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ABSTRACT

Graph Neural Networks (GNNs), which are nowadays the benchmark approach
in graph representation learning, have been shown to be vulnerable to adversarial
attacks, raising concerns about their real-world applicability. While existing de-
fense techniques primarily concentrate on the training phase of GNNs, involving
adjustments to message passing architectures or pre-processing methods, there is
a noticeable gap in methods focusing on increasing robustness during inference.
In this context, this study introduces RobustCRF, a post-hoc approach aiming to
enhance the robustness of GNNs at the inference stage. Our proposed method,
founded on statistical relational learning using a Conditional Random Field, is
model-agnostic and does not require prior knowledge about the underlying model
architecture. We validate the efficacy of this approach across various models,
leveraging benchmark node classification datasets.

1 INTRODUCTION

Deep Neural Networks (DNNs) have demonstrated exceptional performance across various domains,
including image recognition, object detection, and speech recognition (Chen et al., 2019; Ni et al.,
2022; Shim et al., 2021). The growing interest in handling irregular and unstructured data, particularly
in domains like bioinformatics, has pushed some attention toward graph-based representations.
Graphs have emerged as the preferred format for representing such irregular data due to their ability
to capture interactions between elements, whether individuals in a social network or interactions
between atoms. In response to this need, Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Veličković et al., 2017; Xu et al., 2019b) have been proposed as an extension of DNNs tailored
to graph-based data. GNNs excel at generating meaningful representations for individual nodes
by leveraging both the graph’s structural information and its associated features. This approach
has demonstrated significant success in addressing challenges such as protein function prediction
(Gilmer et al., 2017), materials modeling (Duval et al., 2023), and recommendation systems (Wu
et al., 2019b).

Alongside their achievements, these deep learning-based approaches have exhibited vulnerability to
various data alterations, including noisy, incomplete, or out-of-distribution examples (Günnemann,
2022). While such alterations may naturally occur in data collection, adversaries can deliberately
craft and introduce them, resulting in adversarial attacks. These attacks manifest as imperceptible
modifications to the input that can deceive and disrupt the classifier. In these attacks, the adversary’s
objective is to introduce subtle noise in the features or manipulate some edges in the graph structure
to alter the initial prediction made by the input graph. Depending on the attacker’s goals and level
of knowledge, different attack settings can be considered. For instance, poisoning attacks (Zügner
& Günnemann, 2019) involve manipulating the training data to introduce malicious points, while
evasion attacks (Dai et al., 2018) focus on attacking the model during the inference phase without
further model adaptation.

Given the susceptibility of GNNs to adversarial attacks, their practical utility is constrained. Therefore,
it becomes imperative to study and enhance their robustness. Various defense strategies have been
proposed to mitigate this vulnerability, including pre-processing the input graph (Entezari et al., 2020;
Wu et al., 2019a), edge pruning (Zhang & Zitnik, 2020), and adapting the message passing scheme
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(Zhu et al., 2019; Liu et al., 2021; Abbahaddou et al., 2024). Most of these defense methods operate by
modifying the underlying model architecture or the training procedure, i.e., focusing on the training
side of GNNs and, therefore, limiting their applicability. This limitation is especially pertinent
when dealing with pre-trained models, which have become the standard for real-world applications.
Additionally, modifying the model architecture during training poses the risk of degrading accuracy
on clean, non-attacked graphs, and usually, these modifications are not adapted for all possible
architectures.

In light of these challenges, our work introduces a post-hoc defense mechanism, denoted as Ro-
bustCRF, aimed at bolstering the robustness of GNNs during the inference phase using statistical
relational learning. RobustCRF is model-agnostic, requiring no prior knowledge of the underlying
model, and is adaptable to various architectural designs, providing flexibility and applicability across
diverse domains. Central to our approach is the assumption that neighboring points in the input
manifold, accounting for graph isomorphism, should yield similar predictions in the output manifold.
Based on our robustness assumption, we employ a Conditional Random Field (CRF) (Lafferty et al.,
2001) to adapt and edit the model’s output to preserve the similarity relationship between the input
and output manifold.

While the proposed approach is applicable to a wide range of tasks and models, including those in
the computer vision domain, our primary focus revolves around Graph Neural Networks (GNNs).
We start by introducing our CRF-based post-hoc robustness enhancement model. Recognizing the
potential complexity associated with this task and aiming to deliver a robustness technique that
remains computationally affordable, we study a sampling strategy for both the discrete space of the
graph structure and the continuous space of node features. We finally proceed with an empirical
analysis to assess the effectiveness of our proposed technique across various models, conducting also a
comprehensive examination of the parameters involved. In summary, our contributions can be outlined
as follows: (1) model-agnostic robustness enhancement: we present RobustCRF, a post-hoc approach
designed to enhance the robustness of underlying GNNs, without any assumptions about the model’s
architecture. This feature underscores its versatility, enabling its application across diverse models;
(2) theoretical underpinnings and complexity reduction: we conduct a comprehensive theoretical
analysis of our proposed approach and enhance our general architecture through the incorporation of
sampling techniques, thereby mitigating the complexity associated with the underlying model.

2 RELATED WORK

Attacking GNNs. A multitude of both poisoning and evasion adversarial attacks targeting GNNs
models has surged lately (Günnemann, 2022; Zügner et al., 2018). Namely, gradient-based techniques
(Xu et al., 2019a), such as Proximal Gradient Descent (PGD), have been employed to tackle the
adversarial aim, which is framed as an optimization task aiming to find the nearest adversary to the
input point while fulfilling the adversarial objective. Building upon this foundation, Mettack (Zügner
& Günnemann, 2019) extends the approach by formulating the problem as a bi-level optimization
task and harnessing meta-gradients for its solution. In a different perspective, Nettack (Zügner et al.,
2018) introduces a targeted poisoning attack strategy, encompassing both structural and node feature
perturbations, employing a greedy optimization algorithm to minimize an attack loss with respect to
a surrogate model. Diverging from these classical search problems, Dai et al. (2018) approach the
adversarial search task through the lens of Reinforcement Learning techniques.

Defending GNNs. Different defense strategies have been proposed to counter the previously pre-
sented attacks on GNNs. GNN-SVD (Entezari et al., 2020) employs low-rank approximation of
the adjacency matrix to filter out noise, while similar pre-processing techniques are used by GNN-
Jaccard (Wu et al., 2019a) to identify potential edge manipulations. Additionally, methods like
edge pruning (Zhang & Zitnik, 2020) and transfer learning (Tang et al., 2020) have been used to
mitigate the impact of poisoning attacks. Notably, most research efforts have predominantly fo-
cused on addressing structural perturbations, with relatively fewer strategies developed to counter
attacks targeting node features. For instance, in (Seddik et al., 2022), the inclusion of a node feature
kernel within message passing was proposed to reinforce GCNs. RobustGCN (Zhu et al., 2019)
uses Gaussian distributions as hidden node representations in each convolutional layer, effectively
mitigating the influence of both structural and feature-based adversarial attacks. Finally, in GCORN
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(Abbahaddou et al., 2024), an adaptation of the message passing scheme has been proposed by using
orthonormal weights to counter the effect of node feature-based adversarial attacks.

The majority of the previously discussed methods intervene during the model’s training phase, necessi-
tating modifications to the underlying architecture. However, this strategy exhibits certain limitations;
it may not be universally applicable across diverse architectural designs, and it can potentially result
in a loss of accuracy when applied to the clean graph. Furthermore, these methods may not be
suitable for scenarios where users prefer to employ pre-trained models, as they necessitate model
retraining. Consequently, the need for proposing and crafting post-hoc robustness enhancements be-
comes increasingly apparent. Unfortunately, the existing methods in this domain remain quite limited.
Addressing this gap in the literature, our work aims to contribute to this essential area. One commonly
employed post-hoc approach is randomized smoothing (Bojchevski et al., 2020; Carmon et al., 2019),
which involves injecting noise into the inputs at various stages and subsequently utilizing majority
voting to determine the final prediction. Note that randomized smoothing has actually been initially
borrowed from the optimization community (Duchi et al., 2012). Despite its popularity, randomized
smoothing exhibits several limitations, including suffering from the shrinking phenomenon where
decision regions shrink or drift as the variance of the smoothing distribution increases (Mohapatra
et al., 2021). Other works also identified that the smoothed classifier is more-constant than the
original model, i.e., it forces the classification to remain invariant over a large input space, resulting a
huge drop of the accuracy (Anderson & Sojoudi, 2022; Krishnan et al., 2020; Wang et al.).

3 PRELIMINARIES

Before continuing with our contribution, we begin by introducing notation and some fundamental
concepts.

3.1 GRAPH NEURAL NETWORKS

Let G = (V,E) be a graph where V is the set of vertices and E is the set of edges. We will denote
by n = |V | and m = |E| the number of vertices and number of edges, respectively. Let N (v) denote
the set of neighbors of a node v ∈ V , i.e., N (v) = {u : (v, u) ∈ E}. The degree of a node is equal
to its number of neighbors, i.e., equal to |N (v)| for a node v ∈ V . A graph is commonly represented
by its adjacency matrix A ∈ Rn×n where the (i, j)-th element of this matrix is equal to the weight of
the edge between the i-th and j-th node of the graph and a weight of 0 in case the edge does not exist.
In some settings, the nodes of a graph might be annotated with feature vectors. We use X ∈ Rn×K

to denote the node features where K is the feature dimensionality.

A GNN model consists of a series of neighborhood aggregation layers which use the graph structure
and the nodes’ feature vectors from the previous layer to generate new representations for the nodes.
Specifically, GNNs update nodes’ feature vectors by aggregating local neighborhood information.
Suppose we have a GNN model that contains T neighborhood aggregation layers. Let also h

(0)
v

denote the initial feature vector of node v, i.e., the row of matrix X that corresponds to node v. At
each iteration (t > 0), the hidden state h

(t)
v of a node v is updated as follows:

a(t)v = AGGREGATE(t)
({

h(t−1)
u : u ∈ N (v)

})
,

h(t)
v = COMBINE(t)

(
h(t−1)
v ,a(t)v

)
,

where AGGREGATE(·) is a permutation invariant function that maps the feature vectors of the
neighbors of a node v to an aggregated vector. This aggregated vector is passed along with the
previous representation of v, i.e., h(t−1)

v , to the COMBINE(·) function which combines those two
vectors and produces the new representation of v. After T iterations of neighborhood aggregation, to
produce a graph-level representation, GNNs apply a permutation invariant readout function, e.g., the
sum operator, to nodes feature as follows:

hG = READOUT
({

h(T )
v : v ∈ V

})
. (1)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input Manifold

Output Manifold

predictions

Observables

CRF Dependecies

Conditional Random Field (CRF)

Figure 1: Illustration of RobustCRF. We use input graphs manifold to generate the structure of the
CRF, i.e., V CRF, ECRF . We use the GNN’s predictions to generate the observables

{
Ya | a ∈ V CRF

}
,

we then run the CRF inference to generate the new GNN’s predictions {Ỹa | a ∈ V CRF}.

3.2 CONDITIONED RANDOM FIELDS

A probabilistic graphical model (PGM) is a graph framework that compactly models the joint proba-
bility distributions P and dependence relations over a set of random variables Ỹ = {Ỹ1, . . . , Ỹm}
represented in a graph. The two most common classes of PGMs are Bayesian networks (BNs) and
Markov Random Fields (MRFs) (Heckerman, 2008; Clifford, 1990). The core of the BN representa-
tion is a directed acyclic graph (DAG). As the name suggests, DAG can be represented by a graph
with no loopy structure where its vertices serve as random variables and directed edges serve as
dependency relationships between them. The direction of the edges determines the influence of one
random variable on another. Similarly, MRFs are also used to describe dependencies between random
variables in a graph. However, MRFs use undirected instead of directed edges and permit cycles.
An important assumption of MRFs is the Markov property i.e., for each pair of nodes (a, b) such as
eab /∈ EMRF, the node a is independent of the node b conditioned on v’s neighbors:

∀a ∈ V MRF, Ỹa ⊥ ỸV \N (a)|N (a).

An important special case of MRFs arises when they are applied to model a conditional probability
distribution P (Ỹ |Y, V MRF, EMRF), where Y = {Y1, . . . , Ym} are additional observed node features.
These types of graphs are called Conditioned Random Fields (CRFs) (Sutton et al., 2012; Wallach
et al., 2004). Formally, a CRF is Markov network over random variables Y and observation X , the
conditional distribution is defined as follows:

P (Ỹ |Y, V CRF, ECRF) =
1

Z(Y, V CRF, ECRF)
exp

−
∑

a∈V CRF

ϕa(Ỹa)−
∑

(a,b)∈ECRF

ϕab(Ỹa, Ỹb)

 ,

where Z(X , E) is the partition function, and ϕv(Yv, X,E) and ϕvu(Yv, Yu, X,E) are potential
functions contributed by each node v and each edge (u, v) and usually defined as simple linear
functions or learned by simple regression on the features (e.g., logistic regression).

4 ROBUSTCRF: A CRF-BASED ROBUSTNESS ENHANCEMENT MODEL

4.1 ADVERSARIAL ATTACKS

Let us consider our graph space (G, ∥·∥G), feature space (X , ∥·∥X ), and the label space (Y, ∥·∥Y ) to
be measurable spaces. Given a GNN f : (G,X ) → Y , as introduced in Section 3.1, an input data
point G ∈ G and its corresponding prediction y ∈ Y where f(G) = y, the goal of an adversarial
attack is to produce a perturbed graph G̃ slightly different from the original graph with its predicted
class being different from the predicted class of G. This could be formulated as finding a G̃ with
f(G̃) = ỹ ̸= y subject to d(G, G̃) < ϵ, with d being some distance function between the original
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and perturbed graphs. This could be a distance taking into account both the graph structure, in terms
of the adjacency matrix, and the corresponding node features, defined as,

dα,β([A,X], [Ã, X̃]) = min
P∈Π

{α∥A− PÃP⊤∥2 + β∥X − PX̃∥2},

The distance dα,β has already been used in the literature (Abbahaddou et al., 2024). This distance is
advantageous because it incorporates both the graph structure and the node features. The matrix P
corresponds to a permutation matrix used to order nodes from different graphs. By using Optimal
Transport, we find the minimum distance over the set of permutation matrices, which corresponds to
the optimal matching between nodes in the two graphs.

4.2 MOTIVATION

There are different theoretical definitions of robustness (Cheng et al., 2021; Weng et al., 2018), but
they all rely on one assumption: if two inputs are adjacent in the input space, their predictions should
be adjacent in the output space. For example, most existing approaches measure the robustness of a
neural network via the Attack Success Rate (ASR), the percentage of attack attempts that produce
successful adversarial examples, which implies that close input data should be predicted similarly
(Wu et al., 2021; Goodfellow et al., 2014). Additionally, there are also works that use the neural
networks distortion as a robustness metric (Cheng et al., 2021; Weng et al., 2018; Carlini & Wagner,
2016). Intuitively, large distortion implies potentially poor adversarial robustness since a small
perturbation applied to these inputs will lead to significant changes in the output. Consequently, most
robustness metrics measure the extent to which the network’s output is changed when perturbing the
input data, indicating the network’s vulnerability to adversarial attacks, which is directly equivalent to
our assumption. To respect this assumption, we construct a CRF, where the node set V CRF represents
the set of possible GNN inputs G × X , while the CRF edge set ECRF represents the set of pair
inputs ([G,X], [G̃, X̃]) such that [G̃, X̃] belongs to the ball B of radius r > 0 surrounding [G,X], as
follows:

B ([G,X] , r) =
{[
G̃, X̃

]
: dα,β([G,X], [G̃, X̃]) ≤ r

}
.

Our method examines how the model performs more generally within a defined neighborhood, instead
of considering the model’s behavior only under individual adversarial attacks. This perspective leans
towards a concept of average robustness, expanding on the conventional worst-case based adversarial
robustness that is often emphasized in adversarial studies (Abbahaddou et al., 2024). A similar
average robustness concept was studied and showed to be appropriate for computer vision (Rice
et al., 2021).

4.3 MODELING THE ROBUSTNESS CONSTRAINT IN A CRF

Let Ya be the output prediction of the trained GNN f on the input a = [G,X] ∈ V CRF. The
main goal of using a CRF is to update the predictions Y = {Ya|a ∈ V CRF} into new predictions
Ỹ = {Ỹa|a ∈ V CRF } that respect the robustness assumption. To do so, we model the relation
between the two predictions Y and Ỹ using a CRF, maximizing the following conditional probability:

P (Ỹ |Y, V CRF, ECRF) =
1

Z
exp

{
−

∑
a∈V CRF

ϕa(Ỹa, Ya)−
∑

b s.t. (a,b)∈ECRF

ϕab(Ỹa, Ỹb)

}
, (2)

where Z is the partition function, ϕa(Ỹa, Ya) and ϕab(Ỹa, Ỹb) are potential functions contributed by
each CRF node a and each CRF edge (a, b) and usually defined as simple linear functions or learned
by simple regression on the features (e.g., logistic regression). The potential functions ϕa and ϕab
can be either fixed or trainable to optimize a specific objective. In this paper, we define the potential
functions as follows: {

ϕa(Ỹa, Ya) = σ∥Ỹa − Ya∥22,
ϕab(Ỹa, Ỹb) = (1− σ)gab∥Ỹa − Ỹb∥22,

where gab denotes the similarity between two inputs a = [G,X] and b = [G̃, X̃]. Representing GNN
inputs in the CRF can be seen as a constraint problem to enhance the robustness: Finding a new
prediction Ỹa that meets the demands of the robustness objective, and at the same time stays as close
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as possible to the original prediction of the GNN, Ya = f(a) where a = [G,X] is a GNN input. The
parameter σ is used to adjust the importance of the two potential functions. In Figure 1, we illustrate
the main idea of the proposed RobustCRF model.

Now that we have defined the CRF and its potential functions, generating the new prediction
{Ỹp|p ∈ V CRF} is intractable for two reasons. First, the partition function Z is usually intractable.
Second, the CRF distribution P represents a potentially infinite collection of CRF edges ECRF. We
need, therefore, to derive a tractable algorithm to generate the smoothed prediction Ỹ . In what
follows, we show how to overcome these two challenges.

4.4 MEAN FIELD APPROXIMATION

We aim to derive the most likely Ỹ from the initial distribution P defined in Eq. 2, as:

Ỹ ∗ = argmaxP (Ỹ |Y, V CRF, ECRF). (3)

Since the inference is intractable, we used a Variational Inference method where we propose a family
of densities D and find a member Q∗ ∈ D which is close to the posterior P (Ỹ |Y, V CRF, ECRF). Thus,
we approximate the initial task in Equation 3 with a new objective:

{
Ỹ ∗ = argmaxỸ Q

∗(Ỹ ),
Q∗ = argminQ∈D KL (Q|P ) . (4)

The goal is to find the distribution Q∗ within the family D, which is the closest to the initial
distribution P . In this work, we used the mean-field approximation (Blei et al., 2016) that enforces
full independence among all latent variables. Mean field approximation is a powerful technique for
simplifying complex probabilistic models, widely used in various fields of machine learning and
statistics (Andrews & Baguley, 2017; Wang & Blei, 2013). Thus, the variational distribution over the
latent variables factorizes as:

∀Q ∈ D, Q(Ỹ ) =
∏

a∈V CRF

Qa(Ỹa). (5)

The exact formula of the optimal surrogate distribution Q can be obtained using Lemma 4.1. We
will use Coordinate Ascent Inference (CAI), iteratively optimizing each variational distribution and
holding the others fixed.

Lemma 4.1. By solving the system of Eq. 4, we can get the optimal distribution Q∗ as follows:

∀a ∈ V CRF, Qa(Ỹa) ∝ exp
{

E−a

[
logP

(
Ỹ |Y, V CRF, ECRF

)]}
. (6)

The proof of Lemma 4.1 is provided in Appendix B. CAI algorithm iteratively updates each Qa(Ỹa).
The ELBO converges to a local minimum. Using Equations 2 and 6, we get the optimal surrogate
distribution as follows:

∀a ∈ V CRF, Q(Ỹa) ∝ exp

{
σ∥Ỹa − Ya∥22 + (1− σ)

∑
b s.t. (a,b)∈ECRF

gab∥Ỹa − Ỹb∥22

}
. (7)

Thus, for each GNN input a ∈ V CRF, Qa(Ỹa) is a Gaussian distribution that reaches the highest
probability at its expectation:

∀a ∈ V CRF, argmaxQa =
σYa + (1− σ)

∑
b s.t. (a,b)∈ECRF gabỸb

σ + (1− σ)
∑

b s.t. (a,b)∈ECRF gab
. (8)

Using the CAI algorithm, we can thus utilize the following update rule:

∀a ∈ V CRF, Ỹ k+1
a =

σYa + (1− σ)
∑

b s.t. (a,b)∈ECRF gabỸ
k
b

σ + (1− σ)
∑

b s.t. (a,b)∈ECRF gab
. (9)
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4.5 REDUCING THE SIZE OF THE CRF

The number of possible inputs is usually very large for discrete data and infinite for continuous
data. This could make the inference intractable due to the potential large size of ECRF. Therefore,
instead of considering all the possible CRF neighbors of an input a, i.e., all inputs b ∈ V CRF such
that dα,β(a, b) ≤ r, we can consider only a subset of L neighbors by randomly sampling from the
CRF neighbors of p. The update rule in Eq. 9 becomes:

Ỹ k+1
a =

σYa + (1− σ)
∑

b∈UL(a) gabỸ
k
b

σ + (1− σ)
∑

b∈UL(a) gab
, (10)

where UL(a) denotes a set of L randomly sampled CRF neighbors of a graph [G,X]. Below, we
elaborate on how to uniformly sample a neighbor graph b surrounding a in the structural distances,
i.e., (α, β) = (1, 0).

Let A = {0, 1}n2

be the adjacency matrix space, where n is the number of nodes. A is a finite-
dimensional compact normed vector space, so all the norms are equivalent. Thus, all the induced
{Lp}p distances are equivalent. Without loss of generality, we can consider the L1 loss, which exactly
corresponds to the Hamming distance:

d1([G,X], [G̃, X̃]) =
∑
i≤j

|Ai,j − Ãi,j |,

where A, Ã corresponds to the adjacency matrix of the graphs G, G̃ respectively. Since we consider
undirected graphs, the Hamming distance takes only discrete values in {0, . . . , n(n+1)

2 }. In Lemma
4.2, we provide a lower bound for the size of CRF neighbors N CRF(a) = {b ∈ V CRF|(a, b) ∈ ECRF}
for any GNN input a ∈ V CRF . In Appendix A, we present the proof of Lemma 4.2 and we empirically
analyze the asymptotic behavior of this lower bound, motivating thus the need for sampling strategies
to reduce the size of the CRF.
Lemma 4.2. For any integer r in {0, . . . , n(n+1)

2 }, the number of CRF neighboors
∣∣N CRF(a)

∣∣ for
any a ∈ V CRF, i.e., the set of graphs [G̃, X̃] with a Hamming distance smaller or equal than r, have
the following lower bound:

∀a ∈ V CRF,
1√

4n(n+ 1)ϵ(1− ϵ)
.2H(ϵ)n(n+1)/2 ≤

∣∣N CRF(a)
∣∣ , (11)

where 0 ≤ ϵ = 2r
n(n+1) ≤ 1 and H(·) is the binary entropy function:

H(ϵ) = −ϵ log2(ϵ)− (1− ϵ) log2(1− ϵ).

To sample from B ([G,X] , r), we use a Stratified Sampling strategy. First, we sample a distance
value d from {0, 1, . . . , n2}. To do so, we partition B ([G,X] , r) with respect to their distance to the
original adjacency matrix A : Sd (A) = {A ∈ A|d1(A, Ã) = d},

B ([G,X] , r) =
⋃

d≤r Sd,
∀d ̸= d′, Sd ∩ Sd′ = ∅.

To each distance value d, we assign the portion of graphs covered by Sd (A) in A as:

∀d ∈ {0, . . . , r}, p(d) =
(
r

d

)
1

R
where R =

r∑
d=0

(
r

d

)
= 2r.

Second, we uniformly select d positions in the adjacency matrix to be modified and change the
element of the d positions by changing the value Ai,j to 1 − Ai,j . To uniformly sample neighbor
graphs when dealing with features-based distances for graphs, we used the sampling strategy of
Abbahaddou et al. (2024).

Our RobustCRF is an attack-independent and model-agnostic robustness approach based on uniform
sampling without requiring any training. Therefore, it can be used to enhance GNNs’ robustness

7
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Table 1: Attacked classification accuracy (± standard deviation) of the GCN, the baselines and the
proposed RobustCRF on different benchmark node classification datasets after the features based
attack application. 1⃝ test accuracy on the original features, 2⃝ test accuracy on the perturbed features.

Attack Model Cora CiteSeer PubMed CS Texas

1⃝ Clean

GCN 80.66 (0.41) 70.37 (0.53) 78.16 (0.67) 89.15 (2.06) 51.35 (18.53)
RGCN 77.64 (0.52) 69.88 (0.47) 75.58 (0.65) 92.05 (0.72) 51.62 (13.91)
GCORN 77.83 (2.33) 71.68 (1.54) 76.03 (1.29) 88.94 (1.86) 59.73 (4.90)
NoisyGCN 81.04 (0.74) 70.36 (0.79) 78.13 (0.53) 91.47 (0.92) 48.91 (20.02)
RobustCRF 80.63 (0.38) 70.30 (0.43) 78.20 (0.24) 88.16 (3.41) 61.08 (5.01)

2⃝

Random
(ψ = 0.5)

GCN 77.88 (0.90) 66.65 (1.00) 73.60 (0.75) 88.92 (2.04) 46.49 (15.75)
RGCN 67.61 (0.80) 59.76 (1.01) 61.93 (1.18) 90.74 (1.08) 43.51 (10.22)
GCORN 76.28 (1.96) 67.82 (2.18) 72.35 (1.43) 88.31 (2.10) 60.00 (4.95)
NoisyGCN 78.59 (1.09) 66.83 (0.98) 73.60 (0.58) 91.04 (0.85) 48.91 (19.29)
RobustCRF 78.28 (0.68) 68.23 (0.57) 74.37 (0.47) 88.30 (3.25) 57.30 (4.32)

PGD

GCN 76.38 (0.72) 67.57 (0.77) 74.86 (0.65) 86.90 (1.91) 52.97 (19.19)
RGCN 68.45 (0.97) 64.63 (0.82) 73.35 (0.81) 90.76 (0.68) 60.81 (10.27)
GCORN 73.32 (2.19) 69.05 (2.50) 74.49 (1.13) 87.07 (2.96) 59.73 (4.90)
NoisyGCN 76.29 (1.69) 67.09 (1.50) 75.04 (0.53) 88.79 (0.85) 52.97 (19.11)
RobustCRF 76.41 (0.70) 67.90 (0.63) 75.17 (0.91) 85.60 (2.75) 62.16 (4.83)

against unknown attack distributions. In Section 5, we will experimentally validate this theoretical
insight for the node classification task and demonstrate that RobustCRF has a good trade-off between
robustness and clean accuracy, i.e., the model’s initial performance on clean un-attacked dataset.
Moreover, the approach of our work and these baselines are fundamentally different, since our
RobustCRF is post-hoc, we can also use the baselines in combination with our proposed RoustCRF
approach to draw even more robust predictions. We report the results of this experiment in Table 2.
Remark 4.3. If we set the value of σ to 0, the number of iterations to 1, and all the similarity
coefficients to 1, this scheme corresponds to the standard randomized smoothing with the uniform
distribution. In this setting, we do not take into account the original classification task, which causes
a huge drop in the clean accuracy. Therefore, RobustCRF is a generalization of the randomized
smoothing that gives a better trade-off between accuracy and robustness.

5 EXPERIMENTAL SETUP

In this section, we shift from theoretical exploration to practical validation by evaluating the effective-
ness of RobustCRF on real-world benchmark datasets. We begin by detailing the experimental setup
employed, followed by a thorough presentation and analysis of the results. Our primary experimental
objective is to assess how well the proposed method enhances the robustness of a trained GNN.

5.1 EXPERIMENTAL SETUP

Datasets. For our experiments, we focus on node classification within the general perspective of
node representation learning. We use the citation networks Cora, CoraML, CiteSeer, and PubMed
(Sen et al., 2008). We additionally consider the co-authorship network CS (Shchur et al., 2018) and
the blog and citation graph PolBlogs (Adamic & Glance, 2005), and the non-homophilous dataset
Texas (Lim et al., 2021). More details and statistics about the datasets can be found in Table 3. For
the CS dataset, we randomly selected 20 nodes from each class to form the training set and 500/1000
nodes for the validation and test sets (Yang et al., 2016). For all the remaining datasets, we adhere to
the public train/valid/test splits provided by the datasets.

Implementation Details. We used the PyTorch Geometric (PyG) open-source library, licensed
under MIT (Fey & Lenssen, 2019). Additionally, for adversarial attacks in this study, we used the
DeepRobust package 1. The experiments were conducted on an RTX A6000 GPU. For the structure-
based CRF, we leveraged the sampling strategy detailed in Section 4. The set of hyperparameters
for each dataset can be found in Appendix C. We compute the similarity gab between two inputs
a = [G,X] and b = [G̃, X̃] using the Cosine Similarity for the features based attacks, namely

1https://github.com/DSE-MSU/DeepRobust

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Attacked classification accuracy (± standard deviation) of the baselines when combined
with the proposed RobustCRF on different benchmark node classification datasets after the features
based attack application.

Attack Model Cora CiteSeer PubMed Texas

Clean

RGCN 77.64 (0.52) 69.88 (0.47) 75.58 (0.65) 51.62 (13.91)
RGCN w/ RobustCRF 77.70 (0.46) 69.84 (0.39) 75.50 (0.60) 52.16 (14.20)
GCORN 77.83 (2.33) 71.68 (1.54) 76.03 (1.29) 59.73 (4.90)
GCORN w/ RobustCRF 78.50 (1.17) 71.72 (1.46) 76.13 (1.08) 59.77 (4.68)
NoisyGCN 81.04 (0.74) 70.36 (0.79) 78.13 (0.53) 48.91 (20.02)
NoisyGCN w/ RobustCRF 81.07 (0.70) 70.20 (0.85) 78.90 (0.46) 49.18 (19.59)

Random
(ψ = 0.5)

RGCN 67.61 (0.80) 59.76 (1.01) 61.93 (1.18) 43.51 (10.22)
RGCN w/ RobustCRF 69.08 (0.73) 60.04 (1.01) 63.05 (0.88) 45.05 (9.99)
GCORN 76.28 (1.96) 67.82 (2.18) 72.35 (1.43) 60.00 (4.95)
GCORN w/ RobustCRF 77.21 (1.17) 68.94 (3.00) 72.29 (1.29) 59.18 (3.71)
NoisyGCN 78.59 (1.09) 66.83 (0.98) 73.60 (0.58) 48.91 (19.29)
NoisyGCN w/ RobustCRF 81.07 (0.99) 67.04 (1.38) 74.18 (0.98) 45.94 (14.54)

PGD

RGCN 68.45 (0.97) 64.63 (0.82) 73.35 (0.81) 60.81 (10.27)
RGCN w/ RobustCRF 68.46 (0.93) 64.59 (0.84) 73.47 (0.72) 58.10 (11.09)
GCORN 73.32 (2.19) 69.05 (2.50) 74.49 (1.13) 59.73 (4.90)
GCORN w/ RobustCRF 73.65 (1.55) 69.09 (2.57) 74.59 (0.90) 60.27 (4.68)
NoisyGCN 76.29 (1.69) 67.09 (1.50) 75.04 (0.53) 52.97 (19.11)
NoisyGCN w/ RobustCRF 76.48 (1.65) 67.21 (1.35) 75.39 (0.45) 53.51 (19.07)

CosSim(X, X̃), while for the structural attacks, we use the prior distribution gab =
(
r
d

)
1
2r , where d is

the value of the Hamming distance between the original graph a and its sampled neighbor b. We note
that our code is provided in the supplementary materials and will be made public upon publication.

Attacks. We evaluate RobustCRF via the Attack Success Rate (ASR), the percentage of attack
attempts that produce successful adversarial examples. For the feature-based attacks, we consider
two main types: (1) we first consider a random attack which consists of injecting Gaussian noise
N (0, I) to the features with a scaling parameter ψ = 0.5; (2) we have additionally used the white-box
Proximal Gradient Descent (Xu et al., 2019a), which is a gradient-based approach to the adversarial
optimization task for which we set the perturbation rate to 15%. For the structural perturbations,
we evaluated RobustCRF using the “Dice” (Zügner & Günnemann, 2019) adversarial attack in a
black-box setting, where we consider a surrogate model. For this setting, we used an attack budget of
10% (the ratio of perturbed edges).

Baseline Models. When dealing with feature-based attacks, we compare RobustCRF with the
vanilla GCN (Kipf & Welling, 2017), the feature-based defense method RobustGCN (RGCN) (Zhu
et al., 2019), NoisyGNN (Ennadir et al., 2024), and GCORN (Abbahaddou et al., 2024). For the
structural attacks, we included RobustGCN (RGCN) and other baselines such as GNN-Jaccard
(Wu et al., 2019a), GNN-SVD (Entezari et al., 2020), GNNGuard (Zhang & Zitnik, 2020) and
GOOD-AT (Li et al., 2024). For all the models, we used the same number of layers T = 2, and
with a hidden dimension of 16. The models were trained using the cross-entropy loss function with
the Adam optimizer (Kingma & Ba, 2014), the number of epochs Nepochs = 300, and learning rate
0.01 were kept similar for the different approaches across all experiments. To reduce the impact of
random initialization, we repeated each experiment 10 times and used the train/validation/test splits
provided with the datasets when evaluating against the feature-based attacks, c.f. Table 1. When
evaluating against the structural attacks, c.f. Table 4, we used the split strategy of (Zügner et al.,
2018), i.e., we select the largest connected components of the graph and use 10%/10%/80% nodes
for training/validation/test.

5.2 EXPERIMENTAL RESULTS

Worst-Case Adversarial Evaluation. We now analyze the results of RobustCRF for the node
classification task. We additionally compared our approach with baselines on the large dataset
OGBN-Arxiv. We report all the results for the feature and structure-based adversarial attacks,
respectively, in Tables 1, 4, and 8. The results demonstrate that the performance of the GCN is
significantly impacted when subject to adversarial attacks of varying strategies. In contrast, the
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Table 3: Statistics of the node classification datasets used in our experiments.

Dataset #Features #Nodes #Edges #Classes

Cora 1,433 2,708 5,208 7
CoraML 300 2,995 8,226 7
CiteSeer 3,703 3,327 4,552 6
PubMed 500 19,717 44,338 3
CS 6,805 18,333 81,894 15
PolBlogs - 1,490 19,025 2
Texas 1,703 183 309 5
Ogbn-arxiv 128 31,971 71,669 40

Table 4: Attacked classification accuracy (± standard deviation) of the GCN, the baselines and the
proposed RobustCRF on different benchmark node classification datasets after the structural attack
application. 1⃝ test accuracy on the original structure, 2⃝ test accuracy on the perturbed structure.

Attack Model Cora CoraML CiteSeer PolBlogs

1⃝ Clean

GCN 83.42 (1.00) 85.60 (0.40) 70.66 (1.18) 95.16 (0.64)
RGCN 83.46 (0.53) 85.61 (0.61) 72.18 (0.97) 95.32 (0.76)
GCNGuard 83.72 (0.67) 85.54 (0.42) 73.18 (2.36) 95.07 (0.51)
GCNSVD 77.96 (0.61) 81.29 (0.51) 68.16 (1.15) 93.80 (0.73)
GCNJaccard 82.20 (0.67) 84.85 (0.39) 73.57 (1.21) 51.81 (1.49)
GOOD-AT 83.43 (0.11) 84.87 (0.15) 72.80 (0.45) 94.85 (0.52)
RobustCRF 83.52 (0.04) 85.69 (0.09) 72.16 (0.30) 95.40 (0.24)

2⃝ Dice

GCN 81.87 (0.73) 83.34 (0.60) 71.76 (1.06) 87.14 (0.86)
RGCN 81.27 (0.71) 83.89 (0.51) 69.45 (0.92) 87.35 (0.76)
GCNGuard 81.63 (0.74) 83.72 (0.49) 71.87 (1.19) 86.98 (1.26)
GCNSVD 75.62 (0.61) 79.13 (1.01) 66.10 (1.29) 88.50 (0.97)
GCNJaccard 80.67 (0.66) 82.88 (0.58) 72.32 (1.10) 51.81 (1.49)
GOOD-AT 82.21 (0.56) 84.16 (0.36) 71.43 (0.28) 90.93(0.38)
RobustCRF 82.44 (0.41) 84.71 (0.32) 71.48 (0.15) 90.46 (0.25)

proposed RobustCRF approach shows a substantial improvement in defense against these attacks
compared to other baseline models. Furthermore, in contrast to some other benchmarks, RobustCRF
offers an optimal balance between robustness and clean accuracy. Specifically, the proposed approach
effectively enhances the robustness against adversarial attacks while maintaining high accuracy on
non-attacked, clean datasets. This latter point makes RobustCRF particularly advantageous, as it
enhances the model’s defenses without compromising its performance on downstream tasks. In Table
2, we report the performance of the baselines when combined with RobustCRF. As noticed, for most
of the cases, we further enhace the robustness of the baselines when using RobustCRF.

Time and Complexity. We study the effect of the number of iterations K and the number of
samples L on the inference time. In Appendix D, we report the average time needed to compute
the RobustCRF inference. The results validate the intuitive fact that the inference time grows by
increasing K and L. We recall that we need to use the model LK times in the CRF inference.

6 CONCLUSION

This work addresses the problem of adversarial defense at the inference stage. We propose a model-
agnostic, post-hoc approach using Conditional Random Fields (CRFs) to enhance the adversarial
robustness of pre-trained models. Our method, RobustCRF, operates without requiring knowledge
of the underlying model and necessitates no post-training or architectural modifications. Extensive
experiments on multiple datasets demonstrate RobustCRF’s effectiveness in improving the robustness
of Graph Neural Networks (GNNs) against both structural and node-feature-based adversarial attacks,
while maintaining a balance between attacked and clean accuracy, typically preserving their perfor-
mance on clean, un-attacked datasets, which makes RobustCRF the best trade-off between robustness
and clean accuracy.
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A PROOF OF LEMMA 4.1

By solving the system of equations in equation 4, we can get the optimal distribution Q∗ as follows:

∀a ∈ V CRF, Q(Ỹa) ∝ exp
{

E−a

[
log P

(
Ỹ |Y, V CRF, ECRF

)]}
.

Proof. The KL-divergence includes the true posterior P (Ỹ |Y, V CRF, ECRF) which is exactly the
unknown value. We can rewrite the KL-divergence as:

KL (Q|P ) =
∫
Q(Ỹ ) log

Q(Ỹ )

P (Ỹ |Y, V CRF, ECRF)
dỸ

=

∫
Q(Ỹ ) log

Q(Ỹ )P (Y, V CRF, ECRF)

P (Ỹ , Y, V CRF, ECRF)
dỸ

=

∫
Q(Ỹ )

(
log P (Y, V CRF, ECRF) + log

Q(Ỹ )

P (Ỹ , Y, V CRF, ECRF)

)
dỸ

= log P (Y, V CRF, ECRF)

∫
Q(Ỹ )dỸ −

∫
Q(Ỹ ) log

P (Ỹ , Y, V CRF, ECRF)

Q(Ỹ )
dỸ .

Since
∫
Q(Ỹ )dỸ = 1, we conclude that:

KL (Q|P ) = log P (Y, V CRF, ECRF)−
∫
Q(Ỹ ) log

P (Ỹ , Y, V CRF, ECRF)

Q(Ỹ )
dỸ .

We are minimizing the KL−divergence over Q, therefore the term log P (Y, V CRF , ECRF ) can be
ignored. The second term is the This is the negative ELBO. We know that the KL−divergence is
not negative. Thus, log P (Y, V CRF, ECRF) ≥ ELBO(Q) justifying the name Evidence lower bound
(ELBO).

Therefore, the main objective is to optimize the ELBO in the mean field variational inference, i.e.,
choose the variational factors that maximize ELBO:

ELBO(Q) =∫
Q(Ỹ ) log

P (Ỹ , Y, V CRF, ECRF)

Q(Ỹ )
dỸ = EQ

[
log P (Ỹ , Y, V CRF, ECRF)

]
− EQ

[
log Q(Ỹ )

]
.

(12)

We will employ coordinate ascent inference, where we iteratively optimize each variational distribu-
tion while keeping the others constant.

We assume that the set of CRF nodes is finite, i.e.,
∣∣V CRF

∣∣ <∞, which is a realistic assumption if we
consider the set of all GNN inputs used during inference. If

∣∣V CRF
∣∣ = m, we can order the elements

V CRF in a a specific order i = 1, . . . ,m. Thus, using the chain rule, we decompose the probability
P (Ỹ , Y, V CRF, ECRF) as follows:

P (Ỹ , Y, V CRF, ECRF) = P (Ỹ1:m, Y1:m, V
CRF, ECRF)

= P (Y1:m, V
CRF, ECRF)

m∏
i=1

P (Ỹi|Y1:(i−1), V
CRF, ECRF).

Using the independence of the mean field approximation, we also have:

EQ

[
log Q(Ỹ )

]
=

m∑
i=1

EQj

[
log Q(Ỹj)

]
Now, we have the expression of the two terms appearing in ELBO in equation 12:

ELBO(Q) = log P (Y1:m, V
CRF, ECRF)+

m∑
i=1

EQ

[
log P (Ỹi|Y1:(i−1), V

CRF, ECRF)
]
−EQj

[
log Q(Ỹi)

]
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The above decomposition is valid for any ordering of the GNN inputs. Thus, for a fixed GNN input
a ∈ V CRF , if we consider a as the last variable m of the list, we can consider the ELBO as a function
of Q(Ỹa) = Q(Ỹm):

ELBO(Q(Ỹa)) = ELBO(Q(Ỹk))

= EQ

[
log P (Ỹm|Y1:(m−1), V

CRF, ECRF)
]
− EQm

[
log Q(Ỹm)

]
+ const

=

∫
Q(Ỹm)EQ̸=m

[
log P (Ỹm|Y̸=m, V

CRF, ECRF)
]
dỸm −

∫
Q(Ỹm)log Q(Ỹm)dỸm

=

∫
Q(Ỹa)EQ̸=a

[
log P (Ỹa|Y̸=a, V

CRF, ECRF)
]
dỸa −

∫
Q(Ỹa) log Q(Ỹa)dỸa,

where ̸= m means all indices except the mth. Now, we take the derivative of the ELBO with respect
to Q(Ỹa):

d ELBO
dQ(Ỹa)

= EQ̸=a

[
log P (Ỹa|Y̸=a, V

CRF, ECRF)
]
− log Q(Ỹa)− 1 = 0.

Therefore,
∀a ∈ V CRF, Q(Ỹa) ∝ exp

{
E−a

[
log P

(
Ỹ |Y, V CRF, ECRF

)]}
.
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B THE NUMBER OF CRF NEIGHBORS

B.1 PROOF OF LEMMA 4.2

For any integer r in {0, . . . , n(n+1)
2 }, the number of CRF neighboors

∣∣N CRF(a)
∣∣ for any a ∈ V CRF,

i.e., the set of graphs [G̃, X̃] with a Hamming Distance smaller or equal than r, have the following
lower bound:

∀a ∈ V CRF,
1√

4N(N + 1)ϵ(1− ϵ)
.2H(ϵ)N(N+1)/2 ≤

∣∣N CRF(a)
∣∣ , (13)

where 0 ≤ ϵ = 2r
n(n+1) ≤ 1 and H(·) is the he binary entropy function:

H(ϵ) = −ϵ log2(ϵ)− (1− ϵ) log2(1− ϵ).

Proof. We use Stirling’s formula;

∀s, s! =
√
2πssse−s exp

(
1

12s
− 1

360s3
+ . . .

)
. (14)

Thus, for r in {0, . . . , n(n+1)
2 } and L = n(n+1)

2 , we write

(n(n+1)
2

r

)
=

(
L

r

)
(15)

=
L

r!(L− r)!
(16)

≥
√
2πLLLe−L exp [−1/12r − 1/12(L− r)]√

2πrrre−r
√

2π(L− r)(L− r)(L−r)e−(L−r)
. (17)

For L ≥ 4, for any r ∈ {1, . . . , L}, we always have L− r ≥ 3 or r ≥, thus,
1

12r
+

1

12(L− r)
≤ 1

12
+

1

36
=

1

9
. (18)

Therefore,

exp

(
− 1

12r
− 1

12(L− r)

)
≥ 1

12
+

1

36
= e−1/9 ≥ 1

2

√
π. (19)

We can then therefore derive a lower bound for
(n(n+1)

2
r

)
:(n(n+1)

2

r

)
=

(
L

r

)
(20)

≥
√
2πLLLe−L 1

2

√
π

√
2πrrre−r

√
2π(L− r)(L− r)(L− r)e−(L−r)

(21)

=

√
LLL

√
8rrr

√
(L− r)(L− r)(L−r)

(22)

=

√
L

8r(L− r)

LL

rr(L− r)(L−r)
(23)

=
1√

8Lϵ(1− ϵ)

1

ϵr(1− ϵ)L−r
(24)

=
1√

8Lϵ(1− ϵ)
ϵ−Lϵ(1− ϵ)L(1−ϵ) (25)

=
1√

8Lϵ(1− ϵ)
2LH(ϵ). (26)
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For d in {0, . . . , n(n+1)
2 }, the number of possible graphs with a Hamming distance equal to d from a

graph a = [G, x] is
(
L
d

)
. Thus,

∣∣N CRF(a)
∣∣ = r∑

d=0

(
L

d

)
(27)

≥
(
L

r

)
(28)

≥ 1√
8Lϵ(1− ϵ)

2LH(ϵ) (29)

=
1√

4N(N + 1)ϵ(1− ϵ)
.2H(ϵ)N(N+1)/2. (30)

B.2 EMPIRICAL INVESTIGATION OF THE LOWER BOUND

We empirically investigate the evolution of the lower-bound stated in Lemma 4.2 as a function of
ratio ϵ = ϵ(r). As noticed, the number of neighbors increases exponentially as the radius increases.
This motivates the need for sampling strategies to reduce the size of the CRF.
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The evolution of the lowerbound when the number of nodes is n = 500

Figure 2: The effect of the radius on the lower bound stated in Lemma 4.2
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C THE SET OF HYPERPARAMETERS USED TO CONSTRUCT THE CRF

In Tables 5 and 6, we present the hyperparameters used to run the inference of RobustCRF for each
dataset. The number of iterations was fixed to 2. pr and we compute the radius as a floor function,
i.e.,r = ⌊pr ×m⌋, where m = |E| is the number of existing edges in the original graph.

Table 5: The optimal RobustCRF’s hyperparameters for each dataset when dealing with the feature-
based attacks.

Hyperparameter ora CiteSeer PubMed CS

r 0.1 0.9 0.3 0.3
σ 0.9 0.8 0.9 0.5

Table 6: The optimal RobustCRF’s hyperparameters for each dataset when dealing with the structure-
based attacks.

Hyperparameters Cora CoraML CiteSeer PolBlogs

pr 0.02 0.02 0.04 0.005
σ 0.05 0.2 0.05 0.05
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D TIME AND COMPLEXITY OF ROBUSTCRF

In Table 7, we present the average time (in seconds) required for RobustCRF inference. As observed,
the inference time increases exponentially with larger values of K and L. Nevertheless, empirical
evidence suggests that a small number of samples is sufficient to improve GNN robustness. In our
experiments, we specifically used L = 5 samples and set the number of iterations to 2.

Table 7: Inference time for different values of the number of iterations/samples.

Num Samples L 0 Iter 1 Iter 2 Iter

5 0.26± 0.52 1.99± 0.54 16.40± 2.04
10 0.20± 0.41 3.24± 0.47 58.28± 1.15
20 0.22± 0.44 5.86± 0.53 224.86± 0.71

E RESULS ON OGBN-ARXIV

Table 8: Attacked classification accuracy (± standard deviation) of the GCN, a baseline and the
proposed RobustCRF on the OGBN-Arxiv dataset.

Dataset GCN NoisyGCN RobustCRF

Clean 60.41 (0.15) 59.97 (0.11) 60.28 (0.15)
Random 58.97 (0.24) 58.71 (0.10) 59.03 (0.26)
PGD 50.24 (0.42) 50.26 (0.37) 50.10 (0.56)

19


	Introduction
	Related Work
	Preliminaries
	Graph Neural Networks
	Conditioned Random Fields

	RobustCRF: A CRF-based Robustness Enhancement Model
	Adversarial Attacks
	Motivation
	Modeling the Robustness Constraint in a CRF
	Mean Field Approximation
	Reducing the Size of the CRF

	Experimental Setup
	Experimental Setup
	Experimental Results

	Conclusion
	Proof of Lemma 4.1
	The Number of CRF Neighbors
	Proof of Lemma 4.2
	Empirical Investigation of the Lower Bound

	The Set of Hyperparameters Used to Construct the CRF
	Time and Complexity of RobustCRF
	Resuls on OGBN-Arxiv

