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Abstract

LLMs have majorly advanced NLP and AI, and001
next to their ability to perform a wide range002
of procedural tasks, a major success factor is003
their internalized factual knowledge. Since004
(Petroni et al., 2019), analyzing this knowl-005
edge has gained attention. However, most ap-006
proaches investigate one question at a time via007
modest-sized pre-defined samples, introducing008
an “availability bias” (Tversky and Kahneman,009
1973) that prevents the discovery of knowledge010
(or beliefs) of LLMs beyond the experimenter’s011
predisposition.012

To address this challenge, we propose a novel013
methodology to comprehensively materialize014
an LLM’s factual knowledge through recursive015
querying and result consolidation.016

As a prototype, we employ GPT-4o-mini to con-017
struct GPTKB, a large-scale knowledge base018
(KB) comprising 101 million triples for over019
2.9 million entities - achieved at 1% of the cost020
of previous KB projects. This work marks a021
milestone in two areas: (1) For LLM research,022
for the first time, it provides constructive in-023
sights into the scope and structure of LLMs’024
knowledge (or beliefs). For KB construction,025
it pioneers new pathways for the long-standing026
challenge of general-domain KB construction.027
GPTKB is accessible at anonymized.028

1 Introduction029

LLMs have been one of the most exciting recent030

developments in NLP and AI, and next to their031

ability to perform a wide set of procedural tasks, a032

major success factor is the factual knowledge that033

they have internalized (Bubeck et al., 2023). Their034

potential to store factual knowledge, like (Nelson035

Mandela, award, Nobel Peace Prize), was first high-036

lighted by Petroni et al. (2019), and this has gener-037

ated an own (sub-)field of studying all aspects of038

factual knowledge in LLMs, from trying to locate it,039

to estimates of their storage potential, to techniques040

to effectively elicit it (Jiang et al., 2020; Roberts041

Existing LLM analyses Our proposal

✗ Prompt-and-discard:
- Transient single-focus ex-
plorations (e.g., factuality
OR bias OR cutoff)

✓ Persistent resource:
- Materialized KB reusable for
a wide array of questions

✗ Sample availability bias:
- Insights bound to experi-
menter’s predisposition

✓ Recursive materialization:
- Discover unconceived LLM
knowledge/beliefs

✗ Scratching the surface:
- Few 100s-100K samples
- Breadth and depth of LLM
knowledge untouched

✓ Massive-scale:
- Over 100M records
- Recursive crawl to unprece-
dented breadth and depth

Table 1: Comparison of existing LLM knowledge anal-
ysis approaches and our proposal.

et al., 2020; Veseli et al., 2023; Sun et al., 2024; Wu 042

et al., 2024). A large set of benchmarks and stud- 043

ies transiently investigate the knowledge storage 044

ability via example-based prompting, e.g., to deter- 045

mine, how many triples from common knowledge 046

bases (KBs) or question answering (QA) datasets 047

are known to LLMs. However, all these works are 048

subject to an availability bias (Tversky and Kah- 049

neman, 1973), i.e., they only surface LLM knowl- 050

edge/beliefs1 on topics that were known to and 051

pre-designed by the experimenter. They inherently 052

cannot discover knowledge on topics outside of 053

their benchmarks. 054

To enable comprehensive insights into LLM 055

knowledge, we propose to extensively materialize 056

the knowledge of LLMs into a KB (see Table 1). 057

General-world KBs like Wikidata (Vrandecic and 058

Krötzsch, 2014), Yago (Suchanek et al., 2007) and 059

DBpedia (Auer et al., 2007) are important and long- 060

standing backbones for AI applications, yet have 061

seen little innovation in the last years, and have 062

only been constructed manually, or by scraping 063

semistructured web content (Weikum et al., 2021). 064

In particular, we propose to use recursive graph ex- 065

ploration to obtain comprehensive (named-entity- 066

1The terminology here is contentious, see Section 6.1.
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Figure 1: Overview of our approach for factual knowl-
edge materialization from LLMs.

centric) LLM knowledge, and to consolidate it via067

LLM-based entity disambiguation, class and rela-068

tion canonicalization, and taxonomy induction (see069

Fig. 1). This proposal faces several challenges:070

1. Runtime and cost: State-of-the-art KBs con-071

tain millions of entries, and LLM inference is072

relatively slow. It is therefore unclear how to073

perform comprehensive knowledge elicitation074

under practical monetary and time constraints.075

2. Variance, hallucinations, and scoping: La-076

tent knowledge in LLMs covers a wide set of077

topics, varies by entity, and includes halluci-078

nations. We need a method that elicits a high079

quantity, without encouraging hallucinations,080

and without falling into bottomless corners,081

e.g., open-ended phrases or translations.082

3. Global inconsistency: Distinctive prompts083

risks surfacing outputs that are not globally084

consistent, e.g., introducing duplicate rela-085

tions, entities, or disconnected class hierar-086

chies.087

Our approach builds on the following ideas: To088

overcome scaling issues, and obtain relevant knowl-089

edge, we utilize a commercial API that allows to090

massively batch requests, and utilize named entity091

recognition (NER) and carefully crafted prompts092

to restrict the explored space, along with prompts093

that encourage varied answer sizes. To obtain a094

coherent KB, we perform a set of canonicalization 095

and disambiguation steps, entirely relying on the 096

LLM itself. In summary, our salient contributions 097

are: 098

1. To the best of our knowledge, we are the first 099

to propose extensive materialization for ana- 100

lyzing factual LLM knowledge. 101

2. We present a scalable methodology to elicit 102

massive amounts of LLM knowledge, and to 103

consolidate it. 104

3. Using GPT-4o-mini, we construct GPTKB, 105

the first large-scale KB entirely built from 106

an LLM’s parametric knowledge, containing 107

101M assertions for over 2.9M entities. 108

4. We use GPTKB to exemplarily analyze GPT- 109

4o-mini’s factual knowledge in terms of scale, 110

accuracy, bias, and cutoff, at the same time. 111

Our work is a significant advancement for two ar- 112

eas: For LLM research, we introduce a proof-of- 113

concept methodology that, for the first time, en- 114

ables constructive insights into the knowledge (or 115

beliefs) of LLMs. For the Semantic Web, we pro- 116

vide fresh momentum for the long stale problem of 117

open-domain KB construction. We provide code 118

and a concrete resource, GPTKB, both as a 3.8 GB 119

download, and via an online browsing interface and 120

SPARQL query interface at anonymized. 121

2 Related work 122

Extent of LLM knowledge Since the emergence 123

of LLMs, the question of how much these mod- 124

els know has frequently been raised (Petroni et al., 125

2019; Roberts et al., 2020; Jiang et al., 2020; Veseli 126

et al., 2023; Sun et al., 2024; Wu et al., 2024). So 127

far, the widely adopted approach is to sample a do- 128

main of interest, e.g., question-answer pairs from 129

a common benchmark, or triples from Wikidata, 130

transiently probe the LLM, and compute the frac- 131

tion that the LLM can correctly answer/complete. 132

This is prone to “availability bias” (Tversky and 133

Kahneman, 1973) since we do not get a compre- 134

hensive view of the LLM knowledge outside the 135

focus of existing benchmarks. For instance, we 136

found that GPT-4o-mini holds substantial knowl- 137

edge about art periods or hobbies, which are not 138

covered in existing KBs. Kassner et al. (2021) 139

propose a small-scale persistent memory compo- 140

nent for ensuring LLM answers remain consistent 141
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KB #entities #assertions

Wikimedia-related
Wikidata 113M 1.62B
Wikidata5m 5M 20M
Yago 4.5 50M 140M
DBpedia 3.8M 75M

Text-extracted
NELL ? 12M
ReVerb ? 15M

Generative
GPTKB 2.9M 101M

Table 2: Size comparison of major KBs. See Ap-
pendix F for sources.

over multiple prompts. Nguyen et al. (2024) iter-142

atively prompt GPT-3.5 for obtaining 167K sen-143

tences containing cultural commonsense for 11K144

subjects. Cohen et al. (2023) propose to iteratively145

prompt GPT-3 for relations and relational asser-146

tions for triples. In difference to (Nguyen et al.,147

2024), we are after structured content (triples), at148

a much larger scale. In difference to (Cohen et al.,149

2023), we unveil the practical challenges that such150

a graph exploration faces, tackle them, and perform151

LLM-based KB construction at scale.152

Iterative information extraction Iterative infor-153

mation extraction is a long-standing idea, already154

prototyped by Google cofounder Sergey Brin via155

the DIPRE system (Brin, 1998). The Snowball sys-156

tem by Agichtein and Gravano (2000) presented a157

large-scale implementation of this idea, harvesting158

tuples from over 300,000 newspaper documents.159

The KnowItAll system (Etzioni et al., 2004) fol-160

lowed a similar approach, and led to the ReVerb161

KB (Fader et al., 2011). Despite a proposal by (Co-162

hen et al., 2023), to date, we are not aware of any163

attempts to extract knowledge from LLMs at scale.164

Large-scale KB construction Dominating pub-165

lic large-scale KBs are Wikidata (Vrandecic and166

Krötzsch, 2014), Yago (Suchanek et al., 2007) and167

DBpedia (Auer et al., 2007), all started more than168

10 years ago. While Wikidata is constructed by vol-169

unteers, Yago and DBpedia represent the paradigm170

of (semi-)structured information harvesting and in-171

tegration, extracting in particular from Wikipedia172

infoboxes and Wikidata (Weikum et al., 2021).173

They all remain incomplete (Razniewski et al.,174

2024), warranting the search for novel paradigms.175

Commercial projects like the Google KG (Singhal,176

2012) or Amazon’s KG (Dong et al., 2020) have177
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Figure 2: Graph exploration from the seed entity Van-
nevar Bush.

usually followed these approaches. By compar- 178

ison, text-based KB construction, e.g., in NELL 179

(Mitchell et al., 2018) or ReVerb (Fader et al., 180

2011), has achieved less adoption. Our approach is 181

more related to the latter approaches, as LLMs are 182

distillations of large text corpora. Table 2 gives an 183

overview of major KB projects. 184

3 Methodology 185

An overview of our approach is shown in Figure 1. 186

In the first phase, knowledge elicitation, we iter- 187

atively elicit LLM triples for a given subject, and 188

enqueue newly encountered named entities for fur- 189

ther triple elicitation. In the second phase, knowl- 190

edge consolidation, we consolidate the resulting 191

triple set by canonicalizing entities, relations and 192

classes, and by constructing a coherent taxonomy. 193

Our paradigm refrains from imposing any standard- 194

ized vocabularies, or using existing KBs as disam- 195

biguation references to effectively materialize the 196

parameterized LLM knowledge. 197

3.1 Knowledge elicitation 198

Iterative graph expansion The process starts 199

from one or a set of seed subjects, e.g., Vannevar 200

Bush, the visionary behind the concept of hyperlink- 201

based knowledge organization (Bush, 1945). From 202

the objects in the triples obtained for him, we can 203

then identify further entities (e.g., MIT (affiliation) 204

or Everett, MA (birth place)), for which we can then 205

elicit further knowledge, and so on (Brin, 1998). 206

Figure 2 illustrates how in 3 hops, we arrive at 207

entities of diverse types, such as historical event 208

(Boston Tea Party, Manhattan Project), newspaper 209

(The Times), and magazine (The New Republic). 210
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Knowledge elicitation A major challenge is to211

elicit as much knowledge as possible, but at the212

same time, not encourage hallucinations. We found213

that without guidelines on the expected number214

of triples, LLMs showed too little variance in the215

number of triples per subject, while we would ex-216

pect them to return many more triples for Einstein217

than for other entities. We solve this via indications218

that are defined in relation to the entity’s popular-219

ity. In difference to the proposal (Cohen et al.,220

2023), we also drop the separate relation elicita-221

tion, and relation-specific knowledge extraction,222

as these do not scale. To structure the knowledge,223

we also request that at least one instanceOf triple224

should be returned. Output parsing is eased by us-225

ing the structured outputs feature of OpenAI’s API.226

In turn, this also reduces hallucinations, e.g., ad-227

ditional qualifiers, textual descriptions, or similar.228

The full prompt is in Figure 8 in the Appendix.229

Named-entity recognition (NER) Our early at-230

tempts at graph exploration were plagued by topi-231

cal runaway into linguistic knowledge, translations,232

etc., because LLM-generated objects cover a wide233

range of imprecisely delineated data types. We ex-234

perimented with various ways to filter non-named235

entities from the expansion, but found that existing236

NER frameworks struggled with the context-free237

entity labels available from our crawl process (most238

NER models are trained on sentences). In the end,239

we used the LLM itself to identify named entities,240

processing multiple candidates at once. The full241

prompt is presented in Figure 9 in the Appendix.242

3.2 Knowledge consolidation243

The knowledge elicitation phase returns a huge244

degree of redundancy and variance. Feeding a large245

amount of existing entities or taxonomy into the246

knowledge elicitation prompt could mitigate this247

problem. However, that would also increase costs248

significantly, and even be infeasible once we have249

generated millions of entities and triples. Instead,250

we introduce several steps to consolidate LLMs251

output post-hoc.252

Relation clustering The elicitation phase gener-253

ates 788K distinct relation names, with many obvi-254

ous duplicates, e.g., instanceOf, isA, or InstanceOf.255

We apply a greedy clustering algorithm to this set256

(see Algorithm 1). This process merges relation257

r into a more frequent relation s, selected as the258

one with the highest textual embedding similarity259

to r among all relations more frequent than r, if260

the similarity is greater than an adaptive threshold 261

(defined in line 6 in Algorithm 1). This threshold 262

varies with the frequency of the relation, leading 263

to a more aggressive removal of relations with low 264

frequency. 265

Algorithm 1 Relation clustering
Input: A set of relationsR, hyperparameter α
Output: A map from relation to cluster-id C
1: R← sort(R, key = frequency, reverse = True)
2: C ← {}
3: next_cluster_id← 0
4: for r ∈ R do
5: s′ = argmax([similarity(r, s) for s ∈ R upto r])

6: threshold← α× log(frequency(r))
log(frequency(first(R)))

7: if similarity(r, s′) > threshold then
8: C[r]← C[s′]
9: else

10: C[r]← next_cluster_id
11: next_cluster_id← next_cluster_id + 1
12: end if
13: end for
14: return C

Class clustering Similarly to relations, there are 266

103K distinct class names (i.e., objects for in- 267

stanceOf relations) generated by the knowledge 268

elicitation phase, with both obvious duplicates, and 269

many overly specific cases. Algorithm 1 is also 270

applied to clean this set. 271

In our experiment, both relation and class clus- 272

tering uses SentenceTransformers (Reimers and 273

Gurevych, 2019) for embedding cosine similarity 274

computation, with α = 1.2 chosen via manual in- 275

spection of small held-out sets. 276

Taxonomy construction The classes in the KB 277

so far do not form a coherent, or even connected 278

taxonomy, as the knowledge elicitation process 279

only expands named entities. We propose Algo- 280

rithm 2, which is based on the LLM itself, to build 281

a complete taxonomy from these individual classes. 282

The construction starts by generating a high- 283

level taxonomy via the LLM. Then, for each of 284

the existing classes in the KB (sorted by general- 285

ity scores given by the LLM), we find the lowest 286

node of which the given class is identified as a 287

subclass, via depth-first search (see function IN- 288

SERT_CLASS_RECURSIVE in Algorithm 2). Then, 289

we ask the LLM to update the sub-taxonomy start- 290

ing from the found node with the given class. In 291

this step, the LLM may generate new intermedi- 292

ate classes on the path from the found node to the 293

given class. 294

The prompts used for seed taxonomy generation, 295

generality scoring, superclass identification, and 296
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Algorithm 2 Taxonomy construction
Input: Knowledge base (KB)
Output: Taxonomy
1: function CONSTRUCT_TAXONOMY(KB)
2: taxonomy← LLM_get_high_level_taxonomy()
3: for class ∈ KB.classes do
4: class.generality_score← LLM_get_score(class)
5: end for
6: classes← sort(KB.classes, key=generality_score)
7: for class ∈ classes do
8: insert_class_recursive(taxonomy.root, class)
9: end for

10: return taxonomy
11: end function

12: function INSERT_CLASS_RECURSIVE(node, class)
13: if has_children(node) then
14: next← LLM_superclass(class, node.children)
15: if next is not NULL then
16: insert_class_recursive(next, class)
17: else
18: LLM_update_taxonomy(node, class)
19: end if
20: else
21: LLM_update_taxonomy(node, class)
22: end if
23: end function

taxonomy update are provided in Figure 10 in Ap-297

pendix C. Further LLM-based refinement in the298

style of (Peng et al., 2024) could be considered.299

Entity deduplication Naive graph exploration300

frequently yields duplicates, such as John F.301

Kennedy and John Fitzgerald Kennedy. To remove302

these duplicates without requiring extraordinary303

runtime, we follow the standard blocking-based304

deduplication approach by Köpcke and Rahm305

(2010). This approach is based on choosing a block-306

ing key, which is an attribute by whose values we307

obtain meaningful partitions on entities.308

We focus on entities that are instances of the309

most interesting class, humans. We choose to310

block entities by birth dates. Within each block,311

we consider an entity pair as duplicates if (i) their312

labels have close meanings (i.e., cosine similar-313

ity between SentenceTransformers embeddings are314

greater than 0.85), and (ii) 30% of their triples are315

exactly the same. More advanced methods could316

utilize LLMs themselves for deciding on entity317

equivalence (Ding et al., 2024), but it would incur318

more cost and longer runtime.319

4 Implementation320

LLM choice and parallelization We chose GPT-321

4o-mini (OpenAI, 2024) for our experiments, be-322

cause of (i) its ability to process requests in batches,323

(ii) its structured output feature, (iii) its good trade-324

Entities 2.9M
Triples 101M
Relations 1,804 (788K before canonicalization)
Classes 473 (103K before canonicalization)
Triple objects 37M entities, 64M literals
Avg. triples/entity 36
Avg. label length 24.5 characters
Avg. outlinks 4
Subject-precision* 74% Verifiable, 9% Plausible,

17% Unverifiable
Subjects in Wikidata* 37% in WD, 63% not in WD
Triple-precision* 31% True, 61% Plausible,

1% Implausible, 7% False
* as a weighted average across layers.

Table 3: Statistics of GPTKB.

off between performance and cost. The batch fea- 325

ture is particularly important, enabling us to send, 326

after startup, up to 100 batches of 10,000 entities in 327

parallel. The model’s size is not publicly released, 328

but has been estimated to be around 8B (Howarth, 329

2024; Zeff, 2024). 330

Seed entity, result size, runtime and cost We 331

start the process from a single entity, Vannevar 332

Bush, in honor of his vision of interlinked knowl- 333

edge (Bush, 1945). Note that this choice is arbi- 334

trary and overall inconsequential. As general-world 335

knowledge graphs are densely connected (Hogan 336

et al., 2022), any seed entity connected to popular 337

entities serves as well. For instance, we reach MIT 338

in one hop, Alan Turing in 2 hops, Kyoto in 3 hops. 339

We require a total of 2,200 batches to prompt the 340

LLM up to BFS-depth 10, which corresponded to 341

5.8M prompted entities, of which for 2.9M a non- 342

empty answer was returned. The whole process 343

took 27 hours, and including trial runs, constructing 344

GPTKB cost us a total of $3,500 for API calls. 345

GPTKB statistics Our KB contains a total of 346

101M triples for 2.9M entities, organized into 1,804 347

relations and 473 classes. This gives an average of 348

36 triples per subject, with two distinct clusters, in 349

particular, 651K entities with 10 triples and 86K 350

with 50 triples, with most others near these values. 351

Of all triples, more than 37M have an entity as 352

object, and more than 67M have a literal as an 353

object. The average length of entity labels is 24.5 354

characters. Example output for Vannevar Bush is 355

shown in Figure 2. Statistics are shown in Table 3. 356

Dataset provision and license We provide our 357

KB both as a download (3.8 GB in TTL format), via 358

a web browsing interface, and via a SPARQL query 359

endpoint at anonymized. We provide our KB under 360

the noncommercial CC BY-NC 4.0 license, not out 361
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of commercial self-interest, but because we want362

to avoid potential misuses (see Section 8). This363

license is compatible with the permissive terms of364

use of OpenAI (OpenAI, 2022).365

5 Analysis366

5.1 Precision367

Evaluating the precision of large-scale KBs is not368

straightforward, because they contain a significant369

amount of long-tail knowledge, for which finding370

evidence or counter-evidence is difficult. In line371

with (Suchanek et al., 2007), we evaluate precision372

within the context of web-retrievable information.373

Figure 3 summarizes our findings.374

For verifying entities, we retrieved 5 search375

results from a web search API for the entity la-376

bel, which are then used to decide whether the377

entity’s existence could be verified, appears plau-378

sible, or could not be verified. Deciding on these379

labels based on textual context represents a task380

of textual entailment, a.k.a. natural language in-381

ference (NLI), a task generally considered solved382

for LLMs.2 We therefore use another LLM, Llama-383

3.1-70B-Instruct (Dubey et al., 2024), for this task.384

The LLM hereby only judges textual entailment,385

it does not independently judge truth from its pa-386

rameters. Based on 1,000 samples, average entity387

verifiability is 74%, and as shown in Figure 3, we388

observe a continuous drop of verifiability over the389

layers, stabilizing at layer 10 at about 70%. The390

plot also includes Wikidata-existence, which paints391

a similar trend at lower levels. We generally ob-392

serve a wide variance across classes, finding, for393

instance, that persons consistently have a higher394

verifiability than fictional character, where many395

codes were made up (e.g., Officer K.I.T.T. XV and396

Officer K.I.T.T. XVI) or varying incorrect type num-397

bers are added to real names continuously by the398

LLM (e.g., Agent 71 and Agent 72).399

For a given triple, we retrieve the top-5 web-400

page snippets for the search term <subject> <ob-401

ject> from a search engine API, then again402

perform LLM-based textual entailment to de-403

cide whether the given triple is entailed (en-404

tailed/plausible/implausible/false), given the snip-405

pets. We specifically adapt the prompt used by406

2On LLM performance on textual entailment, the popular
SNLI (Bowman et al., 2015) is comparable, which was con-
sidered solved in 2020 by BERT architectures (Zhang et al.,
2020) at 92% accuracy, which is the ceiling, given dataset
noise. This is also why the literature mentions no numbers for
newer models like Llama on this task anymore.
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Figure 3: Accuracy of GPTKB across layers.

Adam and Kliegr (2024), extending it with the 407

“false” level. Based on 1,000 samples, we find 408

that on average, 31% of triples are entailed, 61% 409

are plausible, 1% is implausible, and 7% are false. 410

In terms of the accuracy of the taxonomy, we 411

follow the per-edge evaluation scheme proposed 412

by Bordea et al. (2016), finding that 64% of all 413

subclass-superclass edges are considered correct, 414

using the Llama model as judge. We also evaluate 415

whether a superclass is most appropriate, by offer- 416

ing all siblings as alternatives. Here, for 70% of all 417

subclass-superclass edges, the superclass is consid- 418

ered the best alternative. Note that the structure of 419

our taxonomy still leaves room for improvement in 420

terms of long-range dependencies and distributions, 421

that are not easy to quantify or address locally. 422

5.2 GPTKB content and comparison 423

Classes The most frequent classes generated for 424

entities are shown in Figure 4, where we find that 425

Person dominates the dataset. Several more classes 426

are actually merged into Person, e.g., human, ho- 427

minid. Including these, the total number of Person 428

is more than 287K. Further details by layer are in 429

Appendix B. 430

Properties The most frequent properties in the 431

whole KB are instanceOf (3.1M) and features 432

(2M) with similarly generic properties following 433

at the entity level. At the class level, we find 434

more specific properties, for instance, the most fre- 435

quent properties in the class Person are instanceOf 436

(309K), occupation (198K), knownFor (179K), ex- 437

hibition (178K). 438

Content bias We also analyze the geographic 439

bias of our KB, using the listed nationalities as 440

proxy. We observe a clear bias towards English- 441

language nationalities: the top-2 are American 442
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38K character

35K
city

34K

Figure 4: The 10 most frequent classes in GPTKB,
which make up 25% of all entities.

(119K) and British (35K), while the next 3 are443

French (18K), German (14K), and Japanese (11K).444

This bias in GPTKB is stronger than, e.g., in Wiki-445

data (Shaik et al., 2021), and a curious lack of446

others (e.g., Chinese only 3K, compared to 8K447

for Russian, or 7K for Indian/Spanish), likely re-448

flecting the (undisclosed) English-centric training449

corpus of GPT-4o-mini.450

An interesting point is also gender bias: The451

gender property of GPTKB contains 15K female452

versus 8K male values. For first names, male ones453

are still more than female (47% vs. 37% based on454

the gender-guesser 0.4.0 Python library), but this455

is still a much lower bias than in other KBs, likely456

reflecting the effects of gender debiasing.457

Wikidata overlap and novelty We compare with458

Wikidata on several aspects: First, we compute the459

fraction of subjects that exist in Wikidata. From460

a random sample of 2,000 subjects from GPTKB,461

24% have an entity with exactly matching label in462

Wikidata. A further 6.5% have a non-empty search463

result, i.e., an entity of paraphrased or similar la-464

bel. The remaining 69.5% appear novel. Second,465

we exemplarily look at the 41 triples for Vannevar466

Bush, of which we find that more than 10 are not467

contained in Wikidata, e.g., his affiliation with the468

US government, his children count (incorrect by 1),469

or him inventing the concept of hypertext.3 Third,470

we identify several properties not modelled at all471

in Wikidata, for instance, historicalSignificance472

(396K triples), artStyle (174K triples), or hobbies473

(44K triples). This indicates that GPTKB poten-474

tially contains a significant amount of novel knowl-475

edge. A more comprehensive KB comparison in476

the style of (Färber et al., 2018) is planned.477

3An exact comparison is not straightforward, because rela-
tion names do not perfectly align, and objects in GPTKB are
substantially more wordy.

6 Discussion 478

6.1 Lessons for LLM epistemiology 479

Terminological observations The notion and 480

definition of LLM knowledge itself is controversial 481

(Fierro et al., 2024). We adopt here the term knowl- 482

edge base because it is common in the field, but 483

would consider the term belief base equally appro- 484

priate. In terms of the definitions of knowledge that 485

are introduced by Fierro et al. (2024), we find that 486

our output falls into the minimalistic sui-generis 487

(g-knowledge) category, as our KB contains false 488

as well as inconsistent triples. Beyond the reported 489

errors, e.g., in many cases, spouse relations are not 490

symmetrically represented. 491

Storage capacity Scaling laws and storage ca- 492

pacity are intensively investigated (Allen-Zhu and 493

Li, 2024), but usually on synthetic data. Our ex- 494

periments provide a lower bound on real data: As 495

discussed in Section 4, GPT-4o-mini likely has in 496

the order of 8B parameters. Given the 101M triples 497

that we obtained, that makes 79 parameters per 498

triple.4 We emphasize that this number captures 499

only encyclopedic knowledge, yet that LLMs also 500

possess other knowledge, e.g., linguistic knowl- 501

edge, procedural knowledge. 502

Complementarity We observe a high comple- 503

mentarity to existing resources, with 63% of gen- 504

erated entities not being present in Wikidata. Par- 505

ticularly, from Figure 3, GPTKB’s entities remain 506

web-verifiable even in deeper layers, about 70% 507

of the entities are web-verifiable in layer 10, even 508

though the percentage of entities found in Wikidata 509

drops to a little over 20%. Apart from named- 510

entities, some particularly noteworthy complemen- 511

tary slices of LLM knowledge concern digital me- 512

dia artifacts, art periods, and people’s hobbies. 513

Accuracy While on the entity level, most entities 514

appear to truly exist (74% verifiable, 9% plausible), 515

on the triple level, results are lower (31% verifi- 516

able, 61% plausible). This indicates that the LLM 517

generally has a grasp of entities, but has more dif- 518

ficulties in correctly modeling their relationships. 519

BFS-depth and quality are negatively correlated, 520

but there is no complete quality collapse within the 521

first 10 levels. 522

4From (Allen-Zhu and Li, 2024), a theoretical lower bound
of 4 parameters/triple can be deduced, based on Remark 4.4,
and their synthetic dataset containing 6 triples per entity. How-
ever, the generalizability of results on that synthetic dataset is
unclear.
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Enabled analyses Our materialized resource en-523

ables a range of analyses about factual LLM knowl-524

edge, which for space reasons we only skim here:525

1) Accuracy: See Sec. 5.1 and paragraph above. 2)526

LLM bias: See Sec. 5.2. 3) Timeliness: Exemplar-527

ily, we collect the most frequently mentioned years,528

and observe that there is sharp drop after 2023,529

which matches the knowledge cutoff of the LLM530

(see plot in Appendix D). 4) Subject-wise consis-531

tency: Our KB still contains many duplicates, e.g.,532

The Elbe River, River Elbe, Elbe River, river Elbe,533

Elbe. Studying their triples gives insights into con-534

sistency, e.g., we observe a significant semantic535

overlap, but also frequent different wordings (e.g.,536

wildlife - various fish species / fish species), and537

minor factual deviations (e.g., length 3x 1094km,538

2x 1091km). 5) Structural consistency: An in-539

teresting observation concerns the difficulty that540

LLMs have with inverse relations (Berglund et al.,541

2024). We can observe this too, for instance, out of542

318K spouse triples, only 8K are symmetric, and543

out of 61K parentCompany triples, only 6K are544

mirrored in subsidiary triples.545

6.2 Lessons for KB construction546

The GPTKB prototype reveals several important547

lessons for LLM-based KB construction. In partic-548

ular, we find it notable that building such a large549

KB was possible so quickly, with a relatively small550

model.551

Precision-recall trade-off The biggest challenge552

in our view is precision, both in terms of hallu-553

cinated entities, and triples. We do not expect554

that larger models alone will solve this problem,555

because the long tail, where hallucinations occur,556

would likely just be pushed farther, but remain diffi-557

cult to delineate. Tuning the precision-recall trade-558

off, for example, via more conservative prompts, or559

via thresholding based on elicited confidence val-560

ues (Xiong et al., 2024), might be a way forward.561

Emerging entities Some applications are espe-562

cially interested in newly emerging entities, and563

these are a long-standing challenge for traditional564

KBC (Hoffart et al., 2016). Web-scraped KBs like565

Yago and DBpedia could in principle re-run their566

scrapers periodically, while text-extracted KBs like567

Nell and ReVerb would require re-runs on new web568

crawls. Our approach could proceed analogous, re-569

running the materialization on a newer version of570

the utilized LLM. If one were to know which enti-571

ties are affected by updates, one could also perform572

retrieval-augmented generation, however, knowing 573

where updates occured essentially requires an or- 574

acle, and none of the existing KBs successfully 575

employed selective updating. 576

Consolidation challenges Our exploration sur- 577

faced a potpourri of other challenges, some of them 578

known to KB construction research since years 579

(Weikum et al., 2021), others requiring novel adap- 580

tations in the light of LLMs. These concern (1) 581

NER for short labels without context, (2) entity 582

deduplication, (3) entity canonicalization, (4) lit- 583

eral typing and canonicalization, (5) relation clus- 584

tering, (6) relation organization in terms of subrela- 585

tions, (7) class clustering, (8) taxonomy construc- 586

tion, and (9) triple verification. While we explored 587

simple techniques for 1, 2, 5, 7, 8, each has room 588

upward, and other tasks were not treated so far. 589

Cost-effectiveness The GPTKB approach de- 590

viates from traditional Wikimedia- and data- 591

integration focused KB construction, and although 592

its precision still needs improvement, it stands out 593

with its potential for cost efficiency. In a back- 594

of-the-envelope calculation, Paulheim (2018) esti- 595

mated the cost per triple for existing manual KB 596

construction projects at $2-6, and for existing auto- 597

mated KB construction projects at $0.01-0.15. In 598

contrast, in our prototypical execution, the cost is 599

just $0.0001 per correct triple ($3.5K/33M), i.e., 600

>100x less than with previous methods. 601

6.3 Other LLMs 602

We performed a parallel exploration using Llama- 603

3.1-70B-Instruct on local HPC hardware, and while 604

accuracy is higher (69% of triples verified true in 605

a test run), this did not scale. We also envisioned 606

a run using the strongest publicly available LLM, 607

GPT-4o (80% triples verified true), however, by its 608

15x higher API cost, and its estimated 25x larger 609

parameter set, assuming knowledge is roughly pro- 610

portional to parameters, at about $825K, this is 611

beyond our budget. See Appendix E. 612

7 Conclusion 613

Our work is a landmark for two fields: For NLP, for 614

the first time, it provides comprehensive insights 615

into what LLMs know (or believe). For the Se- 616

mantic Web, it shows novel ways forward for the 617

long stale topic of open-domain KB construction. 618

GPTKB is accessible at anonymized. 619
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8 Limitations620

As already observed by Petroni et al. (2019),621

prompt formulations heavily influence LLM re-622

sponses, and hence may bias the resulting KB.623

GPTKB presents one way of materializing LLM624

knowledge into structured format, but different625

prompts could give different output. It is also im-626

portant to observe that LLMs operate inherently627

probabilistically, while our output (and most web-628

scale KBs) are binary. Any process translating from629

probabilistic to binary implicitly encodes a choice630

between precision and recall, and we do so by the631

triple counts given as guidance in the elicitation632

prompt. In our view, such a biasing is hard to avoid,633

and also not solved by instruction-free sample-only634

(few-shot) prompts as proposed by Wu et al. (2024),635

as also examples bias the responses, both in terms636

of quantity, topics, and vocabulary.637

Our exemplary run presents a proof of concept638

for materializing LLM knowledge. While this639

knowledge has slices complementary to existing640

KB knowledge, so far our experiments on verifia-641

bility does not satisfy the precision requirements642

of most downstream use cases, nor is its precision643

even accurately established, because it contains644

many long-tail triples without web sources that en-645

able confirming or refuting their truth. The knowl-646

edge in our KB can intrinsically not be sourced647

back to any specific document and contributor.648

Also, as we do not prescribe any standardized vo-649

cabulary, and only apply lightweight consolidation,650

our KB does not yet possess the consistency of651

existing projects. If you consider using a KB in652

production, for the time being, consider an alterna-653

tive like Wikidata.654

Our materialized KB is based on a closed-source655

LLM that also does not come with guarantees re-656

garding persistent servicing. In the past, similar657

models have been discontinued, hence, long-term658

reproducibility is not guaranteed. An execution659

based on an open model is planned.660
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A Further KB Content 887

Figures 5 and 6 provide further examples of 888

GPTKB content. In the first case, all triples appear 889

correct, but the predicate famousFor dominates the 890

entity. In second case, most triples are correct, but 891

the spouse is made up. In the online OpenReview 892

appendix to this submission, we provide a larger 893

sample of 10K triples. 894

Figure 5: Excerpt of GPTKB triples for subject Vienna.

Figure 6: Excerpt of GPTKB triples for subject Jorge
Cham of PhDComics.
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B Class distribution by BFS-level895

Figure 7 shows the most frequent classes by BFS-896

level. As one can see, diversity increases towards897

lower BFS-levels, and some classes, like awards,898

only emerge later.899
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Figure 7: Most frequent classes by BFS-level. The root
level (#1) is excluded from the chart.

C Prompts900

All prompts below are aided by OpenAI’s struc-901

tured output feature, which allows defining a spe-902

cific JSON schema, that the output has to adhere to.903

Therefore, the description of the output format in904

the prompts is less expansive than what is common905

in many other works.906

Figure 8 contains the prompt used for triple elic-907

itation. Figure 9 shows the prompt for NER. Fig-908

ure 10 lists the prompt for taxonomy construction.909

D Analysis of temporal cutoff910

In Figure 11, we plot the frequency of values for911

the year property. One can observe two things: 1)912

A steady increase of frequency with recency, likely913

mirroring the growth of web corpora over the years,914

which made more recent content overrepresented.915

2) A sudden dropoff between 2023 (549 triples)916

and 2024 (75 triples), matching the self-declared917

knowledge cutoff of the GPT-4o-mini LLM.918
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Figure 11: Number of triples for the year property, per
year. The sudden drop from 2023 to 2024 matches the
self-declared 2023 knowledge cutoff of GPT-4o-mini.

E Comparison of LLMs 919

In Table 4, we compare GPT-4o-mini with GPT- 920

4o and Llama 3.1 70B in terms of accuracy. All 921

LLMs are evaluated on a similar-sized set of enti- 922

ties (20K). One can observe significant accuracy 923

differences, consistent with the order of their (es- 924

timated) parameter size, and general benchmark 925

results. 926

GPT Llama GPT
4o-mini* 3.1 70B 4o

Web-verified triples 0.38 0.69 0.78
Entities on Wikidata 0.78 0.83 0.88
Web-verified entities 0.80 0.95 0.98

Table 4: Entity and triple verifiability comparison be-
tween different LLMs on a similar-sized set of entities.
GPT-4o-mini* corresponds to the first 5 layers of what
is reported in Figure 3.

F Sources for KB comparison 927

Sources of KB sizes in the comparison presented in 928

Table 2: Wikidata: See https://www.wikidata 929

.org/wiki/Wikidata:Statistics and https: 930

//grafana.wikimedia.org/d/000000175/wi 931

kidata-datamodel-statements. Wikidata5m: 932

(Wang et al., 2021). Yago4.5: (Suchanek et al., 933

2024). DBpedia: English version as per Table 2 934

in (Lehmann et al., 2015). NELL: As per Figure 935

5 (left) in (Mitchell et al., 2018). Reverb: As per 936

(Lin et al., 2012) and https://web.archive.or 937

g/web/20220307185343/https://openie.all 938

enai.org/. 939
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You are a knowledge base construction expert. Given a subject entity, return all facts that you know for the subject as a list of
subject, predicate, object triples. The number of facts may be very high, between 50 to 100 or more, for very popular subjects.
For less popular subjects, the number of facts can be very low, like 5 or 10.

Important:
- If you don’t know the subject, return an empty list.
- If the subject is not a named entity, return an empty list.
- If the subject is a named entity, include at least one triple where predicate is “instanceOf”.
- Do not get too wordy.
- Separate several objects into multiple triples with one object.

Figure 8: Prompt for knowledge elicitation.

You are an expert on named entity recognition (NER). Your task is to classify if given phrases are named entities (e.g., persons,
organizations, works of art), or not (e.g., literals, dates, URLs, verbose phrases). Each phrase is given to you in a line.

Figure 9: Prompt for named-entity recognition (NER).

You are a knowledge base construction expert. Your task is to initialize a seed taxonomy with general categories, which you will
update later with given classes. Please return only the seed taxonomy in json form with indentation.

Class: <new class>

You are a knowledge base construction expert. Your task is to create a taxonomy for a knowledge base. Beforehand,
you need to give each given class a score describing how general it is. The score is an integer ranging only from 1, for the most
general concept, to 10, for the most specific concept. Please return only the score of the given class.

Candidate branches: <branches of current node>
Class: <class to add>

You are a knowledge base construction expert. Your task is to integrate a given class into the taxonomy. If the given
class is a subclass of one of the candidate branches, return only the exact name of that branch. Otherwise, return only NULL.

Taxonomy: <taxonomy from current node>
Class: <class to add>

You are a knowledge base construction expert. Your task is to update the given taxonomy with the given class. You
can consider the categorization of the taxonomy, but you can not modify the names of the classes in the taxonomy. Please return
only the updated taxonomy in JSON form.

Figure 10: Prompts for seed taxonomy construction (top), class generality scoring (upper middle), recursive class
insertion check (lower middle), and (sub)taxonomy update (bottom).
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