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Abstract

Our paper presents a simple training strat-001
egy to help prevent catastrophic forgetting in002
continual learners, named Inter-Batch Cross-003
Attention (IBCA). We discover that adding an004
IBCA module at the input level can signifi-005
cantly increase the model’s continual learning006
performance, with minimum memory and per-007
formance overhead. Our method makes min-008
imum changes to existing transformer-based009
model architectures and can be used in par-010
allel with other continual learning strategies.011
We demonstrate its effectiveness on class-012
incremental classification tasks on the 20 News-013
groups dataset.014

1 Introduction015

The ability of an artificial intelligence system to016

continuously adapt to new tasks and new data has017

been a main focus in the field of continual learn-018

ing (CL), which is also known as lifelong learning.019

Unlike traditional AI models which are trained to020

fit a static dataset, continual learners are more suit-021

able for real-life applications, where new data and022

tasks are dynamically allocated to the system con-023

tinuously. However, such systems usually suffer024

from catastrophic forgetting, where the model’s025

performance on previously seen tasks drops sig-026

nificantly as new tasks and classes are introduced027

continually. This phenomenon can be attributed028

to the major difference in the memory mechanism029

between human intelligence and machine intelli-030

gence. The human brain has a long-term memory031

for retrieval and a short-term working memory that032

interacts with active tasks. In contrast, most exist-033

ing language models are trained on segmented data,034

with a limited context horizon. Neural science has035

shown that better working memory is related to036

better long-term memory. This correlation is also037

observed in LLMs. When models are trained with038

a longer context, more context memorization can039

lead to better temporal consistency in the generated 040

results. 041

Inspired by these observations, we propose a 042

simple but effective training scheme that has a ma- 043

jor discrepancy over traditional model training. We 044

enable inter-batch interactions within a batch of 045

training samples, by introducing an Inter-Batch 046

Cross-Attention. The intuition behind this design 047

is to introduce sample-wise context to the model, 048

which will assist the learning of more general, and 049

thus less shift-prone features. 050

With our proposed training scheme, we see a 051

2% improved performance on the 20 Newsgroups 052

class-incremental learning benchmark without and 053

without experience replay. This is achieved without 054

any additional continual learning strategies tailored 055

for this task. Our experiences and analysis indicate 056

that this more human-like training scheme poten- 057

tially closes the gap between artificial intelligence 058

and human intelligence in terms of continual learn- 059

ing performance. 060

2 Related Work 061

Class incremental learning (CIL) has been widely 062

studied in continual learning literature. It is con- 063

sidered one of the most challenging tasks in a con- 064

tinual learning setting which requires models to 065

retain and integrate knowledge across incremen- 066

tally introduced classes. Techniques spanning sev- 067

eral categories such as regularization (Kirkpatrick 068

et al., 2016; Gok et al., 2023; Li and Hoiem, 069

2016; Kirkpatrick et al., 2016; Mi et al., 2020), 070

knowledge distillation (Li and Hoiem, 2016; Hui 071

et al., 2021), memory mechanisms (Chaudhry et al., 072

2018; Sprechmann et al., 2018; Wang et al., 2021; 073

Shao et al., 2023; Hu et al., 2021; Madotto et al., 074

2020), experience replay(Sun et al., 2019; Song 075

et al., 2023), data augmentation (Wang et al., 2024; 076

Ke et al., 2022), and dynamic networks (Ke et al., 077

2021), have been adopted to resolve catastrophic 078
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Figure 1: Pipeline and the cross-attention mechanism used in our method.

forgetting in language classification tasks.079

However, in this work, we focus on the aspect080

of training. We believe that a more human-like081

training scheme might give us some insight into082

the reason behind catastrophic forgetting. (Lake083

and Baroni, 2023) discovers that by providing a084

longer context consisting of multiple samples, a085

language model can generalize more like a human086

in a composition task. Inspired by this work, we087

introduce IBCA, which enables a similar training088

scheme on a wide range of transformer-based batch-089

training pipelines.090

3 Background091

Class Incremental Learning: Class Incremental092

Learning (Kim et al., 2022) is a learning paradigm093

where a model is exposed to a sequence of classes094

C1, C2, . . . , Cn within a single task T . The ob-095

jective is for the model to learn these classes096

sequentially, such that after learning all classes097

C1, C2, . . . , Cn, it can correctly classify examples098

from all classes
⋃n

i=1Ci.099

Formally, a model M undergoing class incre-100

mental learning operates in three phases. Initially,101

given a dataset D1 consisting of classes C1, the102

model M is trained to classify instances from C1.103

In the incremental learning phase, for each sub-104

sequent set of classes Ci with dataset Di, the105

model M is updated to classify instances from106 ⋃i
j=1Cj , ensuring minimal accuracy loss for previ-107

ously learned classes
⋃i−1

j=1Cj . Finally, the model’s108

performance is evaluated on a test set that includes109

examples from all classes
⋃i

j=1Cj after each in-110

crement Ci.111

4 Methodology 112

4.1 Model Architecture 113

Batch-wise Context Expansion: We introduce 114

additional information for each training sample 115

by expanding the context of each sample with the 116

previous in the same batch. This can be achieved 117

by concatenating neighboring data in a data stream, 118

or concatenating the right-shifted copy of the batch 119

with the original batch (See Figure 1). We set a 120

30% probability of the context being substituted 121

with a zero context in the training phase since this 122

setting produces the best results in our ablation 123

study (Section 5.4). While in the testing phase, 124

the context is introduced the same way as training, 125

except no zero context is introduced. 126

Batch-wise Cross Attention: To process the 127

concatenated input, we use a cross-attention 128

transformer layer (See Figur 1 right). Given the 129

target sequence and the concatenated context 130

sequence, we calculate the query matrix from 131

the target sequence (the sequence for which we 132

predict the class) and the key and value matrices 133

from the concatenated sequence which contains 134

the additional context and the target sequence 135

concatenation. This mechanism is only carried 136

out in the first layer and its output is passed to the 137

successive self-attention transformer layers. 138

139

5 Experiments and Results 140

5.1 Experimental Settings 141

The experiments were conducted on a system run- 142

ning with two Tesla T4 GPUs. For training, we 143

used 40 epochs with a learning rate of 1 × 10−4. 144

The batch size was set to 32 samples per batch, 145
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the embedding dimension was set to 512, and the146

maximum sequence length was also set to 512. The147

number of attention heads were 4, while the num-148

ber of layers were 3. The attention dropout rate149

and layer dropout rate were both set to 0.5 and 0.2150

respectively and the layer normalization epsilon151

was set to 1× 10−5.152

5.1.1 Dataset153

The 20 Newsgroup dataset was used, comprising154

20 classes with approximately 1000 documents per155

class. For class-incremental learning settings, 10156

tasks were created with 2 classes assigned per task.157

5.2 Evaluation Metrics158

The evaluation metrics included Average Accu-159

racy (AA), which is the average accuracy of all160

tasks at the end of the last task, and Average For-161

getting (AF), which is the average forgetting ratio162

of all tasks at the end of the last task.163

5.3 Main Results164

Model Name 20 News Speed (s) BufferAA ↑ AF ↓

Baselines (Non-continual learning)

Full 55.93 - 7509 -
IBCA (ours) 57.49 - 9613 -

Class incremental learning without replay

None 15.04 77.76 10068 -
IBCA (ours) 15.24 77.74 12376 -

Class incremental learning with replay

Replay 45.80 0.3454 13475 1000
IBCA (ours) 46.93 0.32 17379 1000

Table 1: Performance comparison with the baselines.
Speed measures the time required for training by a
model. Buffer Size represents the number of document
samples replayed in total.

Table 1 shows IBCA’s performance against165

the baselines in a non-continual-learning setup,166

class-incremental learning with replay, and class-167

incremental learning without replay. A full base-168

line model is a conventional approach trained si-169

multaneously on all 20 classes. The IBCA model170

outperforms the traditional baseline model with a171

performance improvement, as reflected by a higher172

accuracy (57.49% compared to 55.93%). In the173

CIL without replay setup, IBCA reports a 2-3%174

decrease in average forgetting and a 2% increase in175

the average accuracy, with a negligible additional176

amount of computation complexity.177

5.4 Ablation Results 178

Model Setup 20 News Speed (s) BufferAA ↑ AF ↓

Number of context samples

0 sample 0.430 0.349 17588 1000
1 sample 0.456 0.348 17087 1000
2 samples 0.401 0.284 18517 1000

Training empty context probability

0 0.456 0.348 17150 1000
0.3 0.469 0.322 17379 1000
0.7 0.432 0.375 17091 1000

Testing context

Empty 0.467 0.308 17279 1000
Test natch 0.469 0.322 17379 1000
Saved Train 0.459 0.331 17814 1000

Table 2: Ablation study

Table 2 shows the ablation studies performed on 179

the model. We present ablation studies across 3 180

different setups: 1. number of context samples pro- 181

vided during training. 2. probability which controls 182

which sample is provided with an empty context 183

instead of a context sample, and 3. context samples 184

provided during testing It is important to note that 185

the best setting was carried forward to the next ab- 186

lation setup in the table. 187

For the number of context samples, 0 sample cor- 188

responds to a randomly generated tensor given as 189

context to the training sample whereas 1 sample 190

and 2 samples denote the number of previous con- 191

text samples concatenated to the training sample. 192

The setup with 1 context sample performed the best 193

with an accuracy of 45.57%. The next component 194

is replacing the context with an empty context to 195

study if the improved performance is from the ad- 196

ditional architecture or the information from the 197

context. 0 probability corresponds to no replace- 198

ment, whereas 0.3 and 0.7 correspond to 30% and 199

70% probabilities of the context sample being a 200

zero tensor for a training example. Out of these 201

the 0.3 context probability performed the best and 202

gave an accuracy of 46.93%. 203

Finally, the testing context provided to the model 204

was examined with empty context, test batch con- 205

text, and saved train batch sample context. In empty 206

context, each testing sample receives a zero tensor 207

as a context whereas in the test batch and saved 208

train batch, each testing sample is appended with 209

its neighboring sample as context or a saved sample 210

during training as context respectively. This led to 211

the test batch performing the best with a 46.93% 212
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Figure 2: Row 1 depicts the Attention Map across the 4 heads generated from the IBCA Model. Row 2 depicts the
Attention Map across the 4 heads generated from the Baseline Model

accuracy and 32.20% average forgetting.213

The best performance and efficiency trade-off214

has the setting of 1 context sample, 0.3 zero ratio,215

and the inter-batch samples from the text batch.216

This is also the setting we use for the main experi-217

ments.218

5.5 Analytic Results219

Figure 2 provides a comparative analysis between220

the attention maps generated from the baseline221

model and the IBCA model. Both the models222

have the same hyperparameters. As proposed in223

our methodology, the target sample in IBCA is224

concatenated with additional context, effectively225

doubling its sequence length. The attention maps226

are obtained from the first layer for the respective227

models; it is interesting to note that this attention228

map is from a test sample which is misclassified by229

the baseline model but correctly classified by the230

IBCA model. Comparing the attention maps across231

each of the individual heads, we can a relatively232

consistent attention in the plots generated from the233

baseline mode, whereas the attention map from the234

IBCA model exhibits a completely different behav-235

ior. The attention map from the target samples has236

higher values resulting in a brighter shade, whereas237

the attention from the additional context is lower238

in value but with distinct patterns. This indicates239

that the context information is indeed passed to the240

next stage of target image processing. Furthermore,241

it can be observed that IBCA at the first layer, can242

distinguish apart the padding tokens in the samples,243

while the baseline model fails to do so. This indi-244

cates the IBCA can capture a general feature better 245

than the baseline model. Finally, we can conclude 246

that IBCA assists in the main training objective, 247

by providing additional guidance on forming high- 248

level features at the initial levels of a multi-level 249

transformer based architecture. 250

6 Conclusion 251

We present our novel, yet simple, Inter-Batch 252

Cross-Attention (IBCA) technique to tackle the 253

enduring problem of catastrophic forgetting prob- 254

lem. With small computing overheads, it presents 255

a viable approach to mitigate the catastrophic for- 256

getting problem, even though it might not outper- 257

form the most advanced approaches’ performance 258

benchmarks. Our technology offers a lightweight, 259

portable, and flexible way to support CL efforts. 260

In a world where "Compute is king". Our experi- 261

mental findings support the effectiveness of IBCA 262

in knowledge preservation over time, showing an 263

average 2% improvement in accuracy and a mini- 264

mum 2% decrease in forgetting rate. IBCA offers 265

a solution by balancing resource savings with per- 266

formance improvement. IBCA provides a valuable 267

tool paving the way for future research to further 268

optimize and expand its application in diverse AI 269

systems. 270
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7 Limitations271

In this study, we only explored the class-272

incremental learning setup, but our method can273

be easily applied to domain and task incremental274

settings. Our models are trained with limited com-275

puting resources, thus the performance presented276

might not reflect full convergence.277

More experiments and compatibility with other278

state-of-the-art continual learning strategies can be279

explored. Future research with access to larger280

computational resources could investigate the scal-281

ability and efficiency of handling larger datasets or282

pretrained models. In its current form, this method283

is not sufficient to be used in real-life applications284

that can achieve significant good results. However,285

we believe our method can be an inspiration for fu-286

ture works to focus on a more human-like learning287

experience, rather than treating catastrophic forget-288

ting as an engineering problem. We believe a more289

general framework like the one we present in the290

paper is of greater long-term impact on the develop-291

ment of human-level artificial general intelligence.292
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