the final answer. This is typically achieved
by using few-shot prompting with reasoning examples,
though reasoning can also be elicited without examples,
known as Zero-shot CoT (Kojima et al. 2022).

• Feedback. Unlike the previous paradigm, here the extra
information is provided during the task solving process:
rather than simply accepting the output of an LLM exe-
cution, we can iteratively improve the result of the LLM
by providing it feedback based on its previous outputs.
This feedback can come from various sources (humans,
the environment, an external module, another LLM,
etc.). Reinforcement Learning is the classical method of
learning from feedback in machine learning, where the
knowledge is applied by modifying the model’s internal
weights, based on a reward score (Yao et al. 2020). Alter-
natively, feedback can be used to dynamically adjust and
improve the prompt (Prompt Correction), where promi-
nent examples in the literature are Self-Refine (Madaan
et al. 2024) and Reflexion (Shinn et al. 2024). Finally,
the model’s learning can also be represented through an
external Memory Module, being Voyager a notable archi-
tecture that uses this approach (Wang et al. 2023).

Multiple Calls To improve the LLM’s performance
through multiple calls, there are two main perspectives: the
problem can be divided into simpler sub-problems that the
LLM solve on each call (Decomposition); or the LLM solves
the whole problem several times and we take advantage of
the varied information generated by the multiple outputs
(Revision). Both perspectives can also be addressed through
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Fine-tuning
Prompting

Chain of Thoughts

Feedback
Reinforcement

Prompt Correction
Memory

Multi-Calls
Decomposition Sequential Calls

Parallel Calls

Revision Sequential Calls
Parallel Calls

Table 2: Summary of the possible strategies that can be fol-
lowed to improve the LLM’s performance within the HP life
cycle, regardless of the specific role. This classification is
detailed in the LLM Improvement Strategies section.

two different approaches, depending on whether an output is
used for the next call or not (Sequential or Parallel calls).

• Decomposition. A problem can be sequentially decom-
posed: each LLM call’s output generates an intermedi-
ate step that is utilized for the next call’s input. For in-
stance, to generate a plan, we could iteratively ask the
LLM to only generate the next action of a partial plan,
than attempting to generate the entire plan in a single
call (Huang et al. 2022). Otherwise, the problem can be
decomposed in parallel: each LLM call can returns a list
simpler sub-problems which can be independently solved
(i.e. the classical Divide and Conquer strategy). This is il-
lustratively used in Generative Agents (Park et al. 2023).

• Revision. We can make the multiple calls to sequentially
refine the LLM’s output: we ask the LLM to initially give
us a complete but simple (general) solution that itera-
tively becomes more detailed through the calls (Liu et al.
2024). Otherwise, we can do a parallel approach by ask-
ing the LLM to entirely solve the problem multiple times
and, then, combine the different results into a final out-
put. Self-consistency (Wang et al. 2022) is a prominent
approach, which combines the several outputs by select-
ing the most common response, but various criteria can
be used to choose the final output.

Benchmark
Hierarchical Task Networks (HTN) Planning (Nau et al.
2003) is the most widely used and studied approach within
the HP field, making it a suitable reference point for experi-
menting with and evaluating various LLM integration meth-
ods. We propose using the total-order track from IPC-2023,
which contains 22 domains, each with dozens of problems.
A detailed breakdown of this information, along with a sum-
mary of the experimental results, is provided in Table 3.

To assess and compare the performance of future im-
plementations, we establish two reference points. First, we
consider the winner of the IPC-2023 Total-Order Satisfic-
ing track, PandaDealer-agile-lama (Olz, Höller, and Bercher
2023) as an upper bound, as it represents the current state of
the art in HP solvers. Second, we include as baseline a ba-
sic LLM Planner (i.e. using an LLM directly to plan without



providing any LLM Improvement Strategy) representing a
lower bound for LLM Integration. This approach, being the
simplest method in our taxonomy, serves as a foundational
point of comparison and a starting point for the roadmap.

Execution and Experimentation Considerations
The PandaDealer score within the dataset have been sourced
from the published IPC-2023 results. This score represents
the ratio C∗/C between the cost of a reference plan (C∗) and
the best obtained plan (C). Due to the unavailability of these
reference plans, we could not compute the same score for
the LLM Planner. Nonetheless, this score serves as a reliable
reference for assessing the quality of PandaDealer’s perfor-
mance. For generative plans, however, additional properties
need to be evaluated, such as semantic coherence within the
plan (which does not need to be measured in symbolic plan-
ners). To address this, we adopted alternative metrics more
suitable for analyzing the quality of generative plans: Plan
Feasibility (the plan is syntactically correct), Plan Correct-
ness (it is executable and reaches a goal state), Decomposi-
tion Feasibility (the hierarchical decomposition of the plan
is syntactically correct) and Decomposition Correctness (the
decomposition aligns with the generated plan).

We utilize Llama-3.1-Nemotron-70B-Instruct, one of the
highest-performing LLMs available (Wang et al. 2024), as
the LLM Planner. We utilize the official IPC verifier to
score the generated plans along the different proposed met-
rics. The execution and validation source codes, as well as
the generated plans, and obtained results are allocated on
GitHub. URL: https://github.com/Corkiray/HTN-LLM.

Results Discussions
In this preliminary work, we have obtained the results for
15 out of the 23 domains in the dataset, not the complete
set, due to temporal and computational limitations. Never-
theless, these results are sufficient to illustrate the notably
low performance of the LLM Planner, which is expected
given the simplicity of the method and the absence of any
LLM Improvement Strategies. As shown in Table 3, the
LLM Planner fails to generate feasible plans in nearly 70%
of the problems, highlighting the LLM’s limited ability to
interpret and adhere to a specific format. Even more remark-
able is the proportion of correct plans: with only 4% (i.e.
13% of the feasible plans), it shows the difficulty that a ba-
sic LLM encounters in planning correctly. A similar trend is
observed in the number of feasible decompositions which,
with only 3% correct, indicates a significant performance
drop in handling a specific format with increasing complex-
ity. Interestingly, correct plans and feasible decompositions
are often disjoint (i.e. the LLM achieves either one result
or the other, but not both). Consequentially, the LLM has
been unable to produce a correct hierarchical decomposition
for any problem. This observation is explainable considering
the LLM’s inherent architecture as a transformer, which op-
erates within a static computational capacity. An LLM can-
not dynamically adjust its processing time based on problem
complexity, and as a result, its ability to address multiple de-
manding requirements simultaneously (i.e. plan correctness
and decomposition feasibility) is limited.

Panda LLM Planner
Domain N Score FP CP FD CD

Assembly 30 0.89 15 3 0 0
Barman 20 0.78 4 1 0 0
Blocks 30 0.77 9 0 1 0
Depots 30 0.90 4 0 0 0
Factories 20 0.67 6 0 0 0
Freecell 60 0.13 38 18 0 0
Hiking 30 0.83 0 0 0 0
lamps 30 0.48 5 1 1 0
Logistics 80 0.98 14 1 1 0
Multiarm 74 0.95 30 0 2 0
Robot 20 0.92 13 1 5 0
Satellite 20 0.92 11 0 2 0
Towers 20 0.65 5 0 0 0
Transport 40 0.73 10 0 4 0
Woodwork 30 0.69 26 0 0 0
Total 614 14.42 190 25 16 0

Average: 0.80 0.31 0.04 0.03 0

Table 3: Summary of the information provided by the bench-
mark, listing the number of problems in each domain of
the dataset and the performance reported by each planner.
The score of PandaDealer is the one provided by the IPC-
2023 results. The scores utilized for the LLM Planner are
explained in the Benchmark section, representing the num-
ber of feasible plans (FP), correct plans (CP), feasible de-
compositions (FD) and correct decompositions (CD).

Conclusion

In this work, we propose a roadmap to guide future re-
search in the integration of LLMs and HP, as this remains
a largely unexplored field. This roadmap is centered on two
key contributions: a taxonomy and a benchmark. The tax-
onomy categorizes the main integration methods, structured
along two dimensions: the first one considers the various
roles that an LLM could fulfill within the HP life cycle.
The second one focuses on strategies to enhance LLM per-
formance, irrespective of the specific role in which they
are applied. The benchmark introduces a dataset and pro-
vides initial results that serves as reference in subsequent
experimentation. These results include the performance of
a state-of-the-art HP solver and an LLM Planner using one
of the best-performing LLMs available, but without leverag-
ing any improvement strategy. As expected, the results re-
veal the LLM’s limited performance in solving HP prob-
lems, but they establishes a baseline to evaluate succeed-
ing improvements. Promising future directions include ex-
ploring the planning capabilities of an LLM Planner aug-
mented with improvement Strategies to overcome the lim-
itations identified in this study. Furthermore, exploring in-
tegration in additional aspects of the HP life cycle, such as
Plan Monitoring or Exception Management, is beneficial to
expand the boundaries of the proposed taxonomy. Finally,
developing new architectures within the outlined Planning
Process Roles offers a pathway to systematically investigate
and advance this unexplored field.
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