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Abstract

Pre-trained Transformer models have achieved001
successes in a wide range of NLP tasks, but002
are inefficient when dealing with long input se-003
quences. Existing studies try to overcome this004
challenge via segmenting the long sequence fol-005
lowed by hierarchical encoding or post-hoc ag-006
gregation. We propose a synchronization mech-007
anism for hierarchical encoding. Our approach008
first identifies anchor tokens across segments009
and groups them by their roles in the original010
input sequence. Then inside Transformer layer,011
anchor embeddings are synchronized within012
their group via a self-attention module. Our ap-013
proach is a general framework with sufficient014
flexibility – when adapted to a new task, it is015
easy to be enhanced with the task-specific an-016
chor definitions. Experiments on two represen-017
tative tasks with different types of long input018
texts, NarrativeQA summary setting and wild019
multi-hop reasoning from HotpotQA, demon-020
strate that our approach is able to improve the021
global information exchange among segments022
while maintaining efficiency.023

1 Introduction024

Transformer-based encoders (Vaswani et al., 2017)025

have been widely used in natural language process-026

ing with successes. The pre-trained language mod-027

els based on Transformer, such as BERT (Devlin028

et al., 2019), GPT-3 (Brown et al., 2020), T5 (Raf-029

fel et al., 2019) and BART (Lewis et al., 2019),030

further make it a dominating architecture in NLP.031

Despite its successes, the Transformer models032

suffer from a major challenge in encoding long se-033

quences. It is due to the fact that the self-attention034

mechanism used in each Transformer layer requires035

to compute attention for each pair of input words.036

Such computations lead to O(l2) complexity in037

time and space in each Transformer layer, where l038

is the sequence length. This limits Transformer’s039

roles in the increasingly important long sequence040

encoding for two common scenarios: (1) encoding041

Figure 1: An example from HotpotQA. Different entities
are color-coded. The solid lines indicate the correct partial
evidence chain toward the true answer. Dutch-Belgian is an
example of anchors that can pass the partial evidence to the
others for collecting full evidence.

of a single long document with lengths exceeding 042

the input limitation, and (2) joint-encoding of mul- 043

tiple related documents for tasks that require syn- 044

thesizing scattered pieces of evidence, e.g., multi- 045

hop reasoning and multi-document summarization. 046

Figure 1 gives an example of the necessary infor- 047

mation exchange in multi-hop QA. Each paragraph 048

provides a partial clue to solve the task (shown 049

as the connected entities). Intuitively, an effec- 050

tive global encoding should allow the entities (e.g., 051

Dutch-Belgian) appearing in multiple paragraphs 052

to share information across all their occurrences. 053

In this way, the embedding of Dutch-Belgian in 054

the second paragraph can be aware of partial evi- 055

dence from the first one and resolve the required 056

information of House of Anubis. 057

To overcome this difficulty, many techniques 058

have been proposed. The existing solutions can 059

be categorized into two classes. The first class 060

is hierarchical encoding. The idea is to either 061

explicitly split the input into multiple short seg- 062

ments for fast encoding of each segment and then 063

exchange information on top of their embeddings 064

following sample-agnostic strategies (Ainslie et al., 065

2020; Wang et al., 2020); or implicitly constrain 066

the information exchange among tokens with a 067

sparse attention map (Beltagy et al., 2020; Zaheer 068

et al., 2020). The essential of these methods is 069

to find efficient ways to pass information among 070
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segments and compensate for the loss of impor-071

tant global context across segments. One solution072

is introducing a pseudo token for each segment073

and encouraging the pseudo tokens to attend one074

another during encoding (Ainslie et al., 2020) for075

inter-segment interactions. The second class is076

post-hoc aggregation in the generative framework,077

such as Fusion-in-Decoder (FiD, Izacard and Grave078

2020) with BART model. The input is split into079

segments that are encoded independently by the080

encoder. Then the decoder casts global attention081

over all the segments and generates the prediction.082

This approach allows for only shallow information083

exchange because the encoding is purely localized;084

yet is proved empirically very powerful in many085

NLP tasks.086

We propose an orthogonal direction towards an087

efficient encoding of long sequences. Our method088

starts with local segments in the post-hoc aggre-089

gation approaches and relies on our proposed syn-090

chronization mechanisms to swap useful informa-091

tion from the other relevant segments during encod-092

ing, so as to maintain global information. Formally,093

our approach first identifies a set of anchors in the094

segments and puts them into different groups based095

on the similarity in their semantic units or the roles096

they play in the original input sequence. The identi-097

fied anchors and groups connect different segments098

logically and naturally. Our synchronization is ap-099

plied only to the encoding stage where inside each100

Transformer layer of the encoder, we perform an101

additional embedding update for each anchor using102

other anchor embeddings in the same group after103

a normal local encoding. The local encoding and104

anchor synchronization happen iteratively so that105

the global information is propagated deeply among106

segments with anchors as bridges.107

Compared to previous hierarchical encoding ap-108

proaches with fixed communication designs, our109

approach is more powerful and flexible. First, our110

approach provides a finer-grained information ex-111

change mechanism. Second, our approach is a gen-112

eral framework that reduces the problem of global113

encoding to synchronization schema design. For114

any new applications or tasks, it is easy to infuse115

human prior knowledge to the model by identifying116

task-specific anchors and anchor grouping.117

We evaluate our approach on two different tasks118

that require encoding of long sequences: Narra-119

tiveQA (Kočiskỳ et al., 2018), where each input120

is a single long story summary; and a wild multi-121

hop QA task adapted from HotpotQA (Yang et al., 122

2018), where the evidence annotation is assumed 123

unavailable and the input documents are treated 124

more independently from each other. The two set- 125

tings correspond to the representative examples of 126

the aforementioned long sequence encoding scenar- 127

ios (1) & (2). Results show that our approach signif- 128

icantly improves the performance while remaining 129

efficient. Moreover, building on top of FiD, the 130

state-of-the-art hierarchical method ETC (Ainslie 131

et al., 2020) does not bring further improvement as 132

we observe but our approach improves consistently. 133

2 The Transformer with Synchronization 134

(TRANSYNC ) Framework 135

In this section, we propose our TRANSYNC frame- 136

work which extends Transformer layer with an em- 137

bedding synchronization module attached to the 138

end. Given a long context sequence C, we divide 139

it into segments, i.e. C = [s1; s2; ...; sn] where si 140

is the i-th segment of C and n is the number of 141

segments. A segment can represent a natural sen- 142

tence or a sequence in a certain length. Together 143

with the question q, we re-organize the input to the 144

Transformer and form a set of question-prefixed 145

segments {sqi }ni=1, s.t. 146

sqi = [q;<SEP>; si] (1) 147

where <SEP> is a special token. An embed- 148

ding layer converts the text segments {sqi }ni=1 into 149

their corresponding question-aware embeddings 150

{eqi }ni=1, s.t. 151

eqi = [t1i ; t
2
i ; ...; t

li
i ] ∈ Rli×d (2) 152

where li is the length of sqi ’s token sequence, d 153

is the dimension of the feature vector and tji ∈ 154

Rd is the embedding for the j-th token in the i-th 155

segment. 156

For genericity, our synchronization is performed 157

between the target anchor and the incoming an- 158

chors, following the idea of message passing. The 159

values of the target anchor embedding at are up- 160

dated with the weighted sum of the incoming an- 161

chor embeddings and itself, i.e., 162

a′t =
∑
k

αka
k, s.t.

∑
k

αk = 1 (3) 163

where {ak} are the embedding spans1 of the same 164

length within the same anchor group; αk is the 165

1Some words may correspond to multiple tokens due to
the byte pair encoding (BPE) algorithm.
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normalized weight. In this work, for each anchor166

group, we form a new sequence from the selected167

anchor embeddings, i.e., [a1;a2; ...;ak], and use a168

self-attention module to compute the weights and169

update the embedding values.170

Our TRANSYNC framework is embedded in171

Transformer layer. The synchronization is per-172

formed between the local self-attention and nor-173

malization steps to achieve deep information ex-174

changing. At the end of the last Transformer layer,175

the synchronized segment embeddings are fused176

into one by concatenating one another as follows:177

[eq1; e
q
2; ...; e

q
n] ∈ R

∑n
1 li×d (4)178

The flexibility of our TRANSYNC framework is179

granted by the manifold strategies of identifying180

anchors in the segments and the heterogeneous181

message passing directions. The schema will be182

detailed in Section 3.183

3 Evaluating Tasks184

In this section, we introduce two experiments per-185

formed to verify the feasibility and flexibility of186

our TRANSYNC framework.187

3.1 NarrativeQA188

Task Description NarrativeQA dataset has a col-189

lection of 783 books and 789 movie scripts. Each190

book and script is annotated with a long summary191

and 30 question-answer pairs on average. Narra-192

tiveQA provides two different settings, the sum-193

mary setting and the full-story setting. In this work,194

we follow the summary setting by answering ques-195

tions from the summaries, and formulate it as a196

generative QA task due to the free-form annotated197

answers. NarrativeQA is a representative example198

of the first type of long sequence encoding scenar-199

ios: a single document with length exceeding the200

input limitation.201

Synchronization Schema We split each sum-202

mary into natural sentences as the segments {si}203

and prefix them with the question q following Sec-204

tion 2. This breakup of the continuous summary205

sentences drops the global context across segments206

during encoding. As a compensation, we apply207

a segment-level synchronization, which takes the208

preceding question sequence as the anchor. Prac-209

tically, we simply use the special token <SEP>210

that connects to the question in each segment as211

the representatives, which significantly reduce the212

synchronization cost. The segment-level synchro- 213

nization happens only among the closest neigh- 214

bouring segments, inspired by their natural order 215

in the summary text. Intuitively, it provides each 216

segment compressed contextual information from 217

its neighbors; and makes the question embedding 218

be aware of its matched contents across multiple 219

segments. Therefore, we expect it can better deal 220

with questions that require multiple sentences to 221

answer. 222

3.2 Wild Multi-hop Reasoning 223

Task Description We construct a wild multi-hop 224

reasoning task from the HotpotQA dataset which 225

provided two evidence documents and eight dis- 226

tractor documents for each question. We adopt the 227

realistic assumption with no evidence annotation 228

provided, to investigate the models’ ability to sort 229

out the reasoning chains from multiple documents. 230

We designed two settings on the HotpotQA dataset 231

intending to verify the effect of various context 232

lengths on different models. The MultiHop-10 233

uses all the 8 distractors in the dataset, the concate- 234

nation of the documents is thus beyond the length 235

limit of BART. The MultiHop-6 uses only 4, which 236

is on average within BART’s limit. 237

With the wild multi-hop reasoning, we hope to 238

justify if our TRANSYNC can effectively pass im- 239

portant messages across segments. For consistency, 240

we also formulate it as a generative QA task with 241

the goal of predicting a free-form or YES/NO an- 242

swer given the question and the context. 243

Synchronization Schema We split each concate- 244

nated document into segments in similar lengths 245

containing various numbers of natural sentences. 246

We have two ways of synchronization according 247

to the task’s unique properties. Firstly, a similar 248

segment-level synchronization schema is applied. 249

However, due to the different segment splitting 250

strategies, there is no continuation guaranteed be- 251

tween the neighboring segments. Therefore, we 252

synchronize across all segments rather than only 253

among the neighbors. Secondly, we take the titles 254

of the original documents as word-level anchors. 255

For simplicity, the titles are added to the input2, 256

immediately following the question sequence. Sim- 257

ilarly, we perform synchronization among all the 258

title-associated special tokens to cut down compu- 259

2The title words already appear in the document, hence
adding them to the input does not introduce new information
and is regarded as a fair comparison.
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tational costs. Due to the multi-hop nature of the260

samples, we expect the token-level synchroniza-261

tion to help build latent connections among the262

evidence.263

System NarQA MultiHop-10 MultiHop-6
Rouge-L EM F1 EM F1

BART 64.78 41.63 54.85 55.62 69.96
FiD 66.57 55.65 69.35 57.42 71.30
FiD+ETC 65.89 55.46 69.31 57.52 71.66
TRANSYNC 67.58 56.49 70.32 58.30 72.61

Table 1: Overall results on the NarrativeQA and the two
multi-hop setting tasks (%).

4 Experiments264

Baseline Our backbone model is the pre-trained265

BART-large model3. We compare with three base-266

lines: (1) the original BART, which directly takes267

the concatenation of the question and the raw se-268

quence without splitting. The sequence is truncated269

with a maximum of 1,024 tokens. (2) FiD (Izacard270

and Grave, 2020), the state-of-the-art hierarchical271

encoding algorithms for generative Transformer272

models. (3) FiD+ETC, a FiD variant enhanced by273

our implementation of ETC (Ainslie et al., 2020)274

in the encoder.275

Metrics Because of the generative nature276

of the NarrativeQA task, following previous277

works (Kočiskỳ et al., 2018; Tay et al., 2019; Mou278

et al., 2020), we evaluate the QA performance with279

Rouge-L (Lin, 2004).4 On HotpotQA dataset, the280

Exact Match (EM) and F1 scores5 are reported that281

are commonly used in open-domain QA evaluation.282

Both hypothesis and reference are lowercased with283

the punctuation removed before evaluation.284

Overall Results Table 1 shows the overall re-285

sults on all three tasks. Our proposed TRANSYNC286

achieves the best results on both NarrativeQA and287

our new wild multi-hop QA tasks.288

To our surprise, splitting the long sentences into289

question-aware segments alone (FiD) gives strong290

results against the BART baseline. This indicates291

the post-hoc aggregation of local embeddings can292

handle a significant portion of testing cases, re-293

flecting the absence of global reasoning in many294

existing datasets. Our synchronization mechanism295

3Implementation from https://huggingface.co/
4We use an open-source evaluation library (Sharma et al.,

2017): https://github.com/Maluuba/nlg-eval.
5The squad/evaluate-v1.1.py script is used.

compensates for the loss of global context resulting 296

from the sequence splitting and brings a consistent 297

1% improvement over FiD across all three tasks. 298

ETC does not provide a further improvement over 299

FiD as our approach does. This empirically shows 300

that ETC’s synchronization mechanism does not 301

provide complementary global information to the 302

post-hoc aggregation approach. 303

Finally, aside from Table 1, we also experiment 304

with different segment lengths and find that the split 305

context length should be at least 2 times longer than 306

the prefixing question for effective encoding; other- 307

wise, the question would dominate in the segment 308

and it would lead to a significant drop in perfor- 309

mance. Together with the observations that FiD 310

with short segments outperforms BART with long 311

sequences in both settings, we conclude that the 312

splitting length is a hyper-parameter worth tuning. 313

Efficiency Table 2 provides an analysis of the 314

efficiency of our TRANSYNC framework. The 315

complexity comparison shows that the TRANSYNC 316

is more memory efficient than the BART baseline 317

in theory and becomes more superior when lq ≪ lc
n . 318

We also compare the runtime speed empirically 319

by measuring the average time used for encoding 320

per token. Though the synchronization introduces 321

extra complexities to the encoding procedure, our 322

experiments on the NarraitveQA dataset verify that 323

the overall speed of our methods remains doubled 324

to the BART baseline. 325

System O(f) Time/Token

BART Baseline (lq + lc)
2 292 µs

TRANSYNC (lq +
lc
n
)2 · n 134 µs

Table 2: Efficiency comparison. lq and lc are the length
of the question sequence and the context sequence; n
is the number of split segments. The encoding time per
token is averaged over 100 QA samples.

5 Conclusion 326

In this work, we propose TRANSYNC framework 327

with flexible synchronization mechanisms for en- 328

coding long sequences. We demonstrate the feasi- 329

bility of our method in reasoning tasks with long 330

context, and also show its high adaptability to dif- 331

ferent scenarios. We consider our work to be valu- 332

able as an easy solution to address the long context 333

issue in QA, and to be potentially applicable to 334

other long sequence modeling tasks. 335
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