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Abstract

Effective information retrieval (IR) from vast001
datasets relies on advanced techniques to ex-002
tract relevant information in response to queries.003
Recent advancements in dense passage re-004
trieval (DPR) have showcased remarkable ef-005
ficacy compared to traditional sparse retrieval006
methods. To further enhance retrieval perfor-007
mance, knowledge distillation techniques, of-008
ten leveraging robust cross-encoder rerankers,009
have been extensively explored. However, ex-010
isting approaches primarily distill knowledge011
from pointwise rerankers, which assign ab-012
solute relevance scores to documents, thus013
facing challenges related to inconsistent stan-014
dards. This paper introduces Pairwise Rele-015
vance Distillation (PAIRDISTILL) to leverage016
pairwise reranking, offering fine-grained dis-017
tinctions between similarly relevant documents018
to enrich the training of dense retrieval models.019
Our experiments demonstrate that PAIRDIS-020
TILL outperforms existing methods, achiev-021
ing new state-of-the-art results across multi-022
ple benchmarks. This highlights the potential023
of PAIRDISTILL in advancing dense retrieval024
techniques effectively.1025

1 Introduction026

Information retrieval (IR) is the process of extract-027

ing relevant information from vast datasets, such028

as web pages or documents, based on user queries.029

Recently, deep learning methods, notably the dense030

passage retriever (DPR) (Karpukhin et al., 2020),031

have attracted attention for their superior perfor-032

mance compared to traditional sparse retrieval tech-033

niques like BM25. These methods, often termed034

dual-encoder models, encode both queries and doc-035

uments into high-dimensional representations, fa-036

cilitating efficient similarity computation and re-037

trieval via nearest neighbor search (Douze et al.,038

2024).039

1Our source code and trained models are released at https:
//anonymous.4open.science/r/pair-distill-AE1F
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Figure 1: PAIRDISTILL, a model trained with our pro-
posed pairwise relevance distillation, achieves the best
performance in both in-domain evaluation (x-axis; MS
MARCO dev set) and out-of-domain evaluation (y-axis;
average performance over BEIR datasets).

Despite the effectiveness of dense retrievers, 040

their modeling capacity is limited. To enhance 041

retrieval performance, knowledge distillation is 042

commonly employed (Izacard and Grave, 2020). 043

Typically, knowledge from a robust cross-encoder 044

reranker is distilled to train the dense retriever, 045

achieving state-of-the-art results on retrieval bench- 046

marks (Santhanam et al., 2022b). The efficacy of 047

knowledge distillation largely relies on the perfor- 048

mance of the reranker, which serves as the upper 049

bound for the distilled retriever’s performance. 050

However, existing studies primarily utilized 051

pointwise rerankers for knowledge distillation, 052

which an absolute relevance score for each doc- 053

ument. Such scores are not trivial to compare 054

due to inconsistent baselines. In contrast, pairwise 055

reranking, an advanced technique comparing pairs 056

of documents to assess their relative relevance to a 057

query, has demonstrated superior reranking perfor- 058

mance (Pradeep et al., 2021). By emphasizing rela- 059

tive comparison, pairwise rerankers can distinguish 060

more finely between similarly relevant documents, 061

yielding more precise relevance scores conducive 062

to better distillation. 063

In this paper, we introduce Pairwise Relevance 064
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Distillation (PAIRDISTILL), a novel method lever-065

aging the fine-grained training signals provided066

by pairwise rerankers. PAIRDISTILL enriches the067

training of dense retrieval models by distilling068

knowledge from pairwise comparisons, enabling069

the model to learn more nuanced distinctions be-070

tween closely ranked passages. We conduct exten-071

sive experiments and demonstrate that PAIRDIS-072

TILL outperforms all baseline of similar size on073

multiple benchmark, as shown in Figure 1. In addi-074

tion, we show that PAIRDISTILL is effective across075

difference architectures, i.e., ColBERT(Khattab076

and Zaharia, 2020) and DPR (Karpukhin et al.,077

2020), and in a domain adaptation setting. Fur-078

thermore, we demonstrate the potential of adopting079

LLM rerankers in PAIRDISTILL.080

Our contributions are summarized as follows:081

• We propose Pairwise Relevance Distillation082

(PAIRDISTILL), a novel method integrating083

the advantages of pairwise reranking into084

dense retrieval model training.085

• Through extensive experiments, we demon-086

strate that PAIRDISTILL significantly outper-087

forms existing dense retrieval models of simi-088

lar size.089

• We provide a comprehensive analysis, offer-090

ing insights into the mechanisms driving the091

improvements achieved by PAIRDISTILL.092

2 Related Work093

Dense Passage Retrieval Dense retrieval has gar-094

nered attention for its efficacy in semantic space095

exploration. A notable technique in this domain096

is DPR (Karpukhin et al., 2020), employing both097

query and passage encoders for efficient retrieval.098

Various studies have delved into enhancing dense099

retrieval, including negative example mining tech-100

niques like RocketQA (Qu et al., 2021), and diverse101

data augmentation methods such as DRAGON (Lin102

et al., 2023a). ColBERT (Khattab and Zaharia,103

2020; Santhanam et al., 2022b) introduced the late-104

interaction mechanism, offering an alternative ar-105

chitecture for dense retrieval.106

Another line of research is pre-training strate-107

gies for dense retrieval. Approaches like Con-108

triever (Izacard et al., 2021), coCondenser (Gao109

and Callan, 2022), and COCO-DR (Yu et al., 2022)110

have proposed contrastive pre-training techniques111

tailored for retrieval tasks. Concurrently, CoT-112

MAE (Wu et al., 2023) and RetroMAE (Xiao et al.,113

2022) have focused on masked auto-encoding for114

pre-training. 115

As large language models (LLMs) advance, their 116

integration into dense retrieval has become preva- 117

lent. GTR (Ni et al., 2022) utilized LLM en- 118

coders, showcasing performance gains with in- 119

creased model size. Similarly, Promptagator (Dai 120

et al., 2023) and InPars (Bonifacio et al., 2022) 121

leveraged LLMs to synthesize query-document 122

pairs for training dense retrievers. 123

Our contribution is orthogonal to these studies 124

as we concentrate on refining training signals for 125

knowledge distillation. This suggests that our ap- 126

proach holds potential for integration with other 127

methods to achieve further improvements. 128

Knowledge Distillation for Dense Retrieval En- 129

hancing the performance of dense retrievers often 130

involves employing knowledge distillation tech- 131

niques. Izacard and Grave (2020) pioneered the 132

distillation of knowledge from the reader to the re- 133

triever, resulting in improved performance in open- 134

domain question answering. Following this, Rock- 135

etQAv2 (Chakrabarty et al., 2022) and Margin- 136

MSE (Hofstätter et al., 2020) proposed knowledge 137

distillation from cross-encoder rerankers to en- 138

hance dense retrievers, while CL-DRD (Zeng et al., 139

2022) introduced curriculum learning for cross- 140

encoder distillation. Further advancements include 141

PROD (Lin et al., 2023b), which proposed a pro- 142

gressive distillation framework, and ABEL (Jiang 143

et al., 2023), introducing an alternating distillation 144

framework with impressive zero-shot performance. 145

Our method introduces pairwise relevance distilla- 146

tion, leveraging finer-grained training signals from 147

pairwise rerankers. 148

Passage Reranking Passage reranking serves as 149

a pivotal second-stage process following initial 150

large-scale retrieval efforts. Various studies have 151

introduced deep reranking models that assess the 152

relevance of query-document pairs by encoding 153

them and predicting relevance scores (Nogueira 154

and Cho, 2019). For instance, MonoT5 (Nogueira 155

et al., 2020) introduced a generation-based method 156

for passage reranking by fine-tuning LLMs on MS- 157

MARCO (Bajaj et al., 2016), distinguishing rele- 158

vant from irrelevant documents. DuoT5 (Pradeep 159

et al., 2021) proposed pairwise reranking, simulta- 160

neously comparing two documents to significantly 161

enhance reranking performance. TART (Asai et al., 162

2022) fine-tunes LLMs via multi-task instruction 163

tuning on diverse retriever datasets. 164

Another line of research is zero-shot passage 165
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reranking with LLMs, which eliminates the need166

for retrieval supervision. UPR (Sachan et al., 2022)167

pioneered unsupervised passage reranking, propos-168

ing to rerank passages by estimating the conditional169

likelihood of generating the query given the pas-170

sage using LLMs. Additionally, (Sun et al., 2023)171

and (Ma et al., 2023) both proposed listwise pas-172

sage reranking by leveraging prompts with Chat-173

GPT.174

Our method combines the superior performance175

of pairwise reranking with knowledge distillation,176

which improves retrieval performance significantly177

and results in state-of-the-art performance on mul-178

tiple benchmarks.179

3 Background180

In this section, we detail two key tasks: dense re-181

trieval and passage reranking. Following that, we182

explore knowledge distillation, a widely adopted183

technique aimed at bolstering the efficacy of dense184

retrievers. Note that we interchangeably use the185

terms “passage” and “document” in this paper.186

3.1 Dense Retrieval187

The goal of dense passage retrieval is to retrieve a188

subset of relevant passages, denoted as D+, from a189

large collection of passages D = {d1, · · · , dn}.190

In order to efficiently retrieve from millions of191

passages, the most common architecture used for192

dense retrieval is the dual encoder architecture,193

where the queries and the passages are encoded194

by a query encoder and a passage encoder, respec-195

tively. We denote the query representation of a196

query q as q and the passage representation of a197

passage d as d. This architecture enables offline198

encoding and indexing of all passages, thus reduc-199

ing the computation required significantly during200

retrieval.201

The relevance of a query q to a passage di is202

measured using a similarity function:203

s(q, di) = Sim(q,di),204

where a higher similarity score indicates a greater205

relevance of the passage to the query. Common206

choices of the similarity function are dot product,207

cosine similarity, or the Max-Sum operator intro-208

duced in ColBERT (Khattab and Zaharia, 2020).209

Given a labeled dataset of relevant passage-query210

pairs (q, d+), dense retriever are typically trained211

with a contrastive learning objective such as the212

InfoNCE loss (Oord et al., 2018): 213

LCL = − log
exp(s(q, d+))∑
d∈D′ exp(s(q, d))

, 214

where D′ denotes the union of the positive and 215

negative examples. Optimizing this objective pro- 216

motes the similarity of the positive pair s(q, d+) in 217

contrast to the negative examples. 218

3.2 Passage Reranking 219

Due to the computational constraints, most dense 220

retrievers utilize lightweight models such as bert- 221

base (Devlin et al., 2019) as their backbone 222

model. Consequently, a subsequent stage of pas- 223

sage reranking aims to refine the initially retrieved 224

passages. Similar to dense retrieval, the task of pas- 225

sage reranking also aims to assign a relevance score 226

spoint(q, di) to each passage di given a query q. 227

This reranking scheme is called pointwise rerank- 228

ing, where all passages are scored independently. 229

Given the reduced number of candidate passages at 230

this stage, it becomes feasible to deploy more com- 231

putationally intensive models. This allows for the 232

use of cross-encoder architectures and larger mod- 233

els, which are adept at capturing the fine-grained 234

interactions between queries and passages, offering 235

relevance scores that are more accurate. The can- 236

didate passages are then reranked based on their 237

relevance scores spoint(q, di). 238

3.3 Knowledge Distillation for Dense 239

Retrieval 240

Given the success of knowledge distillation of neu- 241

ral models (Hinton et al., 2015), a common ap- 242

proach to enhance the dense retrievers is distilling 243

knowledge from the pointwise rerankers. Specif- 244

ically, the relevance of a passage di to a query q 245

predicted by a dense retrieval model can be defined 246

as: 247

P (di | q) =
exp(s(q, di))∑
d∈D′ exp(s(q, d))

. 248

Similarly, the relevance predicted by a pointwise 249

reranking model can be defined as: 250

Ppoint(di | q) =
exp(spoint(q, di)/τ)∑
d∈D′ exp(spoint(q, d)/τ)

, 251

where τ is the temperature parameter for control- 252

ling the sharpness of the distribution. Finally, the 253

loss function is the KL divergence between the two 254

distributions: 255

LKD =
1

|B|
∑
q∈B

KL(Ppoint(d | q) ∥ P (d | q)), 256
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Figure 2: Illustration of our proposed method PAIRDISTILL. Top: The top-k retrieved passages go through pointwise
reranking and pairwise reranking to obtain relevance scores. Bottom: Pairwise relevance distillation includes both
pointwise distillation loss LKD and pairwise distillation loss Lpair.

where |B| denotes the size of the batch. By opti-257

mizing the KL divergence loss, the dense retriever258

learns to mimic the predictions of the pointwise259

reranker, thus improving its performance.260

4 Our Method: PAIRDISTILL261

In this section, we introduce our proposed method,262

pairwise relevance distillation (PAIRDISTILL). An263

illustration of the proposed framework is shown in264

Figure 2.265

4.1 Pairwise Reranking266

While the pointwise rerankers demonstrated supe-267

rior performance over dense retrievers, reranking268

all passages independently poses a hard problem269

in calibrating the relevance score among passages,270

making the reranking performance of the point-271

wise rerankers suboptimal. We conduct prelimi-272

nary analyses which can be found in Appendix A.273

To mitigate this problem, pairwise reranking tech-274

niques can be leveraged. Pairwise reranking pro-275

duces better reranking results by comparing two276

passages simultaneously.277

Formally, given a query q and two passages di278

and dj , a pairwise reranker aims to estimate the279

probability that passage di is more relevant to the280

query than passage dj :281

spair(q, di, dj) = Ppair(di ≻ dj | q). (1)282

This modeling choice effectively solve the cali-283

bration problem by only modeling the relative rel-284

evance of di and dj . Note that in order to ob-285

tain the reranked list, an aggregation method is286

required which aggregates the relative relevance 287

scores spair(q). However, it is beyond the scope 288

of this paper as our method does not require the 289

final rankings. In this work, we adopt the follow- 290

ing two pairwise reranking methods to estimate the 291

pairwise relevance scores. 292

Classification-based The classification method 293

involves training a binary classifier that predicts 294

whether a given passage di is more relevant to a 295

query q than another passage dj . The classifier 296

takes as input a triplet (q, di, dj) and encodes them 297

together in one sequence, allowing modeling the 298

interaction among the query and two passages. The 299

output of the classifier will be normalized via a 300

sigmoid function, which can then be interpreted 301

as the probability Ppair(di ≻ dj | q). The train- 302

ing objective for this classifier is typically a bi- 303

nary cross-entropy loss, where the model is trained 304

to minimize the difference between the predicted 305

probability and the ground truth relevance ordering 306

of the passages. This method requires a training 307

dataset consists of triplets and their annotated rela- 308

tive relevance: 309

y =

{
1 if di ≻ dj

0 otherwise
310

Instruction-based In cases where training data is 311

not available, we adopt instruction-based reranking 312

with LLMs for zero-shot reranking. We instruct 313

the LLM to select the passage that is more relevant 314

to the query and assign the probability of selecting 315

the index of di as the score. 316

Ppair(di ≻ dj | q) = PLLM(i | q, di, dj), 317
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where PLLM(i | q, di, dj) is the probability pre-318

dicted by the LLM of di being more relevant to the319

query q than dj . The detailed instructions for this320

method can be found in Appendix C.1.321

4.2 Pairwise Relevance Distillation322

Given the pairwise relevance scores from the pair-323

wise reranker, we can leverage knowledge distil-324

lation to further enhance the performance of the325

dense retriever. The goal is to make the dense326

retriever imitate the output distribution of the pair-327

wise reranker, which is defined above in Equation 1.328

To specify, we define the pairwise relevance distri-329

bution predicted by the dense retriever as:330

P (di ≻ dj | q) =
exp(s(q, di))

exp(s(q, di)) + exp(s(q, dj))
,331

which applies the softmax function to the individ-332

ual relevance scores s(q, di) and s(q, dj). Conse-333

quently, the training objective for pairwise rele-334

vance distillation is defined as the KL divergence335

between the pairwise relevance distributions from336

the dense retreiver and the pairwise reranker:337

Lpair =
1

|B|
∑
q∈B

( ∑
di,dj∼Dpair

KL
(
Ppair(di ≻ dj | q) ∥ P (di ≻ dj | q)

))
,

338

where Dpair = {(di, dj) | di, dj ∈ retk(q), i ̸= j,339

|i − j| < δ} denotes the set of all possible pairs340

among retk(q), which denotes the tok-k documents341

retrieved given the query q. We introduce a simple342

heuristic, |i−j| < δ, to constrain the possible pairs,343

where δ is a hyperparameter. The intuition is that344

documents which are ranked further apart are less345

likely to provide meaningful training signal, as they346

are already easily distinguishable by the retriever.347

In practice, the process begins by using a re-348

triever to retrieve the top-k documents. These doc-349

uments are then reranked by a pointwise reranker to350

refine the ranking and establish the top-k reranked351

documents. Finally, we apply pairwise reranking352

to the pointwise reranked documents, which allows353

us to derive pairwise relevance scores for the dis-354

tillation process. The full loss function is defined355

as:356

L = LCL + λKD · LKD + λpair · Lpair,357

where λKD and λpair are hyperparameters repre-358

senting the weight for the distillation losses. Our359

proposed method can also be applied to scenarios 360

where no labeled training data is available. In such 361

cases, the contrastive loss LCL is discarded: 362

LZS = LKD + λpair · Lpair. 363

4.3 Iterative Training 364

To enhance the performance of the retriever and 365

mitigate the risk of overfitting to a static set of top-k 366

passages, we adopt an iterative training strategy. In 367

each iteration, the retriever trained in the previous 368

iteration is used to build an index and retrieve the 369

top-k documents. Subsequently, the top-k docu- 370

ments are reranked with pointwise reranking and 371

pairwise reranking, and the trained retriever is fine- 372

tuned with pairwise relevance distillation. The fine- 373

tuned retriever then becomes the retriever for the 374

next iteration. This iterative training allows for re- 375

freshing the retrieved documents in each iteration, 376

avoiding training on the fixed set of documents. 377

Furthermore, the performance of the retriever can 378

be improved iteratively. 379

5 Experiments 380

Our proposed method, pairwise relevance distil- 381

lation, can be applied to both supervised datasets 382

and zero-shot domain adaptation tasks. In this sec- 383

tion, we conduct extensive experiments on passage 384

retrieval tasks to validate and analyze the effective- 385

ness of the proposed method. 386

5.1 Datasets 387

Following previous work, we use MS MARCO (Ba- 388

jaj et al., 2016) as the supervised dataset to perform 389

knowledge distillation. We evaluate our model on 390

the official dev set of MS MARCO. Additionally, 391

we perform zero-shot evaluation on TREC 19 and 392

20 (Craswell et al., 2020, 2021), BEIR (Thakur 393

et al., 2021), and LoTTE (Santhanam et al., 2022b). 394

Detailed description of the datasets can be found in 395

Appendix B.1. 396

We report evaluation metrics based on the com- 397

mon practice of each dataset: MRR@10 and 398

Recall@1000 for MS MARCO, NDCG@10 for 399

TREC and BEIR, and Success@5 for LoTTE. 400

5.2 Implementation Details 401

We adopt the pretrained ColBERTv2 (Santhanam 402

et al., 2022b) as the initial retriever with the PLAID 403

engine (Santhanam et al., 2022a) using their offi- 404

cial implementation2. Following ColBERTv2, we 405

2https://github.com/stanford-futuredata/ColBERT
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Pre-training ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Distillation ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓

Target Corpus ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗

MS MARCO (Supervised)

Dev (RR@10) 38.9 38.8 38.1 38.8 39.9† 35.4 38.6 34.1 39.0 - 35.8 - - 39.7 40.7
Dev (R@1K) 98.2 99.0 97.9 98.1 98.5 97.5 98.4 97.9 98.6 - 97.9 - - 98.4 98.5
DL2019 74.3 - 72.5 - 70.0 68.8 71.5 67.8 74.4 - 74.1 - - 74.6 75.2
DL2020 71.8 - 68.3 - 67.8 71.4 68.1 66.1 72.3 - 69.7 - - 75.2 75.1

BEIR (Zero-shot)

TREC-COVID 71.1 50.1 58.4 67.5 56.1 77.2 71.2 59.6 75.9 76.5 78.9 70.0 72.7 73.2 74.2
NFCorpus 34.5 34.2 31.5 29.3 32.1 30.8 32.5 32.8 33.9 35.1 35.5 34.5 33.4 33.9 34.5
FiQA-2018 35.1 46.7 30.8 30.2 28.3 31.6 27.6 32.9 35.6 34.3 31.7 34.4 40.4 35.6 37.1
ArguAna 52.1 54.0 41.3 45.1 27.8 43.3 29.9 44.6 46.9 56.9 49.3 55.7 53.8 45.8 46.8
Tóuche-2020 24.4 25.6 20.3 24.7 21.9 23.7 19.1 23.0 26.3 19.5 23.8 25.5 26.6 26.5 26.4
Quora 81.4 89.2 82.6 74.9 75.6 84.7 85.6 86.5 87.5 84.5 86.7 83.6 - 85.1 85.3
SCIDOCS 15.9 16.1 14.6 13.1 13.2 15.0 13.7 16.5 15.9 17.4 16.0 16.9 16.3 15.5 16.2
SciFact 69.9 66.2 62.1 56.8 60.1 65.3 61.5 67.7 67.9 72.6 70.9 67.4 62.3 69.1 71.5
NQ 54.4 56.8 50.0 50.5 48.3 51.8 48.7 49.5 53.7 50.2 50.5 48.3 - 56.3 58.3
HotpotQA 68.6 59.9 58.9 53.3 53.6 63.5 56.3 63.8 66.2 65.7 61.6 58.2 60.4 67.4 69.3
DBPedia 44.2 40.8 38.1 35.6 35.7 39.0 36.3 41.3 41.7 41.4 39.1 38.4 36.4 44.6 46.0
FEVER 79.6 74.0 73.4 67.6 50.6 77.4 49.5 75.8 78.1 74.1 75.1 75.9 76.2 79.0 80.4
Climate-FEVER 22.8 26.7 20.4 18.0 14.0 23.2 14.4 23.7 22.7 21.8 21.1 23.5 21.4 18.2 19.4
CQADupStack 34.1 39.9 32.5 - 29.7 34.7 32.0 34.5 35.4 36.9 37.0 35.7 - 36.7 38.0
Robust04 45.8 50.6 37.7 - 30.8 44.7 35.4 47.6 47.9 50.0 44.3 43.7 - 46.8 48.7
Signal-1M 29.6 27.3 28.2 - 21.1 26.5 28.1 19.9 30.1 28.0 27.1 27.6 - 30.7 31.2
TREC-NEWS 39.4 34.6 38.0 - 26.1 42.8 33.7 42.8 44.4 45.4 40.3 42.1 - 42.0 41.9
BioASQ 50.4 32.4 37.4 - 26.2 42.1 25.7 38.3 43.3 45.4 42.9 44.2 - 52.2 54.8
Avg. PTR-11 47.1 44.9 40.9 40.1 35.7 44.5 37.4 43.8 46.5 46.9 45.7 45.5 45.5 46.3 47.4
Avg. BEIR-13 50.3 49.3 44.8 43.6 39.8 48.2 42.0 47.5 50.2 50.0 49.2 48.6 - 50.0 51.2
Avg. All-18 47.4 45.8 42.0 - 36.2 45.4 38.9 44.5 47.4 47.5 46.2 45.9 - 47.7 48.9

LoTTE (Zero-shot)

Search (pooled) 70.9 - 65.8 69.8 63.4 66.8 62.5 66.1 73.5 - 67.5 - - 71.4 73.9
Forum (pooled) 62.3 - 55.0 57.7 51.9 58.5 52.1 58.9 62.1 - 56.8 - - 63.2 65.5

Table 1: Retrieval performance on benchmarks (%). We report NDCG@10 for MS MARCO and BEIR unless
otherwise noted. Recall@5 is reported for LoTTE following previous work. The best result for each dataset is
bolded and the second best result is underlined. †The model was trained on a non-standard MS MARCO corpus
which includes the title of the passages.

employ MiniLM3 as the pointwise cross-encoder406

reranker (Thakur et al., 2021), which achieves com-407

parable performance as MonoT5-3B4 in our prelim-408

inary experiment. We adopt duoT5-3B5 (Pradeep409

et al., 2021) as our pairwise reranker, which is410

trained on MS MARCO. We will discuss the fea-411

3https://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-6-v2

4https://huggingface.co/castorini/monot5-3b-msmarco
5https://huggingface.co/castorini/duot5-3b-msmarco

sibility of using instruction-based reranking with 412

LLMs in Section 6.2. 413

For each query, we retrieve top-100 passages 414

from the MS MARCO collection and perform 415

pointwise reranking. We sample 50 pairs of pas- 416

sages from all possible pairs and obtain pairwise 417

relevance scores through pairwise reranking. We 418

use all 800K queries for knowledge distillation, 419

while the 500K labeled queries are used for con- 420

trastive learning. δ is set to 10 in our experiments. 421
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All experiments are conducted with 4 V100 GPUs422

with 32GB memory each. Detailed hyperparame-423

ters can be found in Appendix C.2.424

NQ TriviaQA SQuAD

BM25 44.6 67.6 50.6
SPLADEv2 65.6 74.7 60.4
ColBERTv2 68.9 76.7 65.0
PAIRDISTILL 71.8 77.4 66.9

Table 2: Recall@5 performance on open-domain ques-
tion answering datasets (%).

5.3 Main Results425

We compare the performance of our proposed426

PAIRDISTILL to various baseline models, includ-427

ing state-of-the-art models, e.g., SPLADE++, Col-428

BERTv2, DRAGON+, and ABEL-FT. The evalu-429

ation results on MS MARCO, BEIR, and LoTTE430

are shown in Table 1. Note that we follow Lin et al.431

and compare with models trained on MS MARCO432

without title for a fair comparison.433

5.3.1 In-domain Evaluation434

Following previous work (Santhanam et al., 2022b;435

Lin et al., 2023a; Jiang et al., 2023), we consider436

MS MARCO dev set, TREC DL19 and DL20 as437

in-domain evaluation sets. As shown in Table 1,438

our proposed method PAIRDISTILL achieves 40.7439

in terms of MRR@10, which is the best perfor-440

mance on MS MARCO Dev set. Our model signif-441

icantly outperforms ColBERTv2 (40.7 v.s. 39.7),442

which is the initialization of our model. This result443

demonstrates that the proposed pairwise relevance444

distillation effectively improves the performance445

of dense retrievers. PAIRDISTILL also achieves446

the best performance on TREC DL19 and the sec-447

ond best performance on TREC DL20. Note that448

coCondenser and CoT-MAE are fine-tuned on the449

MS MARCO passage corpus that has been aug-450

mented with title, which makes their performance451

not directly comparable to our method.452

5.3.2 Out-of-domain Evaluation453

Next, we evaluate the trained model on out-of-454

domain evaluation dataset to validate its generaliz-455

ability. On the BEIR evaluation datasets (Thakur456

et al., 2021), PAIRDISTILL achieves the best over-457

all performance in three different subsets, demon-458

strating that our model also excels at out-of-459

domain generalization. Considering individual460

datasets, PAIRDISTILL achieves the best perfor- 461

mance among all compared models in 6 out of 18 462

tasks. Notably, our method outperforms domain- 463

specific models, e.g., ABEL-FT (Jiang et al., 2023) 464

and Promptagator (Dai et al., 2023), which leverage 465

the target domain corpus for specialized domain 466

adaptation. Additionally, our method consistently 467

outperforms ColBERTv2 in 16 out of 18 datasets, 468

showing that pairwise relevance distillation offers 469

consistent out-of-domain improvement. 470

On the LoTTE evaluation sets (Santhanam et al., 471

2022b), PAIRDISTILL achieves state-of-the-art per- 472

formance in both search and forum subsets, signifi- 473

cantly outperforms all compared models. Notably, 474

DRAGON+ (Lin et al., 2023a) performs compara- 475

bly to our model in the search subset, which shows 476

that diverse data augmentation might further im- 477

prove our model in this scenario. 478

We also evaluate our model on open-domain 479

question answering datasets, i.e., NaturalQues- 480

tions (Kwiatkowski et al., 2019), TriviaQA (Joshi 481

et al., 2017), and SQuAD (Rajpurkar et al., 2016). 482

We follow ColBERTv2 (Santhanam et al., 2022b) 483

which reports the performance on the dev set of 484

each dataset in terms of Recall@5. The results 485

are reported in Table 2. PAIRDISTILL consistently 486

outperforms all baseline models on all datasets, 487

demonstrating that our method is suitable for re- 488

trieving passages for open-domain question answer- 489

ing as well. 490

6 Discussions 491

6.1 Ablation Study 492

We conduct ablation studies on MS MARCO dev 493

set to assess the effectiveness of each component 494

in PAIRDISTILL. Table 3 shows the results of the 495

ablation studies. 496

In the first experiment, we remove each distilla- 497

tion loss during training. Removing both Lpair and 498

LKD results in degraded performance. Notably, 499

training with only Lpair slightly hurts performance. 500

Our hypothesis is that since our pairwise distillation 501

objective effectively demotes the score of the lower- 502

ranked passage, we might demote the passage too 503

much during training if we do not refresh the top-k 504

passages. We also remove the heuristic for pair 505

sampling, where we sample from all possible pairs. 506

Removing the heuristic shows slight degradation, 507

demonstrating the heuristic contributes to the im- 508

provement. 509

Next, as ColBERTv2 is an already well-trained 510
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MS MARCO Dev

Distillation Loss

PairDistill 40.7
- Lpair 39.7
- LKD 39.4
- pair sampling heuristic 40.3

Initialization

ColBERTv2 40.7
bert-base-uncased 40.3

Different Architecture

DPR 34.8
+ LKD 36.1
+ LKD + Lpair 36.8

Iterative Training

Iteration 1 40.2
Iteration 2 40.7
Iteration 3 40.7

Table 3: Results of ablation studies. We report perfor-
mance on MS MARCO dev set by removing compo-
nents of our proposed method.

model, we train our model with different ini-511

tializations to verify if our method is effective512

for other pretrained models. As the results513

demonstrate, initializing our model with bert-base-514

uncased achieves 40.3 on MS MARCO dev set.515

This result shows that our method is effective re-516

gardless of the initialization.517

Our proposed method is agnostic to the archi-518

tecture used for dense retrieval as long as it pro-519

duces a relevance score for each query-passage pair.520

Therefore, we conduct experiments with a different521

dense retrieval architecture, i.e., DPR (Karpukhin522

et al., 2020), to verify if the improvement is con-523

sistent across different architectures. Experimental524

results shows consistent improvement over vanilla525

DPR, where using both pointwise and pairwise526

distillation losses achieves the best performance.527

This result demonstrates that our proposed method528

can improve performance across different dense529

retrieval architectures.530

Finally, we evaluate our trained models from531

each iteration to verify the effectiveness of the it-532

erative training framework. The result shows that533

we can achieve state-of-the-art performance with534

only 1 iteration, while the second iteration further535

improves the result. The improvement converges536

FiQA BioASQ C-FEVER

ColBERTv2 35.6 52.2 18.2
PairDistill 37.1 54.8 19.4

Domain Adaptation

LKD only 38.2 57.0 21.4
Lpair 39.5 59.4 22.6

Table 4: Performance of zero-shot domain adaptation
on FiQA, BioASQ, and Climate-FEVER.

after 2 iteration. 537

6.2 Zero-shot Domain Adaptation 538

As discussed in Section 4.1, it is possible to lever- 539

age LLMs to perform zero-shot instruction-based 540

reranking. In this section, we conduct a study 541

where we utilize LLMs for zero-shot domain adap- 542

tation. Specifically, we replace the supervised 543

rerankers with LLMs (flan-t5-xl) for instruction 544

based pointwise and pairwise reranking. 545

To evaluate the effectiveness of zero-shot do- 546

main adaptation with LLMs, we select 3 datasets 547

from BEIR, FiQA, BioASQ, and Climate-FEVER, 548

where training queries are available. Note that our 549

method only utilize the queries, not the labeled 550

pairs. We fine-tune ColBERTv2 with LZS on each 551

dataset and evaluate the models on the correspond- 552

ing test set. 553

Table 4 shows the results of zero-shot domain 554

adaptation. Training with Lpair consistently im- 555

proves performance in the target domain compared 556

to using LKD only and the baseline models trained 557

on MS MARCO only. The results demonstrate that 558

performing domain adaptation on queries from the 559

target domain with LLMs are effective. 560

7 Conclusion 561

In this paper, we introduce Pairwise Relevance 562

Distillation (PAIRDISTILL), a novel distillation 563

method for dense retrieval that leverages the finer- 564

grained training signal provided by the pairwise 565

rerankers. Through extensive experiments, we 566

demonstrate that PAIRDISTILL achieves state-of- 567

the-art performance in both in-domain and out-of- 568

domain evaluation. Further analyses show that the 569

proposed method offers consistent improvements 570

across domains and architectures. We hope this 571

study could provide insights into distillation meth- 572

ods for dense retrieval and prompt more advance 573

distillation techniques. 574
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8 Limitations575

While the proposed method leverages pairwise rele-576

vance for enhancing the training of dense retrievers,577

it is important to acknowledge certain limitations.578

One notable concern is the potential requirement579

for a larger number of training pairs compared to580

methods utilizing pointwise relevance. This re-581

liance on a larger volume of training pairs may pose582

challenges in terms of computational resources re-583

quired for training.584

Therefore, future work in this domain should585

focus on addressing this limitation by exploring586

strategies to mitigate the need for an extensive num-587

ber of training pairs while maintaining or even im-588

proving the effectiveness of knowledge distillation.589

This could involve investigating techniques to op-590

timize the selection of training pairs to reduce the591

computational cost. Addressing the challenge of592

reducing the required training pairs for knowledge593

distillation would contribute to the scalability and594

applicability of the proposed method in real-world595

retrieval scenarios.596
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MSMARCO MRR@10

ColBERTv2 39.7
MiniLM (pointwise) 40.5
MonoT5 (pointwise) 40.6
duoT5 (pairwise) 41.5

Table 5: Reranking performance of different rerankers
(%).

λpair MS MARCO Dev

1.0 40.3
3.0 40.7

Table 6: Results of varying the value of λpair.

A Additional Analyses815

A.1 Reranking Performance816

In order to better motivate the proposed method,817

we compare the reranking performance of the pair-818

wise reranker to pointwise rerankers. Results are819

shown in Table 5. The results demonstrate that820

pairwise reranking offers greater reranking perfor-821

mance, which makes better distillation targets.822

A.2 Difference between pairwise and823

pointwise reranking824

In addition to the reranking performance, we con-825

duct another experiment to analyze the difference826

between pairwise and pointwise rerankers. In this827

experiment, we compare the pairwise rank disagree- 828

ment rate between the rerankers. We found that the 829

pointwise reranker (MiniLM) disagrees with the 830

more accurate pairwise reranker (duoT5) in 31% 831

of the pairs sampled via our heuristic. This result 832

shows that pairwise rerankers provide very differ- 833

ent distillation targets for the retrievers. Combined 834

with the fact that pairwise reranker achieves higher 835

reranking performance, we believe that these exper- 836

iments demonstrate the necessity of the proposed 837

pairwise relevance distillation. 838

A.3 Effect of hyperparameters 839

We conduct an experiment where we vary the value 840

of the hyperparameter λpair. The results are shown 841

in Table 6. As shown in the results, varying the 842

value of λpair has a slight effect on the final perfor- 843

mance. Setting the value to 3.0 achieves the best 844

performance. 845

B Evaluation Details 846

B.1 Dataset Details 847

• MS MARCO (Bajaj et al., 2016): Following 848

previous work (Santhanam et al., 2022b; Lin 849

et al., 2023a; Jiang et al., 2023), we use MS 850

MARCO as the supervised dataset, which con- 851

sists of 502K training queries with 8.8 million 852

passages in the collection. Additionally, there 853

are 306K unlabeled queries that can be used 854

for distillation. The main evaluation is con- 855

ducted on the official dev set of MS MARCO, 856

which is a standard evaluation set. 857

• TREC (Craswell et al., 2020, 2021): We also 858

perform evaluation on the TREC DL19 and 859

DL20 evaluation sets, which are consider as 860

in-domain datasets as they use the same col- 861

lection as MS MARCO. 862

• BEIR (Thakur et al., 2021): BEIR is a bench- 863

mark consisting of 18 retrieval datasets, aim- 864

ing to assess the out-of-domain retrieval per- 865

formance of retrievers. We conduct zero-shot 866

evaluation on all 18 datasets. 867

• LoTTE (Santhanam et al., 2022b): LoTTE 868

consists of questions and answers posted 869

on StackExchange with five topics including 870

writing, recreation, science, technology, and 871

lifestyle. A pooled set is also provided where 872

passages and queries from all five topics are 873

aggregated. 874
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B.2 Baseline Models875

We mostly follow the evaluation procedure from876

the prior work. In Table 1, most results are refered877

directly from DRAGON (Lin et al., 2023a) and878

ABEL-FT (Jiang et al., 2023). We reran all results879

of ColBERTv2 to offer a fair comparison to our880

method. All evaluation results are computed with881

the trec_eval tool from Anserini (Yang et al., 2018).882

For the open-domain question answering883

datasets, all baseline results are referred directly884

from ColBERTv2 (Santhanam et al., 2022b).885

B.3 Inference886

During inference, we utilize the PLAID en-887

gine (Santhanam et al., 2022a) for efficient index-888

ing and retrieval. Following prior work (Santhanam889

et al., 2022b), we set the maximum length of docu-890

ments to 300 for BEIR and LoTTE. The maximum891

length of queries is set to 300 for Arguana and 64892

for Climate-Fever. We set the compression to 2 bits893

in the PLAID engine.894

C Implementation Details895

C.1 Instruction-based Reranking896

For pointwise reranking, we use the following in-897

struction:898

Is the document relevant to the query
(Yes or No)?
Query: {query}
Document: {document}

899

For pairwise reranking, we use the following900

instruction:901

Which document is more relevant to the query?
Answer only 'A' or 'B'.
Query: {query}
Document: {document}

902

C.2 Hyperparameters903

The hyperparameters used for pairwise relevance904

distillation training are listed in Table 7905

hyperparameters

batch size 32
# passages per question 64
max passage length 180
max query length 32
max training steps 100000
learning rate 1e-5
optimizer AdamW
temperature τ 1.0
λKD 1.0
λpair 3.0

Table 7: Hyperparameters used in the knowledge distil-
lation stage.
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