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Abstract

Existing subset selection methods for efficient learning predominantly employ
discrete combinatorial and model-specific approaches which lack generalizability.
For an unseen architecture, one cannot use the subset chosen for a different model.
To tackle this problem, we propose SUBSELNET, a trainable subset selection
framework, that generalizes across architectures. Here, we first introduce an
attention-based neural gadget that leverages the graph structure of architectures and
acts as a surrogate to trained deep neural networks for quick model prediction. Then,
we use these predictions to build subset samplers. This naturally provides us two
variants of SUBSELNET. The first variant is transductive (called as Transductive-
SUBSELNET) which computes the subset separately for each model by solving
a small optimization problem. Such an optimization is still super fast, thanks to
the replacement of explicit model training by the model approximator. The second
variant is inductive (called as Inductive-SUBSELNET) which computes the subset
using a trained subset selector, without any optimization. Our experiments show
that our model outperforms several methods across several real datasets.

1 Introduction

In the last decade, neural networks have drastically enhanced the performance of state-of-the-art ML
models. However, they often demand massive data to train, which renders them heavily contingent on
the availability of high-performance computing machineries such as GPUs and RAM. Such resources
entail heavy energy consumption, excessive CO2 emission, and maintenance cost.

Driven by this challenge, a recent body of work focuses on suitably selecting a subset of instances so
that the model can be trained quickly using lightweight computing infrastructure [4, 23, 51, 32, 54, 37,
18–21, 36]. However, these methods are not generalizable across architectures— the subset selected
by such a method is tailored to train only one specific architecture and thus need not be optimal
for training another architecture. Hence, to select data subsets for a new architecture, they need to
be run from scratch. However, these methods rely heavily on discrete combinatorial algorithms,
which impose significant barriers against scaling them for multiple unseen architectures. Appendix C
contains further details about related work.

1.1 Our contributions

Responding to the above limitations, we develop SUBSELNET, a trainable subset selection framework.
Specifically, we make the following contributions.

Novel framework on subset selection that generalizes across models. SUBSELNET is a subset
selector that generalizes across architectures. Given a dataset, once SUBSELNET is trained on a set
of model architectures, it can quickly select a small optimal training subset for any unseen (test)
architecture, without any explicit training of this test model. SUBSELNET is a non-adaptive method
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since it learns to select the subset before the training starts for a new architecture, instead of adaptively
selecting the subset during the training process. Our framework has several applications in the context
of AutoML [35, 68, 30, 43, 61, 9, 2, 24, 22, 3]. For example, Network Architecture Search (NAS)
can have a signficant speed-up when the architectures during selection can be trained on the subsets
provided by our method, as compared to the entire dataset. In hyperparameter selection, such as the
number and the widths of layers, learning rates or scheduler-specific hyperparameters, we can train
each architecture on the corresponding data subset obtained from our method to quickly obtain the
trained model for cross-validation.

Design of neural pipeline to eschew model training for new architecture. We initiate our
investigation by writing down a combinatorial optimization problem instance that outputs a subset
specifically for one given model architecture. Then, we gradually develop SUBSELNET, by building
upon this setup. The key blocker in scaling up a model-specific combinatorial subset selector across
different architectures is the involvement of the model parameters as optimization variables along with
the candidate data subset. We design the neural pipeline of SUBSELNET to circumvent this blocker
specifically. This neural pipeline consists of the following three components: (1) GNN-guided
architecture encoder: This converts the architecture into an embedded vector space. (2) Neural model
approximator: It approximates the predictions of a trained model for any given architecture. Thus,
it provides the accuracy of a new (test) model per instance without explicitly training it. (3) Subset
sampler: It uses the predictions from the model approximator and an instance to provide a selection
score of the instance. Due to the architecture encoder and the neural approximator, we do not need to
explicitly train a test model for selecting the subset since the model approximator directly provides
the predictions the model will make.

Transductive and Inductive SUBSELNET. Depending on the functioning of the subset sampler in
the final component of our neural pipeline, we design two variants of our model.

Transductive-SUBSELNET: The first variant is transductive in nature. For each new architecture, we
utilize the the model approximator’s predictions for replacing the model training step in the original
combinatorial subset selection problem. However, the candidate subset still remains involved as an
optimization variable. Thus, we still solve a fresh optimization problem with respect to the selection
score provided by the subset sampler every time we encounter a new architecture. However, the
direct predictions from the model approximator allow us to skip explicit model training, making this
strategy extremely fast in terms of memory and time.

Inductive-SUBSELNET: In contrast to Transductive-SUBSELNET, the second variant does not require
to solve any optimization problem and instead models the selection scores using a neural network.
Consequently, it is extremely fast.

We compare our method against six state-of-the-art methods on five real world datasets, which show
that SUBSELNET provides the best trade-off between accuracy and inference time as well as accuracy
and memory usage, among all the methods.

2 Preliminaries

Setting. We are given a set of training instances {(xi, yi)}i∈D where we use D to index the data.
Here, xi ∈ Rdx denotes the features, and yi ∈ Y denotes the labels. In our experiments, we consider
Y as a set of categorical labels. However, our framework can also be used for continuous labels. We
use m to denote a neural architecture and represent its parameterization as mθ. We also use M to
denote the set of neural architectures. Given an architecture m ∈ M, Gm = (Vm, Em) provides the
graph representation of m, where the nodes u ∈ Vm represent the operations and the e = (um, vm)
indicates an edge, where the output given by the operation represented by the node um is fed to one
of the operands of the operation given by the node vm. Finally, we use H(·) to denote the entropy of
a probability distribution and ℓ(mθ(x), y) as the cross entropy loss hereafter.

2.1 Combinatorial subset selection for efficient learning

Given a dataset {(xi, yi)}i∈D and a model architecture m ∈ M with its neural parameterization mθ,
the goal of a subset selection algorithm is to select a small subset of instances S with |S| = b << |D|
such that training mθ on the subset S gives nearly the same accuracy as training on the entire dataset
D. Existing works [20, 47, 19] adopt different strategies to achieve this goal, but all of them aim to
simultaneously optimize for the model parameters θ as well as the candidate subset S. At the outset,
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(b) Neural architecture of di↵erent components

Figure 1: Illustration of SUBSELNET. (a) Overview: Given a model architecture m ∈ M, SUB-
SELNET takes its graph Gm as input to the architecture encoder GNNα to compute the architecture
embedding. This, together with x is fed into the model approximator gβ which predicts the output of
the trained model mθ∗(x). Then this is fed as input to the subset sampler π to obtain the training
subset S. (b) Neural architecture of different components: GNNα consists of recursive message
passing layer. The model approximator gβ performs a BFS ordering on the emebddings Hm = {hu}
and feeds them into a transformer. Subset sampler optimizes for π either via direct optimization for π
(Transductive) or via a neural network πψ (Inductive).

we may consider the following optimization problem.

minimize
θ,S⊂D:|S|=b

∑

i∈S
ℓ(mθ(xi), yi)− λDIVERSITY({xi | i ∈ S}), (1)

where b is the budget, DIVERSITY({xi | i ∈ S}) measures the representativeness of S with respect
to the whole dataset D and λ is a regularizing coefficient. One can use submodular functions [11, 17]
like Facility Location, Graph Cut, or Log-Determinant to model DIVERSITY({xi | i ∈ S}). Here, λ
trades off between training loss and diversity.

Bottlenecks of the combinatorial optimization (1). For every new architecture m, one needs to
solve a fresh version of the optimization (1) problem from scratch to find S. Therefore, this is not
generalizable across architectures. Moreover, the involvement of both combinatorial and continuous
optimization variables, prevents the underlying solver from scaling across multiple architectures.

We address these challenges by designing a neural surrogate of the objective (1), which would lead to
the generalization of subset selection across different architectures.

3 Overview of SUBSELNET

Here, we give an outline of our proposed model SUBSELNET that leads to substituting the optimiza-
tion (1) with its neural surrogate, which would enable us to compute the optimal subset S for an
unseen model, once trained on a set of model architectures.

3.1 Components

At the outset, SUBSELNET consists of three key components: (i) the architecture encoder, (ii) the
neural approximator of the trained model, and (iii) the subset sampler. Figure 1 illustrates our model.

GNN-guided encoder for neural architectures. Generalizing any task across the different archi-
tectures requires the architectures to be embedded in vector space. Since a neural architecture is
essentially a graph between multiple operations, we use a graph neural network (GNN) [59] to achieve
this goal. Given a model architecture m ∈ M, we first feed the underlying DAG Gm into a GNN
(GNNα) with parameters α, which outputs the node representations for Gm, i.e., Hm = {hu}u∈Vm .

Approximator of the trained model mθ∗ . To tackle lack of generalizability of the optimization (1),
we design a neural model approximator gβ which approximates the predictions of any trained model
for any given architecture m. To this end, gβ takes input as Hm and the instance xi and compute
gβ(Hm,xi) ≈ mθ∗(xi). Here, θ∗ is the set of learned parameters of the model mθ on dataset D.

Subset sampler. We design a subset sampler using a probabilistic model Prπ(•). Given a budget
b, it sequentially draws instances S = {s1, ..., sb} from a softmax distribution of the logit vector
π ∈ R|D| where π(xi, yi) indicates a score for the element (xi, yi). We would like to highlight that
we use S as an ordered set of elements, selected in a sequential manner. However, such an order does
not affect the trained model, which is inherently invariant of permutations of the training data; it only
affects the choice of S. Now, depending on how we compute π during test, we have two variants of
SUBSELNET: Transductive-SUBSELNET and Inductive-SUBSELNET.
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Transductive-SUBSELNET: During test, since we have already trained the architecture encoder
GNNα and the model approximator gβ , we do not have to perform any training when we select a
subset for an unseen architecture m′, since the trained model can then be replaced with gβ(Hm′ ,xi).
Thus, the key bottleneck of solving the combinatorial optimization (1)— training the model simulta-
neously with exploring for S— is ameliorated. Now, we can perform optimization over π, each time
for a new architecture. However, since no model training is involved, such explicit optimization is
fast enough and memory efficient. Due to explicit optimization every time for an unseen architecture,
this approach is transductive in nature.

Inductive-SUBSELNET: Here, we introduce a neural network to approximate π, which is trained
together with GNNα and gβ . This allows us to directly select the subset S without explicitly
optimizing for π, unlike Transductive-SUBSELNET.

3.2 Training and inference

Training objective. Using the approximation gβ(Hm,xi) ≈ mθ∗(xi), we replace the combinatorial
optimization problem in Eq. (1) with a continuous optimization problem, across different model
architectures m ∈ M. To that goal, we define
Λ(S;m;π, gβ ,GNNα) =

∑
i∈S ℓ(gβ(Hm,xi), yi)− λH(Pr π(•)) with, Hm = GNNα(Gm) (2)

and seek to solve the following problem:

min
π,α,β

∑

m∈M
E

S∼Prπ

[
Λ(S;m;π, gβ ,GNNα) +

∑

i∈S
γKL(gβ(Hm,xi),mθ∗(xi))

]
(3)

Here, we use entropy on the subset sampler H(Prπ(•)) to model the diversity of samples in the
selected subset. We call our neural pipeline, which consists of architecture encoder GNNα, the model
approximator gβ , and the subset selector π, as SUBSELNET. In the above, γ penalizes the difference
between the output of the model approximator and the prediction made by the trained model, which
allows us to generalize the training of different models m ∈ M through the model gβ(Hm,xi).

4 Design of SUBSELNET

Bottlenecks of end-to-end training and proposed multi-stage approach. End-to-end optimization
of the above problem is difficult for the following reasons. (i) Our architecture representation Hm

only represents the architectures and thus should be independent of the parameters of the architecture
θ and the instances x. End-to-end training can make them sensitive to these quantities. (ii) To enable
the model approximator gβ accurately fit the output of the trained modelmθ, we need explicit training
for β with the target mθ.

In our multi-stage training method, we first train the architecture encoder GNNα, then the model
approximator gβ and then train our subset sampler Prπ (resp. Prπψ ) for the transductive (inductive)
model. In the following, we describe the design and training of these components in details.

4.1 Design of architecture encoder using graph neural network

Architectures can be represented as directed acyclic graphs with forward message passing. Dur-
ing forward computation, at any layer for node v, the output a(v) can be represented as a(v) =

Act
(∑

u∈InNbr(v) Opv(a(u))
)

with the root output as the input. Here, Act is the activation function
and Op• are operation on a node of the network. Given a GNN has a similar computation process, the
permutation-equivariant node representations generated are good representations of the operations
within the architecture. This allows further coupling with transformer-based architectures since they
are universal approximators of permutation equivariant functions [63].

Neural parameterization. Given a model m ∈ M, we compute the representations Hm =
{hu|u ∈ Vm} by using a graph neural network GNNα parameterized with α, following the proposal
of Yan et al. [59]. We first compute the feature vector fu for each node u ∈ Vm using the one-hot
encoding of the associated operation (e.g., max, sum) and then feeding it into a neural network to
compute an initial node representation hu[0] = INITNODEα(fu). Then, we use a message-passing
network, which collects signals from the neighborhood of different nodes and recursively computes
the node representations [59, 58, 12]. Given a maximum number of recursive layers K and the node
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u, we compute the node embeddings Hm = {hu|u ∈ Vm} by gathering information from the k < K
hops using K recursive layers as follows.

h(u,v)[k] = EDGEEMBα(hu[k],hv[k]), hu[k + 1] = UPDATEα

(
hu[k],

∑
v∈Nbr(u) h(u,v)[k]

)
(4)

Here, Nbr(u) is the set of neighbors of u. EDGEEMB is injective mappings, as used in [58]. Note
that trainable parameters from EDGEEMB and UPDATE are decoupled. They are represented as the
set of parameters α. Finally, we obtain our node representations as hu = [hu[0], ..,hu[K − 1]].

Parameter estimation. We perform unsupervised training of GNNα using a variational graph
autoencoder (VGAE). This ensures that the architecture representations Hm remain insensitive to the
model parameters. We build the encoder and decoder of our GVAE by following existing works on
graph VAEs [59, 46]. Given a graph Gm, the encoder q(Zm |Gm), which takes the node embeddings
{hu}u∈Vm and maps it into the latent space Zm = {zu}u∈Vm . Specifically, we model the encoder
q(Zm |Gm) as: q(zu |Gm) = N (µ(hu),Σ(hu)). Here, both µ and Σ are neural networks. Given a
latent representation Zm = {zu}u∈Vm , the decoder models a generative distribution of the graph Gm
where the presence of an edge is modeled as Bernoulli distribution BERNOULLI(σ(z⊤

u zv)). Thus,
we model the decoder as p(Gm | Z) =

∏
(u,v)∈Em σ(z

⊤
u zv) ·

∏
(u,v) ̸∈Em[1− σ(z⊤

u zv)]. Here, σ is a
parameterized sigmoid function. Finally, we estimate α, µ,Σ, and σ by maximizing the evidence
lower bound (ELBO): maxα,µ,Σ,σ EZ∼q(• |Gm)[p(Gm | Z)]− KL(q(• |Gm)||ppr(•)).

4.2 Design of model approximator

Neural parameterization. Having computed the architecture representation Hm = {hu |u ∈ Vm},
we next design the model approximator, which leverages these embeddings to predict the output
of the trained model mθ∗(xi). To this aim, we developed a model approximator gβ parameterized
by β that takes Hm and xi as input and attempts to predict mθ∗(xi), i.e., gβ(Hm,xi) ≈ mθ∗(xi).
It consists of three steps. In the first step, we generate an order on the nodes. Next, we feed the
representations {hu} in this order into a self-attention-based transformer layer. Finally, we combine
the output of the transformer and xi using a feedforward network to approximate the model output.

Node ordering using BFS order. We first sort the nodes using breadth-first-search (BFS) order ρ.
Similar to You et al. [62], this sorting method produces a sequence of nodes and captures subtleties
like skip connections in the network structure Gm.

Attention layer. Given the BFS order ρ, we pass the representations Hm = {hu |u ∈ Vm} in the
sequence ρ through a self-attention-based transformer network. Here, the Query, Key, and Value
functions are realized by linear networks on h•. We compute an attention-weighted vector ζu as:

Attu = W⊤
c

∑
v au,vValue(hv) with, au,v = SOFTMAXv

(
Query(hu)

⊤Key(hv)/
√
k
)

(5)

Here k is the dimension of the latent space, and the softmax operation is over the node v. Subsequently,
for each node u, we use a feedforward network, preceded and succeeded by layer normalization
operations to obtain an intermediate representation ζu for each node u. We present additional details
in Appendix D. Finally, we feed ζu for the last node u in the sequence ρ, i.e., u = ρ(|Vm|), along with
the feature xi into a feedforward network parameterized by WF to model the prediction mθ∗(xi).
Thus, the final output of gβ(Hm,xi) is

om,xi = FFWF
(ζρ(|Vm|),xi) (6)

Here, W•, parameters of Query, Key and Value and layer normalizations form β.

Parameter estimation. We train our model approximator gβ by minimizing the KL-Divergence
between the approximated prediction gβ(Hm,xi) and the ground truth prediction mθ∗(xi), where
both these quantities are probabilities across different classes. The training problem is as follows:

minimizeβ
∑
i∈D,m∈M KL(mθ∗(xi)||gβ(Hm,xi)) (7)

Generalization across architectures but not instances. Note that the goal of the model approximator
is to predict the output on x in the training set Dtr for unseen architecture m′ so that using these
predictions, our method can select the subset S from Dtr in a way that m′ trained on S shows high
accuracy on Dtest. Since the underlying subset S has to be chosen from the training set Dtr for an
arbitrary architecture m′, it is enough for the model approximator to mimic the model output only on
the training set Dtr— it need not have to perform well in the test set Dtest.
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4.3 Subset sampler and design of transductive and inductive SUBSELNET

Subset sampler. We draw S, an ordered set of elements, using π as follows. Having chosen the
first t instances St = {s1, ..st} from D with S0 = ∅, it draws the (t + 1)-th element (x, y) from
the remaining instances in D with a probability proportional to exp(π(x, y)) and then repeat it for b
times. Thus, the probability of selecting the ordered set of elements S = {s1, ..., sb} is given by

Pr π(S) =

b∏

t=0

exp(π(xst+1 , yst+1))∑
sτ∈D\St exp(π(xsτ , ysτ ))

(8)

The optimization (3) suggests that once GNNα and gβ are trained, we can use them to approximate
the output of the trained model mθ∗ for an unseen architecture m′ and use it to compute π. Thus, this
already removes a significant overhead of model training and facilitates fast computation of π, and
further leads us to develop Transductive-SUBSELNET and Inductive-SUBSELNET based on how we
can compute π, as described at the end of Section 3.1.

Transductive-SUBSELNET. The first variant of the model is transductive in terms of the computation
of π. Once we train the architecture encoder and the model approximator, we compute π by solving
the optimization problem explicitly with respect to π every time when we wish to select a data subset
for a new architecture. Given trained model GNNα̂, gβ̂ and a new architecture m′ ∈ M, we solve the
optimization problem to find the subset sampler Prπ during inference time for a new architecture m′.

minπ ES∈Prπ(•)Λ(S;m
′;π, gβ̂ ,GNNα̂) (9)

Such an optimization still consumes time during inference. However, it is still significantly faster
than the combinatorial methods [20, 19, 37, 47] thanks to sidestepping the explicit model training
using a model approximator.

Inductive-SUBSELNET. In contrast to the transductive model, the inductive model does not require
explicit optimization of π in the face of a new architecture. To that aim, we approximate π using a
neural network πψ which takes two signals as inputs— the dataset D and the outputs of the model
approximator for different instances {gβ̂(Hm,xi) | i ∈ D} and finally outputs a score for each
instance πψ(xi, yi). Here, the training of πψ follows from the optimization (3):

minψ
∑
m∈M ES∼Prπψ

Λ(S;m;πψ, gβ̂ ,GNNα̂) (10)
Such an inductive model can select an optimal distribution of the subset that should be used to
efficiently train any model mθ, without explicitly training θ or searching for the underlying subset.

Architecture of πψ for Inductive-SUBSELNET. We approximate π using πψ using a neural
network which takes three inputs – (xj , yj), the corresponding output of the model approximator, i.e.,
om,xj = gβ(GNNα(Gm),xj) from Eq. (6) and the node representation matrix Hm and provides
us a positive selection score πψ(Hm,xj , yj ,om,xj ). In practice, πψ is a three-layer feed-forward
network containing Leaky-ReLU activation functions for the first two layers and sigmoid activation
at the last layer.

4.4 Training and inference routines
Training. The training phase for both trans-
ductive and inductive variants, first utilizes the
TRAINPIPELINE(Algorithm 1) routine to train
the GNN (TRAINGNN), re-order the embed-
dings based on BFS ordering (BFS), train the
model approximator (TRAINAPPROX), to obtain
β̂. TRAINTRANSDUCTIVE(Algorithm 2) routine
doesn’t require any further training, while the
TRAININDUCTIVE(Algorithm 3) routine uses the
TRAINPI to train ψ for computing π.

Inference. Given a new architecture m′, our
goal is to select a subset S, with |S| = b
which would facilitate efficient training of m′.
Given trained SUBSELNET, we compute Hm′ =
GNNα̂(Gm′), compute the model approximator
output gβ̂(Hm′). Using them we compute π for

Algorithm 1 Training Pipeline

1: function TRAINPIPELINE(D,M, {θ∗})
2: α̂← TRAINGNN(M)
3: for m ∈Mtr do
4: Hm←GNNα̂(m), pos←BFS(Gm,Hm)

5: β̂ ← TRAINAPPROX(Hm, {xi}, pos, {θ∗})
6: return α̂, β̂,Hm

Algorithm 2 Transductive Procedure
1: function TRAINTRANSDUCTIVE(D,M, {θ∗})
2: α̂, β̂,Hm ←TRAINPIPELINE(D,M, {θ∗})
1: function INFERTRANSDUCTIVE(D, α̂, β̂,m′)
2: π∗←minπ ES∈Prπ(•)Λ(S;m

′;π, gβ̂ ,GNNα̂)

3: S∗ ∼ Prπ∗(•)
4: TRAINNEWMODEL(m′;S∗)

6



Transductive-SUBSELNET by explicitly solving
the optimization problem stated in Eq. 9 and draw
S ∼ Prπ(•). For the inductive variant, we draw
S ∼ Prπψ̂ (•) where ψ̂ is the learned value of ψ.

Given an unseen architecture m′ and trained pa-
rameters of SUBSELNET, i.e., α̂, β̂ and ψ̂, the IN-
FERTRANSDUCTIVE(Algorithm 2) routine solves
the optimization problem on π explicitly to com-
pute π, where Λ(·) is defined in Eq. (2).

Algorithm 3 Inductive Procedure
1: function TRAININDUCTIVE(D,M, {θ∗})
2: α̂, β̂,Hm ←TRAINPIPELINE(D,M, {θ∗})
3: o← [gβ̂({Hm,xi})]i,m
4: ψ̂ ← TRAINPI(o, {Hm}, {xi})
1: function INFERINDUCTIVE(D, α̂, β̂, ψ̂,m′)
2: Compute πψ̂(Hm′ ,xi, yi,om′,xi) ∀i ∈ D
3: S∗ ∼ Prπ

ψ̂
(•)

4: TRAINNEWMODEL(m′;S∗)

INFERINDUCTIVE (Algorithm 3) utilizes ψ̂, i.e., trained parameters from the subset sampler to
compute πψ̂. Then the subset S∗ is drawn from π or πψ and is used to train m′ using TRAINNEW-
MODEL.

5 Experiments
In this section, we provide comprehensive evaluation of SUBSELNET against several strong baselines
on five real world datasets. In Appendix E, we present additional results. Our code is in https:
//github.com/structlearning/subselnet.

5.1 Experimental setup

Datasets. We use FMNIST [56], CIFAR10 [26], CIFAR100 [25], Tiny-Imagenet-200 [27] and
Caltech-256 [13] (Cal-256). Cal-256 has imbalanced class distribution; the rest are balanced. We
transform an input image Xi to a vector xi of dimension 2048 by feeding it to a pre-trained ResNet50
v1.5 model [16] and use the output from the penultimate layer as the image representation.

Model architectures and baselines. We use model architectures from NAS-Bench-101 [61] in
our experiments. We compare Transductive-SUBSELNET and Inductive-SUBSELNET against
three non-adaptive subset selection methods – (i) Facility location [11, 17] where we maximize
FL(S) =

∑
j∈Dmaxi∈S x

⊤
i xj to find S, (ii) Pruning [48], and (iii) Selection-via-Proxy [5] and

four adaptive subset selection methods – (iii) Glister [20], (iv) Grad-Match [19], (v) EL2N [42] and
(vi) GraNd [42]. The non-adaptive subset selectors select the subset before the training begins and
thus, never access the rest of the training set again during the training iterations. On the other hand,
the adaptive subset selectors refine the choice of subset during training iterations and thus they need
to access the full training set at each training iteration. Appendix D contains additional details about
the baselines and Appendix E contains experiments with more baselines.

Evaluation protocol. We split the model architectures M into 70% training (Mtr), 10% validation
(Mval) and 20% test (Mtest) folds. However, training model approximator requires supervision from
the pre-trained models mθ∗ . Pre-training large number of models can be expensive. Therefore, we
limit the number of pre-trained models to a diverse set of size 250, that ensures efficient representa-
tion over low-parameter and high-parameter regimes, and using more than this showed no visible
advantage. We show the parameter statistics in Appendix D. However, for the architecture encoder,
we use the entire set Mtr for GNN training. We split the dataset D into Dtr, Dval and Dtest in the
similar 70:10:20 folds. We present Mtr, Mval, Dtr and Dval to our method and estimate α̂, β̂ and
ψ̂ (for Inductive-SUBSELNET model). None of the baseline methods supports any generalizable
learning protocol for different architectures and thus cannot leverage the training architectures during
test. Given an architecturem′ ∈ Mtest, we select the subset S fromDtr using our subset sampler (Prπ
for Transductive-SUBSELNET or Prπ

ψ̂
for Inductive-SUBSELNET). Similarly, all the non-adaptive

subset selectors select S ⊂ Dtr using their own algorithms. Once S is selected, we train the test mod-
els m′ ∈ Mtest on S. We perform our experiments with different |S| = b ∈ (0.005|D|, 0.9|D|) and
compare the performance between different methods using three quantities: (1) Relative Accuracy Re-
duction (RAR) computed as the drop in test accuracy on training with a chosen subset as compared to
training with the entire dataset, i.e, RAR(S,D) = 1

|Mtest|
∑
m′∈Mtest

(1− Acc(m′ |S)/Acc(m′ |D))

where Acc(m′ |X) denotes the test accuracy when m′ is trained on the set X . Lower RAR indicates
better performance. (2) Computational efficiency, i.e., the speedup achieved with respect to training
with full dataset. It is measured with respect to Tf/T . Here, Tf is the time taken for training with full
dataset; and, T is the time taken for the entire inference task, which is the average time for selecting
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Figure 2: Trade-off between RAR (lower is better) and speedup (top row) and RAR and memory
consumption in GB-min (bottom row) for the non-adaptive methods – Facility location [11, 17],
Pruning [48], Selection-via-Proxy [5] on all five datasets - FMNIST, CIFAR10 CIFAR100, Tiny-
ImageNet and Caltech-256. In all cases, we vary |S| = b ∈ (0.005|D|, 0.9|D|).
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Figure 3: Trade-off between RAR (lower is better) and speedup (top row) and RAR and memory
consumption in GB-min (bottom row) for the adaptive methods – Glister [20], Grad-Match [19],
EL2N [42]; GraNd [42] on all five datasets - FMNIST, CIFAR10 CIFAR100, Tiny-ImageNet and
Caltech-256. In all cases, we vary |S| = b ∈ (0.005|D|, 0.9|D|).

subsets across the test models m′ ∈ Mtest plus the average training time of these test models on the
respective selected subsets. (3) Resource efficiency in terms of the amount of memory consumed
during the entire inference task, described in item (2), which is measured as

∫ T
0

memory(t) dt where
memory(t) is amount of memory consumed at timestamp t in the unit of GB-min.

5.2 Results

Comparison with baselines. Here, we compare different methods in terms of the trade-off between
Relative accuracy reduction RAR (lower is better) and computational efficiency as well as RAR
and resource efficiency. In Figures 2 and 3, we probe the variation between these quantities by
varying the size of the selected subset |S| = b ∈ (0.005|D|, 0.9|D|) for non-adaptive and adaptive
baselines, respectively. We make the following observations. (1) Our methods trade-off between
accuracy vs. computational efficiency as well as accuracy vs. resource efficiency more effectively
than all the methods, including the adaptive methods which refine their choice of subset as the model
training progresses. (2) In FMNIST, our method achieves 10% RAR at ∼4.4 times the speed-up
and using 77% lesser memory than EL2N, the best baseline (Table 1, tables for other datasets are in
Appendix E). (3) There is no consistent winner across baselines. However, Glister and Grad-Match
mostly remain among top three baselines, across different methods. In particular, they outperform
others in Tiny-Imagenet and Cal-256, in high accuracy (low RAR) regime.
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Speedup Memory
RAR 10% 20% 10% 20%
GLISTER 5.64 7.85 116.36 98.51
GradMatch 4.17 5.24 243.75 136.40
EL2N 6.50 16.42 139.89 77.63
Inductive 28.64 69.24 22.73 8.24
Transductive 28.63 68.36 21.25 8.24

Table 1: Speedup and memory (GB-min) in
reaching 10% and 20% RAR on FMNIST
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Figure 4: Hybrid-SUBSELNET

Hybrid-SUBSELNET. In FMINST, CIFAR10 and CIFAR100, we observe that Transductive-
SUBSELNET offers better traded off than Inductive-SUBSELNET. Here, we design a hybrid version
of our model, called as Hybrid-SUBSELNET and evaluate it on a regime where the gap between
transductive and inductive SUBSELNET is significant. One of such regimes is the part of the trade-off
plot in CIFAR100, where the speed up Tf/T ≥ 28.09 (Figures 2 and 3). Here, given the budget of the
subset b, we first choose B > b instances using Inductive-SUBSELNET and the final b instances by
running the explicit optimization routines in Transductive-SUBSELNET. Figure 4 shows the results
for B = {25K, 30K, 35K, 45K, 50K} . We observe that Hybrid-SUBSELNET allow us to smoothly
trade off between Inductive-SUBSELNET and Transductive-SUBSELNET, by tuning B. It allows us
to effectively use resource-constrained setup with limited GPU memory, wherein the larger subset B
can be selected using Inductive-SUBSELNET on a CPU, and the smaller refined subset b can then be
selected by solving transductive variant on GPU.

Ablation study. Here, we experiment with three candidates of model approximator gβ ( Feedfor-
ward, LSTM and our proposed attention based approximator) with three different subset samplers
π (uncertainty based, loss based and our proposed subset sampler). Thus, we have nine differ-
ent combinations of model approximator and subset selection strategies. In the uncertainty and
loss based subset samplers, we take top-b instances based on the uncertainty and loss. We mea-
sure uncertainty using the entropy of the predicted distribution of the target classes. We compare
the performance in terms of the test RAR of the test architectures. Moreover, we also evaluate
the model approximator gβ alone — without the presence of the subset sampler — using KL di-
vergence between the gold model outputs and predicted model outputs on the training instances

1
|Dtr||Mtest|

∑
i∈Dtr,m∈Mtest

KL(mθ∗(xi)||gβ(Hm,xi)). Table 3 summarizes the results for 3%, 5%
and 10% subsets for CIFAR10. We make the following observations: (1) The complete design of our
method, i.e., Our model approximator (Transformer) + Our subset sampler (SUBSELNET) performs
best in terms of RAR. (2) Our neural-network for model approximator mimics the trained model
output better than LSTM and Feedforward architectures.

Can model approximator substitute our subset selector pipeline? The task of the model approximator
gβ is to predict accuracy for unseen architecture. Then, a natural question is that is it possible to
use the model approximator to directly predict accuracy of the unseen architecture m′, instead of
using such long pipeline to select subset S followed with training on S. However, as discussed
in the end of Section 4.2, the model approximator gβ is required to generalize across unseen
architectures but not the unseen instances, as its task is to help select the training subset. Table 3

b (in % ) 90% 70% 20%
RAR(our |S) - RAR(gβ) -0.487 -0.447 -0.327

Table 2: RAR using gβ on CIFAR10

already showed that gβ closely mimics the output
of the trained model for the unseen architecture
m′ ∈ Mtest and on training instances x (KL div.
column). Here, we investigate the performance
of gβ on the test instances and test architectures.
Table 2 shows that the performance of gβ on the test instances is significantly poorer than our method.
This is intuitive as generalizing both the model space and the instance space is extremely challenging,
and we also do not need it in general.

Using SUBSELNET in AutoML. AutoML-related tasks can be significantly sped-up when we
replace the entire dataset with a representative subset. Here, we apply SUBSELNET to two AutoML
applications: Neural Architecture Search (NAS) and Hyperparameter Optimization (HPO).
Neural Architecture Search: We apply our method on DARTS architecture space to search for an
architecture using subsets. During this search process, at each iteration, the underlying network is
traditionally trained on the entire dataset. In contrast, we train this underlying network on the subset
returned by our method for this architecture. Following Na et al. [39], we report test misclassification
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Design choice of gβ and π RAR KL-div
b = 0.03|D| b = 0.05|D| b = 0.1|D| (does not depend on b)

Feedforward (gβ)+ Uncertainty (π) 0.657 0.655 0.547
Feedforward (gβ)+ Loss (π) 0.692 0.577 0.523 0.171
Feedforward + Inductive (our) (π) 0.451 0.434 0.397
LSTM (gβ)+ Uncertainty (π) 0.566 0.465 0.438
LSTM (gβ)+ Loss (π) 0.705 0.541 0.455 0.102
LSTM (gβ)+ Inductive (our) (π) 0.452 0.412 0.386
Attn. (our) (gβ)+ Uncertainty (π) 0.794 0.746 0.679
Attn. (our) (gβ)+ Loss (π) 0.781 0.527 0.407 0.089
Attn. (our) (gβ)+ Inductive (our) (π) 0.429 0.310 0.260

Table 3: RAR and KL-divergence for different gβ + π on CIFAR10 for 3%, 5% and 10% subset sizes

b (in %) 10% 20% 40%
Full 2.78
Random 3.02 2.88 2.96
Proxy [39] 2.92 2.87 2.88
Our 2.82 2.76 2.68

Table 4: Test Error (%) on archi-
tecture given by NAS on CIFAR10

Method b = 5% b = 10%
TE S/U TE S/U

Full 2.48 1 2.48 1
Random 5.4 16.66 3.72 11.29
AUTOMATA 5.26 0.51 3.39 0.20
Our 4.11 16.11 2.70 10.96
Table 5: Test Error (%) (TE) and
Speed-up (S/U) for the hyperparame-
ters selected by HPO on CIFAR10

Method # Test Architectures
200 300 400

Full 7111 7111 7111
GLISTER 3419 3419 3419
GRAD-MATCH 2909 2909 2909
Our 1844 1635 1496
Table 6: Amortization cost (sec-
onds) after querying test architec-
tures on CIFAR10

error of the architecture which is selected by the corresponding subset selector guided NAS methods,
i.e., our method (transductive), random subset selection (averaged over 5 runs) and proxy-data [39].
Table 4 shows that our method performs better than the baselines.
Hyperparameter Optimization: Finding the best set of hyperparameters from their search space
for a model is computationally intensive. We look at speeding-up the tuning process by searching
the hyperparameters while training the model on a small representative subset S instead of D.
Following Killamsetty et al. [22], we consider optimizer and scheduler specific hyperparameters
and report average test misclassification error across the models trained on optimal hyperparameter
choice returned by our method (transductive), random subset selection (averaged over 5 runs) and
AUTOMATA [22]. Table 5 shows that we are outperforming the baselines in terms of accuracy-
speedup tradeoff. Appendix D contains more details about the implementation.

Amortization Analysis. Figures 2 and 3 show that our method is substantially faster than the baselines
during inference, once we have our neural pipeline trained. Such inference time speedup is the focus
of many other applications, E.g., complex models like LLMs are difficult and computationally
intensive, but their inference is fast for several queries once trained. However, we recognize that there
is a computational overhead in training our model, arising due to the pre-training of the models mθ∗

used for supervision. Since the prior training is only a one-time overhead, the overall cost is amortized
by querying multiple architectures for their subsets. We measure amortized cost Ttotal/Mtotal (time in
seconds), where Ttotal is the total time used from beginning of the pipeline to end of reporting final
accuracy on the test architectures and Mtotal is the total number of training and test architectures.
Table 6, shows the results for 10% subset on the top baselines for CIFAR10, which shows that the
training overhead of our method (transductive) quickly diminishes with number of test architectures.

6 Conclusion
In this work, we develop SUBSELNET, a subset selection framework, which can be trained on a set
of model architectures, to be able to predict a suitable training subset before training a model, for an
unseen architecture. To do so, we first design a neural architecture encoder and model approximator,
which predicts the output of a new candidate architecture without explicitly training it. We use that
output to design transductive and inductive variants of our model.

Limitations. The SUBSELNET pipeline offers quick inference-time subset selection but a key
limitation of our method is that it entails a pre-training overhead, although its overhead vanishes as
we query more architectures. Such expensive training can be reduced by efficient training methods
[65]. In future, it would be interesting to incorporate signals from different epochs with a sequence
encoder to train a subset selector. Apart from this, our work does not assume the distribution shift of
architectures from training to test. If the architectures vary significantly from training to test, then
there is significant room for performance improvement.
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Efficient Data Subset Selection to Generalize Training Across
Models: Transductive and Inductive Networks

(Appendix)

A Limitations

While our work outperforms several existing subset selection methods, it suffers from three key
limitations.

(1) We acknowledge that there indeed is a computation time for pre-training the model approximator.
However, as we mentioned in amortization analysis in Section 5.2, the one-time overhead is offset
quickly by the speed and effectiveness of the following selection pipeline for the subset selection
of unseen architectures. Since the prior training is only a one-time overhead, the overall cost is
amortized by the number of unseen architectures during inference time training. In practice, when it
is used to predict the subset for a large number of unseen architectures, the effect of training overhead
quickly vanishes. As demonstrated by our experiments (Figures 2 and 3, Table 6), once the pipeline
of all the neural networks is set up, the selection procedure is remarkably fast and can be easily
adapted for use with unseen architectures.

To give an analogy, premier search engines invest a lot of resources in making fast inferences rather
than training. They build complex models that are difficult and computationally intensive, but their
inference is fast for several queries once trained. Thus, the cost is amortized by the large number of
queries. Another example is locality-sensitive hashing. Researchers design trainable models for LSH
whose purpose is to make fast predictions. Training LSH models can take a lot of time, but again this
cost is amortized by the number of unseen queries.

Finally, we would like to highlight many efficient model training methods without complete training
(running a few epochs via curriculum learning [66]), which one can easily explore and plug with our
method for a larger dataset like Imagenet-1K.

(2) We use the space of neural architectures which comprises only of CNNs. We did not experiment
with sequence models such as RNNs or transformers. However, we believe that our work can be
extended with RNNs or transformer based architectures.

(3) If the distribution of network architectures varies widely from training to test, then there is
significant room for performance improvement. In this context, one can develop domain adaptation
methods for graphs to tackle different out-of-distribution architectures more effectively.

B Broader Impact

Our work can be used to provide significant compute efficiency by the trainable subset selection
method we propose. It can be used to save a lot of time and power, that ML model often demands.
Specifically, it can be used in the following applications in the context of AutoML.

Fast tuning of hyperparameters related to optimizer/training. Consider the case where we need
to tune non-network hyperparameters, such as learning rate, momentum, and weight decay. Given
the architecture, we can choose the subset obtained using our method to train the underlying model
parameters for different hyperparameters, which can then be used for cross-validation. Note that we
would use the same subset in this problem since the underlying model architecture is fixed, and we
obtain a subset for the given architecture independent of the underlying non-network hyperparameters.
We have shown utility of our method in our experiments in Section 5.2.

Fast tuning of model related hyperparameters. Consider the case where we need to tune network-
related hyperparameters, such as the number of layers, activation functions, and the width of interme-
diate layers. Instead of training each instance of these models on the entire data, we can train them
on the subset of data obtained from our method to quickly obtain the trained model, which can then
be used for cross-validation.

Network architecture search. As we shown in our experiments, our method can provide speedup
in network architecture search. Here, instead of training the network the entire network during
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architecture exploration, we can restrict the training on a subset of data, which can provide significant
speedup.

Note that, the key goal of our method is design a trainable subset selection method that generalizes
across architectures. As we observed in our experiments, these methods can be useful in the above
applications— however, our method is a generic framework and not tailored to any one of the above
applications. Therefore, our method may need application specific modifications before directly
deploying it practice. However, our method can serve as a base model for the practitioner who intends
to speed up for one of the above applications.

We do not foresee any negative social impact of our work.

C Additional discussion on related work

Our work is closely related to representation learning for model architectures, network architecture
search, data subset selection.

Representation learning for model architectures. Recent work in network representation learning
use GNN based encoder-decoder to encapsulate the local structural information of a neural network
into a fixed-length latent space [64, 40, 59, 34]. By employing an asynchronous message passing
scheme over the directed acyclic graph (DAG), GNN-based methods model the propagation of
input data over the actual network structure. Apart from encodings based solely on the structure
of the network, White et al. [55], Yan et al. [60] produce computation-aware encodings that map
architectures with similar performance to the same region in the latent space. Following the work
of Yan et al. [59], we use a graph isomorphism network as an encoder but instead of producing a
single graph embedding, our method produces a collection of node embeddings, ordered by breadth-
first-search (BFS) ordering of the nodes. Our work also differs in that we do not employ network
embeddings to perform downstream search strategies. Instead, architecture embeddings are used in
training a novel model approximator that predicts the logits of a particular architecture, given an
architecture embedding and a data embedding.

Machine learning on architecture space. We use NAS-Bench-101 in our method. This dataset was
built in the context of network architecture search (NAS). The networks discovered by NAS methods
often come from an underlying search space, usually designed to constrain the search space size.
One such method is to use cell-based search spaces [35, 68, 30, 43, 61, 9]. Although we utilize the
NAS-Bench-101 search space for architecture retrieval, our work is fundamentally different from
NAS. In contrast to the NAS methods, which search for the best possible architecture from the search
space using either sampling or gradient-descent based methods [1, 67, 44, 45, 31, 49], our work
focuses on efficient data subset selection given a dataset and an architecture, which is sampled from a
search space. Our work utilizes graph representation learning on the architectures sampled from the
mentioned search spaces to project an architecture under consideration to a continuous latent space,
utilize the model expression from the latent space as proxies for the actual model and proceed with
data subset selection using the generated embedding, model proxy and given dataset.

Data subset selection. Data subset selection is widely used in literature for efficient learning, coreset
selection, human centric learning, etc. Several works cast the efficient data subset selection task
as instance of submodular or approximate-submodular optimization problem [19, 51–53, 20, 47].
Another line of work focus on selecting coresets which are expressed as the weighted combination of
subset of data, approximating some characteristics, e.g., loss function, model prediction [10, 37, 15,
4, 33]. Among other works, Toneva et al. [50] showed coresets can be selected by omitted several
instances based on the forgetting dynamics at the time of training. Na et al. [39] selects proxy data
based on entropy of the model. Coleman et al. [5] uses proxy model and then use it for coreset
selection. Guo et al. [14] develop a library on coreset selection.

Our work is closely connected to simultaneous model learning and subset selection [7, 6, 47]. These
existing works focus on jointly optimizing the training loss, with respect to the subset of instances
and the parameters of the underlying model. Among them [7, 6] focus on distributing decisions
between human and machines, whereas [47] aims for efficient learning. However, these methods
adopt a combinatorial approach for selecting subsets and consequently, they are not generalizable
across architectures. In contrast, our work focuses on differentiable subset selection mechanism,
which can generalize across architectures.
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D Additional details about experimental setup

D.1 Dataset

Datasets (D).
Dataset No. of Classes Imbalanced Train-Test Split Shape Transformations Applied

FMNIST 10 ✗ (60K,10K) 28x28x1 Normalize

CIFAR10 10 ✗ (50K,10K) 32x32x3 RandomHorizontalFlip, RandomCrop, Normalize

CIFAR100 100 ✗ (50K,10K) 32x32x3 RandomHorizontalFlip, RandomCrop, Normalize

Tiny-Imagenet 200 ✗ (100K,10K) 64x64x3 RandomHorizontalFlip, RandomVerticalFlip, Normalize

Caltech-256 257 ✓ (24.5K,6.1K) 96x96x3 RandomHorizontalFlip, Resize, Normalize

Table 7: A brief description of the datasets used along with the transformations applied during training

Architectures (M). We leverage the NASBench-101 search space as an architecture pool. It consists
of 423, 624 unique architectures with the following constraints – (1) number of nodes in each cell
is at most 7, (2) number of edges in each cell is at most 9, (3) barring the input and output, there
are three unique operations, namely 1× 1 convolution, 3× 3 convolution and 3× 3 max-pool. We
utilize the architectures from the search space in generating the sequence of embeddings along with
sampling architectures for the training and testing of the encoder and datasets for the subset selector.
As mentioned in the experimental setup, pre-training large number of models can be expensive.

Figure 5: Distribution of parameters of architectures in Mtr when |Mtr| = 423k (blue), and Mtr
with the sampled set of 250 architectures (orange).

Therefore, we choose a diverse subset of architectures from Mtr of size 250 that ensures efficient
representation over low-parameter and high-parameter regimes. The distributions of true and sampled
architectures are given in Figure 5.

Note that the pre-training can be made faster by efficient model training methods without complete
training (running a few epochs via curriculum learning [66]), which can be easily plugged with our
method.

D.2 Implementation details about baselines

Facility Location (FL). We implemented facility location on all the three datasets using the apricot 1

library. The similarity matrix was computed using Euclidean distance between data points, and the
objective function was maximized using the naive greedy algorithm.

Pruning. It selects a subset from the entire dataset based on the uncertainty of the datapoints while
partial training. In our setup, we considered ResNet-18 as a master model, which is trained on each
dataset for 5 epochs. Post training, the uncertainty measure is calculated based on the probabilities of
each class, and the points with highest uncertainty are considered in the subset. We train the master
model at a learning rate of 0.025.

Proxy. It selects a subset

Glister and Grad-Match. We implemented GLISTER [20] and Grad-Match [19] using the CORDS
library. We trained the models for 50 epochs, using batch size of 20, and selected the subset after
every 10 epochs. The loss was minimized using SGD with learning rate of 0.01, momentum of 0.9
and weight decay with regularization constant of 5× 10−4. We used cosine annealing for scheduling

1https://github.com/jmschrei/apricot
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the learning rate with Tmax of 50 epochs, and used 10% of the training data as the validation set.
Details of specific hyperparameters for stated as follows.

Glister uses a greedy selection approach to minimize a bi-level objective function. In our implemen-
tation, we used stochastic greedy optimization with learning rate 0.01, applied on the data points of
each mini-batch. Online-Glister approximates the objective function with a Taylor series expansion
up to an arbitrary number of terms to speed up the process; we used 15 terms in our experiments.

Grad-Match applies the orthogonal matching (OMP) pursuit algorithm to the data points of each
mini-batch to match gradient of a subset to the entire training/validation set. Here, we set the learning
rate is set to 0.01. The regularization constant in OMP is 1.0 and the algorithm optimizes the objective
function within an error margin of 10−4.

GraNd. This is an adaptive subset selection strategy in which the norm of the gradient of the loss
function is used as a score to rank a data point. The gradient scores are computed after the model has
trained on the full dataset for the first few epochs. For the rest of epochs, the model is trained only on
the top-k data points, selected using the gradient scores. In our implementation, we let the model
train on the full dataset for the first 5 epochs, and computed the gradient of the loss only with respect
to the last layer fully connected layer.

EL2N. When the loss function used to compute the GraNd scores is the cross entropy loss, the norm
of the gradient for a data point x can be approximated by E||p(x)− y||2, where p(x) is the discrete
probability distribution over the classes, computed by taking softmax of the logits, and y is the
one-hot encoded true label corresponding to the data point x. Similar to our implementation of GraNd,
we computed the EL2N scores after letting the models train on the full data for the first 5 epochs.

D.3 Implementation details about our model

GNNα. As we utilize NASBench-101 space as the underlying set of neural architectures, each
computational node in the architecture can comprise of one of five operations and the one-hot-
encoded feature vector fu. Since the set is cell-based, there is an injective mapping between the
neural architecture and the cell structure. We aim to produce a sequence of embeddings for the cell,
which in turn corresponds to that of the architecture. For each architecture, we use the initial feature
fu ∈ R5 in as a five dimensional one-hot encoding for each operation. This is fed into INITNODE to
obtain an 16 dimensional output. Here, INITNODE consists of a 5× 16 linear, ReLU and 16× 16
linear layers cascaded with each other. Each of EDGEEMBED and UPDATE consists of a 5 × 128
linear-BatchNorm-ReLU cascaded with a 128× 16 linear layer. Moreover, the symmetric aggregator
is a sum aggregator.

We repeat this layer K times, and each iteration gathers information from k < K hops. After all the
iterations, we generate an embedding for each node, and following [62] we use the BFS-tree based
node-ordering scheme to generate the sequence of embeddings for each network.

The GVAE-based architecture was trained for 10 epochs with the number of recursive layers K set
to 5, and the Adam optimizer was used with learning rate of 10−3. The entire search space was
considered as the dataset, and a batch-size of 32 was used. Post training, we call the node embeddings
collectively as the architecture representation.

To train the latent space embeddings, the parameters α are trained in an encoder-decoder fashion
using a variational autoencoder. The mean µ and variance σ on the final node embeddings hu are:

µ = FCN
([

hu
]
u∈Vm

)
and σ = exp

(
FCN

([
hu

]
u∈Vm

))

The decoder aims to reconstruct the original cell structure (i.e the nodes and the corresponding
operations), which are one-hot encoded. It is modeled using single-layer fully connected networks
followed by a sigmoid layer.

Model Approximator gβ . The model approximator gβ is essentially a single-head attention block
that acts on a sequence of node embeddings Hm = {hu|u ∈ Vm}. The Query, Key and Value are
three linear networks with parameters: Wquery, Wkey and Wvalue ∈ R16×8. Note that the matrix
WC ∈ R8×16 in Eq. (5). As described in Section 4.2, for each node u, we use a feedforward network,
preceded and succeeded by layer normalization operations, which are given by the following set of
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Figure 6: Kullback-Leibler divergence values (KL(mθ∗(xi) || gβ(Hm,xi))) computed during the
training of the model encoder gβ over 80 epochs.

equations (where LN the denotes Layer-Normalization operation):
ζu,1 = LN(Attu + hu; γ1, γ2),

ζu,2 = W⊤
2 RELU(W⊤

1 ζu,1),

ζu,3 = LN(ζu,1 + ζu,2; γ3, γ4)

The fully connected network acting on ζu,1 consists of matrices W1 ∈ R16×64 and W2 ∈ R64×16.
All the trainable matrices along with the layer normalizations were implemented using the Linear
and LayerNorm functions in Pytorch. The last item of the output sequence ζu,3 is concatenated with
the data embedding xi and fed to another 2-layer fully-connected network with hidden dimension 256
and dropout probability of 0.3. The model approximator is trained by minimizing the KL-divergence
between gβ(Hm,xi) and mθ∗(xi). We used an AdamW optimizer with learning rate of 10−3,
ϵ = 10−8, betas = (0.9, 0.999) and weight decay of 0.005. We also used Cosine Annealing to
decay the learning rate, and used gradient clipping with maximum norm set to 5. Figure 6 shows the
convergence of the outputs of the model approximator gβ(Hm,xi) with the outputs of the model
mθ∗(xi).

Neural Network πψ. The inductive model is a three-layer fully-connected neural network with
two Leaky ReLU activations and a sigmoid activation after the last layer. The input to πψ is the
concatenation (Hm;om,i;xi; yi). The hidden dimensions of the two intermediary layers are 64 and
16, and the final layer is a single neuron that outputs the score corresponding to a data point xi.
While training πψ we add a regularization term λ′(

∑
i∈D πψ(Hm,om,i,xi, yi)− |S|) to ensure that

nearly |S| samples have high scores out of the entire dataset D. Both the regularization constants λ
(in equation 3) and λ′ are set to 0.1. We train the model weights using an Adam optimizer with a
learning rate of 0.001. During training, at each iteration we draw instances using Prπ and use the
log-derivative trick to compute the gradient of the objective. During each computation step, we use
one instance of the ranked list to compute the unbiased estimate of the objective in (3).

D.4 Hyperparameter Optimization

The hyperparameter search was done over optimizer and scheduler-based hyperparameters using
Ray Tune [29]. We set the possible optimizers to be SGD, Adam and RMSprop, and the possible
schedulers to be CosineAnnealing and StepLR. The search space parameters are given below:

• Optimizers
1. SGD: learning_rate ∈ (0.001, 0.1), momentum ∈ (0.7, 1.0), weight_decay ∈

(0.01, 0.0001)
2. Adam: learning_rate ∈ (0.001, 0.1), weight_decay ∈ (0.01, 0.0001)
3. RMSprop: learning_rate ∈ (0.001, 0.1), momentum ∈ (0.7, 1.0), weight_decay

∈ (0.01, 0.0001)
• Schedulers

1. StepLR: step_size ∈ [10, 20, 30, 40], gamma ∈ (0.05, 0.5)
2. CosineAnnealingLR

We employ TPE [2] as the hyperparameter search algorithm, and ASHA [28] as the hyperparameter
scheduling algorithm. The hyperparameter search runs for 100 epochs in all cases. The random
baseline is run for 5 runs, and we report the average speedup and test error.
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E Additional experiments

E.1 Comparison with additional baselines

Here, we compare the performance of SUBSELNET against two baselines. They are the two variants
of our method–Bottom-b-loss and Bottom-b-loss+gumbel.

In Bottom-b-loss, we sort the data instances based on their predicted loss ℓ(gβ(Hm,x), y) and
consider those points with the bottom b values.

In Bottom-b-loss+gumbel, we add noise sampled from the gumbel distribution with µgumbel = 0 and
βgumbel = 0.025, and sort the instances based on these noisy loss values, i.e., ℓ(gβ(Hm,x), y) +
Gumbel(0, βgumbel = 0.025).

Figure 7 compares the performance of the variants of SUBSELNET, Bottom-b-loss, and Bottom-b-
loss+gumbel. We observe that Bottom-b-loss and Bottom-b-loss+gumbel do not perform that well in
spite of being efficient in terms of time and memory.

103 104

∫ T
0 memory(t)dt→

0.0
0.1

Transductive-SubSelNet

Inductive-SubSelNet

Bottom-b-loss

Bottom-b-loss+gumbel

101 102

Speed up (Tf/T )→

0.2

0.4

0.6

0.8

1.0

R
A

R
→

101 102

Speed up (Tf/T )→

0.2

0.4

0.6

0.8

1.0

101 102

Speed up (Tf/T )→

0.2

0.4

0.6

0.8

1.0

101 102

Speed up (Tf/T )→

0.2

0.4

0.6

0.8

1.0

101 102

Speed up (Tf/T )→

0.2

0.4

0.6

0.8

1.0

101 102

∫ T
0 memory(t)dt→

0.2

0.4

0.6

0.8

1.0

R
A

R
→

(a) FMNIST

101 102

∫ T
0 memory(t)dt→

0.2

0.4

0.6

0.8

1.0

(b) CIFAR10

101 102

∫ T
0 memory(t)dt→

0.2

0.4

0.6

0.8

1.0

(c) CIFAR100

103 104

∫ T
0 memory(t)dt→

0.2

0.4

0.6

0.8

1.0

(d) TINY-IN

103 104

∫ T
0 memory(t)dt→

0.2

0.4

0.6

0.8

1.0

(e) CAL-256

Figure 7: Comparison of Transductive-SUBSELNET and Inductive-SUBSELNET with Bottom-b-loss
and Bottom-b-loss+gumbel. In Bottom-b-loss, we select top-b instances in terms of their predicted
loss ℓ(gβ(Hm,x), y) computed using the model approximator. In Bottom-b-loss+gumbel, we add
gumbel noise Gumbel(0, 0.025) to the loss and sort the instances based on these noisy loss values.

E.2 Comparison of performance on ImageNet

Here, we compare the performance of SUBSELNET against two baselines: Selection-via-Proxy [5]
and Pruning [48] on ImageNet-1K (1.28M images) [8] for b ∈ (0.05|D|, 0.8|D|). Figure 8 compares
Transductive-SUBSELNET and Inductive-SUBSELNET with the two baselines on basis of speedup,
memory and budget.
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Figure 8: Comparison of performance of the top four non-adaptive subset selectors (Transductive-
SUBSELNET, Inductive-SUBSELNET, Pruning, and Selection-via-Proxy) on ImageNet-1K [8] .
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E.3 Analysis of compute efficiency in high accuracy regime

We analyze the compute efficiency of all the methods, given an allowance of reaching 20% and 10%
of the relative accuracy reduction (RAR) (80% and 90% of the accuracy) achieved by training on the
full data. We make the following observations:

1. Transductive-SUBSELNET achieves the best speedup and consumes the least memory,
followed by Inductive-SUBSELNET.

2. For CIFAR100, Tiny-Imagenet and Caltech-256, Bottom-b-loss and Bottom-b-loss+gumbel
achieve better performance than the baselines which are able to reach the desired RAR
milestones (10% or 20%).

3. For CIFAR100, Tiny-Imagenet and Caltech-256, most baselines could not achieve an
accuracy of either 10% or even 20% of the RAR on full data.

FMNIST CIFAR10 CIFAR100

Speedup Memory Speedup Memory Speedup Memory

Method 10% 20% 10% 20% 10% 20% 10% 20% 10% 20% 10% 20%

GLISTER 5.64 7.85 98.51 116.36 1.52 2.12 515.96 365.05 0.54 1.02 1427.77 758.55

GradMatch 4.17 5.24 136.40 243.75 1.69 2.20 457.67 362.47 — 0.84 — 917.04

EL2N 6.50 16.42 77.63 139.89 1.93 4.78 413.90 170.03 — — — —

GraNd — 1.18 — 450.73 — — — — — — — —

FacLoc 0.82 2.37 652.67 81.01 — 0.80 — 558.56 — — — —

Pruning 3.12 4.68 559.44 19.55 3.54 5.53 221.10 139.41 — 1.71 — 452.09

Selection-via-Proxy 3.65 18.09 168.20 35.27 1.95 1.03 819.22 410.26 — 1.02 — 765.05

Bottom-b-loss 1.68 2.98 393.28 190.40 — 1.77 — 433.07 — 1.67 — 465.39

Bottom-b-loss+gumbel 2.70 10.18 203.83 59.37 1.63 2.04 489.30 363.07 — 1.78 — 446.95

Inductive-SUBSELNET 28.64 69.24 22.73 8.24 3.63 8.99 221.99 99.54 1.93 2.82 417.16 274.17

Transductive-SUBSELNET 28.63 68.36 21.25 8.24 5.61 16.52 142.45 53.67 2.35 3.47 331.45 222.91

Tiny-Imagenet Caltech-256

Speedup Memory Speedup Memory

Method 10% 20% 10% 20% 10% 20% 10% 20%

GLISTER 1.65 2.18 26705.5 22687.6 1.31 1.76 16904.5 13921.4

GradMatch 1.53 2.08 28249.9 25530.4 1.45 2.07 16499.3 12507.9

EL2N — 2.30 — 21811.1 — — — —

GraNd — 2.16 — 24822.6 — — — —

FacLoc — — — — — — — —

Pruning — — — — — — — —

Selection-via-Proxy — 1.04 — 30717.2 — — — —

Bottom-b-loss — 2.54 — 15947.6 — — — —

Bottom-b-loss+gumbel 1.88 2.72 17624.4 15085.9 — 2.36 — 9910.12

Inductive-SUBSELNET 2.02 3.54 17326.6 14505.4 2.43 3.16 9597.22 7406.23

Transductive-SUBSELNET 2.54 3.97 16281.1 12447.1 2.33 3.12 9983.86 7747.82

Table 8: Time and memory in reaching 10% and 20% RAR (90% and 80% of maximum accuracy
of Full selection) in tradeoff curve in Figure 2 and 3 for all datasets. In the table, "—" denotes
that under the current setup of experiments, i.e., the range of subsets considered, the method could
not attain an accuracy equal to or less than 20% or 10% of RAR. Note that Bottom-b-loss and
Bottom-b-loss+gumbel are variants/ablations of our method.

E.4 Recommending model architecture

When dealing with a pool of architectures designed for the same task, choosing the correct architecture
for the task might be a daunting task - since it is impractical to train all the architectures from scratch.
In view of this problem, we show that training on smaller carefully chosen subsets might be beneficial
for a quicker alternative to choosing the correct architectures. We first extract the top 15 best
performing architectures A∗ having highest accuracy, when trained on full data. We mark them as
"gold". Then, we gather top 15 architectures A when trained on the subset provided by our models.
Then, we compare A and A∗ using the Kendall tau rank correlation coefficient (KTau) along with
Jaccard coefficent |A ∩ A∗|/|A ∪ A∗|.
Figure 9 summarizes the results for three non-adaptive subset selectors in terms of the accuracy,
namely - Transductive-SUBSELNET, Inductive-SUBSELNET and FL. We make the following ob-
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servations: (1) One of our variant outperforms FL in most of the cases in CIFAR10 and CIFAR100.
(2) There is no consistent winner between Transductive-SUBSELNET and Inductive-SUBSELNET,
although Inductive-SUBSELNET outperforms both Transductive-SUBSELNET and FL consistently in
CIFAR100 in terms of the Jaccard coefficient.
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Figure 9: Comparison of the three non-adaptive subset selectors (Transductive-SUBSELNET,
Inductive-SUBSELNET and FL) on ranking and choosing of the top-15 architectures on the ba-
sis of Jaccard Coefficient and Kendall tau rank correlation coefficient (Kτ ).

E.5 Analysis of subset overlap on different architectures

CIFAR10 CIFAR100

GLISTER 0.05 0.06

GRAD-MATCH 0.06 0.08

Our 0.08 0.08

Table 9: Jaccard coefficient for subsets chosen by dissimilar architectures
Different architectures will produce different feature representations of the underlying dataset, and
they can be distributed in different manners. Thus to generate a subset, if the features are different,
we would expect subsets to change too. We experiment with extremely dissimilar architectures (top-5
ranked by distance in the latent space generated by the GNN) to observe the subset overlap occurring.
Table 9 containing Jaccard coefficient of the subsets chosen for dissimilar architectures, where we
notice that the overlaps are extremely small for the top adaptive methods, as well as for our method.

E.6 Finer analysis of the inference time

Transductive Inductive FL

Subset selection 0.23 0.067 226.29

Training 70.1 70.1 70.1

Table 10: Inference time in seconds
Next, we demarcate the subset selection phase from the training phase of the test models on the
selected subset during the inference time analysis. Table 10 summarizes the results for top three
non-adaptive subset selection methods for b = 0.005|D| on CIFAR100. We observe that: (1) the
final training times of all three methods are roughly same; (2) the selection time for Transductive-
SUBSELNET is significantly more than Inductive-SUBSELNET, although it remains extremely small
as compared to the final training on the inferred subset; and, (3) the selection time of FL is large— as
close as 323% of the training time.

E.7 Analysis on underfitting and overfitting

Since the amount of training data is small, there is a possibility of overfitting. However, the coefficient
λ of the entropy regularizer λH(Prπ), can be increased to draw instances from the different regions
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Subset Size
Training Validation Testing

Transductive Inductive Transductive Inductive Transductive Inductive

10% 0.728 0.660 0.702 0.632 0.678 0.606

20% 0.852 0.673 0.809 0.658 0.770 0.644

40% 0.890 0.691 0.856 0.678 0.825 0.666

70% 0.942 0.738 0.912 0.717 0.884 0.698

Table 11: Variation of accuracy with subset size of both the variants of SUBSELNET on training,
validation and test set of CIFAR10

of the feature space, which in turn can reduce the overfitting. In practice, we tuned λ on the validation
set to control such overfitting.

We present the accuracies on (training, validation, test) folds for both Transductive-SUBSELNET and
Inductive-SUBSELNET in Table 11. We make the following observations:

1. From training to test, in most cases, the decrease in accuracy is ∼ 7%.
2. This small accuracy gap is further reduced from validation to test. Here, in most cases, the

decrease in accuracy is ∼ 4%.

E.8 Additional results on NAS and HPO

Searched cell for NAS. Figure 10 shows the final Normal and Reduction cells found on the DARTS
search space using SUBSELNET on the 40% subset of CIFAR10, which gave the lowest test error of
2.68 in the experiments.
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Figure 10: Normal [left] and Reduction [right] cells found by SUBSELNET during Neural
Architecture Search using a 40% subset of the CIFAR10 dataset.

Standard error results on NAS and HPO. Here, we present the mean and standard error over the
runs for the Test Error (%) on NAS and HPO, which has been presented in the main draft (Section 5.2).
We observe our method offers less deviation across runs. Moreover, we found that the gain offered by
our method is statistically significant with p ≈ 0.05.

Method b = 0.1|D| b = 0.2|D| b = 0.4|D|
Random 3.02 ± 0.171 2.88 ± 0.167 2.96 ± 0.169

Proxy-data [39] 2.92 ± 0.168 2.87 ± 0.167 2.88 ± 0.167

Our 2.82 ± 0.166 2.76 ± 0.164 2.68 ± 0.161

Table 12: Mean and standard error of Test Error (%) on architectures given by NAS on CIFAR10

Method b = 0.05|D| b = 0.1|D|
Random 5.44 ± 0.226 3.72 ± 0.189

AUTOMATA 5.26 ± 0.223 3.39 ± 0.181

Our 4.11 ± 0.199 2.70 ± 0.162

Table 13: Mean and standard deviation of Test Error (%) for hyperparameters selected by HPO on
CIFAR10
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F Pros and cons of using GNNs

We have used a GNN in our model encoder to encode the architecture representations into an
embedding. We chose a GNN for the task due to following reasons -

1. Message passing between the nodes (which may be the input, output, or any of the operations)
allows us to generate embeddings that capture the contextual structural information of the
node, i.e., the embedding of each node captures not only the operation for that node but also
the operations preceding that node to a large extent.

To better illustrate the im-
pact of the GNN, we com-
pared it with a baseline
where we directly fed the
graph structure to the model
approximator using the ad-
jacency matrix, in lieu of
the GNN-derived node em-
beddings. This alteration re-
sulted in a notable perfor-
mance decline, leading to a
5-6% RAR on subset size of
10% of CIFAR10.

Variations of
embedding

RAR
KL-div

b = 0.05|D| b = 0.1|D|
Feedforward (gβ ,A) 0.481 0.433 0.231

Feedforward (gβ ,H) 0.434 0.397 0.171

LSTM (gβ ,A) 0.471 0.436 0.224

LSTM (gβ ,H) 0.412 0.386 0.102

Attn. (gβ ,A) 0.362 0.317 0.198

Attn. (gβ ,H) 0.310 0.260 0.089

Table 14: RAR and KL-div for different embeddings (A: Adjacency
Matrix, H: GNN embedding) in model approximator

2. It has been shown by [38] and [57] that GNNs are as powerful as the Weisfeiler-Lehman
algorithm and thus give a powerful representation for the graph. Thus, we obtain smooth
embeddings of the nodes/edges that can effectively distill information from its neighborhood
without significant compression.

3. GNNs embed model architecture into representations independent of the underlying dataset
and the model parameters. This is because it operates on only the nodes and edges— the
structure of the architecture and does not use the parameter values or input data.

However, the GNN faces the following drawbacks -

1. GNN uses a symmetric aggregator for message passing over node neighbors to ensure that
the representation of any node should be invariant to a permutation of its neighbors. Such
a symmetric aggregator renders it a low-pass filter, as shown in [41], which attenuates
important high-frequency signals.

2. We are training one GNN using several architectures. This can lead to the insensitivity of the
embedding to change in the architecture. In the context of model architecture, if we change
the operation of one node in the architecture (either remove, add or change the operation),
then the model’s output can significantly change. However, the embedding of GNN may
become immune to such changes, since the GNN is being trained over many architectures.

G Licensing Information

The NAS-Bench-101 dataset and DARTS Neural Architecture Search are publicly available under the
Apache License. The baselines GRAD-MATCH and GLISTER, publicly available via CORDS, and
the apricot library used for Facility Location, are under the MIT License.
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