
Published as a conference paper at ICLR 2024

SOLVING HIGH FREQUENCY AND MULTI-SCALE
PDES WITH GAUSSIAN PROCESSES

Shikai Fang∗, Madison Cooley∗, Da Long∗, Shibo Li, Robert M. Kirby, Shandian Zhe†
University of Utah, Salt Lake City, UT 84112, USA
{shikai,mcooley,dl932,shibo,kirby,zhe}@cs.utah.edu

ABSTRACT

Machine learning based solvers have garnered much attention in physical simula-
tion and scientific computing, with a prominent example, physics-informed neural
networks (PINNs). However, PINNs often struggle to solve high-frequency and
multi-scale PDEs, which can be due to the spectral bias during neural network train-
ing. To address this problem, we resort to the Gaussian process (GP) framework.
To flexibly capture the dominant frequencies, we model the power spectrum of
the PDE solution with a student t mixture or Gaussian mixture. We apply inverse
Fourier transform to obtain the covariance function (by Wiener-Khinchin theorem).
The covariance derived from the Gaussian mixture spectrum corresponds to the
known spectral mixture kernel. Next, we estimate the mixture weights in the log
domain, which we show is equivalent to placing a Jeffreys prior. It automatically
induces sparsity, prunes excessive frequencies, and adjusts the remaining toward
the ground truth. Third, to enable efficient and scalable computation on massive
collocation points, which are critical to capture high frequencies, we place the
collocation points on a grid, and multiply our covariance function at each input di-
mension. We use the GP conditional mean to predict the solution and its derivatives
so as to fit the boundary condition and the equation itself. As a result, we can derive
a Kronecker product structure in the covariance matrix. We use Kronecker product
properties and multilinear algebra to promote computational efficiency and scala-
bility, without low-rank approximations. We show the advantage of our method
in systematic experiments. The code is released at https://github.com/
xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE.

1 Introduction

Scientific and engineering problems often demand we solve a set of partial differential equations
(PDEs). Recently, machine learning (ML) solvers have attracted much attention. Compared to
traditional numerical methods, ML solvers do not require complex mesh designs and sophisticated
numerical tricks, are simple to implement, and can solve inverse problems efficiently and conveniently.
The most popular ML solver is the physics-informed neural network (PINN) (Raissi et al., 2019).
Consider a PDE of the following general form,

F [u](x) = f(x) (x ∈ Ω), u(x) = g(x) (x ∈ ∂Ω), (1)
where F is the differential operator, Ω is the domain, and ∂Ω is the boundary of the domain. To solve
the PDE, the PINN uses a deep neural network (NN) ûθ(x) to model the solution u. It samples Nc
collocation points {xjc}

Nc
j=1 from Ω and Nb points {xjb}

Nb
j=1 from ∂Ω, and minimizes a loss,

θ∗ = argminθ Lb(θ) + Lr(θ), (2)

where Lb(θ) = 1
Nb

∑Nb
j=1

(
ûθ(xjb)− g(xjb)

)2

is the boundary term to fit the boundary condition,

and Lr(θ) = 1
Nc

∑Nc
j=1

(
F [ûθ](xjc)− f(xjc)

)2
is the residual term to fit the equation.

Despite many success stories, the PINN often struggles to solve PDEs with high-frequency and
multi-scale components in the solutions. This is consistent with the “spectrum bias” observed in
∗Equal contribution
†Corresponding author

1

https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE
https://github.com/xuangu-fang/Gaussian-Process-Slover-for-High-Freq-PDE

Published as a conference paper at ICLR 2024

NN training Rahaman et al. (2019). That is, NNs typically can learn the low-frequency information
efficiently but grasping the high-frequency knowledge is much harder. To alleviate this problem,
the recent work Wang et al. (2021b) proposes to construct a set of random Fourier features from
zero-mean Gaussian distributions. The random features are then fed into the PINN layers for training
(see (2)). While effective, the performance of this method is unstable, and is highly sensitive to the
number and scales of the Gaussian variances, which are difficult to choose beforehand.

In this paper, we resort to an alternative arising ML solver framework, Gaussian processes (GP) (Chen
et al., 2021; Long et al., 2022a). We propose GP-HM, a GP solver for High frequency and Multi-scale
PDEs. By leveraging the Wiener-Khinchin theorem, we can directly model the solution in the
frequency domain and estimate the target frequencies from the covariance function. We then develop
an efficient learning algorithm to scale up to massive collocation points, which are critical to capture
high frequencies. The major contributions of our work are as follows.

• Model. To flexibly capture the dominant frequencies, we use a mixture of student t or
Gaussian distributions to model the power spectrum of the solution. According to the
Wiener-Khinchin theorem, we can derive the GP covariance function via inverse Fourier
transform, which contains the component weights and frequency parameters. We show that
by estimating the weights in the log domain, it is equivalent to assigning each weight a
Jeffreys prior, which induces strong sparsity, automatically removes excessive frequency
components, and drives the remaining toward the ground-truth. This way our GP can
effectively extract the solution frequencies. Our covariance function derived from the
Gaussian mixture power spectrum corresponds to the known spectral mixture kernel. We
therefore are the first to realize its rationale and benefit for solving high-frequency and
multi-scale PDEs.

• Algorithm. To enable efficient computation, we place all the collocation points and the
boundary (and/or initial) points on a grid, and model the solution values at the grid with
the GP finite projection. To obtain the derivative values in the equation, we compute the
GP conditional mean via kernel differentiation. Next, we multiply our covariance function
at each input dimension to obtain a product covariance. We then derive a Kronecker
product form for the covariance and cross-covariance matrices. We use the properties of the
Kronecker product and multilinear algebra to restrict the covariance matrix calculation to
each input dimension. In this way, we can substantially reduce the cost and handle massive
collocation points, without any low rank approximations.

• Result. We evaluated GP-HM with several benchmark PDEs that have high-frequency and
multi-scale solutions. We compared with the standard PINN and several state-of-the-art
variants. We compared with spectral methods (Boyd, 2001) that linearly combine a set of
trigonometric bases to estimate the solution. We also compared with several other traditional
numerical solvers. In all the cases, GP-HM consistently achieves relative L2 errors at
∼ 10−3 or ∼ 10−4 or even smaller. By contrast, the competing ML based approaches
often failed and gave much larger errors. The visualization of the element-wise prediction
error shows that GP-HM also recovers the local solution values much better. We examined
the learned frequency parameters, which match the ground-truth. Our ablation study as
in Section C of Appendix also shows enough collocation points is critical to the success,
implying the importance of our efficient learning method.

2 Gaussian Process

Gaussian processes (GPs) provide an expressive framework for function estimation. Suppose given a
training dataset D = {(xn, yn)|1 ≤ n ≤ N}, we aim to estimate a target function f : Rd → R. We
can assign a GP prior,

f(·) ∼ GP(m(·), cov(·, ·)),

where m(·) is the mean function and cov(·, ·) is the covariance function. In practice, one often sets
m(·) = 0, and adopts a kernel function as the covariance function, namely cov (f(x), f(x′)) =
k(x,x′). A nice property of the GP prior is that if f is sampled from a GP, then any derivative
(if existent) of f is also a GP, and the covariance between the derivative and the function f is the
derivative of the kernel function w.r.t the same input variable(s). For example,

cov(∂x1x2
f(x), f(x′)) = ∂x1x2

k(x,x′), (3)

2

Published as a conference paper at ICLR 2024

where x = (x1, . . . , xd)
> and x′ = (x′1, . . . , x

′
d)
>. Under the GP prior, the function values at

any finite input collection, f = [f(x1), . . . , f(xN)], follow a multi-variate Gaussian distribution,
p(f) = N (f |0,K) where [K]ij = cov(f(xi), f(xj)) = k(xi,xj). This is called a GP projection.
Suppose given f , we want to compute the distribution of the function value at any input x, namely
p(f(x)|f). Since f and f(x) also follow a multi-variate Gaussian distribution, we obtain a conditional
Gaussian, p(f(x)|f) = N

(
f(x)|µ(x), σ2(x)

)
, where the conditional mean

µ(x) = cov(f(x), f)K−1f , (4)

and σ2(x) = cov(f(x), f(x)) − cov(f(x), f)K−1cov(f , f(x)), cov(f(x), f) = k(x,X) =
[k(x,x1), . . . , k(x,xN)] and X = [x1, . . . ,xN]>.

3 Gaussian Process PDE Solvers

Covariance Design. When the PDE solution u includes high frequencies or multi-scale information,
one naturally wants to estimate these target frequencies outright in the frequency domain. To this
end, we consider the solution’s power spectrum, S(s) = |û(s)|2 where û(s) is the Fourier transform
of u, and s denotes the frequency. The power spectrum characterizes the strength of every possible
frequency within the solution. To flexibly capture the dominant high and/or multi-scale frequencies,
we use a mixture of student t distributions to model the power spectrum,

S(s) =
∑Q

q=1
wqSt(s;µq, ρ2

q, ν), (5)

where wq > 0 is the weight of component q, St stands for student t distribution, µq is the mean,
ρ2
q is the inverse variance, and ν is the degree of freedom. Note that wq does not need to be

normalized (their summation is not necessary to be one). Each student t distribution characterizes
one principle frequency µq, and also robustly models the (potentially many) minor frequencies
with a fat tailed density (Bishop, 2007). An alternative choice is a mixture of Gaussian, S(s) =∑Q

q=1 wqN (s;µq, ρ
2
q). But the Gaussian distribution has thin tails, hence is sensitive to long-tail

outliers and can be less robust (in capturing minor frequencies).

Next, we convert the spectrum model into a covariance function to enable our GP solver to flexibly
estimate the target frequencies. According to the Wiener-Khinchin theorem (Wiener, 1930; Khint-
chine, 1934), for a wide-sense stationary random process, under mild conditions, its power spectrum1

and the auto-correlation form a Fourier pair. We model the solution u as drawn from a stationary GP,
and the auto-correlation is the covariance function, denoted by k(x, x′) = k(x− x′). We then have

S(s) =

∫
k(z)e−i2πszdz, k(z) =

∫
S(s)ei2πzsds, (6)

where z = x−x′, and i indicates complex numbers. Therefore, we can obtain the covariance function
by applying the inverse Fourier transform over S(s). However, the straightforward mixture in (5)
will lead to a complex-valued covariance function. To obtain a real-valued covariance, inside each
component we add another student t distribution with mean −uq so as to cancel out the imaginary
part after integration. In addition, to make the derivation convenient, we scale the inverse variance
and degree of freedom by a constant. We use the following power spectrum model,

S(s) =
∑Q

q=1
wq
(
St(s;µq, 4π2ρ2

q, 2ν) + St(s;−µq, 4π2ρ2
q, 2ν)

)
. (7)

Applying inverse Fourier transform in (6), we can derive the following covariance function,

kStM(x, x′) =
∑Q

q=1
wqγν,ρq (x, x

′) cos(2πµq(x− x′)), (8)

where γν,ρq (x, x
′) = 21−ν

Γ(ν)

(√
2ν |x−x

′|
ρq

)ν
Kν(
√

2ν |x−x
′|

ρq
) is the Matérn kernel with degree of

freedom ν and length scale ρq, and Kν is the modified Bessel function of the second kind. The
details of the derivation is left in Appendix. We now can see that the frequency information µq and

1To be well-posed, the power spectrum for a random process is defined in a slightly different way (taking the
limit of a windowed signal), but it reflects the same insight; see (Lathi, 1998; Grimmett and Stirzaker, 2020) for
details.

3

Published as a conference paper at ICLR 2024

component weights wq are embedded into the covariance function. By learning a GP model, we
expect to capture the true frequencies of the solution. One can also construct a symmetric Gaussian
mixture in the same way, and via inverse Fourier transform obtain

kGM(x, x′) =
∑Q

q=1
wq exp

(
−ρ2

q(x− x′)2
)
· cos(2π(x− x′)µq). (9)

This is known as the spectral mixture kernel (Wilson and Adams, 2013), which was originally
proposed to construct an expressive stationary kernel according to its Fourier decomposition, because
in principle the Gaussian mixture can well approximate any distribution, as long as using enough
many components. Wilson and Adams (2013) showed that the spectral mixture kernel can well
recover many popular kernels, such as rational quadratic and periodic kernel. In this paper, we take a
different motivation and viewpoint. We argue that a similar design can be very effective in extracting
dominant frequencies in PDE solving.

How to Determine the Component Number? Since the number of dominant frequencies is un-
known apriori, the solution accuracy can be sensitive to the choice of the component number Q. A
too small Q can miss important (high) frequencies while a too big Q can bring in excessive noisy
frequencies. To address this problem, we set a large Q (e.g., 50), initialize the frequency parameters
µq across a wide range, and then optimize the component weights in the log domain. This turns out
to be equivalent to assigning each wq a Jefferys prior. Specifically, define wq = log(wq). Since we
do not place an additional prior over wq , we can view p(wq) ∝ 1. Then we have

p(wq) = p(wq)

∣∣∣∣dwqdwq

∣∣∣∣ ∝ 1

wq
. (10)

The Jeffreys prior has a very high density near zero, and hence induces strong sparsity during
the learning of wq (Figueiredo, 2001). Accordingly, the excessive frequency components can be
automatically pruned, and the learning drives the remaining µq’s toward the target frequencies. This
have been verified by our experiments; see Fig. 4 in Section 6.

GP Solver Model to Enable Fast Computation. To fulfill efficient and scalable calculation, we
multiply our covariance function at each input dimension to construct a product kernel,

cov(f(x), f(x′)) = κ(x,x′|Θ) =
∏d

j=1
kStM(xj , x

′
j |θq), (11)

where θq = {wq, µq, ρq} and Θ = {θq}Qq=1 are the kernel parameters. Note that the product kernel
is equivalent to performing a (high-dimensional) feature mapping for each input dimension and then
computing the tensor-product across the features. It is a highly expressive structure and commonly
used in finite element design (ARNOLD et al., 2012). Next, we create a grid on the domain Ω. We can
randomly sample or specially design the locations at each input dimension, and then construct the grid
through a Cartesian product. Denote the locations at each input dimension j by hj = [hj1, . . . , hjMj

],
we have an M1 × . . .×Md grid,

G = h1 × . . .× hd = {x = (x1, . . . , xd)|xj ∈ hj , 1 ≤ j ≤ d}. (12)

We will use the grid points on the boundary ∂Ω to fit the boundary conditions and all the grid points
as the collocation points to fit the equation.

Denote the solution values at G by U = {u(x)|x ∈ G}, which is anM1×. . .×Md array. According to
the GP prior over u(·), we have a multi-variate Gaussian prior distribution, p(U) = N (vec(U)|0,C),
where vec(·) is to flatten U into a vector, C is the covariance matrix computed from G with kernel
κ(·, ·). Denote the grid points on the boundary by B = G ∩ ∂Ω. To fit the boundary condition, we
use a Gaussian likelihood, p(g|uB) = N (g|ub, τ−1

1 I), where g = vec ({g(x)|x ∈ B}), ub are the
values of U on B (flatten into a vector), and τ1 > 0 is the inverse variance. Next, we want to fit the
equation at G. To this end, we need to first obtain the prediction of all the relevant derivatives of u in
the PDE, e.g., ∂x1

u and ∂x1x2
u, at the grid G. Since u’s derivatives also follow the GP prior, we use

the kernel derivative to obtain their cross covariance function (see (3)), with which to compute the GP
conditional mean (conditioned on U) as the prediction. Take ∂x1

u and ∂x1x2
u as examples. We have

∂x1
u(x) = ∂x1

k(x,G)C−1vec(U), ∂x1x2
u(x) = ∂x1x2

k(x,G)C−1vec(U), (13)

where k(x,G) = [k(x,x′1), . . . , k(x,x′M)] where M =
∏
jMj and all x′j constitute G. We can

accordingly predict the values of the all the relevant u derivatives at G, and combine them to obtain

4

Published as a conference paper at ICLR 2024

the PDE (see (1)) evaluation at G, which we denote byH. To fit the GP model to the equation, we use
another Gaussian likelihood, p(0|U) = N (0|vec(H), τ−1

2 I), where 0 is an virtual observation, and
τ2 > 0. Note that we use the same framework as in (Chen et al., 2021; Long et al., 2022b). However,
there are two critical differences. First, rather than randomly sample the collocation points, we place
all the collocation points on a grid. Second, rather than assign a multivariate Gaussian distribution
over the function values and all of its derivatives, we only model the distribution of the function
values (at the grid). We then use the GP conditional mean to predict the derivative values. As we
will discuss in Section 4, these modeling strategies, coupled with the product covariance (11), enable
highly efficient and scalable computation, yet do not need any low rank approximations.

4 Algorithm

We maximize the log joint probability2 to estimate U , the kernel parameters Θ, and the likelihood
inverse variances τ1 and τ2. To flexibly adjust the influence of the boundary likelihood so as to
balance the competition between the boundary and equation likelihoods (Wang et al., 2020a;c), we
introduce a free hyper-parameter λb > 0, and maximize the weighted log joint probability,

L(U ,Θ, τ1, τ2) = logN (vec(U)|0,C) + λb · logN (g|ub, τ−1
1 I) + logN (0|vec(H), τ−1

2 I)

=− 1

2
log |C| − 1

2
vec(U)>C−1vec(U) + λb

[
Nb
2

log τ1 −
τ1
2
‖ub − g‖2

]
+
M

2
log τ2 −

τ2
2
‖vec(H)‖2 + const. (14)

Naive computation of L is extremely expensive when the grid is dense, namely, M is large. That
is because the covariance matrix C is between all the grid points, of size M ×M (M =

∏
jMj).

Also, to obtainH, we need to compute the cross-covariance between every needed derivative in the
PDE and u across all the grid points. Consequently, the naive computation of the log determinant
and inverse of C (see (14)) and the required cross-covariance take the time and space complexity
O(M3) and O(M2), respectively, which can be infeasible even when each Mj is relatively small.
For example, when d = 3, and M1 = M2 = M3 = 100, we have M = 106 and the computation of
C will be too costly to be practical (on most computing platforms).

Thanks to that (1) our prior distribution is only on all the function values at the grid, and (2) our
covariance function is a product over each input dimension (see (11)). We can derive a Kronecker
product structure in C, namely, C = C1 ⊗ . . .⊗Cd, where Cj = kStM(hj ,hj) is the kernel matrix
on hj — the locations at input dimension j, of size Mj ×Mj . Note that we can also use kGM in (9).
Using the Kronecker product properties (Minka, 2000), we obtain

log |C| =
∑d

j=1

M

Mj
log |Cj |,

C−1vec(U) =
(
C−1

1 ⊗ . . .⊗C−1
d

)
vec(U) = vec

(
U ×1 C

−1
1 ×2 . . .×d C−1

d

)
, (15)

where ×j is the tensor-matrix product at mode j. Accordingly, we can first compute the local log
determinant and inverse at each input dimension (i.e., for each Cj), which reduces the time and
space complexity toO(

∑d
j=1M

3
j) andO(

∑d
j=1M

2
j), respectively. Then we perform the multilinear

operation in the last line of (15), i.e., sequentially multiplying the array U with each C−1
j , which

takes the time complexity O
(

(
∑d
j=1Mj)M

)
. The computational cost is substantially reduced.

Furthermore, since our product covariance function is factorized over each input dimension, the cross
covariance between any derivative of u and u itself still maintains a product form — because only
the kernel(s) at the corresponding input dimension(s) need to be differentiated. For example,

cov(∂x1x2
u(x), u(x′)) = ∂x1x2

κ(x,x′) = ∂x1x2

∏
j
κ(xj , x

′
j)

= ∂x1κ(x1, x
′
1) · ∂x2κ(x2, x

′
2) ·
∏

j 6=1,2
κ(xj , x

′
j). (16)

2We found that performing posterior inference over U and other parameters, e.g., via variational inference,
will degrade the solution accuracy, which partly be because the inference and optimization is much more
complicated and challenging.

5

Published as a conference paper at ICLR 2024

Accordingly, we can also obtain Kronecker product structures in predicting each derivative of u. Take
∂x1x2

u as an example. According to (13), we can derive that

∂x1x2
u(x) = (∂x1

k(x1,h1)⊗ ∂x2
k(x2,h2)⊗ . . .⊗ k(xd,hd))

(
C−1

1 ⊗ . . .⊗C−1
d

)
vec(U)

=
(
∂x1k(x1,h1)C−1

1 ⊗ ∂x2k(x2,h2)C−1
2 ⊗ . . .⊗ k(xd,hd)C

−1
d

)
vec(U)

= vec
(
U ×1 ∂x1k(x1,h1)C−1

1 ×2 ∂x2k(x2,h2)C−1
2 ×3 k(x3,h3)C−1

3 ×4 . . .×d k(xd,hd)C
−1
d

)
.

Denote the values of ∂x1x2
u at the gridM by ∂x1x2

U ∆
= {∂x1x2

u(x)|x ∈ M}. Then it is straight-
forward to obtain ∂x1x2

U = U ×1 ∇1C1C
−1
1 ×2 ∇1C2C

−1
2 , where∇1 means taking the derivative

w.r.t the first input variable, and we have ∇1C1 = [∂h11
k(h11,h1); . . . ; ∂h1M1

k(h1M1
,h1)] and

∇1C2 = [∂h21
k(h21,h2); . . . ; ∂h2M2

k(h2M2
,h2)]. Hence, we just need to perform two tensor-

matrix products, which takesO((M1 +M2)M) operations, and is efficient and convenient. Similarly,
we can compute the prediction of all the associated u derivatives in the PDE operator, with which we
can obtainH— the PDE evaluation at the grid in (14). We can then use automatic differentiation to
calculate the gradient to maximize (14).

Algorithm Complexity. The time complexity of our algorithm is O(
∑
jM

3
j + (

∑
jMj)M). The

space complexity is O(
∑
jM

2
j +M), including the storage of the covariance matrix at each input

dimension, and the solution estimate at grid G, namely U .

5 Related Work

Although the PINN has many success stories, e.g., (Raissi et al., 2020; Chen et al., 2020; Jin et al.,
2021; Sirignano and Spiliopoulos, 2018; Zhu et al., 2019; Geneva and Zabaras, 2020; Sahli Costabal
et al., 2020), the training is known to be challenging, which is partly due to that applying differential
operators over the NN can complicate the loss landscape (Krishnapriyan et al., 2021). Recent works
have analyzed common failure modes of PINNs which include modeling problems exhibiting high-
frequency, multi-scale, chaotic, or turbulent behaviors (Wang et al., 2020c;b;a; 2022), or when the
governing PDEs are stiff (Krishnapriyan et al., 2021; Mojgani et al., 2022). One class of approaches
to mitigate the training challenge is to set different weights for the boundary and residual loss
terms. For example, Wight and Zhao (2020) suggested to set a large weight for the boundary loss
to prevent the dominance of the residual loss. Wang et al. (2020a) proposed a dynamic weighting
scheme based on the gradient statistics of the loss terms. Wang et al. (2020c) developed an adaptive
weighting approach based on the eigen-values of NTK. Liu and Wang (2021) employed a mini-max
optimization and updated the loss weights via stochastic ascent. McClenny and Braga-Neto (2020)
used a multiplicative soft attention mask to dynamically re-weight the loss term on each data point
and collocation point. Another strategy is to modify the NN architecture so as to exactly satisfy
the boundary conditions, e.g., (Lu et al., 2021; Lyu et al., 2020; Lagaris et al., 1998). However,
these methods are restricted to particular types of boundary conditions, and are less flexible than
the original PINN framework. Tancik et al. (2020); Wang et al. (2021b) used Gaussian distributions
to construct random Fourier features to improve the learning of the high-frequency and multi-scale
information. The number of Gaussian variances and their scales are critical to the success of these
methods. But these hyperparameters are quite difficult to choose.

Earlier works (Graepel, 2003) have used GP for solving linear PDEs with noisy measurement of
source terms. In (Wang et al., 2021a), the rationale and guarantees of using GP as a prior for PDE
solutions are discussed. The work also justifies the usage of the product kernel in terms of sample
path properties. The recent work (Chen et al., 2021) develops a general approach for solving both
linear and nonlinear PDEs. Long et al. (2022b) proposed a GP framework to integrate various
differential equations. The recent work (Chen et al., 2023) uses sparse inverse Cholesky factorization
to approximate the kernel matrix so as to handle a large number of collocation points. These methods
use SE and Matérn kernels and are challenging to capture high-frequency and multi-scale solutions.
The recent work (Pförtner et al., 2022) proposes a physics-informed GP solver for linear PDEs
that generalizes weighted residuals. In (Härkönen et al., 2022), a GP kernel is constructed via the
Ehrenpreis-Palamodov fundamental principle and nonlinear Fourier transform to solve linear PDEs
with constant coefficients. This work also derives the spectral mixture kernel as an instance of its own
kernel design. The computational advantage of using Kronecker product structures have been realized
in (Saatcci, 2012), and applied in other tasks, such as nonparametric tensor decomposition (Xu et al.,
2012), sparse approximation with massive inducing points (Wilson and Nickisch, 2015; Izmailov

6

Published as a conference paper at ICLR 2024

et al., 2018), and high-dimensional output regression (Zhe et al., 2019). In Wilson et al. (2015) it
further points out that if one uses a regular (evenly-spaced), each kernel matrix will has a Toeplitz
structure, which can lead to O(n log n) computation. However, in machine learning applications,
data is typically not observed at a grid and the Kronecker product has a limited usage. By contrast,
for PDE solving, it is natural to estimate the solution values on a grid, which opens the possibility of
using Kronecker products combined with GP for efficient computation. More general discussions
about Bayesian learning and PDE problems are given in (Owhadi, 2015; Cockayne et al., 2017).
Tensor methods used in numerical computation are discussed in (Gavrilyuk and Khoromskij, 2019).

6 Experiment

To evaluate GP-HM, we considered three commonly-used benchmark PDE families in the literature
of machine learning solvers (Raissi et al., 2019; Wang et al., 2021b; Krishnapriyan et al., 2021):
Poisson, Allen-Cahn and Advection. Following the prior works, we fabricated a series of solutions to
thoroughly examine the performance. The details are given in Section B of Appendix.

We compared with the following state-of-the-art ML solvers: (1) standard PINN, (2) Weighted PINN
(W-PINN) that up-weight the boundary loss to reduce the dominance of the residual loss, and to
more effectively propagate the boundary information, (3) Rowdy (Jagtap et al., 2022), PINN with an
adaptive activation function, which combines a standard activation with several sin or cos activations.
(4) RFF-PINN, feeding Random Fourier Features to the PINN (Wang et al., 2021b). To ensure RFF-
PINN to achieve the best performance, we followed (Wang et al., 2020c) to dynamically re-weight the
loss terms based on NTK eigenvalues (Wang et al., 2020c). (5) Spectral Method (Boyd, 2001), which
approximates the solution with a linear combination of trigonometric bases, and estimates the basis
coefficients via least mean squares. In addition, we also tested (6) GP-SE and (7) GP-Matérn, GP
solvers with the square exponential (SE) and the Matérn kernel. The details about the hyperparameter
setting and tuning is provided in Section B of Appendix. We denote our method using the covariance
function based on (8) and (9) by GP-HM-StM and GP-HM-GM, respectively. We compared with
several traditional numerical solvers: (8) Chebfun3 that solves PDEs based on Chebyshev interpolants,
(9) Finite Difference (FD), which solves the PDEs via discretization based on finite difference. We
used PyPDE library4 to solve 1D/2D Poisson equations, and 1D advection (using methods of lines).
Note that PyPDE does not support solving nonlinear stationary PDEs, namely 1D/2D Allen-Cahn
Equation in (28), and so we implemented the finite difference with Scipy and Krylov method for root
finding. Note also that the Chebfun library does not support 2D Poisson and nonlinear stationary
PDEs, namely, 1D/2D Allen-Cahn equation, and so it has very limited usage. We employed the
default settings in Chebfun library. When using PyPDE, we set spacial discretization to 400 and 400
time steps (if needed). For 1D Allen-cahn, the spatial discretization is set to 400. For 2D Allen-cahn,
we used a 45 × 45 grid; otherwise, the root finding either ran forever or failed due to numerical
instability. We have also tested the Spectral Galerking method implemented by the Shenfun library5.
However, we found it failed in every test case (the relative L2 error is at several thousands). Hence,
we did not report the results.

Solution Accuracy. We report the relative L2 error (normalized root-mean-square error) of each
method in Table 1 and 2. The best result and the smaller error between GP-HM-StM and GP-HM-
GM are made bold. We can see that, among all the ML solvers, our method achieves the smallest
solution error in all the cases except that for the 1D Poisson equation with solution u2, RFF-PINN
is better. However, in all the cases, the solution error of GP-HM achieves at least 1e-3 level. In
quite a few cases, our method even reaches an error around 1e-6 and 1e-7. It shows that GP-HM can
successfully solve all these equations. By contrast, GP solvers using the plain SE and Matérn kernel
result in several orders of the magnitude bigger errors. The standard PINN and W-PINN basically
failed to solve every equation. While Rowdy improved upon PINN and W-PINN in most cases, the
error is still quite large. The inferior performance of the spectral method implies that only using
trigonometric bases is not sufficient. With the usage of the random Fourier features, RFF-PINN can
greatly boost the performance of PINN and W-PINN in many cases. However, in most cases, it is
still much inferior to GP-HM. The performance of RFF-PINN is very sensitive to the number and
scales of the Gaussian variance, and these hyper-parameters are not easy to choose. We have tried 20

3https://www.chebfun.org/
4https://py-pde.readthedocs.io/en/latest/
5https://shenfun.readthedocs.io/en/latest/

7

https://www.chebfun.org/
https://py-pde.readthedocs.io/en/latest/
https://shenfun.readthedocs.io/en/latest/

Published as a conference paper at ICLR 2024

Method 1D 2D
u1 u2 u3 u4 u5 u6 u7

PINN 1.36e0 1.40e0 1.00e0 1.42e1 6.03e-1 1.63e0 9.99e-1
W-PINN 1.31e0 2.65e-1 1.86e0 2.60e1 6.94e-1 1.63e0 6.75e-1

RFF-PINN 4.97e-4 2.00e-5 7.29e-2 2.80e-1 5.74e-1 1.69e0 7.99 e-1
Rowdy 1.70e0 1.00e0 1.00e0 1.01e0 1.03e0 2.24e1 7.36e-1

Spectral method 2.36e-2 3.47e0 1.02e0 1.02e0 9.98e-1 1.58e-2 1.04e0
Chebfun 3.05e-11 1.17e-11 5.81e-11 1.14e-10 8.95e-10 N/A N/A

Finite Difference 5.58e-1 4.78e-2 2.34e-1 1.47e0 1.40e0 2.33e-1 1.75e-2
GP-SE 2.70e-2 9.99e-1 9.99e-1 3.19e-1 9.75e-1 9.99e-1 9.53e-1

GP-Matérn 3.32e-2 9.8e-1 5.15e-1 1.83e-2 6.27e-1 6.28e-1 3.54e-2
GP-HM-GM 3.99e-7 2.73e-3 3.92e-6 1.55e-6 1.82e-3 6.46e-5 1.06e-3
GP-HM-StM 6.53e-7 2.71e-3 3.17e-6 8.97e-7 4.22e-4 6.87e-5 1.02e-3

Table 1: Relative L2 error in solving 1D and 2D Poisson equations, where uj’s are different high-
frequency and multi-scale solutions: u1 = sin(100x), u2 = sin(x) + 0.1 sin(20x) + 0.05 cos(100x),
u3 = sin(6x) cos(100x), u4 = x sin(200x), u5 = sin(500x)− 2(x− 0.5)2, u6 = sin(100x) sin(100y) and
u7 = sin(6x) sin(20x) + sin(6y) sin(20y).

Method 1D Allen-cahn 2D Allen-cahn 1D Advection
u1 u2

PINN 1.41e0 1.14e1 1.96e1 1.00e0
W-PINN 1.34e0 1.45e1 2.03e1 1.01e0

RFF-PINN 1.24e-3 2.46e-1 7.17e-1 9.96e-1
Rowdy 1.30e0 1.31e0 1.18e0 1.03e0

Spectral method 2.34e-2 2.45e1 2.45e1 2.67e0
Chebfun 1.39e-08 2.94e-10 N/A 1.39e0

Finite Difference 2.32e-01 2.36e-1 3.23e0 1.29e-1
GP-SE 2.74e-2 1.06e-2 3.48e-1 9.99e-1

GP-Matérn 3.32e-2 5.16e-2 2.96e-1 9.99e-1
GP-HM-StM 7.71e-6 4.76e-6 2.99e-3 9.08e-4
GP-HM-GM 4.91e-6 4.24e-6 5.78e-3 3.59e-3

Table 2: Relative L2 error in solving 1D, 2D Allen-cahn equations and 1D advection equation, where u1 and
u2 are two test solutions for 1D Allen-cahn: u1 = sin(100x), u2 = sin(6x) cos(100x). The test solution
for 2D Allen-cahn is (sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y)), and for 1D
advection equation is sin(x− 200t).

settings and report the best performance (see Section B in Appendix). Compared with traditional
solvers, we can see Chebfun performs very well, and achieves the highest solution accuracy except
for the 1D advection problem. However, Chebfun is limited to 1D problems and temporal PDEs.
It cannot handle 2D stationary PDEs, no matter linear or nonlinear. Finite Difference can provide
reasonable accuracy, but the performance is consistently much worse than GP-HM. This might be
due to the challenge in solving the root finding problem, caused by the high-frequency/multi-scale
information implied in the source term. Overall, we can see that our method is general enough to
solve different types of PDEs (1D/2D, linear/nonlinear, stationary and non-stationary); to achieve
a satisfactory accuracy, we do NOT need to change the computation framework to re-develop the
solver. By contrast, it is known that the success of numerical solvers tightly binds to the specific
problem, domain knowledge, skillful implementation, and numerous numerical tricks. Any change
of these aspects can cause failures of the solvers and demand for a re-design and re-implementation.
It therefore brings significant challenges in usage.

Point-wise Error. We then show the point-wise solution error in Fig. 1, 2, 3, and in Appendix Fig. 5,
6, 7. We can see that GP-SE is difficult to capture high frequencies. While GP-Matérn is better, it is
unable to grasp all the scale information. RFF-PINN successfully captured multi-scale frequencies in
Fig. 1, but it failed in more challenging cases as in Fig. 2 and 3. In 2D Poisson and 1D Advection,
the point-wise error of both GP-HM-StM and GP-HM-GM is quite uniform across the domain and
is close to zero (dark blue); see Fig. 3, and in Appendix Fig. 6, 7. By contrast, the other methods
exhibit large errors in a few local regions. These results show that GP-HM not only gives a superior
global accuracy, but locally recovers individual solution values.

Frequency Learning. Third, we investigated the learned component weights wq and frequencies µq
of GP-HM. In Fig. 4, we show the results for two Poisson equations. As we can see, although the
number of components Q is set to be much larger than the number of true frequencies, the estimation

8

Published as a conference paper at ICLR 2024

0 2
GP-HM-StM

-1

0

1

u(
x)

Ground Truth
Prediction
Boundary

0 2
GP-HM-GM

0 2
GP-SE

0 2
GP-Matern

0 2
RFF-PINN

Figure 1: Prediction for the 1D Poisson equation with solution sin(x) + 0.1 sin(20x) + 0.05 cos(100x).

0 0.5 1
GP-HM-StM

-1.5

0

1

u(
x)

0 0.5 1
GP-HM-GM

0 0.5 1
GP-SE

0 0.5 1
GP-Matern

0 0.5 1
RFF-PINN

Figure 2: Prediction for the 1D Poisson equation with solution sin(500x)− 2(x− 0.5)2.

of most weights wq is very small (less than 10−10). That means, excessive frequency components
have been automatically pruned. The remaining components with significant weights completely
match the number of true frequencies in the solution. The frequency estimation µq is very close
to the ground-truth. This demonstrates that the implicit Jefferys prior (by optimizing wq in the log
space) can indeed implement sparsity, select the right frequency number, and recover the ground-truth
frequency values. Finally, we show additional results in Section C of Appendix.

Ground-Truth GP-HM-StM GP-HM-GM GP-SE GP-Matern RFF-PINN

1.636 3.271 0.00 4.52

Figure 3: Point-wise solution error for 2D Allen-cahn equation, and the solution is
(sin(x) + 0.1 sin(20x) + cos(100x)) (sin(y) + 0.1 sin(20y) + cos(100y)).

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Index of freq components
0

0.01

0.3

W
ei

gh
t (

w
q)

 93.999 (94)

106.002 (106)
u(x) = sin(6x)cos(100x)

(a) Poisson-1D

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Index of freq components
0

0.1

1.4

99.957(100)

u(x, y) = sin(100x)sin(100y)

(b) Poisson-2D x-dim

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930

Index of freq components
0

1e-3

2e-2 100.000(100)

u(x, y) = sin(100x)sin(100y)

(c) Poisson-2D y-dim

Figure 4: The learned component weights and frequency values. For each number pair a(b) in the figure, “a” is
the learned frequency by GP-HM, and “b” is the ground-truth. The expressions on the top are the solutions.

7 Conclusion

We have presented GP-HM, a GP solver specifically designed for high-frequency and multi-scale
PDEs. On a set of benchmark tasks, GP-HM shows promising performance. This might motivate
alternative directions of developing machine learning solvers. In the future, we plan to develop more
powerful optimization algorithms to further accelerate the convergence and to investigate GP-HM in
a variety of practical applications.

9

Published as a conference paper at ICLR 2024

Acknowledgments

This work has been supported by MURI AFOSR grant FA9550-20-1-0358, NSF CAREER Award
IIS-2046295, and and NSF OAC-2311685.

References

ARNOLD, D. N., BOFFI, D., and BONIZZONI, F. (2012). Tensor product finite element differential
forms and their approximation properties. arXiv preprint arXiv:1212.6559.

Bishop, C. M. (2007). Pattern Recognition and Machine Learning. Springer.

Boyd, J. P. (2001). Chebyshev and Fourier spectral methods. Courier Corporation.

Chen, Y., Hosseini, B., Owhadi, H., and Stuart, A. M. (2021). Solving and learning nonlinear PDEs
with Gaussian processes. arXiv preprint arXiv:2103.12959.

Chen, Y., Lu, L., Karniadakis, G. E., and Dal Negro, L. (2020). Physics-informed neural networks
for inverse problems in nano-optics and metamaterials. Optics express, 28(8):11618–11633.

Chen, Y., Owhadi, H., and Schäfer, F. (2023). Sparse cholesky factorization for solving nonlinear
pdes via gaussian processes. arXiv preprint arXiv:2304.01294.

Cockayne, J., Oates, C., Sullivan, T., and Girolami, M. (2017). Probabilistic numerical methods for
pde-constrained bayesian inverse problems. In AIP Conference Proceedings, volume 1853. AIP
Publishing.

Figueiredo, M. (2001). Adaptive sparseness using Jeffreys prior. Advances in neural information
processing systems, 14.

Frostig, R., Johnson, M. J., and Leary, C. (2018). Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 4(9).

Gavrilyuk, I. and Khoromskij, B. N. (2019). Tensor numerical methods: actual theory and recent
applications. Computational Methods in Applied Mathematics, 19(1):1–4.

Geneva, N. and Zabaras, N. (2020). Modeling the dynamics of pde systems with physics-constrained
deep auto-regressive networks. Journal of Computational Physics, 403:109056.

Graepel, T. (2003). Solving noisy linear operator equations by gaussian processes: Application to
ordinary and partial differential equations. In ICML, volume 3, pages 234–241.

Grimmett, G. and Stirzaker, D. (2020). Probability and random processes. Oxford university press.

Härkönen, M., Lange-Hegermann, M., and Raictua, B. (2022). Gaussian process priors for systems
of linear partial differential equations with constant coefficients. arXiv preprint arXiv:2212.14319.

Izmailov, P., Novikov, A., and Kropotov, D. (2018). Scalable gaussian processes with billions
of inducing inputs via tensor train decomposition. In International Conference on Artificial
Intelligence and Statistics, pages 726–735.

Jagtap, A. D., Shin, Y., Kawaguchi, K., and Karniadakis, G. E. (2022). Deep kronecker neu-
ral networks: A general framework for neural networks with adaptive activation functions.
Neurocomputing, 468:165–180.

Jin, X., Cai, S., Li, H., and Karniadakis, G. E. (2021). Nsfnets (navier-stokes flow nets): Physics-
informed neural networks for the incompressible navier-stokes equations. Journal of Computational
Physics, 426:109951.

Khintchine, A. (1934). Korrelationstheorie der stationären stochastischen prozesse. Mathematische
Annalen, 109(1):604–615.

Krishnapriyan, A., Gholami, A., Zhe, S., Kirby, R., and Mahoney, M. W. (2021). Characterizing
possible failure modes in physics-informed neural networks. Advances in Neural Information
Processing Systems, 34:26548–26560.

10

Published as a conference paper at ICLR 2024

Lagaris, I. E., Likas, A., and Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary
and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000.

Lathi, B. P. (1998). Modern digital and analog communication systems. Oxford University Press,
Inc.

Liu, D. and Wang, Y. (2021). A dual-dimer method for training physics-constrained neural networks
with minimax architecture. Neural Networks, 136:112–125.

Long, D., Wang, Z., Krishnapriyan, A., Kirby, R., Zhe, S., and Mahoney, M. (2022a). AutoIP: A
united framework to integrate physics into Gaussian processes. In International Conference on
Machine Learning, pages 14210–14222. PMLR.

Long, D., Wang, Z., Krishnapriyan, A., Kirby, R., Zhe, S., and Mahoney, M. (2022b). AutoIP: A
united framework to integrate physics into Gaussian processes. In Chaudhuri, K., Jegelka, S.,
Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 14210–14222. PMLR.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., and Johnson, S. G. (2021). Physics-informed
neural networks with hard constraints for inverse design. SIAM Journal on Scientific Computing,
43(6):B1105–B1132.

Lyu, L., Wu, K., Du, R., and Chen, J. (2020). Enforcing exact boundary and initial conditions in the
deep mixed residual method. arXiv preprint arXiv:2008.01491.

McClenny, L. and Braga-Neto, U. (2020). Self-adaptive physics-informed neural networks using a
soft attention mechanism. arXiv preprint arXiv:2009.04544.

Minka, T. P. (2000). Old and new matrix algebra useful for statistics. See www. stat. cmu.
edu/minka/papers/matrix. html, 4.

Mojgani, R., Balajewicz, M., and Hassanzadeh, P. (2022). Lagrangian pinns: A causality-conforming
solution to failure modes of physics-informed neural networks. arXiv preprint arXiv:2205.02902.

Owhadi, H. (2015). Bayesian numerical homogenization. Multiscale Modeling & Simulation,
13(3):812–828.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. (2019). Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32.

Pförtner, M., Steinwart, I., Hennig, P., and Wenger, J. (2022). Physics-informed gaussian process
regression generalizes linear pde solvers. arXiv preprint arXiv:2212.12474.

Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin, M., Hamprecht, F., Bengio, Y., and Courville, A.
(2019). On the spectral bias of neural networks. In International Conference on Machine Learning,
pages 5301–5310. PMLR.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Machine learning of linear differential
equations using gaussian processes. Journal of Computational Physics, 348:683–693.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019). Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707.

Raissi, M., Yazdani, A., and Karniadakis, G. E. (2020). Hidden fluid mechanics: Learning velocity
and pressure fields from flow visualizations. Science, 367(6481):1026–1030.

Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT
Press.

Saatcci, Y. (2012). Scalable inference for structured Gaussian process models. PhD thesis, Citeseer.

11

Published as a conference paper at ICLR 2024

Sahli Costabal, F., Yang, Y., Perdikaris, P., Hurtado, D. E., and Kuhl, E. (2020). Physics-informed
neural networks for cardiac activation mapping. Frontiers in Physics, 8:42.

Sirignano, J. and Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoor-
thi, R., Barron, J., and Ng, R. (2020). Fourier features let networks learn high frequency functions
in low dimensional domains. Advances in Neural Information Processing Systems, 33:7537–7547.

Wang, J., Cockayne, J., Chkrebtii, O., Sullivan, T. J., and Oates, C. J. (2021a). Bayesian numerical
methods for nonlinear partial differential equations. Statistics and Computing, 31:1–20.

Wang, S., Sankaran, S., and Perdikaris, P. (2022). Respecting causality is all you need for training
physics-informed neural networks. arXiv preprint arXiv:2203.07404.

Wang, S., Teng, Y., and Perdikaris, P. (2020a). Understanding and mitigating gradient pathologies in
physics-informed neural networks. arXiv preprint arXiv:2001.04536.

Wang, S., Wang, H., and Perdikaris, P. (2020b). On the eigenvector bias of fourier feature networks:
From regression to solving multi-scale pdes with physics-informed neural networks. arXiv preprint
arXiv:2012.10047.

Wang, S., Wang, H., and Perdikaris, P. (2021b). On the eigenvector bias of fourier feature networks:
From regression to solving multi-scale pdes with physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 384:113938.

Wang, S., Yu, X., and Perdikaris, P. (2020c). When and why pinns fail to train: A neural tangent
kernel perspective. arXiv preprint arXiv:2007.14527.

Wiener, N. (1930). Generalized harmonic analysis. Acta mathematica, 55(1):117–258.

Wight, C. L. and Zhao, J. (2020). Solving allen-cahn and cahn-hilliard equations using the adaptive
physics informed neural networks. arXiv preprint arXiv:2007.04542.

Wilson, A. and Adams, R. (2013). Gaussian process kernels for pattern discovery and extrapolation.
In International conference on machine learning, pages 1067–1075. PMLR.

Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured gaussian processes
(kiss-gp). In International Conference on Machine Learning, pages 1775–1784.

Wilson, A. G., Dann, C., and Nickisch, H. (2015). Thoughts on massively scalable gaussian processes.
arXiv preprint arXiv:1511.01870.

Xu, Z., Yan, F., and Qi, Y. (2012). Infinite tucker decomposition: nonparametric bayesian models
for multiway data analysis. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, pages 1675–1682.

Zhe, S., Xing, W., and Kirby, R. M. (2019). Scalable high-order gaussian process regression. In The
22nd International Conference on Artificial Intelligence and Statistics, pages 2611–2620.

Zhu, Y., Zabaras, N., Koutsourelakis, P.-S., and Perdikaris, P. (2019). Physics-constrained deep
learning for high-dimensional surrogate modeling and uncertainty quantification without labeled
data. Journal of Computational Physics, 394:56–81.

12

Published as a conference paper at ICLR 2024

Appendix

A Covariance Function Derivation

In this section, we show how to obtain our covariance function in (8) of the main paper. We leverage
the fact that the student t density is a scale mixture of Gaussians with a Gamma prior over the inverse
variance,

p(x|µ, a, b) =

∫ ∞
0

N (x|µ, τ−1)Gam(τ |a, b)dτ

=
ba

Γ(a)

(
1

2π

)1/2 [
b+

(x− µ)2

2

]−a−1/2

Γ(a+ 1/2). (17)

The key to obtain this is to leverage the form of the normalizer of the Gamma distribution. When
merging terms in the Gaussian and Gamma prior in the integration, one can construct another
unnormalized Gamma distribution. Accordingly, the integration w.r.t τ gives rises to the normalizer.

If we set ν = 2a and λ = a/b, we immediately obtain the standard student t density,

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x− µ)2

ν

]−ν/2−1/2

, (18)

where µ is the mean, λ is the precision (inverse variance) parameters, and ν is the degree of freedom.

Next, we observe that the spectral density of a Matérn covariance function is a student t density (Ras-
mussen and Williams, 2006). Given the Matérn covariance

γν,ρq (x, x
′) =

21−ν

Γ(ν)

(√
2ν
|x− x′|
ρq

)ν
Kν(
√

2ν
|x− x′|
ρq

), (19)

the spectral density is St(s; 0, 4π2ρ2, 2ν). That means,

γν,ρ(∆) =

∫ ∞
−∞

St(s; 0, 4π2ρ2, 2ν) exp{i2πs ·∆}ds, (20)

where ∆ = |x− x′|. From the scale-mixture form (17), we can set â = ν and b̂ = â/(4π2ρ2), and
obtain

St(s; 0, 4π2ρ2, 2ν) =

∫ ∞
0

N (s|0, τ−1)Gam(τ |â, b̂)dτ. (21)

Substituting (21) into (20), we have

γν,ρ(∆) =

∫ ∞
0

Gam(τ |â, b̂)
∫ ∞
−∞
N (s|0, τ−1) exp{i2πs ·∆}dsdτ. (22)

Consider the inverse Fourier transform,∫ ∞
−∞

St(s;µ, 4π2ρ2, 2ν) exp(i2π∆ · s)ds

=

∫ ∞
0

Gam(τ |â, b̂)
∫ ∞
−∞
N (s|µ, τ−1) exp (i2πs ·∆) dsdτ, (23)

we observe that

F−1[N (s|µ, τ−1)] =

∫
N (s|µ, τ−1) exp (i2πs ·∆) ds

= exp
(
−2π2τ−1∆2

)
exp (i2πµ ·∆)

= F−1[N (s|0, τ−1)] exp (i2πµ ·∆)

=

∫
N (s|0, τ−1) exp (i2πs ·∆) ds · exp (i2πµ ·∆) , (24)

13

Published as a conference paper at ICLR 2024

where F−1 is the inverse Fourier transform, and i indicates complex numbers. Note that when we
set µ = 0, from the second line, we see F−1[N (s|0, τ−1)] = exp

(
−2π2τ−1∆2

)
. That means, the

inverse transform just moves out a Fourier basis with frequency µ.

Substitute (24) into (22), we obtain∫ ∞
−∞

St(s;µ, 4π2ρ2, 2ν) exp(i2π∆ · s)ds

=

∫ ∞
0

Gam(τ |â, b̂)
∫ ∞
−∞
N (s|0, τ−1) exp (i2πs ·∆) dsdτ · exp(i2πµ ·∆)

= γν,ρ(∆) · exp(i2πµ ·∆).

Therefore, when we model the spectral density S(s) as a mixture of student-t distribution,

S(s) =

Q∑
q=1

wq
(
St(s;µq, 4π2ρ2

q, 2ν) + St(s;−µq, 4π2ρ2
q, 2ν)

)
, (25)

It is straightforward to obtain the following covariance function,

kStM(x, x′) =

Q∑
q=1

wq · γν,ρq (x, x′) cos(2πµq(x− x′)). (26)

B Experimental Settings

The Poisson Equation. We considered 1D and 2D Poisson equations with different source functions
that lead to various scale information in the solution. We used Dirichlet boundary conditions.

uxx = f(x), x ∈ [0, 2π],

uxx + uyy = f(x, y), (x, y) ∈ [0, 2π]× [0, 2π]. (27)

For the 1D Poisson equation, we created source functions f that give the following high-frequency
and multi-frequency solutions, u1 = sin(100x), u2 = sin(x) + 0.1 sin(20x) + 0.05 cos(100x),
u3 = sin(6x) cos(100x), and u4 = x sin(200x). In addition, we tested with a challenging hybrid
solution that mixes a high-frequency with a quadratic function, u5 = sin(500x)− 2(x− 0.5)2 where
we set x ∈ [0, 1]. For the 2D Poisson equation, we tested with the following multi-scale solutions,
u6 = sin(100x) sin(100y) and u7 = sin(6x) sin(20x) + sin(6y) sin(20y).

Allen-Cahn Equation. We considered 1D and 2D Allen-Cahn (nonlinear diffusion-reaction) equa-
tions with different source functions and Dirichlet boundary conditions.

uxx + u(u2 − 1) = f(x), x ∈ [0, 2π],

uxx + uyy + u(u2 − 1) = f(x, y), (x, y) ∈ [0, 1]× [0, 1]. (28)

For the 1D equation, we tested with solutions u1 = sin(100x) and u2 = sin(6x) cos(100x). For
the 2D equation, we created the source f that gives the following mixed-scale solution, u =
(sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y)) .

Advection Equation. Third, we evaluated with a 1D advection (one-way) equation,

ut + 200ux = 0, x ∈ [0, 2π], t ∈ [0, 1]. (29)

We used the Dirichlet boundary conditions, and the solution has an analytical form, u(x, t) =
h(x− 200t) where h(x) is the initial condition for which we chose as h(x) = sin(x).

Method Implementation. We implemented our method with JAX (Frostig et al., 2018) while all the
competing ML based solvers with Pytorch (Paszke et al., 2019). For all the kernels, we initialized
the length-scale to 1. For the Matérn kernel (component), we chose ν = 5/2. For our method, we
set the number of components Q = 30, and initialized each wq = 1/Q. For 1D Poisson and 1D
Allen-cahn equations, we varied the 1D mesh points from 400, 600 and 900. For 2D Poisson, 2D
Allen-cahn and 1D advection, we varied the mesh from 200× 200, 400× 400 and 600× 600. We
chose an ending frequency F from {20, 40, 100}, and initialize uq’s with linspace(0, F, Q).

14

Published as a conference paper at ICLR 2024

0 2
GP-HM-StM

-6

0

6

u(
x)

0 2
GP-HM-GM

0 2
GP-SE

0 2
GP-Matern

0 2
RFF-PINN

Figure 5: Prediction for the 1D Poisson equation with solution x sin(200x).

Ground-Truth GP-HM-StM GP-HM-GM GP-SE GP-Matern RFF-PINN

1.997 1.997 0.000 1.925

Figure 6: Point-wise solution error for 2D Poisson equation and the solution is u(x) = sin(6x) sin(20x) +
sin(6y) sin(20y).

We used ADAM for optimization, and the learning rate was set to 10−2. The maximum number of
iterations was set to 1M, and we used the summation of the boundary loss and residual loss less
than 10−6 as the stopping condition. The solution estimate U was initialized as zero. We set the
λb = 500. For W-PINN, we varied the weight of the residual loss from {10, 103, 104}. For Rowdy,
we combined tanh with sin activation, φ(x) = tanh(x) +

∑K
k=2 n sin((k − 1)nx). We followed

the original Rowdy paper (Jagtap et al., 2022) to set the scaling factor n = 10 and varied K from 3, 5
and 9. For the spectral method, we used 200 Trigonometric bases, including cos(nx) and sin(nx)
where n = 1, 2, . . . , 100. We used the tensor-product for the 2D problems and 1D advection. We
used the least mean square method to estimate the basis weights. To run RFF-PINNs, we need to
specify the number and scales of the Gaussian variances to construct the random features. To ensure
a broad coverage, we varied the number of variances from {1, 2, 3, 5}. For each number, we set the
variances to be the commonly used values suggested by authors, {1, 20, 50, 100}, combined with
randomly sampled ones. The detailed specification is given by Table 3. There are in total 20 settings.
We report the best result of RFF-PINN from these settings. For all the PINN based methods, we
varied the number of collocation points from 10K and 12K.

Number Scales
1 1, 20, 50, 100, rand(1, [1,K])
2 3× rand (2, {1, 20, 50, 100, rand(1, [1,K])}) , 2× rand(2, [1,K])
3 3× rand (3, {1, 20, 50, 100, rand(1, [1,K])}) , 2× rand(3, [1,K])
5 2× {1, 20, 50, 100, rand(1, [1,K])}, 3× rand(5, [1,K])

Table 3: The number and scales of the Gaussian variances used in RFF-PINN, where rand(k,A) means
randomly selecting k elements from the setA without replacement, l× means repeating the sampling to generate
l configurations, and K is the maximum candidate frequency for which we set K = 200.

C More Results

C.1 Learning Behavior and Computational Efficiency

We examined the training behavior of our method. As shown in Fig. 8, with the covariance based
on the student t mixture, GP-HM can converge faster or behave more robustly during the training.
Overall, in most cases, GP-HM with covariance based on the student t mixture performs better than
with Gaussian mixture.

The computation efficiency of GP-HM is comparable to PINN-type approaches. For example, on
solving 1D Poisson and Allen-cahn equations, the average per-iteration time of GP-HM (mesh 200),
PINN and RFF-PINN are 0.006, 0.004 and 0.004 seconds. For 2D Poisson and Allen-cahn equations

15

Published as a conference paper at ICLR 2024

Ground-Truth GP-HM-StM GP-HM-GM GP-SE GP-Matern RFF-PINN

1 1 0.000 1.112

Figure 7: Point-wise solution error for 1D Advection equation and the solution is sin(x− 200t).

Method 1D 2D
u1 u2 u3 u4 u5 u6 u7

PINN 622 688 624 610 619 4, 275 5, 355
RFF-PINN 562 546 576 555 544 3, 394 5, 493

Spectral method 502 495 600 480 517 5, 778 7, 062
Chebfun 1.05 1.22 1.19 1.38 3.90 N/A N/A

Finite Difference 1.25e-02 1.27e-2 1.22e-2 1.22e-2 1.22e-2 N/A N/A
GP-HM-GM 536 1, 858 775 703 3, 510 4, 173 5, 561
GP-HM-StM 683 2, 164 914 852 4, 263 5, 263 6, 435

Table 4: Running time in seconds in solving 1D and 2D Poisson equations, where uj’s are different high-
frequency and multi-scale solutions: u1 = sin(100x), u2 = sin(x) + 0.1 sin(20x) + 0.05 cos(100x), u3 =
sin(6x) cos(100x), u4 = x sin(200x), u5 = sin(500x) − 2(x − 0.5)2, u6 = sin(100x) sin(100y) and
u7 = sin(6x) sin(20x) + sin(6y) sin(20y).

0 20K 40K 60K 80K 100K
Training epoch

0

1

3

5

(a) 1D Poisson with solution u3.

0 200K 400K 600K 800K 1M
Training epoch

0

1

2

3

L 2
 e

rro
r l

og
 sc

al
e GP-HM-StM

GP-HM-GM
GP-SE
GP-Matern

(b) 2D Poisson with solution u7

Figure 8: The learning curve.

and 1D advection, the average per-iteration time of GP-HM (mesh 200× 200) is 0.022 seconds while
PINN and RFF-PINN (with two scales) took 0.006 and 0.02 seconds, respectively. We examined the
running time on a Linux workstation with NVIDIA GeForce RTX 3090 GPU. Thanks to the usage of
the grid structure and the product covariance, our GP solver can scale to a large number of collocation
points, without need for additional low rank approximations.

We also reported the total running time for every test case in Table 4 and 5. We can see that the running
time of GP-HM is comparable to PINN and RFF-PINN in most cases. However, the ML based
solvers are slower than traditional methods. This might be because the ML solvers use optimization
to find the solution approximation while the numerical methods often use interpolation and fixed
point iterations, which are usually more efficient.

C.2 Influence of Collocation Point Quantity

We examined how the number of collocation points influences the solution accuracy. To this end, we
tested with a 1D Poisson and 2D Poisson equation, whose solutions include high frequencies. In Fig.
9, we show the solution accuracy with different grid sizes (resolutions). We can see that in both PDEs,
using low resolutions gives much worse accuracy, e.g., less than 200 in 1D and 200 × 200 in 2D
Poisson. The decent performance is obtained only when resolutions is high enough, e.g., 300 in 1D
and 400× 400 in 2D Poisson. That means, the number of collocation points is large (particularly for

16

Published as a conference paper at ICLR 2024

Method 1D Allen-cahn 2D Allen-cahn 1D Advection
u1 u2

PINN 509 828 2,509 2,496
RFF-PINN 1,227 1,172 4,421 2,495

Spectral method 504 552 3,840 2,188
Chebfun 6.57 6.0 N/A 1.39

Finite Difference 2.32e-1 2.36e-1 1,130 12.6
GP-HM-StM 735 2,291 7,447 2,574
GP-HM-GM 612 2,013 6,238 2,239

Table 5: Running time in seconds solving 1D, 2D Allen-cahn equations and 1D advection equation, where u1

and u2 are two test solutions for 1D Allen-cahn: u1 = sin(100x), u2 = sin(6x) cos(100x). The test solution
for 2D Allen-cahn is (sin(x) + 0.1 sin(20x) + cos(100x)) · (sin(y) + 0.1 sin(20y) + cos(100y)), and for 1D
advection equation is sin(x− 200t).

10 50 100 200 300 400

Resolution

5

4

3

2

1

0

Lo
g 1

0 (
Re

la
tiv

e
L 2

 E
rro

r)

GP-HM-GM
GP-HM-StM

(a) 1D Poisson with u3

10x10 50x50 100x100 200x200 300x300 400x400

Resolution

4

3

2

1

0

Lo
g 1

0 (
Re

la
tiv

e
L 2

 E
rro

r) GP-HM-GM
GP-HM-StM

(b) 2D Poisson with u6

Figure 9: The solution error using different grid resolutions.

2D problems, e.g., 160K collocation points for the resolution 400× 400). However, it is extremely
costly or practically infeasible for the existent GP solvers to incorporate massive collocation points,
due to the huge covariance matrix. Our GP solver (defined on a grid) and computational method
can avoid computing the full covariance matrix, and highly efficiently scale to high resolutions. The
results have demonstrated the importance and value of our model and computation method.

D Limitation and Discussion

The learning of GP-HM can automatically prune useless frequencies and meanwhile adjusts µq
for the preserved components, namely, those with nontrivial values of wq, to align with the true
frequencies in the solution. However, the selection and adjustment of the covariance components
often require many iterations, like tens of thousands, see Fig. 8a. More interestingly, we found that
the first-order optimization approaches, like ADAM, perform well, yet the second-order optimization,
which in theory converges much faster, such as L-BFGS, performs badly. This might be because the
component selection and adjustment is a challenging optimization task, and might easily encounter
inferior local optimums. To overcome this limitation and challenge, we plan to try with alternative
sparse prior distribution over the weights wq , such as the horse-shoe prior and the spike-and-slab prior,
to accelerate the pruning and frequency learning. We also plan to try other optimization strategies,
such as alternating updates of the component weights and frequencies, to see if we can accelerate the
convergence and if we can embed and take advantage of the second-order optimization algorithms.

17

	Introduction
	Gaussian Process
	Gaussian Process PDE Solvers
	Algorithm
	Related Work
	Experiment
	Conclusion
	Covariance Function Derivation
	Experimental Settings
	More Results
	Learning Behavior and Computational Efficiency
	Influence of Collocation Point Quantity

	Limitation and Discussion

