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ABSTRACT

Multi-task model merging offers an efficient solution for integrating knowledge
from multiple fine-tuned models, mitigating the significant computational and
storage demands associated with multi-task training. As a key technique in this
field, Task Arithmetic (TA) defines task vectors by subtracting the pre-trained
model (θpre) from the fine-tuned task models in parameter space, then adjusting the
weight between these task vectors and θpre to balance task-generalized and task-
specific knowledge. Despite the promising performance of TA, conflicts can arise
among the task vectors, particularly when different tasks require distinct model
adaptations. In this paper, we formally define this issue as knowledge conflicts,
characterized by the performance degradation of one task after merging with a
model fine-tuned for another task. Through in-depth analysis, we show that these
conflicts stem primarily from the components of task vectors that align with the
gradient of task-specific losses at θpre. To address this, we propose Task Arith-
metic in Trust Region (TATR), which defines the trust region as dimensions in
the model parameter space that cause only small changes (corresponding to the
task vector components with gradient orthogonal direction) in the task-specific
losses. Restricting parameter merging within this trust region, TATR can effec-
tively alleviate knowledge conflicts. Moreover, TATR serves as both an indepen-
dent approach and a plug-and-play module compatible with a wide range of TA-
based methods. Extensive empirical evaluations on eight distinct datasets robustly
demonstrate that TATR improves the multi-task performance of several TA-based
model merging methods by an observable margin.

1 INTRODUCTION

(a) (b)

task vectors merged task vector
pre-trained parameter

Figure 1: Illustration of knowledge con-
flicts between task vectors. In scenario
(a), the two task vectors contain large-
magnitude components in opposite di-
rections. In scenario (b), the difference
in vector magnitudes causes the merged
model to be dominated by one task.
Both lead to suboptimal performance in
one or more tasks.

The growing adoption of large foundation models is ac-
companied by significant practical challenges in terms
of computational and storage demands (Kaplan et al.,
2020). To address these challenges, multi-task model
merging (Matena & Raffel, 2022) has emerged as a
promising solution. For example, Task Arithmetic (Il-
harco et al., 2023b) merges models by summing the task
vectors from multiple tasks and applying them to the
pre-trained model. Here task vectors are the difference
in model parameters between the pre-trained foundation
model and its fine-tuned version on a specific task. This
approach builds a high-performance multi-task model
by simple arithmetic operations in the model parameter
space, thereby reducing computational overheads associ-
ated with fine-tuning on multiple tasks.

Despite their successes, task arithmetic and its variants
(Yadav et al., 2023; Wang et al., 2024; Yang et al.,
2024b;a) still suffer from conflicts between task vectors.
As illustrated in Figure 1, adding task vectors pointing to
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largely opposite directions may lead to catastrophic forgetting, and inconsistent task vector magni-
tudes may cause unbalanced merging, allowing the resulting model to be disproportionately influ-
enced by a small subset of tasks. We refer to this issue as knowledge conflicts, represented as the
expected performance variation of one task observed before and after merging another task vector.
Knowledge conflicts differ from the typical notion of negative transfer (Yang et al., 2022; Meng
et al., 2021; Liu et al., 2021b; Wang et al., 2023), as the former specifically refers to conflicts be-
tween predetermined, static task vectors, whereas the latter typically describes dynamic interference
among tasks during training. Although current methods like sign alignment and test-time adaptation
partially address knowledge conflicts, a thorough analysis of the root causes and a dedicated solution
remain elusive.

In this paper, we propose a novel trust-region criterion for model merging, Task Arithmetic in the
Trust Region (TATR), which addresses the knowledge conflict problem. The trust region contains
dimensions in the model parameter space that cause only small changes in the task-specific losses.
When merging models, only the components of task vectors in the trust region are added to the
pre-trained weights; other dimensions are discarded. TATR can be used independently or jointly
with other techniques like Ties-Merging (Yadav et al., 2023), AdaMerging (Yang et al., 2024b), and
Surgery (Yang et al., 2024a).

TATR utilizes the first-order Taylor series to compute the changes in the task-specific losses. It
contrasts with a simplistic approach that selects components of task vectors that align with the
negative gradient direction. While the simplistic approach is intuitive, empirical evidence reveals
that it usually does not alleviate knowledge conflicts. We contend that, as the task vectors have
large magnitudes, the first-order Taylor series fails to approximate the function well, leading to
performance degradation. In contrast, TATR identifies directions that are orthogonal to the gradient,
along which minimal cross-task interference happens. Due to overparameterization and parameter
redundancy in the models (Dalvi et al., 2020; Chen et al., 2022b), such directions are usually not
difficult to find.

In summary, the contributions of this paper are as follows:

• We conduct an analysis of knowledge conflicts that arise during model merging. Our in-
vestigation reveals that the components of task vectors aligned with the gradient of task-
specific losses are the primary source of knowledge conflicts.

• We propose an approach, Task Arithmetic in the Trust Region (TATR), which defines a
trust region to address knowledge conflicts. TATR serves as both an independent approach
and a plug-and-play module compatible with a wide range of TA-based methods.

• We evaluate TATR through experiments across eight datasets. The experimental results
demonstrate that TATR effectively mitigates knowledge conflicts and improves the perfor-
mance of several TA-based model merging methods by an observable margin.

2 RELATED WORK

2.1 TRADITIONAL MULTI-TASK LEARNING

Multi-task learning (MTL) aims to improve performance by sharing knowledge across related tasks
(Zhang & Yang, 2022). A significant challenge for MTL is negative transfer (Liu et al., 2017; Zhang
et al., 2023b), where joint training on conflicting tasks yields performance lower than training on the
tasks individually. Various solutions to negative transfer have been proposed, such as modularization
(Tang et al., 2020; Ma et al., 2018), sparsification (Ding et al., 2021; Sun et al., 2020; Liu et al.,
2019), and soft parameter sharing (Gao et al., 2020; Hazimeh et al., 2021). Other strategies focus
on optimizing task interactions, such as adjusting task-specific loss weights (Sener & Koltun, 2018;
Liu et al., 2019; 2022; Hu et al., 2023; Chen et al., 2022a), resolving gradient direction conflicts (Yu
et al., 2020; Chen et al., 2020; Liu et al., 2021a; Javaloy & Valera, 2022; Navon et al., 2022), or
preventing the dominance of certain tasks (Chen et al., 2018; He et al., 2022; Yang et al., 2023).

Traditional MTL are not well-suited for merging foundation models. First, retraining these models
using vast amounts of data incurs significant computational costs. Large-scale foundation models
are already resource-intensive, and training them with multi-task objectives further amplifies these
demands, requiring immense computation and time. Additionally, retraining from scratch wastes
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valuable knowledge optimized in each individual expert model. These considerations have driven
the development of model merging as an alternative to multi-task learning.

2.2 MULTI-TASK LEARNING THROUGH MODEL MERGING

Model merging techniques, which aim to integrate knowledge across models, have attracted in-
creasing attention in recent years. As a precursor, Stochastic Weight Averaging (SWA) (Izmailov
et al., 2018) averages model weights near the end of training. This concept was further advanced
by approaches like SWAD (Cha et al., 2021) and Ensemble of Averages (EoA) (Arpit et al., 2022).
Empirical evidence from Ilharco et al. (2023a) demonstrates that parameter averaging effectively
integrates knowledge from models trained on diverse tasks. DLCPA (Sun et al., 2023) proposes
to apply cumulative parameter averaging (CPA) to continually assimilate knowledge across dis-
tinct tasks. Fisher-Merging (Matena & Raffel, 2022) leverages the Fisher information matrix Fisher
(1925) to measure the importance of model parameters and merge models using weighted averaging.
Additionally, RegMean (Jin et al., 2023) formulates an optimal merging model by minimizing the
distance to each model in the parameter space.

Recently, Task Arithmetic (TA) (Ilharco et al., 2023b) innovatively proposes the concept of “task
vector”, defined as the vector from a pre-trained model to its fine-tuned counterpart in the parameter
space. By weighting these task vectors and adding them back to the pre-trained model, TA strikes a
harmonious balance between generalized knowledge from the pre-train model and the task-specific
knowledge in the task vectors. Following this insight, Ties-Merging (Yadav et al., 2023) refines the
fusion process by discarding parameters deemed insignificant or of low magnitude. PEFT (Zhang
et al., 2023a) and MoLE (Wu et al., 2024) further extend TA by integrating it with LoRA (Hu et al.,
2022) modules. Furthermore, Ortiz-Jimenez et al. (2023) suggests fine-tuning models in the tangent
space, which can effectively mitigate conflict between task vectors.

Furthermore, several approaches combine test-time adaptation techniques with TA, yielding superior
MTL performance. These test-time adaptation-based methods typically allocate merging weights
and fine-tune them during testing using unsupervised test data. For instance, AdaMerging (Yang
et al., 2024b) trains a set of merging coefficients for layers, while other methods fit lightweight
adapter modules, such as representation surgery (Yang et al., 2024a) and MoE router (Tang et al.,
2024).

3 PRELIMINARIES

3.1 PROBLEM SETTING

Formally, let θpre ∈ RN denote the set of N parameters of a pre-trained model, which is initially
trained using a diverse, large-scale dataset to encapsulate generalized, task-agnostic knowledge.
Subsequently, θpre undergoes fine-tuning for K distinct downstream tasks, yielding a set of fine-
tuned parameters {θk}Kk=1, where each θk is tailored to a specific task k.

The objective of model merging is to integrate these fine-tuned parameters from the task-specific
models {θk}Kk=1 into a single model θMTL. This merged model θMTL aims to achieve effective
generalization across all K tasks without resorting to trivial solutions such as retraining from scratch
or requiring full access to the training datasets of all tasks.

3.2 TASK ARITHMETIC

Task arithmetic (TA) (Ilharco et al., 2023b) is known as a competitive baseline for model merging
by leveraging task vectors, which are defined as the differential parameters between the pre-trained
model θpre and each fine-tuned model. Specifically, the task vector for task k is given by:

∆k = θk − θpre. (1)
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TA posits that these task vectors encapsulate essential task-specific knowledge. The merged model
is then constructed by adding the cumulative task vector from all tasks back to θpre:

θTA = θpre︸︷︷︸
task-generalized

+λ
∑
k

∆k︸ ︷︷ ︸
task-specific

,
(2)

where λ > 0 is a pre-defined hyper-parameter that governs the influence of task-specific adjust-
ments.

This method is favored over direct averaging of fine-tuned parameters as it seeks a balance between
generalized and task-specific knowledge, contributing to its competitive advantage. Nevertheless,
task vectors can encode conflicting adaptations across different tasks, leading to potential knowledge
conflicts that may result in information loss and diminished performance. This issue, termed as
“knowledge conflict”, will be dissected further in the subsequent section.

4 ANALYZING KNOWLEDGE CONFLICT

Knowledge conflict frequently arises when merging MTL models, as the expert models encapsulate
diverse, sometimes conflicting, knowledge. We formally define knowledge conflict as follows:

Definition 1 (Knowledge Conflict). Given a pre-trained model θpre and a set of fine-tuned, task-
specific models {θk}Kk=1, where θk represents the parameters optimized for task k, the knowledge
conflict on task j caused by task i can be quantified by the change in performance of task j when
task i is included in the model merging process. Formally, the knowledge conflict is defined as

Cj|i := Lj

(
θMTL({θk}Kk=1)

)
− Lj (θMTL({θk}k ̸=i)) ,

where Lj(θ) denotes the loss for task j with model parameters θ, and θMTL({θk}k ̸=i) represents the
merged model parameters excluding the model fine-tuned for task i. The overall knowledge conflict,
C, is computed as the sum of Cj|i across all task pairs (i, j):

C :=
∑
i̸=j

Cj|i.

A higher value of C indicates a greater degree of conflict, as it reflects a larger negative impact on
task j’s performance when task i is incorporated into the merging process.

Knowledge conflict can be regarded as a special case of negative transfer, although these concepts
emphasize different aspects. In traditional MTL, negative transfer typically refers to the dynamic
interference between tasks during joint training, where conflicting gradients impede the model from
learning effective representations (Zhang et al., 2023b). In contrast, the knowledge conflict defined
here highlights a static nature among the fine-tuned model parameters, where further training to
resolve task interference is prohibited. Each fine-tuned model has already encoded task-specific
knowledge, which may be inherently incompatible with that of other tasks. As a result, knowl-
edge conflict in model merging presents a unique challenge, necessitating methods that can align or
reconcile parameters without resorting to retraining.

In the context of TA, knowledge conflict can be further articulated through task vectors:

CTAj|i = Lj

(
θpre + λ

∑
k

∆k

)
− Lj

θpre + λ
∑
k ̸=i

∆k

 . (3)

An intuitive hypothesis is that task vector components aligned with the gradient ascent direction
contribute to knowledge conflicts. More formally, we apply a Taylor expansion around θpre on the
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Figure 2: (a) Performance comparison across eight datasets (Cf. Section 6.1) when merging negative
components (e.g., components aligned with the loss descent direction) and orthogonal components
(e.g., components orthogonal to the gradient) of task vectors, corresponding to θneg

TATR and θorth
TATR,

respectively. (b) Loss landscape of the EuroSAT dataset and the components of the cumulative task
vector from the remaining seven datasets. (c) The total loss landscape over all eight datasets, along
with the components of the cumulative across task vectors. Note that in both (b) and (c), the loss
landscape is visualized in a hyperplane going through the three points: θpre +∆⊥, θpre +∆+, and
θpre +∆−. Refer Section B in Appendix for more details.

right-hand side of Eq. (3):

Lj

(
θpre + λ

∑
k

∆k

)
− Lj

θpre + λ
∑
k ̸=i

∆k


≈ Lj (θpre) +

〈
∇θLj (θpre) , λ

∑
k

∆k

〉
− Lj (θpre)−

〈
∇θLj (θpre) , λ

∑
k ̸=i

∆k

〉

= λ ⟨∇θLj (θpre) ,∆i⟩ = λ

N∑
n=1

∇θLj (θpre) [n] ·∆i[n].

(4)

where v[n] selects the n-th component of the vector v. Equation (4) suggests that task vector com-
ponents aligned with the gradient ascent direction are primarily responsible for knowledge conflicts,
while those in line with the gradient descent direction should be prioritized during model merging.
That is, we should avoid merging the n-th component of the task vector ∆i if ∇θLj (θpre) [n] ·∆i[n]
is large.

On the other hand, perhaps counter-intuitively, empirical evidence (Figure 2(a)) shows that merging
the gradient descent components (i.e., ∇θLj (θpre) [n] ·∆i[n] < 0) causes a significant performance
drop. A potential explanation for this phenomenon is that the task vectors have large magnitudes,
thereby the first-order Taylor expansion cannot offer a good approximation of the task loss Lj . As a
result, even if we merge a component in the gradient descent direction, we can overshoot the local
optimum and end up increasing the task loss (Ruder, 2017).

To facilitate analysis, we decompose the task vector ∆i into three components:

• Orthogonal component, which contains elements with near-zero inner product ∆⊥
i =

∆i ⊙ 1{∇θLj(θpre)⊙∆i≈0};

• Positive component, with elements having a positive inner product ∆+
i = ∆i ⊙

1{∇θLj(θpre)⊙∆i>0};

• Negative component, defined by elements with a negative inner product ∆−
i = ∆i ⊙

1{∇θLj(θpre)⊙∆i<0}.

Here, ⊙ denotes the Hadamard (element-wise) product, and 1{p} ∈ RN is an indicator vector that
takes the value 1 in the dimension that p is true and 0 otherwise.

We illustrate the impact of the three components within the loss landscape in Figure 2 (b). It is
evident that the positive component leads to an increase in loss, as the model moves in the gradient
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ascent direction. The orthogonal component results in relatively smooth changes in the loss. In-
terestingly, while the negative component initially follows the descent direction of the loss, it
overshoots the local optimum, ultimately leading to an increase in loss. As a result, the total loss
across all tasks shown in Figure 2 (c) highlights that the orthogonal component is more beneficial
for knowledge fusion than either the positive or negative components.

5 TASK ARITHMETIC IN THE TRUST REGION

The above observations are reasonable since neural network parameters, particularly those in pre-
trained foundation models, often exhibit high redundancy (Dalvi et al., 2020; Chen et al., 2022b).
Additionally, task-specific knowledge is often low-rank Hu et al. (2022), i.e., only a few parameter
directions are critical for learning the task. In order to identify a small set of critical parameters that
should not be altered during model merging and alleviate knowledge conflicts, we propose defining
the following trust region:
Definition 2 (Trust Region for Knowledge Conflict). Given a pre-trained model θpre, the trust region
specific in the dimension space is defined as follows:

T R :=

{
n

∣∣∣∣∑
i ̸=j

∣∣∇θLj(θpre)[n] ·∆i[n]
∣∣ < ϵ

}
, (5)

where n ≤ N indexes the dimensions of the parameter space, ϵ represents the sensitivity threshold,
and any dimension exceeding this threshold will be excluded from the trust region and not permitted
to merge.

Dimensions outside the trust region (corresponding components of task vector that are collinear
with the gradient direction, regardless of whether the directions are aligned or opposite) are likely to
cause knowledge conflicts. Conversely, when ∇θLj (θpre) and ∆i are orthogonal, their projections
minimally interfere with each other, thereby reducing knowledge conflict.

We are now ready to present the TATR method. TATR mitigates knowledge conflict by restricting
merging within the trust region, involving the following three key steps.

Calculating task-specific gradients. The first step involves computing the gradient for each task.
Since accessing the full training data for each task is often impractical, we approximate the gradient
using an exemplar set for each task, denoted as {S1, . . . , SK}. For each task, the absolute gradient
of the loss function Lk(.) (cross-entropy loss in our experiments) is computed as follows:

|∇θLk (θpre)| ≈ Exk∈Sk
|∇θLk (xk; θpre)| . (6)

Notably, we place the expectation outside the absolute value operation, drawing inspiration from the
Fisher Information Matrix (Wasserman, 2013). This design captures absolute gradients that reflect
the average variation of parameters, facilitating the measurement of knowledge conflict across every
exemplar. Additionally, the exemplar size can be remarkably small. Our empirical results in Figure 3
(a) show that even in a one-shot setting, we achieve a competitive average accuracy of 72.3%, which
is close to the highest accuracy of 72.8% obtained with 16 samples. Similar results are observed
when TATR is integrated into AdaMerging Yang et al. (2024b).

We also propose a zero-shot version, where the task vector is used to estimate the gradient. Although
there may be estimation errors, this approach still offers performance improvements for TA-based
methods in most scenarios:

|∇θLk (θpre)| ≈ |∆k| . (7)

Establishing the trust region. Next, we aim to identify the trust region with minimal knowledge
conflict, with a key requirement being the determination of the sensitivity threshold ϵ. However,
manually specifying the exact value of ϵ becomes complex and tedious. Therefore, we employ a
ranking method to infer ϵ. To achieve this, we derive the sensitivity of each dimension that may
cause knowledge conflict, based on Definition 2:

ΩTrust =
∑
i̸=j

|∇θLj (θpre)⊙∆i| =
∑
i̸=j

|∇θLj (θpre)| ⊙ |∆i| . (8)
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Algorithm 1: The model merging process of TATR
Input: Pre-trained model θpre; Task vectors {∆1, . . . ,∆K}; Exemplar-set {S1, . . . , SK}
Output: Merged model θTATR

1 // Deriving gradients for each task
2 for k = 1, . . . ,K do
3 Gk = Exk∈Sk

|∇θLk (xk; θpre)|
4 // Establishing the trust region
5 ΩTrust =

∑
i ̸=j Gj ⊙ |∆i|

6 ϵ = proportion selection(ΩTrust, τ)

7 T R = {n | ΩTrust[n] < ϵ}
8 // Merging
9 θTATR = θpre + λ

∑
k ∆k ⊙ 1{n∈T R}

10 return θTATR

Next, the sensitivity threshold ϵ of the trust region is determined through a proportional selection
operation:

ϵ = proportion selection(ΩTrust, τ). (9)

In this process, ΩTrust is sorted in descending order, and the values corresponding to the predefined
ratio τ are selected as the sensitivity threshold ϵ. Based on ϵ, we are able to establish the trust region
T R according to Definition 2.

Merging the task vectors. The final step involves merging the task vectors using TA, where the
merging occurs within the dimensions confined to the trust region:

θTATR = θpre + λ
∑
k

∆k ⊙ 1{n∈T R}, (10)

where 1{n∈T R} ∈ RN is an indicator vector whose value is 1 at index n if n belongs to the trust
region and 0 otherwise. The detailed workings of TATR are outlined in Algorithm 1. The entire
merging process does not rely on any additional training process.

Moreover, the techniques introduced in TATR selectively limit the merging process to a subset of
model parameters, allowing it to function as a plug-and-play module that seamlessly integrates with
a wide range of TA-based approaches, such as:

• Ties-Merging & TATR: Ties-Merging (Yadav et al., 2023) partially reduces knowledge
conflicts by pruning low-magnitude parameters and aligning the signs of task vectors.
However, this approach overlooks conflicts that may arise from high-magnitude param-
eters. This bias can lead to knowledge conflicts, where some tasks dominate the model’s
behavior. The combination of TATR with Ties-Merging refines the process, as shown in
the following formula:

θTies+TATR = θpre + λ
∑
k

Φ(∆k)⊙ 1{n∈T R}, (11)

where Φ(.) indicates the TrIm, Elect Sign, and Merge operation of Ties-Merging.
• AdaMerging & TATR: AdaMerging (Yang et al., 2024b) adaptively learns merging co-

efficients but does not inherently resolve knowledge conflicts between task vectors. This
can lead to interference during coefficient learning, especially when tasks require oppos-
ing parameter adaptations. TATR addresses this by pre-filtering task vectors to retain only
those components within the trust region, ensuring that AdaMerging operates in a conflict-
reduced parameter space:

θAda+TATR = θpre +
∑
k

λk∆k ⊙ 1{n∈T R}, (12)

where λ1, . . . , λK represent the learnable coefficients for AdaMerging.
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• Surgery & TATR: Similarly, Surgery (Yang et al., 2024a) introduces additional modules to
align task-specific features during merging. TATR complements Surgery by pre-selecting
components of task vectors that reside in the trust region. The integrated approach is for-
malized as:

θSurgery+TATR =

{
θsurgery, θpre + λ

∑
k

∆k ⊙ 1{n∈T R}

}
, (13)

where θsurgery denotes the additional parameters introduce by the Surgery module.

6 EXPERIMENTS

6.1 SETTINGS

Datasets. Following prior works (Ilharco et al., 2023b; Yadav et al., 2023; Yang et al., 2024b;a), we
perform model merging on the following eight datasets: SUN397 (Xiao et al., 2016), Cars (Krause
et al., 2013), RESISC45 (Cheng et al., 2017), EuroSAT (Helber et al., 2019), SVHN (Netzer et al.,
2011), GTSRB (Stallkamp et al., 2011), MNIST (LeCun & Cortes, 2010), DTD (Cimpoi et al.,
2014).

Baselines. We compare our approach against a diverse set of methods, categorized into basic base-
line methods, test-time training-based model merging methods, and training-free model merging
methods. Basic baseline methods include the Pre-trained model, Individual task model, and the Tra-
ditional Multi-Task Learning model. For test-time training-based methods, we provide AdaMerg-
ing, AdaMerging++ (Yang et al., 2024b), and Surgery (Yang et al., 2024a). Among the training-free
methods, we consider the simple Weight Average, Fisher Merging (Matena & Raffel, 2022), Reg-
Mean (Jin et al., 2023), Task Arithmetic (Ilharco et al., 2023b), and Ties-Merging (Yadav et al.,
2023).

Implementation details. Our implementation strictly follows task arithmetic (Ilharco et al., 2023b)
and AdaMerging (Yang et al., 2024b). We apply the ViT-B/32 and ViT-L/14 in CLIP (Radford et al.,
2021) as the pre-trained model. Task vectors are derived from task arithmetic (Ilharco et al., 2023b)
which is fine-tuned on each specific dataset. We report the accuracy of each task after merging the
models, along with the average accuracy (i.e., Avg ACC). The hyper-parameter τ is tuned within
the range [0.1%, 0.2%, 0.5%, 1.0%, 2.0%, 5.0%], while the size of the exemplar set is fixed at 128.
Additional implementation details can be found in our supplementary code.

6.2 PERFORMANCE COMPARISON

The performance of all baselines using the ViT-B/32 and ViT-L/14 architectures is presented in
Table 1 and Table 2, respectively. We report the performance metrics for each task after merging, as
well as the overall average performance.

As illustrated in the tables, the pre-trained model exhibits the lowest performance across all methods,
due to the absence of task-specific supervision. In contrast, the Individual models achieve the highest
performance, as they are exclusively trained for each specific task, which thus represents the upper-
bound performance for model merging. Traditional MTL encounters knowledge conflict issues,
resulting in slightly lower performance compared to the Individual models.

Among the model merging methods, the simplest Weight Averaging suffers significant knowledge
conflicts, resulting in a worse performance. Fisher Merging and RegMean improve Weight Averag-
ing by incorporating parameter importance weight into the averaging process. TA and its enhanced
version, Ties-merging, demonstrate substantial performance improvements by better balancing the
pre-trained and task-specific knowledge. Additionally, owing to the additional training process,
test-time training-based models (AdaMerging and Surgery) generally outperform the training-free
methods.

Our proposed TATR method belongs to the training-free model merging approach. As the techniques
of TATR are orthogonal to existing model merging methods, we also report performance when
TATR is plugged into strong baselines. The experimental results demonstrate that TATR consistently
enhances all TA-based methods. When incorporated into task arithmetic, both TATR and its zero-
shot version lead to significant performance improvements, increasing average accuracy by 3.7%
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and 1.5% on ViT-B/32, and by 0.8% and 0.1% on ViT-L/14, respectively. The best results are
obtained when TATR is combined with layer-wise AdaMerging++, achieving an average accuracy
of 82.5% on ViT-B/32 and 91.5% on ViT-L/14.

Table 1: Multi-task performance when merging ViT-B/32 models on eight tasks. The column of “#
Best” indicates the number of datasets on which the proposed method achieved the best performance,
and the best and second-best performance are highlighted with bold and underline.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD # Best Avg Acc
Basic baseline methods

Pre-trained 62.3 59.7 60.7 45.5 31.4 32.6 48.5 43.8 - 48.0
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 - 90.5
Traditional MTL 73.9 74.4 93.9 98.2 95.8 98.9 99.5 77.9 - 88.9

Test-time training based methods
TW AdaMerging 58.0 53.2 68.8 85.7 81.1 84.4 92.4 44.8 0 71.1
TW AdaMerging++ 60.8 56.9 73.1 83.4 87.3 82.4 95.7 50.1 0 73.7
LW AdaMerging 64.5 68.1 79.2 93.8 87.0 91.9 97.5 59.1 1 80.1
LW AdaMerging++ 66.6 68.3 82.2 94.2 89.6 89.0 98.3 60.6 0 81.1
Surgery Merging 63.8 59.9 83.3 97.9 87.0 87.0 98.6 69.4 1 80.9
LW AdaMerging++ & TATR zero-shot (Ours) 72.0 70.8 81.5 88.9 84.9 84.2 99.3 66.7 3 81.0
LW AdaMerging++ & TATR (Ours) 69.8 70.3 83.7 93.7 90.0 90.2 98.3 63.7 1 82.5
Surgery & TATR zero-shot (Ours) 64.2 60.4 82.7 96.9 86.4 86.5 98.5 68.7 0 80.5
Surgery & TATR (Ours) 67.1 62.2 87.1 97.4 87.3 88.5 98.7 70.9 2 82.4

Training-free methods
Weight Averaging 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 0 65.8
Fisher Merging 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9 3 68.3
RegMean 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52.0 0 71.8
Task Arithmetic 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 0 69.1
Ties-Merging 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2 2 72.4
TATR zero-shot (Ours) 59.0 56.6 69.2 80.2 79.0 70.5 97.0 53.5 0 70.6
TATR (Ours) 62.7 59.3 72.3 82.3 80.5 72.6 97.0 55.4 1 72.8
Ties-Merging & TATR zero-shot (Ours) 64.9 64.2 74.7 76.4 81.2 69.3 96.5 54.3 1 72.7
Ties-Merging & TATR (Ours) 66.3 65.9 75.9 79.4 79.9 68.1 96.2 54.8 1 73.3

Table 2: Multi-task performance when merging ViT-L/14 models on eight tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD # Best Avg Acc
Basic baseline methods

Pre-trained 66.8 77.7 71.0 59.9 58.4 50.5 76.3 55.3 - 64.5
Individual 82.3 92.4 97.4 100.0 98.1 99.2 99.7 84.1 - 94.2
Traditional MTL 80.8 90.6 96.3 96.3 97.6 99.1 99.6 84.4 - 93.5

Test-time training based methods
AdaMerging 79.0 90.3 90.8 96.2 93.4 98.0 99.0 79.9 2 90.8
AdaMerging++ 79.4 90.3 91.6 97.4 93.4 97.5 99.0 79.2 1 91.0
Surgery Merging 75.7 84.4 93.1 98.8 91.3 93.4 99.1 76.1 1 89.0
AdaMerging & TATR zero-shot (Ours) 80.7 95.3 95.0 94.9 84.7 92.4 99.8 86.0 1 91.1
AdaMerging++ & TATR (Ours) 81.6 95.9 95.8 95.5 83.2 92.6 99.7 87.5 4 91.5
Surgery & TATR zero-shot (Ours) 75.6 85.1 93.8 98.5 91.0 93.1 99.2 76.3 0 89.1
Surgery & TATR (Ours) 76.3 85.8 93.8 98.8 91.4 93.0 99.2 77.9 1 89.5

Training-free methods
Weight Averaging 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8 0 79.6
Fisher Merging 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70.0 1 82.2
RegMean 73.3 81.8 86.1 97.0 88.0 84.2 98.5 60.8 1 83.7
Task Arithmetic 73.9 82.1 86.6 94.1 87.9 86.7 98.9 65.6 0 84.5
Ties-Merging 76.5 85.0 89.3 95.7 90.3 83.3 99.0 68.8 3 86.0
TATR zero-shot (Ours) 74.3 81.5 86.6 92.7 88.6 88.1 99.1 66.0 0 84.6
TATR (Ours) 74.6 83.7 87.6 93.7 88.6 88.1 99.0 66.8 0 85.3
Ties-Merging & TATR zero-shot (Ours) 75.8 85.3 89.2 94.7 89.1 87.1 99.0 68.6 0 86.1
Ties-Merging & TATR (Ours) 76.3 85.3 88.8 94.4 90.8 88.7 99.2 68.8 4 86.5

6.3 SENSITIVITY ANALYSIS OF HYPERPARAMETERS

This section presents an analysis of the model’s sensitivity to two hyperparameters: the number
of exemplar samples and the proportion τ in Eq. (9). As shown in Figure 3, the performance of
TATR remains stable with respect to both hyperparameters. Furthermore, Figure 3 (a) demonstrates
that even in a one-shot setting, TATR achieves a competitive average accuracy of 72.3%, evidently
outperforming Task Arithmetic (0 exemplars in Figure 3 (a)) and comparable to the highest accuracy
of 72.8%. Similarly, experiments plugged into AdaMerging also support this phenomenon, where
the one-shot scenario achieves an average accuracy of 82.3%, nearly matching the peak accuracy
of 82.5%. Additionally, Figure 3 (b) suggests that excluding a small proportion of parameters (less
than 1%) is sufficient to alleviate the knowledge conflicts.
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Figure 3: Average accuracy (%) of TATR on eight tasks versus the number of exemplars (a) and τ
(b).
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Figure 4: The average sensitivity of each dataset to task vectors across layers.

6.4 ANALYSIS OF SENSITIVITY ΩTRUST FOR KNOWLEDGE CONFLICT

Figure 4 illustrates the average sensitivity of each dataset to task vectors across different layers.
Three key characteristics can be observed. Firstly, the shallow layers exhibit greater sensitivity than
other layers. Shallow layers typically encode task-generalized knowledge, and the increased sensi-
tivity highlights the importance of preserving this information in the TATR method. Secondly, the
sensitivity exhibits periodic variations across layers, with bias layers generally exhibiting higher sen-
sitivity than weight layers. This trend is reasonable, as bias layers have a more pronounced impact
on network outputs, making them more susceptible to knowledge conflicts. Lastly, datasets com-
prising digit data (e.g., SVHN and MNIST) show relatively lower sensitivity to knowledge conflicts,
which can be attributed to their significant domain differences from other real-world datasets.

7 CONCLUSION

In this paper, we delve deep into the critical challenge of knowledge conflict in multi-task model
merging with a focus on task arithmetic. We began by formalizing the concept of knowledge conflict
as the degradation in model performance caused by the interference between task vectors. Our
analysis and empirical findings suggest that components of task vectors orthogonal to the gradient
direction exhibit minimal knowledge conflict. This insight motivates us to define a trust region based
on orthogonality and propose Task Arithmetic in the Trust Region (TATR). Extensive experiments
across eight diverse datasets demonstrate that TATR effectively mitigates the knowledge conflict,
enhancing the overall multi-task performance of task arithmetic-based methods.

8 REPRODUCIBILITY STATEMENT

We have included the complete source code in the supplementary materials, and will release the full
codebase as open source upon publication. All datasets and settings are documented for clarity.
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A.1 ENVIRONMENT

All experiments detailed in our manuscript and appendix were conducted on a workstation running
Ubuntu 16.04, equipped with 18 Intel Xeon 2.60GHz CPUs, 256 GB of memory, and 6 NVIDIA
RTX3090 GPUs. Python 3.8 was used to implement all the methods.

A.2 DATASETS

Our experiments strictly follow Task Arithmetic (Ilharco et al., 2023b) and AdaMerging (Yang et al.,
2024b), utilizing eight widely-used image classification datasets. The information of these datasets
is described as follows:

• SUN397 (Xiao et al., 2016): A scene classification dataset containing 108,754 images
across 397 classes. Each class includes at least 100 images.

• Stanford Cars (Cars) (Krause et al., 2013): A car classification dataset featuring 16,185
images of 196 car categories. The dataset is evenly split between training and test sets.

• RESISC45 (Cheng et al., 2017): A remote sensing image classification dataset comprising
31,500 images across 45 scene categories, with approximately 700 images per class.

• EuroSAT (Helber et al., 2019): A satellite image classification dataset consisting of 27,000
labeled and geo-referenced images distributed among 10 categories.

• SVHN (Netzer et al., 2011): A real-world digit classification dataset derived from house
numbers in Google Street View images. It includes 10 classes, with a training set of 73,257
images, a test set of 26,032 images, and an additional 531,131 samples available for ex-
tended training.

• GTSRB (Stallkamp et al., 2011): A traffic sign classification dataset comprising more than
50,000 images across 43 traffic sign categories.

• MNIST (LeCun & Cortes, 2010): A well-known benchmark for handwritten digit classifi-
cation, containing 60,000 training images and 10,000 test images, evenly distributed among
10 classes of digit numbers.

• DTD (Cimpoi et al., 2014): A texture classification dataset consisting of 5,640 images
distributed across 47 texture classes, with approximately 120 images per class.

A.3 BASELINES.

In our experiments, we compare our methods with several baseline approaches, which are grouped
into four categories: basic baseline methods, test-time training-based methods, training-free meth-
ods, and our proposed methods. The details of these methods are as follows:

i) Basic baseline methods:

• Pre-trained directly employs a pre-trained model to predict across multiple tasks. Since it
does not incorporate any downstream task-specific information during model training, its
performance on downstream tasks is typically suboptimal.

• Individual. In this approach, an independent fine-tuned model is used for each task. While
it avoids interference between tasks, it cannot perform multiple tasks simultaneously. It
serves as a reference upper bound for model merging approaches.

• Traditional MTL aggregates the original training data from all tasks to train a single multi-
task model.

ii) Test-time training-based methods:

• AdaMerging (Yang et al., 2024b) leverages an unlabeled test set to adaptively learn the
merging coefficients at either a layer-wise or task-wise level in Task Arithmetic.

• AdaMerging++ (Yang et al., 2024b) an enhanced version of AdaMerging, integrates the
principles of Ties-Merging (Yadav et al., 2023).
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• Surgery (Yang et al., 2024a) introduces a feature transformation module, trained to align
features during the merging process. In this work, we adopt the basic version of Surgery
combined with task arithmetic for evaluation

iii) Training-free methods:

• Weight Averaging directly averages model parameters from multiple tasks into a single
model, enabling multi-task learning without additional training.

• Fisher Merging (Matena & Raffel, 2022) leverages the Fisher information matrix to assess
parameter importance, merging model parameters based on this importance.

• RegMean (Jin et al., 2023) refines weight matrices by adjusting and linearly combining
rows, utilizing statistical information derived from the training data.

• Task Arithmetic (Ilharco et al., 2023b) introduces the concept of a “task vector,” defined
as the difference between fine-tuned model parameters and pre-trained model parameters.
Multiple task vectors are then combined and added to the pre-trained model to facilitate
multi-task learning.

• Ties-Merging (Yadav et al., 2023) eliminates unimportant parameters from the task vector
and resolves sign conflicts among parameters, reducing interference during the final task
vector merging process.

iv) Our methods:

• TATR. This is the core method introduced in our work, which applies task arithmetic within
the trust region.

• TATR zero-shot A zero-shot variant of TATR that utilizes task vectors to estimate the
gradient as described in Eq.(7). Other zero-shot variations follow a similar approach.

• Ties-Merging & TATR integrates TATR into the Ties-Merging framework by applying
TATR’s mask on the task vectors after processing them with Ties-Merging.

• AdaMerging & TATR plugged TATR into AdaMerging, where TATR is applied prior to
training the AdaMerging coefficients.

• Surgery & TATR. Similarly, TATR is integrated into Surgery by applying it before training
the additional modules introduced by Surgery.

B VISUALIZATION OF LOSS LANDSCAPE

B.1 METHODOLOGY FOR VISUALIZING THE LOSS LANDSCAPE

In this section, we outline the methodology for visualizing the loss landscape, which involves three
key steps:

Task vector decomposition. To effectively visualize the loss landscape, we first decompose a task-
specific vector into three essential components: a positive component (aligned with the gradient
direction), a negative component (opposed to the gradient), and an orthogonal component (orthog-
onal to the gradient). These components are derived by analyzing the relationship between the task
vector and the gradient, as detailed in Section 5. This decomposition allows us to explore how dif-
ferent aspects of the task vector interact with the gradient, each contributing uniquely to the overall
optimization behavior.

Constructing the 2D plane. We arrange these three components in a 2D coordinate system, with
the positive component anchored at (0,1), the negative component at (0,0), and the orthogonal com-
ponent at (1,0). Additionally, we project the parameters of the pre-trained model onto this plane
using linear combinations of the three components. Although this projection is an approximation, as
the pre-trained model’s parameters may not lie perfectly within the plane defined by these vectors,
it provides sufficient insight into the interaction between task vectors and knowledge conflict.

Contour plot generation. Finally, we sample points across the plane by selecting coordinates
within the range of [-0.2, 1.2] for both axes at intervals of 0.1. For each sampled point, we adjust
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the model’s parameters accordingly and compute the corresponding loss value. These loss values
are then used to generate a contour plot, providing a visual representation of the loss landscape.

B.2 LOSS LANDSCAPE FOR EACH INDIVIDUAL TASK

In this section, we present the loss landscape for each individual task, along with the components
of task vectors from the other seven tasks within the landscape. From Figure 5, we observe the
same patterns as described in the manuscript. Specifically, the positive component tends to ascend
along the gradient direction, while the negative component, despite aligning with the gradient de-
scent direction, often overshoots local optima, leading to performance degradation. The orthogonal
component, in general, shows little sensitivity to performance changes. These findings further sup-
port the generality of our conclusions and provide additional evidence for the effectiveness of the
TATR method.

B.3 LOSS LANDSCAPE FOR ALL TASKS

Furthermore, we visualize the overall loss landscape across all tasks, including the components of
the task vectors. We present the loss landscape under different mask ratios. As shown in Fig-
ure 6, we observe similar patterns: both the positive and negative components negatively impact the
model’s overall multi-task performance, leading to knowledge conflicts. In contrast, the orthogonal
component contributes to improving the model’s multi-task capability.

C ADDITIONAL EXPERIMENTS

C.1 COMPARISON ON VIT-B/16

Table 3 presents the results of various model merging methods using the ViT-B/16 architecture. As
we can see, TATR significantly improves the multi-task performance of Task Arithmetic, raising
the average performance from 73.8% to 77.0%. Additionally, the zero-shot version also provides a
certain degree of improvement, ultimately reaching 74.1%.

Table 3: Multi-task performance when merging ViT-B/16 models on eight tasks.

Method SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Pre-trained 63.8 64.6 65.7 54.5 52.0 43.3 51.7 45.1 55.0
Individual 81.8 86.8 96.9 99.7 97.8 99.1 99.7 82.0 92.9

Weight Averaging 67.7 70.0 75.3 79.5 74.9 60.1 94.4 43.8 70.7
Fisher Merging 68.5 69.9 75.2 80.4 73.2 61.2 94.5 50.7 71.7
RegMean 69.1 71.6 77.6 88.8 83.7 70.2 96.9 54.6 76.6
Task Arithmetic 61.1 65.9 74.0 76.2 88.0 73.9 98.4 53.0 73.8
Ties-Merging 69.1 72.5 80.5 84.0 85.0 71.5 98.1 54.9 77.0
TATR zero-shot (Ours) 60.5 63.4 73.0 78.8 88.4 75.8 98.4 54.6 74.1
TATR (Ours) 67.4 70.4 77.9 81.7 87.6 77.2 98.3 55.6 77.0

C.2 GENERALIZATION COMPARISON

This section explores the generalization ability of TATR. Specifically, we merge models using task
vectors from six tasks and evaluate their performance on two unseen tasks. We conduct two experi-
ments: in the first, MNIST and EuroSAT are set as unseen tasks, while in the second, RESISC45 and
SVHN are treated as unseen. The results in Table 4 show that TATR outperforms Task Arithmetic
on the unseen datasets, with an average performance improvement of 0.8% and 1.3%, respectively.
This improvement in generalization is attributed to TATR’s ability to handle knowledge conflicts,
ensuring that model updates move toward a more globally optimal direction.

C.3 ANALYSIS OF EXEMPLAR NUMBER

In this section, we further investigate the sensitivity of TATR to the number of exemplars. Table 5
reports the merging performance with varying exemplar numbers. As shown, the zero-shot ver-
sion consistently outperforms Task Arithmetic across all tasks, achieving an average performance
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Figure 5: Loss landscape for each dataset and the components of the cumulative task vector from
the remaining seven datasets.
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Figure 6: Loss landscape for each datasets and the components of the cumulative task vector from
the remaining seven datasets.
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Table 4: Generalization results on two unseen tasks when merging ViT-B/16 models on six tasks.

Method SUN397 Cars RESISC45 DTD SVHN GTSRB Avg Acc MNIST EuroSAT Avg Acc
Task Arithmetic 63.3 62.4 75.1 57.8 84.6 80.4 70.6 77.2 46.2 61.7
TATR (Ours) 66.0 64.1 77.9 60.1 83.9 81.8 72.3 77.2 47.7 62.5

Method SUN397 Cars GTSRB EuroSAT DTD MNIST Avg Acc RESISC45 SVHN Avg Acc
Task Arithmetic 64.0 64.0 75.2 87.7 57.0 95.7 73.9 52.3 44.9 51.1
TATR (Ours) 66.5 65.2 76.8 87.9 59.5 95.6 75.3 54.7 50.0 52.4

improvement of 1.7%. In the one-shot scenario, TATR significantly boosts performance, with an
average increase of 3.4% per task, nearing optimal performance. As the number of exemplars in-
creases, the performance improves across all tasks, obtaining the best performance at the number
16.

Table 5: Impact of the number of exemplars when merging ViT-B/32 models on eight tasks.

Method Exemplar number SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Task Arithmetic - 55.2 54.9 66.7 78.9 80.2 69.7 97.3 50.4 69.1
TATR zero-shot (Ours) - 59.0 56.6 69.2 80.2 79.0 70.5 97.0 53.5 70.6
TATR (Ours) 1 62.0 59.0 71.6 81.8 80.3 72.4 96.9 54.7 72.3
TATR (Ours) 2 62.3 59.2 71.6 81.5 80.5 72.4 97.0 55.4 72.5
TATR (Ours) 4 62.3 59.3 71.8 82.4 80.5 72.7 97.0 55.1 72.6
TATR (Ours) 8 62.6 59.3 72.2 82.3 80.1 72.6 97.0 55.3 72.7
TATR (Ours) 16 62.7 59.5 72.3 82.4 80.4 72.6 97.0 55.3 72.8
TATR (Ours) 32 62.7 59.5 72.4 82.4 80.4 72.5 97.0 55.4 72.8
TATR (Ours) 64 62.7 59.3 72.3 82.5 80.4 72.7 97.0 55.4 72.8
TATR (Ours) 128 62.7 59.4 72.3 82.5 80.4 72.7 97.0 55.4 72.8

Table 6: Comparison with different sensitivities of TATR when merging ViT-B/32 models on eight
tasks.

Method Sensitivity SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg Acc
Pre-trained - 63.8 64.6 65.7 54.5 52.0 43.3 51.7 45.1 55.0
TATR positive 1

K(K−1)

∑
i ̸=j ∇θLj (θpre)⊙∆i 60.0 54.3 44.8 9.3 18.9 14.3 17.1 39.4 32.3

TATR negative − 1
K(K−1)

∑
i̸=j ∇θLj (θpre)⊙∆i 29.5 11.5 22.6 30.0 65.5 40.0 83.3 30.5 39.1

TATR ntk 1
K(K−1)

∑
i ̸=j |∇θLj (θpre)| ⊙ |∇θLi (θpre)| 61.8 59.0 71.5 81.3 81.3 72.9 97.2 55.3 72.5

TATR zero-shot 1
K(K−1)

∑
i ̸=j |∆j | ⊙ |∆i| 59.0 56.6 69.2 80.2 79.0 70.5 97.0 53.5 70.6

TATR 1
K(K−1)

∑
i̸=j |∇θLj (θpre)| ⊙ |∆i| 62.7 59.3 72.3 82.3 80.5 72.6 97.0 55.4 72.8

C.4 ANALYSIS OF SENSITIVITY FOR KNOWLEDGE CONFLICT

In this section, we explore various forms of conflict sensitivity in knowledge sharing. Specifically,
we examine the following five approaches:

• TATR positive: This is calculated as the product between the task vector and the gradient.
It promotes the merging of the components in the task vector that align with the gradient’s
ascent direction. The sensitivity of TATR positive is formulated as:

1

K(K − 1)

∑
i ̸=j

∇θLj (θpre)⊙∆i.

• TATR negative: This is computed as the product between the negative task vector and the
gradient. It encourages the merging of the components in the task vector that follow the
gradient’s descent direction. The sensitivity of TATR negative is formulated as:

− 1

K(K − 1)

∑
i ̸=j

∇θLj (θpre)⊙∆i.

• TATR ntk: This approach computes the product of the absolute values of gradients from
different tasks, analogous to the Neural Tangent Kernel (NTK) (Jacot et al., 2018). It
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measures the influence of model updates for one task on another. Specifically, TATR ntk
utilizes the following sensitivity for knowledge conflict:

1

K(K − 1)

∑
i̸=j

|∇θLj (θpre)| ⊙ |∇θLi (θpre)| .

• TATR Zero-shot: The zero-shot variant calculates the product of the absolute values be-
tween task vectors from different tasks:

1

K(K − 1)

∑
i̸=j

|∆j | ⊙ |∆i| .

• TATR (Standard Version): The standard version computes the product of the absolute
values of the task vector and the gradient. It encourages the fusion of the components in
the task vector that are orthogonal to the gradient. The sensitivity of TATR is calculated as
follows:

1

K(K − 1)

∑
i ̸=j

|∇θLj (θpre)| ⊙ |∆i| .

Table 6 reports the multi-task performance of these methods when merging ViT-B/32 models across
eight tasks. It is evident that both TATR Negative and TATR Positive result in a significant per-
formance drop, indicating severe knowledge conflicts. In contrast, the standard TATR method ef-
fectively improves the performance of the pre-trained model across tasks, significantly mitigating
knowledge conflicts. While the zero-shot and NTK variants exhibit slight performance degradation
compared to TATR, they also demonstrate the ability to alleviate knowledge conflicts, suggesting
that task vectors can approximate gradients to some extent.
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