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Abstract

Chimeric Antigen Receptor (CAR) T cell therapy is a promising area of cancer
immunotherapy. However, many challenges such as loss of persistence, T cell
exhaustion, and therapy associated toxicities hamper further advancement of CAR
T cell therapy. Therefore, recent efforts have focused on designing improved
CARs that show better therapeutic characteristics. However, it is unfeasible to
test all CAR variants in lab-based assays as CARs consist of multiple intracellular
signalling domains. This results in over 100’000 possible variants. We leverage
computational modeling to navigate this vast combinatorial space by learning
the relationship between CAR design and T cell functionality, thereby proposing
promising CAR T cell designs. CAR T cells expressing different variants can be
viewed as cells that underwent different perturbations. Neural Optimal Transport
is an upcoming field that can model single cell perturbations and predict unseen
cells and conditions. In this work we leverage the conditional Monge Gap to
model the response to CAR expression at a single-cell level and generate gene
expression of cells that express an unseen CAR design. We show that CAR OT
(CAROT) significantly outperforms the baseline for gene expression prediction
for in-distribution CAR variants, with distinct gene expression patterns per CAR
that capture biological characteristics. When predicting unseen CAR variants, we
demonstrate promising results in terms of gene expression prediction and show the
model learns gene expression patterns linked to domains in the training set. This
work demonstrates that optimal transport may support discovery and development
of new CAR T cell designs.

1 Introduction

Chimeric Antigen Receptor (CAR) T cell therapy is a promising area of cancer immunotherapy, with
currently six FDA-approved therapies and over a thousand ongoing clinical trials [1]. CARs are
synthetic protein receptors consisting of an extracelluar domain linked to an intracellular signalling
domains, which carry the necessary T cell activation signals. Ex vivo engineered CAR T cells that
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recognise tumor cells are introduced into the patient, resulting in a living drug capable of a sensitive,
target-specific, self-replicating, and long-term response [2, 3]. Despite success, further advancement
of CAR T cell therapy is limited by many challenges including loss of persistence, T cell exhaustion
and associated toxicities [4]. Additionally, patient responses vary in remission rates and associated
toxicities such as cytokine release syndrome [5, 6]. To overcome these challenges, recent efforts
have focused on designing novel CARs that show promising therapeutic characteristics, such as
memory and cytotoxicity features and limited exhaustion [7]. For example, varying the signalling
domains in the CAR was shown to lead to differences in T cell survival and cytotoxicity both in

vitro and in patients [8, 9]. Still, the understanding of the exact properties of co-stimulatory domains
that determine therapeutic efficacy is limited [10]. Despite efforts to establish high-throughput
screening, current in vitro methods can profile 100 to 200 variants in primary (patient-derived) human
T cells [11–14]. Although larger screens have been established, these rely on cell lines that do not
completely recapitulate T cell biology [15]. However, currently up to three co-stimulatory domains
can be incorporated in a CAR design, given the number of possible signaling domains involved in
immunological function, this results in a CAR design space of over 100’000 possible combinations.

Computational modeling can help navigate this vast combinatorial space, mapping the relationship
between CAR design and functionality and thus aiding lab-based screening by suggesting promising
CAR T cell designs. For example, Daniels et al. recently trained a neural network model on a library
of around 250 CAR variants to predict stemness and cytotoxicity from the CAR design for over 2000
unmeasured variants [13]. Although the authors were able to point to CAR design rules suggesting
efficacy, they relied on summary statistics of the outcome that potentially mask heterogeneity of
patient response. Indeed, during a CAR T cell therapy patients are infused with millions of cells,
which can be best described by distributions rather than summary statistics [16, 17]. For example,
one patient showed at the peak of the response 94% CAR T cells from a single clone, highlighting
the importance of taking cellular heterogeneity into account [18]. Additionally, the authors used a
one-hot encoding strategy to represent each CAR design as a combination of the thirteen signalling
motifs assessed in their study, an approach that cannot generalise to other CAR T cell libraries.

Recently, the growing availability of single-cell RNA sequencing (scRNA-seq) data before and after
perturbations has led to the emergence of machine learning models that predict gene expression
distribution of single cells in response to drug or genetic perturbations, with early models based
on different flavors of autoencoders [19–21]. As scRNA-seq is a cell destructive assay, an inherent
difficulty in learning perturbation responses from the resulting data is that the same cell cannot be
measured before and after a perturbation. As a result, control and perturbed cell populations are
unpaired and direct cell-to-cell comparisons are impossible. Optimal transport (OT) is a field of
mathematics concerned with moving mass between probability distributions in a cost-minimizing
manner. It poses a natural framework to match the distributions before and after perturbations while
accounting for the heterogeneity of the responses [22]. With neural OT, parametric models learn a
global OT map through amortized optimization of before/after distributions which allows one to make
predictions for unseen initial (cell) distributions. Neural OT has already been successfully employed
in matching single-cell distributions over time [23–25], in space [26, 25], or across modalities [27–
29]. OT-based methods optimize the transportation map from a distribution of control cells to a
distribution of perturbed cells. The resulting map can be used to infer a perturbation response, that is,
to predict the change in cell state of the control cells if they had been exposed to this perturbation.
The transportation can be learned for the (reduced) gene expression space or other modalities, such
as cell surface markers [30]. Beyond the predictions of unseen cells [22], recent frameworks such as
CondOT [31] and the conditional Monge Gap [32] allow to make predictions for unseen cells from
unseen perturbations, thus extrapolating to new therapeutic options.

Inspired by the above, in this work we treat modeling of CAR T cell response as a perturbation
prediction problem, and explicitly model response to a CAR T cell treatment at a single-cell level.
We use OT as a generative model, which can generate the gene expression of a cell that expresses a
CAR design that is not yet experimentally tested. We introduce a conditional CAR OT (CAROT)
model, predicting the single cell distribution of thirty CAR variants. By leveraging recent advances
in Protein Language Models (PLMs) that have successfully been used as embeddings for various
downstream tasks [33], conditional CAROT (conCAROT) allows us to generalise to unseen CAR
designs. We used the model to predict different CAR variants, obtaining distinct and accurate gene
expression profiles that capture biological characteristics for in distribution CARs. Additionally, we
made predictions for gene expression of unseen CAR T cells, showing that the conCAROT learned
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gene expression patterns linked to specific domains. Overall, we show that OT may aid discovery and
development of new CAR T cell designs.

2 Methods

2.1 OT fundamentals and Conditional Monge Gap

OT is a mathematical framework that finds the optimal way to transport a source distribution to a
target distribution while minimizing the cost of displacement. For a comprehensive overview of OT
formalisms and biological applications, we refer to Bunne et al. [34]. The Monge formulation of OT
[35] finds a push-forward map T that maps the source distribution to the target distribution while
allowing splitting of the mass, and is formulated as

T s.t.T ]µ = ⌫, C(T ) =

Z

Rd

c(x, T (x))µ(dx) (1)

where µ and ⌫ are measures on the source and target distribution, respectively, x is a point in the
source distribution and T (x) the transportation of x. T ]µ describes the result of transporting every
point in µ and C(T ) the cost associated with the transport. In single-cell applications, the Monge
formulation translates to finding a map that transforms the gene expression of the control cells (source)
to the gene expression of the perturbed cells (target). The mass splitting allows gene expression from
a single source cell to be transported to multiple target cells, and a single target cell to receive gene
expression from multiple source cells. In the case of neural OT, the learned transport map can then be
applied to unseen cells to predict the target distribution at inference time. Such approaches often rely
on Brenier’s theorem and use input convex neural networks (ICNNs) to parameterize and learn the
OT maps [22, 36–39]. In practice, training ICNNs is challenging and can be circumvented e.g., with
the Monge Gap [40], a regularizer that can be employed as a loss function in any neural network and
estimates the deviation from a proposed transport map to an optimal map. The Monge Gap using n

samples of a distribution is:

M✏(T✓) =
1

n

nX

i=1

c(xi, T✓(xi))�W✏(µ, T✓]µ), W✏(µ, ⌫) := min
P2Un

hP,Ci+ ✏H(P ) (2)

where c is again a cost function, T✓ a transport map, and µ and ⌫ measures on the distribution (as
in Equation 1), W✏ is the entropically regularised Kantorovich relaxation, with H(P ) as entropy, ✏
the strength of regularisation, hP,Ci the transportation cost using map P and cost matrix C, and
Un the set off all possible transport maps between the measures µ and ⌫. Here, we leverage the
conditional Monge Gap (CMonge, [32]), a recently proposed extension of the Monge Gap that
globally parametrizes Equation 2 by optimizing over K conditions simultaneously [32]:

min
✓

KX

i=1

�✏(T✓(pi)]µ, ⌫i) + �M✏(T✓(pi)). (3)

where M✏ is the Monge Gap defined in Equation 2, �✏ is the Sinkhorn divergence between source
and target samples [41], pi describes the perturbation or condition, and � is the strength of the Monge
Gap regularization. This setting allows us to learn transport maps conditioned on a covariate and
extend to unseen perturbations.

2.2 Conditional perturbation modeling of CAR T cell therapy

Chimeric Antigen Receptor library We used a Chimeric Antigen Receptor (CAR) T cell library
of 31 constructs, built from six intracellular signalling domains (Figure 1A) and cells of two donors
from GEO database number GSE262686 [42]. The library consists of 30 CAR variant designs that
contain either one (second generation) or two intracellular co-signalling domains (third generation)
in addition to a CD3⇣ domain. The control cells express a non-signalling CAR (NS-CAR) that only
contains the antigen recognising extracellular domain specific for a cancer antigen, a trans-membrane
domain, and no intracellular signalling domains domains. The cells underwent a repeated antigen
stimulation study (RAS) to mimic in vivo conditions by continued T cell and tumor cell engagement
and were subsequently sampled for scRNA-seq at day 0, 6, and 12 (Figure 1B). During the RAS,
CAR T cells were co-cultured with a cancer cell line expressing an antigen that is recognised by
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Figure 1: Dataset overview. A) CAR T cell library NS-CAR: Non-signalling CAR. B) Repeated antigen
stimulation experiment setup. Cells for sequencing are sampled 6h after co-culture with the (newly added)
cancer cells. C) UMAPs showing different covariates in the data based on the HARMONY representation of all
genes.

all CAR variants for multiple days, to simulate exposure to cancer cells. The data were corrected
for batch effects and annotated for CD4/CD8 cell states, cell cycle phase and functional scores.
Functional scores were computed for cytotoxicity, memory, proinflammatory signature, T-helper
1 and T-helper 2 signatures using established marker genes [42] (subsection A.1, Table A1). This
dataset is characterized by different sources of variation, including time, donor, cell type, and effect
of CAR variant (Figure 1C). As expected, cells harvested at day 0 and days 6 and 12 formed distinct
clusters, indicating large shifts in gene expression between short- and long-term activation. Another
prominent source of variation is the cell state (phenotype): we observed seven CD8 cell states and
eight CD4 cell states, including memory, activated, cytotoxic, bystander and dysfunctional states. The
batch effect correction successfully eliminated confounding from donor variation. CAR variants were
mixed in the UMAP embedding and only two CAR variants formed distinct clusters. The NS-CAR
(brown) mostly occupied the resting memory compartments, showing a clear difference from cells
that express CAR variants with signalling domains. The IL15R↵-CD40-CD3⇣ variant (turquoise) is
prominent in the CD8 late bystander cluster.

CAR T cell OT We build on the CMonge framework of (Harsanyi et al. [32], MIT license) and
extend it to model response to CAR T cell therapy. We defined the NS-CAR cells as our source
distribution and mapped it to target distributions of CAR-expressing cells (Figure 2A), transporting
the non-batch corrected log-counts of 82 genes (see subsection A.2). We trained and applied CAROT
on the CD4 or CD8 subsets separately, since transition from CD4 to CD8 states is rare and not the
focus of this study. In contrast to previous works that used autoencoders to compress the scRNA-seq
data [31, 22, 32, 20, 43], we used a curated functional geneset that contains 82 genes which capture T
cell characteristics (e.g., memory, cytotoxicity, exhaustion and proliferation – Table A2), allowing for
more interpretability (subsection A.2). We also investigated two baseline settings (Figure 2B): (i) an
identity or do-nothing setting as the lower bound, as it takes cells from the control population without
transportation as prediction for the CAR-expressing cells, and (ii) a within-condition setting that
serves as an upper bound, as it takes CAR-expressing cells from the target CAR variant as prediction.
Thus, ideally CAROT performs better than the identity model and close to the within condition model.
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We built on the CMonge implementation [32], which has condition-specific dataloaders for efficient
GPU-use, meaning that each batch comes from a single condition/CAR variant. We mixed different
conditions by using layer normalisation after concatenation of the embedding and gene-expression
and take a gradient step after accumulation over four batches. For in distribution settings a train/test
split of 0.8/0.2 was used. For out-of-distribution (OOD) experiments we used the same split for
training, but, when evaluating the OOD variants, all cells were in the test set (0/1 split). We used the
CMonge hyperparameters unless stated differently. We performed single-GPU training/evaluation
with a runtime limit of 1h for the unconditional CAROT and 12h for the conCAROT models.

A Overall distribution

Source
Transport

Target

Optimal 
Transport

Transport

Target

Cell states
Control
CAR Variants

Source Identity

Target Within 
condition

B

CAR2

CAR1

Figure 2: Optimal transport settings. A) The overall distribution shows control and CAR-expressing cells,
clustered by cell state. Different variants have a different number of cells in the cell states. Optimal transport
model CAROT maps gene expression of control cells (source) to gene expession of CAR predicting cells (target),
trying to minimise the transportation cost and the error between the transport and the target expression. B) Two
baseline settings. Identiy or do-nothing model uses gene expression of control cells and within condition takes
gene expression of car expressing cells as prediction/transport.

CAR embedding To allow conCAROT to condition on a CAR variant and make CAR-specific
predictions, we need to construct a generalizable embedding of the different CAR variants. Protein
Language Models (PLMs) such as Evolutionary Scale Modeling (ESM), map the amino acid sequence
to a numerical embedding and have been pretrained on different proteins and tasks, which allows them
to capture biologically relevant information [44]. We embedded the intracellular amino acid sequence
of the variants using ESM2 t48_15B_UR50D, referred to as ESM XL [44]. These embeddings were
averaged over the sequence, resulting in the length of the embedding dimension of 5120 for ESM XL
(subsection A.3).

3 Results

3.1 CAROT projects CAR effect on single cell distribution

We started with the simplest, non-conditional setting of training one OT model per CAR variant,
referred to as CAROT (Figure 3A). Models were evaluated using the average R

2 of the mean gene
expression per gene over all cells as in [32, 22] (subsection A.5, Figure 3B) and the Maximum Mean
Discrepancy (MMD), a distance metric between distributions that compares the gene expression
on a finer scale than the mean expression (as in [22], subsection A.5, Figure 3C). For both metrics,
OT significantly outperforms the identity model. In terms of R2 CAROT performs similar to the
within condition setting. To evaluate the quality of the prediction, we visualized the source, target and
transport cells onto a UMAP projection generated from the functional geneset’s non-batch corrected
log-counts of all CD4 or CD8 cells (Figure A3). We show as an example two CAR variants, where
we observe good mixing between target and transport cells, whereas the source distribution is distinct
for the CAR-expressing cells and prediction (Figure 3D, see Figure A4&Figure A5 for all CARs). We
also observed distinct transport patterns for different CAR variants, indicating that different transport
plans are learned per CAR variant. CD40-CD40-CD3⇣ has most cells in the cycling effector and
early cytotoxic cell states, which is captured by CAROT. IL15R↵-CD40-CD3⇣ has most cells in
the late bystander and late cytotoxic cell states, where also most of the transport is located. Taken
together, these results establish that CAROT can be used to model CAR-variant effects.
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Figure 3: Unconditional optimal transport results. A) CAROT model setting. B) Mean R2 over 9 samples
calculated using all 82 genes in the functional geneset for the CAROT model and the two baselines. Asterisks
indicate statistically significant differences (subsection A.6). C) Same as B but showing mean Maximum Mean
Discrepancy (MMD). D) UMAP constructed using the non-batch corrected logcounts of the 82 genes in the
functional geneset for CD8 cells, colored by cell state (left), and with control cells (source) , CAR-expressing
cells (target) and prediction (transport) highlighted for two CARs (middle and right).

3.2 Conditional CAROT maps multiple CAR variants with one model

With the objective of predicting unseen CAR variants in mind, we trained a single OT model
conditioned on a CAR variant embedding so that it can predict the effect of all CAR variants, we
refer to this model as conditional CAROT (conCAROT) (Figure 4A). We observed that, for many
CAR variants, the single cell distribution is quite similar, with few distinctions between CAR variants
(Figure A4&Figure A5), which makes it hard for the model to learn to condition on the CAR variant.
Also, for many CAR variants, there are only a small number of cells, complicating estimation of
the single cell distribution (Figure A1B&C). Therefore, to train conCAROT, we selected only CAR
variants for which we have more than 750 cells for CD4 and CD8 separately (Figure A1B&C).

We compared again the MMD and R
2 with the identity and within condition models for both CD4

and CD8 (Figure 4B&C), achieving significant improvement over the baseline in both subsets and
metrics. R2 values were greater than 0.95 for each CAR variant (Figure 4D) and comparable to the
condition-specific CAROT models (Figure A10F), indicating no loss in performance compared to
CAROT. As before, we see distinct transport patterns for different CAR variants, especially for the
CD8 subset, where CD40-CD40-CD3⇣ cells are found in the early cytotoxic and cycling effector
cell states, and the IL15R↵-CD40-CD3⇣ cells found in the late bystander and late cytotoxic cluster
(Figure 4E). The CD4 subset CAR-expressing cells differ less, although the predictions look well
mixed with the target (Figure A6, CD8 Figure A7).

We further evaluated whether our predictions capture biological characteristics of CAR T cell therapy.
We compared the distribution of functional scores, namely cytotoxicity, memory and proinflammatory
scores, between the source, target and transport (Figure 5A). We observed similar medians and spread
in the score distributions of cytotoxicity and memory of target and transport, unlike the ones between
target and source. Furthermore, we compared the percentage of positive cells for each score and each
CAR variant and marked that, for most variants, this showed good concordance between target and
transport (Figure 5B), even for CAR variants that were not present in the training data (Figure 5B
purple dots). However, the percentage of memory signature cells is often underestimated in the
target for both in-distribution (ID) and OOD CAR variants, although the ranking of CARs based
on the memory signature is maintained. This could indicate a poorer transport of memory genes or
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Figure 4: Conditional optimal transport results. A) Conditional CAROT model setting. B) Mean R2 over 9
samples calculated for the conCAROT model using the ESM XL embedding and the two baselines, and using
only CARs with more than 750 cells. Asterisks indicate statistically significant differences (subsection A.6)
C) Same as in B, but showing mean MMD. D) Mean R2 over 9 samples for CARs expressed in over 750 cells,
split by CD4/CD8 subtype. Overall distribution is shown in panel B. E) Same UMAP as in Figure 3D (left),
highlighted are the control cells (source), CAR -expressing cells (target) and prediction (transport) for two
CARs.

more difficult relation between CAR variant and memory signature, as CAR effect on the memory
phenotype is less pronounced especially in the CD8 subset [42]. Moreover, we investigated the
cell state distribution for different CAR variants and observe an overall similar pattern (Figure 5C).
conCAROT accurately captures the CD8 Early Cytotoxic cell state in the CD40-CD40-CD3⇣ variant,
the CD8 Late Bystander in the IL15R↵-CD40-CD3⇣ and the CD8 Resting Memory cell state in the
IL15R↵-CD40-CD3⇣ variant. However, certain discrepancies between target and transport were
also observed. For example, conCAROT tends to predict more cells in the CD4 Early Dysfunctional
cell states than present in the target. Also, the CD4 Activated Memory and CD4 Early Activated
populations in CTLA4 combined with IL15R↵ and CTLA4, respectively, are not well predicted by
the model. This is possibly because we had to exclude most CAR variants with CTLA4 in position A
due to low cell numbers. Overall, we conclude that conCAROT performs on par with CAROT and
it manages to capture biological patterns, with the important benefit of a single model that makes
predictions for multiple CAR variants.

3.3 Out-of-distribution prediction of CAR effects

Our goal is to have model that can make accurate predictions of unseen CAR variants, such that it
enables in silico screening to select promising CAR variants for experimental testing (Figure 6A).
Therefore, we further investigated conCAROT in the OOD setting (condCAROT-OOD). When
we trained only on CARs with >750 cells, we automatically left out other variants with <750
cells. We observed that the OOD performance on the left out CARs still outperforms the identity
setting significantly for the R

2 but less explicit for the MMD (Figure 6B&C). Interestingly, the
within condition and identity baselines also achieve a worse MMD on these held out CAR variants,
suggesting that those variants are more challenging to predict, which is corroborated by further
analysis (Figure A10A&B). Additionally, we observed that conCAROT-OOD transports many cells
to the late cytotoxic or late bystander cell state when CD40 is present and many cells to the cycling
or resting memory cell state for CTLA4 (Figure 6D). In the training data, the variants IL15R↵-CD40-
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CAR variants, colored by source, target and transport. B) Percentage of positive CD8 cells for each geneset
in the target and transport, colored by ID and OOD variants. C) Heatmaps of predicted cell type fractions for
transport and target, annotated with a label that indicates whether the CAR was ID or OOD for each subset.
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Figure 6: Out of distribution conditional optimal transport results. A) conCAROT OOD model setting. B)
Mean R2 over 9 samples calculated for conCAROT and the two baselines using the ESM XL embedding for
CARs not seen during training (CARs with <750 cells). Asterisks indicate statistically significant differences
(subsection A.6). C) Same as in B, but showing the mean MMD. D) Same UMAPs as in Figure 3D, with all
CD8 target cells for IL15R↵-CD40-CD3⇣ and IL15R↵-CTLA4-CD3⇣ shown in yellow in the first two subplots.
These CAR variants were in the training data and show the CD40 and CTLA4 patterns that were learned. The
third and fourth UMAPs highlight control cells (source), CAR-expressing cells (target) and prediction (transport)
for two CARs, showing the OOD predictions for variants with CD40 or CTLA4.

CD3⇣ and IL15R↵-CTLA4-CD3⇣ clearly show clustering of cells in these regions as well, showing
that conCAROT learns to condition on specific domains (All OOD CARs in Figure A8&Figure A9).

To determine if conCAROT benefited from training on more CAR variants in the OOD setting, we
trained 30 conCAROT models by leaving one CAR variant out of the training data and evaluating
on the left out CAR variant. Again, conCAROT outperforms the identity model for both CD4
and CD8 in terms of the R

2 and MMD, even on the OOD setting (Figure A10C&D). The UMAP
projections for source, target and transport show good mixing of target and transport for CD4 CAR
variants (Figure A11). For the CD8 subsets, we observed that it is difficult to capture the distinct
patterns for different CAR variants, as variants with clear expression pattern show similar transport
maps (Figure A12). This could again be due to many CAR variants having similar gene expression,
hindering the model to condition on the CAR variant. However, the OOD setting is also harder and
more CAR variants are likely needed to improve generalising to unseen CAR variants.
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4 Limitations

A current limitation of this work is a lack of benchmarking to other perturbation prediction methods,
which we are currently working on and will include in the future [21, 20]. Additionally, the results
shown here are limited to one dataset based on healthy donors. Generalisation to other datasets
or to CAR T cells used in cancer patients needs to be verified in future work. We would also like
to point out that we did not specifically evaluate unseen domains. For the CD8 conCAROT-OOD
models, all domains were always in the training data. However, for the CD4 conCAROT-OOD model
trained only on CARs with >750 cells the CTLA4 domain was not observed at all during training.
Nevertheless, we did not do an extensive analysis of this model’s performance on CTLA4 CARs
specifically nor ran an experiment with deliberately held out domains. This setting is also planned in
future work.

5 Discussion

We presented a novel and promising approach for modeling the effect of CAR design on the CAR-
expressing T cell population that can exend to unseen CAR variants. Using optimal transport, a
method which naturally handles unpaired measurements under multiple conditions, we map control
cells with a non-signalling CAR to cells expressing different CAR variants. We showed that we can
accurately infer perturbations of multiple CAR variants when conCAROT is conditioned on ESM
embeddings of the CAR design. These predictions capture biological characteristics of CAR variants,
making in silico CAR screening feasible. Additionally, we showed promising results of using the
conCAROT to predict gene expressing for cells expressing unseen CAR variants. This model used
domain-specific patterns learned from CARs in the training data to prediction for unseen variants.

This approach is adaptable to future indicators of clinical relevance and future CAR variants. Currently
it is unclear which characteristics to use for in vitro CAR variant selection for clinical outcome [45];
many possible genesets and downstream analyses are possible. A future study could point to new
clinically relevant indicators that can be derived from gene expression, not just the functionalities or
cell states investigated here. Different downstream analyses on the predicted gene expression could
facilitate easy adaption to novel CAR T cell characteristics. Additionally, we could also retrain the
model using novel genes if the novel indicators are not well captured in the current geneset. As we use
a protein language model for embedding the CAR variants, all future CAR variants can be encoded as
long as they can be represented with an amino acid sequence. Previous CAR T cell models focused
only on stemness and cytotoxicity and encoded variants with a binary encoding [13]. This prevents
the previous models from extending to CARs with a different library design and adaptation to other
readouts without retraining.

Increasing CAR library size could improve OOD generalisation, especially when it includes more
CARs with distinct patterns. We observed that many CAR variants responded similarly in the repeated
antigen stimulation setting. This hinders the model’s ability to condition on the CAR embedding,
since the variable that it is conditioned on can have little effect. Together, this hampers the accurate
prediction of CAR variants with distinct effect. A larger library could overcome some of these
hurdles, as it gives the model more examples from which to learn more general patterns. Also, a
larger library would most likely have more variants with distinct effects, improving the model’s
prediction of distinct CAR variants.

A CAR-specific model could help screen patients for approved CAR T cell therapies. Patients
have different responses and success rates for given (approved) CAR T cell therapies [2]. A model
specialized on making predictions for one CAR variant from different control populations could
make valuable predictions given a simple blood sample from patients. These predictions could give
indication whether or not the patients might have a promising T cell phenotype distribution given the
CAR variant, for example, indications of memory response or cytotoxicity of the resulting CAR T
cells. In this study, we did not have enough data to investigate this approach, as splitting by donor
leads to too few cells to effectively train the optimal transport model.
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6 Data and code availability

Code is available under https://github.com/AI4SCR/CAR-conditional-monge/ and data will
be accessible upon publication of the data paper under in the GEO database under accession number
GSE262686 [42].
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A Appendix

A.1 scRNA-seq preprocessing

The scRNA-seq data was quality controlled with nFeature_RNA > 300, nCount_RNA < 50000,
percent.mt < 20 and nCount_ADT < 30000. Because of large differences in cell numbers per CAR
variant, we applied a subsampling strategy. If a CAR variant has more than 6.25% of the cells in
a sample, then these cells downsampled to maximum 6.25% of all cells. (6.25% is deduced from
twice the average number of cells per variant 100/32 =3.123%). Cells were scaled and regression
was done for cell cycle phase (S and G2M) and percentage of mitochondrial genes. Batch correction
for donor and timepoint was done with Harmony, using lambda=c(1,200) for UMAPs in Figure 1
only [46]. This preprocessing was done before downloading the data and cell numbers per variant
after quality control and sampling are shown in Figure A1. For detailed experimental set up and
scRNA-seq preprocessing see [42].

A.2 Genesets and geneset scoring

The functional geneset was obtained by selecting 77 functional genes from various published research
with scRNA-seq of CAR T cells and listed in Table A2. We included five additional genes needed to
compute the functional scores listed in Table A1, resulting in the functional geneset of 82 genes. 82
random genes were sampled from genes that are expressed by at least one cell in each CAR variant.
The highly variable genes (HVG) were determined by first taking the top 100 HVG of each CAR
variant with the control, yielding 30 HVG genesets of 100 genes. Then we counted how often each
gene occurred over all the 30 genesets and took the genes that occurred at least 22 times, giving us 81
unique genes. The number 22 was chosen to get a geneset size in the same range as the functional and
score geneset size. We decided the final geneset based on the performance of unconditional CAROT
and used this geneset for the conCAROT experiments.

To evaluate if the geneset captured differences between control and CAR-expressing cells, we
calculated, for each gene, its information content in terms of entropy between CAR-expressing cells
and control cells (Figure A2) and compared it with the one obtained from 82 randomly sampled genes
and 81 HVG. We observed that the functional and HVG genesets scored similarly, indicating that our
functional geneset can differentiate between control and CAR populations equally well as the HVG.
To compute the information content of each gene across control and CAR treatment, we computed
the relative entropy of the distribution of the sum of library-size normalised counts as follows

D =
GX

k=0

(pk ⇤ log(pk/qk))

where pk and qk are the counts of a geneset (of length G) for the control and the CAR-expressing
cells respectively, normalized such that

P
pk =

P
qk = 1 [47].

Table A1: Genes used for geneset scoring. Taken from [42]

Cytotoxicity Proinflamatory Memory CD4_Th1 CD4_Th2
GZMB IFNG TCF7 IL2 IL5
PRF1 TNF SELL IFNG IL13
FASLG CRTAM CCR7 TNF IL4

CSF2 LEF1
XCL1 IL7R
XCL2
CCL1
CCL4

A.3 CAR embeddings

To construct the CAR embeddings, we compared different approaches to encode the CAR variant: (i)
two binary embeddings, (ii) two ESM-based embeddings, and (iii) a metadata embedding. The two
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Table A2: Prior knowledge functional genes from literature. CRS: Cytokine Release Syndrome

Function Gene Refs Function Gene Refs
Memory CD3E [48] Exhaustion ADORA2A [48]
Memory CCR7 [49, 48] Exhaustion BATF [50, 48, 51, 49]
Memory CD28 [48] Exhaustion BATF3 [51]
Memory CD27 [48] Exhaustion BTLA [48, 51, 52, 49]
Memory SELL [49, 48] Exhaustion CCL1 [49]
Memory IL7R [53] Exhaustion CCL3 [49, 52]
Memory TCF7 [54] Exhaustion CCL4 [49]
Memory LEF1 [54] Exhaustion CCL5 [49]
Memory KLF2 [53] Exhaustion CD160 [55]
Cytotoxicity GNLY [56, 50] Exhaustion CD2 [48]
Cytotoxicity GZMK [56, 52] Exhaustion CD244 [52, 49, 55]
Cytotoxicity GZMA [50, 52] Exhaustion CD3E [48]
Cytotoxicity GZMB [50, 52] Exhaustion CTLA4 [55]
Cytotoxicity PRF1 [52] Exhaustion ENTPD1 [49]
Cytotoxicity LAG3 [52] Exhaustion GZMB [51]
Cytotoxicity NKG7 [52] Exhaustion HAVCR1 [48]
Cytotoxicity ZEB2 [56, 54] Exhaustion HAVCR2 [48, 52]
Cytotoxicity EOMES [56] Exhaustion ID2 [50, 49]
Cytotoxicity ZNF683 [56] Exhaustion IFNG [51]
Cytotoxicity TBX21 [54] Exhaustion IL13 [51]
Cytotoxicity PRDM1 [54] Exhaustion IL17RA [51]
Proliferation IL2 [56, 48, 53] Exhaustion IL2RA [51]
Proliferation LIF [56] Exhaustion IRF4 [51]
Proliferation CENPV [56] Exhaustion KIR3DL1 [48]
Proliferation G0S2 [56] Exhaustion KLF2 [51]
Proliferation ORC6 [56] Exhaustion KLRG1 [52]
Proliferation CD3E [48] Exhaustion LAG3 [55]
Proliferation CD2 [48] Exhaustion LAYN [55]
Proliferation CD28 [48] Exhaustion LEF1 [51, 49]
Proliferation IL2RA [48, 51] Exhaustion NCAM1 [48]
Proliferation CD69 [48] Exhaustion NCR1 [48]
Proliferation ICOS [48] Exhaustion PDCD1 [50, 55]
Proliferation TNFRSF4 [48] Exhaustion TCF7 [51]
Proliferation TNFRSF9 [48] Exhaustion TIGIT [52]
Proliferation CD27 [48] Exhaustion TNFRSF18 [51]
Proliferation TNF [48, 53] CRS IL1B [50]
Proliferation IFNG [48, 51, 53] CRS CXCL8 [50]
Proliferation GZMB [51, 53] CRS CCL3 [50]
Proliferation MKI67 [52] CRS CCL4 [50]
Proliferation CDK1 [52] CRS IL13 [50]
Proliferation CCNA2 [52] CRS CD69 [50]
Proliferation CDCA2 [52] CRS LEF1 [50]
Proliferation FOS [49] CRS IL7R [50]
Proliferation CCL3 [53] CRS STAT1 [50]
Proliferation CCL4 [53] CRS FOXP1 [50]
Proliferation NCR1 [48] CRS CD27 [50]
Proliferation NCAM1 [48] CRS IL16 [50]
Cytokines CCL3 [55] CRS GZMB [50]
Cytokines CCL4 [55] CRS GZMA [50]
Cytokines CCL20 [55] CRS BATF [50]
Cytokines IFNG [55] CRS GZMH [50]
Cytokines IL10 [55] CRS IL13 [51]
Cytokines TNF [55] CRS IL1A [51]
Cytokines LAG3 [55] CRS CSF2 [51]
Cytokines CD226 [55]
Cytokines HAVCR2 [55]
Cytokines HOPX [55]
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Figure A1: Dataset overview and CAR selection thresholds. A) Overview over cell counts per CAR variant,
donor and timpoint. Cells are colored and annotated with cell counts, barplots on top and right show the marginal
counts. B) Cell counts per CAR variant in the CD8 subset. Dashed line indicates threshold for selecting the
variants for training data. C) Cell counts per variant in the CD4 subset. Dashed line indicates threshold for
selecting the variants for training data.

19



binary CAR embeddings are based on the absence or presence of the five signalling domains and
the CD3⇣ domain. For the 11-dimensional embedding, the first five bits describe which domain is in
position A. Each position corresponds to one of the five possible domains, and of these five bits only
the bit corresponding to the domain will have a 1. Then there are five bits that in a similar manner
describe which domain is in position B. The last and 11th bit describes the presence (1) or absence
(0) of the CD3⇣ domain. Similarly, the last bit of the 16-dimensional binary embedding also indicates
CD3⇣ presence. The 16d embedding has three bits for each of the five signalling domains. Of these
three bits, the first position is 1 if the domain is at all present in the CAR variant, irrespective of
position. The second bit describes whether the domain is in position A and the third bit position B.

We used Facebook’s ESM2 models, either t6_8M_UR50D or t48_15B_UR50D, referred to as ESM
small or ESM XL respectively to compare large and small ESM embeddings [44]. We embedded
only the intracellular signalling tail, since this is where the CAR variants differ. Then we averaged
these embeddings over the sequence, resulting in the length of the embedding dimension of 5120 for
ESM XL and 256 for ESM small.

Additionally we used a metadata embedding, which includes information cells that express the
CAR variant. For each variant the embedding consists of the means and standard deviation of the
scores "Cytotoxicity_1", "Proinflamatory_2", "Memory_3", "CD4_Th1_4", "CD4_Th_5", "S.Score",
"G2M.Score". Also, the fraction of cells from each of the donors, timepoints, cell cycle phases and
cell states were included, resulting in a 40 dimensional embedding.

The binary embeddings are based on the CAR library used here and cannot embed novel CAR variants,
whereas the ESM embeddings are based on the amino acid sequence of the variants and can therefore
be extended to novel CAR variants. The metadata embedding captures considerable information that
is derived from the scRNA-seq and should therefore greatly facilitate the conditional OT problem.
We observed that a larger ESM embedding (ESM XL) performs better than a smaller ESM model
(Figure A2). Interestingly, the binary embeddings don’t show significantly worse performance than
the metadata or ESM embeddings, despite having a lower dimension and only information about the
presence/absence of domains. We continued with the ESM XL embedding, since it can be used in an
out-of-distribution setting.

A.4 OT UMAPs and biological scores

For comparing biological scores between source, target and transport we sampled the same number
of cells from source and target. The number of cells is the minimum of number of cells in the target
or source validation set, as the target validation set is CAR variant dependent. Then we transported
the target cells to obtain the same number of transport cells. All three datatypes (source, target and
transport) were then mapped onto a UMAP based on all CD4 or CD8 cells.

Additionally, we calculated geneset scores for the cytotoxicity, memory and proinflammatory genesets.
The thresholding for cells positive for a certain scores are taken from [42] and are 0 for the memory
geneset and 1 otherwise. We trained a cell-typing model on all CD4 and CD8 cells, since this seemed
to work better dan CD4 and CD8 separately. This Support Vector Machine model was then used to
predict the celltypes for source, target and transport. This model was implemented with scikit-learn
[57].

A.5 Metrics and evaluation

We leveraged the coefficient of determination (R2) and the Maximum Mean Discrapancy (MMD)
for model evaluation, as these metrics are often used in perturbation single cell models and optimal
transport models [22, 31, 32, 20, 58].

For the R
2 the average expression per gene over all cells is computed, for the prediction and target

separately. Then the R2 is determined on the average expression of all genes.

R2 = 1�
Pg

i=1(xi � yi)2Pg
i=1(xi � x̄)2

Where g indicated all genes, and xi is the average target gene expression for gene i and yi the average
predicted gene expression for gene i. x̄ is the average gene target gene expression over all genes.
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Figure A2: Genesets and CAR embedding evaluation. A) Distribution of entropy between the control gene
expression counts and CAR-expressing cells gene expression counts, for genes in the indicated genesets. B)
Entropy between control and CAR-expressing cells as in A, only now shown per CAR. C) Comparing different
CAR embeddings using the conditional CAROT model, trained on all CAR variants and makes predictions for
all CAR variants using a test split. The white line shows the median of the metadata embedding. Left shows the
R2 and right the MMD.

We used the MMD to find the maximum distance between these distributions in the kernel space.

MMD(T, P ) = kµT � µP kK
where T is the target distribution over all cells and genes and P the predicted distribution. We take
an average over the MMD with a RBF-kernel with � = [2, 1, 0.5, 0.1, 0.01, 0.005].

A.6 Statistical analyses

We tested (con)CAROT(-OOD) versus identity and (con)CAROT(-OOD) versus the within condition
using a two-sided Mann-Whitney U test using [47]. This non-parametric test assumes independence
between the two groups and ordinal observations. The independence assumption might not hold
for our data, since the target difficulty and subsequent score might influence the performance of
(con)CAROT(-OOD). We did multiple hypothesis correction using the Bonferroni method, by
lowering the significance threshold ↵ = 0.05 to ↵ = 0.05/n with n = 8 since we tested for each
experiment two subsets, two scores and two comparisons (23 = 8). Significant differences are
indicated with an ‘*‘ in the manuscript.
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Figure A3: UMAPs of CD8 and CD4 subsets based on the logcounts of the 82 genes in the functional geneset.
Colored by CAR variant and cell state.
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Figure A4: UMAPs of CD4 subset cells for the unconditional OT model (one model per CAR variant and
subset).
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Figure A5: UMAPs of CD8 subset cells for the unconditional OT model (one model per CAR variant and
subset).

24



Figure A6: UMAPs of CD4 subset cells for the conditional OT model for CAR variants with >750 cells in the
subset, all variants shown here were present on in the training set. Evaluation on a held-out test set.
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Figure A7: UMAPs of CD8 subset cells for the conditional OT model for CAR variants with >750 cells in the
subset, all variants shown here were present on in the training set. Evaluation on a held-out test set.
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Figure A8: UMAPs of CD4 subset cells for the conditional OT model trained on CAR variants with >750 cells
in the subset. All variants shown here were not present on in the training set, shown are all available cells for the
variant
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Figure A9: UMAPs of CD8 subset cells for the conditional OT model trained on CAR variants with >750 cells
in the subset. All variants shown here were not present on in the training set, shown are all available cells for the
variant
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Figure A10: Additional OOD experiment results. A-B) Comparing performance of the model trained with
all CAR variants (all_cars) and the model trained with only variants with >750 cells (sel_cars) (x-axis). The
evaluation is split by CAR variants with >750 cells and variants with <750 cells. The variants with >750
cells are in distribution for both models, whereas the variants with <750 cells are OOD for the sel_cars model.
Plots show the average score over nine samples per variant with the R2 in A and the MMD in B. C-D) OOD
performance of a model trained on all in-distribution CARs, leaving out one CAR at a time. Highlighted are
CARs also shown in the UMAPs in the main text and in panel E that show a distinct response. Performance is
again averaged over nine samples, with R2 in C and MMD in D. E) UMAPs of CAR variants also shown in
the main text for the OOD model evaluated in C&D. F) Comparison of CAROT (one model per CAR variant)
and conditional CAROT (one model trained on all >750 cells CAR Variants), for all in-distribution CARs
used in the conditional CAROT training. Variants for which conditional CAROT outperforms CAROT: CD4 -
CD28-IL15RA-z, 41BB-CD28-z, IL15RA-41BB-z, CD28-CD40-z, and 41BB-CD40-z. CD8 - 41BB-41BB-z,
IL15RA-41BB-z, and IL15RA-NA-z, CD28-NA-z
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Figure A11: UMAPs of CD4 subset cells for the conditional OT model trained all CAR variants in the OOD
setting, leaving the indicated CAR variant out during training.
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Figure A12: UMAPs of CD8 subset cells for the conditional OT model trained all CAR variants in the OOD
setting, leaving the indicated CAR variant out during training.
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Answer: [Yes]
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Guidelines:
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made in the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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are mentioned in subsection A.6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
[NA] .
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Justification: The paper does not include theoretical results. Methods have been described
in cited works.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All details can be found in the methods section, appendix or the cited works.
Code is publicly available on GitHub and we can include the link after review (not before
due to anonymity).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Specific instruction are given in subsection 2.2. GitHub link with all code to
reproduce the experiments and figures will be made available after review, due to anonymity
not during review. Data will be made available after acceptance of the data-related paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All settings are mentioned in the methods/appendix or otherwise in cited works.
Config files will be included in available code after review.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Most quantative figures are boxplots with whiskers. Significance is indicated
with an asterisk, methods for calculating significance are reported in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Resources are described in subsection 2.2, we submitted jobs on a HPC so
spefics of GPUs and CPUs varied per job. We don’t mention overall compute time or
compute time including experimental runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Data and code are both public work and used with consent.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: The paper only discusses potential positive outcomes on healthcare.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: This paper doesn’t release a model or data. Both model and data are already
public.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Both data and code reported with correct citations. Data accession number is
given such that data can be accessed after data-paper publication. No license was available
for the data, but GEO data is free to use unless otherwise stated (which it is not) and written
consent was obtained from the original authors. License of the code is reported, no version
was provided.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: No new assets are introduced in the paper
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: No crowdsourcing experiments or research with human subject.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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