
Published as a conference paper at ICLR 2022

DECLARATIVE NETS THAT ARE EQUILIBRIUM MODELS

Russell Tsuchida†¶ Suk Yee Yong‡¶ Mohammad Ali Armin†

Lars Petersson†¶ Cheng Soon Ong†¶

Data61, CSIRO
Canberra, Australia†

Space & Astronomy, CSIRO
Epping, Australia‡

Machine Learning &
Artificial Intelligence
Future Science Platform¶

ABSTRACT

Implicit layers are computational modules that output the solution to some prob-
lem depending on the input and the layer parameters. Deep equilibrium models
(DEQs) output a solution to a fixed point equation. Deep declarative networks
(DDNs) solve an optimisation problem in their forward pass, an arguably more
intuitive, interpretable problem than finding a fixed point. We show that solving
a kernelised regularised maximum likelihood estimate as an inner problem in a
DDN yields a large class of DEQ architectures. Our proof uses the exponential
family in canonical form, and provides a closed-form expression for the DEQ pa-
rameters in terms of the kernel. The activation functions have interpretations in
terms of the derivative of the log partition function. Building on existing literature,
we interpret DEQs as fine-tuned, unrolled classical algorithms, giving an intuitive
justification for why DEQ models are sensible. We use our theoretical result to
devise an initialisation scheme for DEQs that allows them to solve kGLMs in their
forward pass at initialisation. We empirically show that this initialisation scheme
improves training stability and performance over random initialisation.

1 INTRODUCTION

Implicit layers (Pineda, 1987; Almeida, 1990) have recently been subject to renewed atten-
tion (Kolter et al., 2020). In contrast with explicitly defined layers, implicit layers define a mapping
in terms of a solution to some problem depending on the input and problem parameters. For ex-
ample, deep equilibrium models (DEQs) consist of layers that output fixed points of parameterised
functions (Bai et al., 2019). Deep declarative networks (DDNs) use declarative nodes which output
solutions to optimisation problems (Gould et al., 2016; Amos & Kolter, 2017). Neural ordinary
differential equations (NODEs) output solutions to ODEs (Chen et al., 2018; Dupont et al., 2019).
Traditional explicit layers can always be represented as implicit layers (for example, see Proposition
4.10 of Gould et al. (2021)). Also, solutions to certain convex optimisation problems may be ob-
tained via an iterative optimisation procedure such as Newton’s method or gradient descent, and as
such, may be represented as fixed points of an iterative scheme. A correspondence between DDNs
and DEQs is expected (but undiscovered), given the fundamental connection between fixed points
of iterative maps and critical points of optimisation problems (Ryu & Boyd, 2016). This leads to
two natural questions: (1) For a given optimisation problem, what is the corresponding DEQ archi-
tecture? (2) Can this correspondence be exploited for theoretical, conceptual, or practical benefit?

Contributions. (1) We prove an equivalence between a DEQ and a DDN with a classical statistical
model — a kernelised generalised linear model (kGLM) — as the declarative node, as illustrated
in Figure 1 and formally stated in Theorem 3 and Corollary 6. The weights of the DEQ layer have
closed-form expressions in terms of the kernel. The surprise in our result is that the feature mapping
involved in this correspondence is exactly the class of hidden layers that are most commonly used
in practice. (2) We empirically demonstrate that initialising a DEQ as a DDN using the derived
expression for the weights improves performance and stability over random parameter initialisation.

1

Published as a conference paper at ICLR 2022

Implicit network module

α∗ = arg min kGLM(α,X, Y) f∗(Y) = k(X̃,X)α∗α∗ = arg min kGLM(α,X, Y) f∗(Y) = k(X̃,X)α∗
DDN

z∗ = σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)

f∗(Y) = V1 (z∗ + ρ(z∗)) + V2T (Y)
DEQ

z∗ = σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)

is equivalent to

f∗(Y) = V1 (z∗ + ρ(z∗)) + V2T (Y)

Fγ

L(Fγ(Y), Ỹ)

Y

X, X̃

Ỹ

Y

X, X̃

Ỹ

Figure 1: Implicit network modules such as DDNs and DEQs output solutions to problems de-
pending on their inputs and parameters (top). We establish a connection between DDNs with an
optimisation layer (middle) and DEQs with a fixed point layer (bottom). Under mild conditions,
a DDN that solves a kGLM as its inner problem over dataset (X,Y) and forms predictions at X̃
(middle) is equivalent to a fully connected or convolutional DEQ accepting a datapoint Y with un-
derlying fixed coordinates X and X̃ (bottom). In an inpainting task, the inner yellow and outer
regions represent pixel coordinates X and X̃ . Y and Ỹ represent corresponding image values. The
DEQ consists of a fixed point/linear layer with known fixed parameters W1,W2,W3, V1, V2 deter-
mined by the kernel k and coordinates X, X̃ . The activation functions σ, ρ, T are determined by
the exponential family and kernel regulariser of the kGLM. Red indicates that gradient signals are
blocked for exact equivalence; equivalence is exact under our initialisation scheme.

Notation. Let X ⊆ Rdx and Y ⊆ R be coordinate and target spaces. Define a Y−valued stochastic
process {y(x, ω)}x∈X indexed by x ∈ X with outcome ω from a sample space Ω. Let X ∈ Rn×dx
be a matrix such that the ith row of X is some element xi ∈ X. Similarly define X̃ ∈ Rñ×dx . Take
n evaluations {yi}ni=1 = {y(xi, ω0)}ni=1 from a realisation of the stochastic process for every ith
row in X , and form a corresponding matrix Y . Using the same realisation of the stochastic process,
form Ỹ with evaluations {y(x̃i, ω0)}ñj=1 for every ith row in X̃ . Call X and Y the inner coordinate
and target data, and X̃ and Ỹ the outer coordinate and target data.

Example implication of result. Consider image inpainting a single 32 × 32 colour image. Take
X = {1, . . . , 32}2 × {1, 2, 3}, and X ∈ Zn×3 to be a matrix consisting of (non-repeated) triples,
where n < 322 × 3. Take X̃ ∈ Zñ×3 to be the matrix consisting of remaining triples, such that
n + ñ = 322 × 3. An incomplete image Y ∈ Rn together with its missing values Ỹ ∈ Rñ are
jointly sampled from an image distribution. We may use kernel ridge regression to produce a per-
pixel prediction of Ỹ givenX,Y and X̃ . This model represents a special case of a regularised kGLM
with a closed-form predictor, but more generally an algorithm is required to compute the predictor—
see Appendix A. We now move from a single image to a set of images. We wrap the kGLM with an
outer minimisation loop over the loss L between a neural network Fγ output applied to the kGLM
predictor and target Ỹ to obtain a DDN, as sketched in Figure 1. We view the DDN as producing
a per-image prediction. We show that such a DDN is equivalent to a DEQ with a closed-form
expression for the parameters depending on the kernel. When the kGLM has fixed hyperparameters,
the DEQ has a fixed set of parameters (made precise in Theorem 3 and Corollary 6). Initialising the
DEQ with these parameters improves training stability and performance, as shown in § 4. Another
example using kernel logistic regression for image segmentation is given in Appendix G.

2

Published as a conference paper at ICLR 2022

(a) (b) (c) (d) (e) (f)

Figure 2: (Blue) Layers (1) on the interval [−1, 1] when Y = 0, (Orange) identity. (a) tanh(0.9z+2)
has derivative ≤ 0.9 so it admits a unique fixed point. (b) tanh(z) has derivative ≤ 1. It satisfies the
conditions of Proposition 2 on (−1, 0) and (0, 1) and so admits a unique fixed point. (c) tanh(−3z)
is not a contraction but admits a unique fixed point; contractions are not necessary. (d, e, f) tanh(3z),
ReLU(z + 0.2), ReLU(z) are not contractions and admit 3, 0 and uncountably many fixed points.

2 DEEP EQUILIBRIUM MODELS

Given some Y ∈ Rn×dy containing row elements y ∈ Y, deep equilibrium models (DEQs) (Bai
et al., 2019) compute an embedding z∗ ∈ Z ⊂ Rn×dz as a fixed point of some function and
then output an affine transformation f∗(Y) of the fixed point. More concretely, letting gθ(·;Y) :
Rn×dz → Rn×dz denote a parameterised function (e.g. a neural network) with parameters θ ∈ Θ,

f∗(Y) = V z∗, z∗ = gθ(z
∗;Y), z∗ ∈ Z ⊂ Rn×dz , (1)

where V ∈ Rdu×(n×dz) are referred to as readout parameters, and V may be thought of as a du×ndz
matrix acting on a flattened vector with ndz entries. We will find it more natural to introduce a linear
skip connection between Y and the output. We will also choose dy = dz = 1. That is, we consider

f∗(Y) = V1z
∗ + V2Y, z∗ = gθ(z

∗;Y), z∗ ∈ Z ⊂ Rn (2)

Typically DEQs are trained in a supervised manner by running some iterative algorithm such as
gradient descent on a loss that aims to match a neural network involving f∗(Y) to some target Ỹ with
respect to the DEQ and neural network parameters. Given a dataset {(Ys, Ỹs)}Ns=1, this procedure
may be realised by running an iterative algorithm over the equality constrained optimisation problem

min
γ,θ,V1,V2

N∑
s=1

L
(
Ỹs,Fγ

(
f∗(Ys)

))
subject to z∗s = gθ(z

∗
s ;Ys), f∗(Ys) = V1z

∗
s + V2Ys, s = 1, . . . , N

(3)

as if the algorithm were to solve the problem, even though it may be highly non-convex. Here
L is some loss function and Fγ is a neural network with parameters γ. A large class of iterative
algorithms requires the derivative with respect to the network parameters θ and V1, V2; these may
be computed under mild conditions without backpropagating through the fixed point solution via
implicit differentiation. We refer the reader to Bai et al. (2019) for details.

Dealing with existence and uniqueness of fixed points. In order for (1) and (2) to specify useful
computational rules, they have to admit at least one fixed point. To avoid having to choose which
fixed point should be returned with additional rules, it might be desirable that they admit exactly one
fixed point. We give example configurations of fixed points in Figure 2. The classical Banach fixed
point theorem (BFPT) gives sufficient conditions for the existence and uniqueness of fixed points.
Theorem 1 (BFPT). Let (Z, d) be a complete metric space. A function H : Z → Z is said to be a
contraction if there exists some 0 ≤ q < 1 such that for all z, z′ ∈ Z , d (H(z), H(z′)) ≤ qd(z, z′).
Every contraction admits a unique fixed point.

The contraction property is suggestive of a simple algorithm (Hasselblatt & Katok, 2003) for finding
the fixed point z∗ of a contraction H given an initial guess z0: While some termination condition
is not met, Update the current estimate zr for the fixed point to beH(zr−1). This algorithm allows
one to interpret the inner problem of (3) as an infinitely deep neural network with weights shared
between each layer. More advanced algorithms are available, which we do not discuss here. H is
a contraction if the induced matrix norm ‖ · ‖ of the Jacobian of H is strictly less than 1 on Z ,
providing a useful test for checking whether a unique fixed point of H exists. More generally,
Proposition 2. Let Z be an open strictly convex set, Z its closure, H : Z → Z differentiable on Z
and continuous on Z . If ‖DH‖ ≤ λ < 1 on Z , then H is a contraction on Z .

3

Published as a conference paper at ICLR 2022

Ỹs Ys Random kGLM Ỹs Ys Random kGLM

Figure 3: Grouped in sets of four. (Left to right) Uncorrupted target image Ỹs, noisy image Ys,
image output by randomly initialised DEQ, image output by kGLM initialised DEQ. kGLM but not
random initialisation preserves some qualitative properties of the input.

We provide a proof in Appendix B. While elegant, contractions are stronger than necessary and using
them limits the set of admissible networks. It is therefore desirable to work with tighter conditions,
or otherwise sidestep the issue. A consensus on how to deal with existence and uniqueness does not
yet appear to have been reached. One may run the algorithm as if a unique fixed point exists (Bai
et al., 2019), constrain or monitor the parameters during learning to ensure that a unique fixed point
exists, add a penalisation term on an estimate of the spectral norm of the Jacobian (Roosta-Khorasani
& Ascher, 2015) to encourage a contractive map (Bai et al., 2021), or design variants of DEQs
(through appropriate restriction) that explicitly ensure that a unique fixed point exists (Winston &
Kolter, 2020; Revay et al., 2020; El Ghaoui et al., 2021). We do not address this problem; we assume
(in a precise sense, see Assumption 2) verifiable conditions for the BFPT.

Initialisation. For the vast majority of practical neural network architectures, learning involves
applying an optimisation procedure (e.g. stochastic gradient descent or quasi-Newton’s method) to
an empirical risk minimisation problem in the overparameterised network’s parameters outside of
conditions that guarantee convergence to a minimum. Debate continues as to why such procedures
lead to good generalisation performance (Belkin et al., 2019; Zhang et al., 2021). However, there
are intuitive, empirical and theoretical reasons to suggest that appropriate parameter initialisation
plays an important role (Glorot & Bengio, 2010; He et al., 2015; Poole et al., 2016; Hu et al., 2020).
For DEQs, initialisations have not yet been studied in great detail. By interpreting DEQs as unrolled
kGLMs, we find parameter initialisations as a corollary of our main theoretical result. See Figure 3.

3 EXACT FIXED PARAMETER EQUIVALENCE BETWEEN DDNS AND DEQS

We present our main result here and give a special case of a tractable Ising model in Appendix C.2.
Our main result is a derivation of a fully connected or convolutional DEQ architecture as a model
that is equivalent to a DDN that solves a kGLM as its inner problem.

3.1 SETTING: A KGLM INSIDE A DDN

Inner problem. We work with the regular (Wainwright & Jordan, 2008) exponential family in
canonical form (Deisenroth et al., 2020, Section 6.6), with log partition function A : R → R and
sufficient statistic T : Y → R. In our setting, A is both infinitely differentiable due to regularity,
and strictly convex due to minimality (see Appendix A). We choose a prior pλ over the predictor
f , which generalises the commonly used Gaussian process prior1 (Schölkopf et al., 2001; Canu &
Smola, 2006). For log-concave and differentiable q, define

pλ (f | X) = q (f(X))φλ (f) , φλ
(
f
)
∝ exp

(
− λ‖f‖2Hk/2

)
. (4)

A MAP f∗(·;X,Y) = k(·, X)α∗ with representer coefficients α∗ satisfies

α∗ = arg min
α∈Rn

−α>KT (Y) + 1
>A(Kα)− log q (Kα) + λα>Kα/2, (5)

where we have used strict convexity of A to ensure at most one minimum exists. For convenience,
we define ρ :≡ (− log q)′ ◦ (A′)−1. When q is constant, pλ is a Gaussian process prior and ρ ≡ 0.

1This prior requires delicate treatment which may be avoided if X is finite. See (11), Appendix A.

4

Published as a conference paper at ICLR 2022

Deep declarative network. We will use (5) as a declarative node (Gould et al., 2021) by wrapping
it with an outer optimisation task in order to learn the parameters of a neural network by empirical
risk minimisation. Let L denote a loss function (for example, mean squared error), and let Fγ define
a generic neural network with parameters γ. Form a set of N quartets {(Xs, Ys, X̃s, Ỹs)}Ns=1, for
example a set of N images. Define Ks = k(Xs, Xs). We consider the optimisation problem

min
γ,α∗s

N∑
s=1

L
(
Ỹs,Fγ

(
f∗(X̃s;Xs, Ys)

))
subject to α∗s = arg min

α∈Rn
−α>KsT (Ys) + 1

>A(Ksα)− log q (Ksα) + λα>Kα/2, s = 1, . . . , N,

f∗s (·) = k(·, Xs)α
∗
s , s = 1, . . . , N,

(6)
The outer problem is in general non-convex and highly nonlinear in γ.

3.2 MAIN RESULT: DERIVING A FIXED-PARAMETER DEQ

Under our construction, the equivalence between the embeddings z∗ of kGLMs and DEQs always
holds. Under the additional Assumption 1, the DEQ and the kGLM are equivalent predictive models.

Assumption 1. The kernel matrix K is strictly positive definite.

We now state our main result, the proof of which is given in Appendix D.
Theorem 3. Let α∗ be the minimiser of one of the inner optimisation problems (5), inducing a
function f∗(·;X,Y) = k(·, X)α∗. Define z∗ := A′ (Kα∗). Then z∗ is a fixed point satisfying

z∗ = σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)
, (7)

whereW1 = W3 = −λ−1K andW2 = λ−1K are parameter matrices, σ ≡ A′ and ρ ≡ (− log q)′◦
(A′)−1 are monotone non-decreasing. Furthermore, under Assumption 1, for any test index X̃ ∈
Rñ×dx and for at least one z∗ satisfying (7),

f∗(X̃;X,Y) = V1 (z∗ + ρ(z∗)) + V2T (Y), (8)

where V1 = −λ−1k(X̃,X) and V2 = λ−1k(X̃,X).

Further conditions (Assumption 2) force the fixed point iteration to have a unique solution.
Assumption 2. Let Z be an open strictly convex set and Z its closure. Suppose

‖K/λ‖ sup
z∈Z
|A′′(z)| ‖I + diagρ′(z)‖ < 1.

Note that when ρ is zero, that is pλ is Gaussian, Assumption 2 reduces to ‖K/λ‖ sup
z∈Z
|A′′(z)| < 1.

The second derivative of the log partition is equal to 1 for the Gaussian distribution with known
variance and is bounded by r/4 for the Binomial distribution with r trials, further simplifying As-
sumption 2. Recall that the spectral radius (the largest eigenvalue) of K/λ being less than some
constant is sufficient to ensure the existence of an operator norm ‖ · ‖ such that ‖K/λ‖ is less than
the same constant. However, this guarantee does not identify the operator norm. In our experiments,
we instead fix the operator norm as the spectral norm and check Assumption 2 against this norm.
Proposition 4. Under Assumption 2, (7) admits a unique fixed point on Z .

The outer problem depends on the solution α∗s to the inner problem only through f∗(X̃s;Xs, Ys),
which under Assumption 1 in turn only depends on z∗s . We therefore have the following.
Corollary 5. Under Assumptions 1 and 2, the optimisation problem (6) is equivalent to the con-
strained optimisation problem

min
γ

N∑
s=1

L
(
Ỹs,Fγ

(
f∗(X̃s;Xs, Ys)

))
subject to z∗s = σ

(
W1sz

∗
s +W2sT (Ys) +W3sρ(z∗s)

)
, s = 1, . . . , N,

f∗(X̃s;Xs, Ys) = V1s
(
z∗s + ρ(z∗s)

)
+ V2sT (Ys), s = 1, . . . , N,

(9)

5

Published as a conference paper at ICLR 2022

where V1s = −λ−1k(X̃s, Xs), V2s = λ−1k(X̃s, Xs), W1s = W3s = −λ−1Ks and W2s = λ−1Ks

take the role of DEQ parameters and σ = A′ and ρ are monotone non-decreasing and take the role
of DEQ activation functions. The fixed point condition for z∗s is met by exactly one element of Z .

The model in Corollary 5 allows the parameters W1s,W2s, V1s and V2s to vary with s whereas (3)
does not. An additional assumption ensures these parameters are constant in s.
Corollary 6. In the same setting as Corollary 5, if Xs = X and X̃s = X̃ are constant in s, the
parameters W1,W2,W3, V1, V2 are constant in s and we may write f∗(Ys) ≡ f∗s (X̃s;Xs, Ys).

Note that in (3), the outer problem is with respect to γ, θ, V1, V2 whereas in (9) the outer prob-
lem is only with respect to γ. The parameters V1, V2 and W1,W2 (which take the role of θ), are
automatically determined according to X , X̃ and the kGLM kernel k.

Corollary 5 is suggestive of a DEQ model that we are yet to implement whose weights are a dynamic
kernel function of the coordinate Xs. One parameterisation of such a model is to have an auxillary
network that predicts a finite-dimensional feature mapping of the coordinates Xs.

Finally, we note one more special case when Xs = X̃s. In this case, since Ks = k(X̃s, Xs),
predictions may be formed as f∗(X̃s;Xs, Ys) = Ksα

∗
s = σ−1(z∗s) = W1sz

∗
s + W2sT (Ys) +

W3sρ(z∗s), without the need to invert Ks and therefore without the need for Assumption 1.

3.3 REMARKS ON MATCHING DDNS AND DEQS

Special cases. Choosing pK/λ to be Gaussian, ρ ≡ 0. Additionally, if T is the identity and
σ ≡ A′ ≡ tanh, we obtain a fully connected layer with tanh activations, as derived in Ap-
pendix C.2. Logistic sigmoidal activations are obtained when the kGLM is specialised as kernel
logistic regression. When A′ and T are the identity, the kGLM becomes kernel ridge regression,
with Gaussian process regression as the corresponding Bayesian model. Certain infinitely wide
(nonlinear) neural networks are Gaussian processes (Neal, 1995). Our result shows that one may
also construct Gaussian processes whose posterior predictive mean is an infinitely deep neural net-
work with linear activations. The role of the coordinates X and X̃ differs between the two models.

Symbol matching. Theorem 3 says that an embedding (2) computed by a DEQ given Y is the
same as an embedding (7) computed by a kGLM on coordinates X for a training set (X,Y) if the
hidden parameters W1, W2 and W3 are scalar multiples of the kernel matrix k(X,X).

Initialisation via optimisation warm-start. In a stronger setting, Corollary 6 shows a connection
between the two optimisation tasks (3) and (9). Given a fixed DEQ architecture with a fixed point
condition that may be expressed as (7) (and noting that this equation also includes convolutional
architectures), we may initialise parameter values that ensure that the prediction is equivalent to a
trained kGLM and identify the hyperparameters of the kGLM. This initialisation may be naive (i.e.
assume a “reasonable” kernel function, coordinates and regularisation parameter for a wide range
of tasks) or more informed (i.e. leverage some information about the task to suit the kernel and
regularisation to the task being performed). Note that even without Assumptions 1 and 2, we may
initialise the DEQ such that the feature embeddings z∗ are equivalent for at least one of the fixed
points. We demonstrate both naive and informed approaches in § 4.

On augmentation and assumptions. Assumption 2 allows one to compute without concern us-
ing (7) since a unique fixed point is guaranteed to exist. DEQs are sometimes implemented without
checking that a unique fixed point exists. This assumption may be replaced by any other assumption
that is sufficient to ensure a unique fixed point. Using the derivative test on the open set Z instead
of Z allows us to handle important edge cases, namely when A′ ≡ tanh (with derivative 1 at the
origin) or A′ is Leaky ReLU with gradients in {0, 1} on both sides of the origin (with undefined
derivative at the origin). Assumption 1 allows one to map the kGLM embedding to the prediction.
The skip connection present in (2) but not (1) is not a severe limitation from a practical perspective.
The augmented model considers a coordinate X absent from the original DEQ. Note that any DEQ
may be written as an augmented model by simply ignoring the coordinate X . Under our construc-
tion but without Assumptions 1 or 2, the equivalence between the embeddings produced by kGLMs
and DEQs is still valid for at least one of their respective fixed points.

6

Published as a conference paper at ICLR 2022

⇐⇒

Figure 4: A particular choice of kernel induces a sparse matrix K = k(X,X) with repeated entries.
Pre-multiplication by this sparse matrix (left) is equivalent to convolution with reshaping (right).
(Left) The kernel matrix applied to a flattened image. (Right) Each row of the kernel matrix is
identical (after zero-padding the image), so that each row’s action may be thought of as applying
one filter centered at a corresponding pixel. See Corollary 11, Appendix E for result on RGB images.

Convolutional layers. The derived network architecture involves only matrix multiplication, how-
ever as is well-known, we may represent a convolution through a sparse matrix equation (Figure 4).
Conveniently, the local structure expected in images may be encoded by a particular informed kernel
choice in order to recover a convolutional architecture. We formally discuss how this may be done
in 2D RGB images in Corollary 11, Appendix E through a particular choice of kernel k.

Other priors. One may replace the strongly log-concave prior pK/λ with, for example, the con-
jugate prior of the exponential family (which is only log-concave). Here we focus on the strongly
log-concave prior to recover a form more similar to DEQs that are implemented in practice.

Spectral normalisation. Supposing ‖ · ‖ is the spectral norm, Assumption 2 is suggestive of a
particular weight normalisation scheme: if λ is less than the spectral norm of K, then ‖K/λ‖ < 1.
The technique of using layers with unit spectral norm is explored by Miyato et al. (2018) in the
context of improving training stability of GANs. Our results indicate that such spectral normalisation
also leads to improved stability in DEQs at initialisation, in the sense that it guarantees a unique
fixed point by Proposition 4. Abusing terminology, we refer to the spectral norm of the linear
transformation corresponding with a convolutional layer as the spectral norm of the convolutional
layer. An easy to implement method for calculating the spectral norm of convolutional layers is
available (Sedghi et al., 2018), which we use in our implementation and experiments.

4 EXPERIMENTS

DEQ parameters may be partitioned into two sets: the parameters of the layer that defines the fixed
point iteration (θ = (W1,W2,W3, V1, V2)), and the remainder of the parameters. Leveraging our
theoretical result, we give DEQs a warm-start by initialising θ such that the DEQ solves a kGLM.
We empirically demonstrate that such initialisation is superior to random intialisation. We stress
that our comparison is between randomly initialised DEQs and kGLM initialised DEQs only. We
are not interested in demonstrating that DEQs can achieve results competitive with state-of-the-art
models, as this has already been demonstrated in previous studies (Bai et al., 2019; 2021). Our
limited scope allows us to perform a more definitive empirical study with meaningful statistics. We
give a detailed explanation of two of the tasks in the main text, and refer the reader to Appendix F
for more experiments and Appendix G for an empirical demonstration of Theorem 3. For random
initialisation, we initialise weights from a symmetric uniform distribution (the Pytorch default).

Smooth sequence-to-sequence task. Let X = [−2π − 2, 2π] and define a function h(x) =

e−x
2/10 sin(x) + e−(x+9)2 . Let Xs = X and X̃s = X̃ be 100 points on a uniform

grid in [−2π, 2π] and [−2π − 2, 2π − 2] respectively. Define sequences Ys and Ỹs to
be joint evaluations of the sth realisation of a Gaussian process with covariance function
ktrue(x, x

′) = 0.1 exp −‖x−x
′‖2

2 exp
(
− sin2 ‖x− x′‖

)
, having means h(X) and h(X̃) respectively.

7

Published as a conference paper at ICLR 2022

0 100 200 300 400 500 600

Training epoch

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

lo
g

M
S

E

Informed

Naive

Random

Min

Mean

Max

(a)

−7.5 −5.0 −2.5 0.0 2.5 5.0

−2

−1

0

1

2

3

−7.5 −5.0 −2.5 0.0 2.5 5.0

−2

−1

0

1

2

3

−7.5 −5.0 −2.5 0.0 2.5 5.0

−2

−1

0

1

2

3

−7.5 −5.0 −2.5 0.0 2.5 5.0

−2

−1

0

1

2

3

(b)

Figure 5: (a) Test error on a smooth sequence-to-sequence task for 100 random seeds for each ini-
tialisation scheme. kGLM initialsation offers a better starting point and faster training than random
initialisation. (b) Sample model outputs on smooth sequence-to-sequence task. Black curves show
mean h and colours represent different samples. (Top left) Ground-truth test data Ỹs. (Top right)
Random and (Bottom left) Naive GLM initialisation after 20 epochs. (Bottom right) Informed
kGLM initialisation without any training (i.e. epoch 0). kGLM initialisation, particularly informed,
preserves some of the qualitative properties of the target sequence.

For informed kGLM initialisation, we pretend that we know the kernel and coordinate space. We
choose k ≡ ktrue and form the required kernel matrices by takingXs = X and X̃s = X̃ . For naive
GLM initialisation, pretending we do not know the true underlying kernel or coordinate space, we de-
fault to knaive = exp −‖x−x

′‖2
2 and choose Xs = X to be a uniform grid over the interval [−2π, 2π].

We initialise the hidden parameters W1 and W2 according to Theorem 3 and initialise V1 and V2
according to the same rule as random initialisation. When training using naive GLM, we up-
date only the readout parameters for the first 10 epochs. We generate a training and test set of size
N = 20, 000 and 2, 000. Each sequence is evaluated on an n = 100 dimensional uniform grid.
We choose gθ(z∗) = tanh (W1z

∗ +W2Y + b) and train for 400 epochs using Adam with default
hyperparameters. We repeat this for 100 trials using seeds 0 to 99, see Figure 5(a) and (b).

Image denoising. We consider a convolutional architecture as described in Appendix E, with σ ≡
ReLU, T the identity, and ρ ≡ 0 applied to an image denoising task using the CIFAR10 dataset.
Technically the ReLU is not admissible, but we are interested in examining its empirical properties.
The coordinate space X is the space of all 2D pixel and channel triples (i, j, c) ∈ {1, . . . , 32}2 ×
{1, 2, 3}. Elements Ys are CIFAR10 images corrupted by i.i.d. additive N (0, 0.2) noise, clipped to
take values between 0 and 1. Elements Ỹs are the corresponding uncorrupted CIFAR10 images.

For random initialisation, we sample the filter weights i.i.d.∼ N (0,Var). For kGLM initialisation, we
let λ = ‖K‖/C, where ‖ · ‖ denotes the spectral norm and C > 0 (see Assumption 2). Spectral
norms are calculated using the fast and exact method described by Sedghi et al. (2018). The kernel
is constructed randomly from the squared exponential kernel and described in Appendix F.

We are interested in separating the effects of scaling and initialisation scheme. For random initiali-
sation, the scale is chosen through the variance, inducing a convolutional layer with random spectral
norm. For kGLM initialisation, the scale C is equal to the spectral norm. We try all variances in
logspace(10−3, 1, 25) and all C in logspace(10−2, 10, 25), resulting in a grid of spectral norms cov-
ering roughly the same space for both schemes. We try 100 random seeds for each configuration,
resulting in 2× 100× 25 = 5000 models.

In Figure 6, we plot individually after training for 0, . . . , 5 epochs the test MSE against the spectral
norm for both initialisation schemes and all random seeds. kGLM initialisation offers improved
test error, training stability and reduced variance in test error. The curves for kGLM initialised
models adhere to the shape predicted by classical generalisation theory, where the spectral norm
measures model complexity. For kGLM initialisation, spectral norms of 100 appear to represent a
critical point; smaller values lead to stable training and larger values lead to unstable training. This
contrasts with randomly initialised models, most of which have increasing test error with increasing
spectral norm in their later epochs. This means it is easy to select an appropriate scale for kGLM

8

Published as a conference paper at ICLR 2022

10−2 10−1 100 101

Average spectral norm

1.00e-01

1.00e+00

T
es

t
M

S
E

Epoch = 0

10−2 10−1 100 101

Average spectral norm

1.00e-02

7× 10−3

8× 10−3

9× 10−3

T
es

t
M

S
E

Epoch = 1

10−2 10−1 100 101

Average spectral norm

6.2× 10−3

6.4× 10−3

6.6× 10−3

6.8× 10−3

7× 10−3

T
es

t
M

S
E

Epoch = 2

10−2 10−1 100 101

Average spectral norm

6× 10−3

6.1× 10−3

6.2× 10−3

6.3× 10−3

6.4× 10−3

6.5× 10−3

T
es

t
M

S
E

Epoch = 3

10−2 10−1 100 101

Average spectral norm

6× 10−3

6.1× 10−3

6.2× 10−3

6.3× 10−3

6.4× 10−3

6.5× 10−3

T
es

t
M

S
E

Epoch = 4

10−2 10−1 100 101

Average spectral norm

5.9× 10−3

6× 10−3

6.1× 10−3

6.2× 10−3

6.3× 10−3

6.4× 10−3

6.5× 10−3

T
es

t
M

S
E

Epoch = 5

Figure 6: Test MSE against the average spectral norm of each layer for image denoising task using
kGLM initialisation (blue, ours) and random initialisation (red). The vertical axes change between
plots. Markers at the edge of the top border indicate that a value greater than the axis limit or NaN
was observed. Our initialisation scheme shows superior performance at all epochs.

initialisation, but not for random initialisation. In Figure 3, we plot sample targets, inputs and outputs
for random and kGLM initialised DEQs without any training, showing that samples using kGLM
initialisation are visually more similar to the expected output than random initialisation. Figure 3
and epoch 0 of Figure 6 provide a sanity check of Theorem 3. More plots are given in Appendix F.

5 DISCUSSION AND CONCLUSION

Related work. A review on connections between other optimisation-based iterative procedures
and neural networks generally is given by Monga et al. (2021). Repeated applications of weight-tied
layers can sometimes be seen as solving model-based problems, if the weights are chosen appropri-
ately. Since the derived network implicitly minimises a conceptually tractable and principled model,
it possesses a certain degree of interpretability. However, only the minimisation problems and not
the forward pass computations of the network are interpretable, and as such the network does not
satisfy the requirements of interpretability in many settings (Rudin, 2019). Monga et al. (2021) also
discuss how disabling weight-tying and allowing parameters to be fine-tuned, thereby escaping the
optimisation-based iterative procedure, can sometimes lead to improved performance, perhaps at the
cost of interpretability, generalisation performance and theoretical guarantees.

Notable models analysed under this framework include ISTA (Beck & Teboulle, 2009) for solving
LASSO, which when unrolled and fine-tuned yields LISTA (Gregor & LeCun, 2010), and ADMM
for compressive sensing (Boyd et al., 2011) with an unrolled version called ADMM-CSNet (Yang
et al., 2018). Our work considers a different class of iterative models to those surveyed by Monga
et al. (2021), and recovers exactly the DEQ model. In these works, the architectures, tasks, model
classes and activations are specific to a particular setting. More recently, Ramsauer et al. (2020)
introduce a class of networks whose predictions minimise a continuous analogue of a Hopfield
energy. This can be used to justify transformer architectures.

Conclusion. DDNs solve optimisation problems in their forward pass. We considered the problem
of regularised maximum likelihood in an RKHS. Using this DDN layer, we derived a DEQ with a
convolutional or fully connected implicit layer and a fixed closed-form expression for the weights.
Such a result gives intuitive justification for computing with DEQ models: DEQs can solve clas-
sical statistical problems in their forward pass. Using this theoretical connection also allowed us
to initialise DEQs as DDNs. Such initialisation scheme offered performance benefits over random
initialisation both at initialisation and during training. Future extensions of our work include con-
sidering other statistical estimators, learning the kernel, and obtaining Bayesian rather than point
estimates of the canonical parameter.

9

Published as a conference paper at ICLR 2022

ETHICS STATEMENT

Our work is mostly theoretical in nature and is unlikely to directly cause harm, discrimination or
privacy violations. However, as our work may be used in future in applications, we encourage users
of our work to adhere to ICLR’s general ethical principles. We welcome open enquiry and scrutiny
of the theoretical results presented in this paper.

REPRODUCIBILITY STATEMENT

We have included code and the instructions required to reproduce our results. The code is publically
available at https://github.com/RussellTsuchida/deq-glm.

ACKNOWLEDGEMENTS

Russell, Suk Yee, Lars and Cheng Soon gratefully acknowledge the support of CSIRO’s Machine
Learning and Artificial Intelligence Future Science Platform.

10

https://github.com/RussellTsuchida/deq-glm

Published as a conference paper at ICLR 2022

REFERENCES

Luis B Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial
environment. In Artificial neural networks: concept learning, pp. 102–111, 1990.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in Neural
Information Processing Systems, 32:690–701, 2019.

Shaojie Bai, Vladlen Koltun, and Zico Kolter. Stabilizing equilibrium models by jacobian regular-
ization. In International Conference on Machine Learning, pp. 554–565. PMLR, 2021.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and statistical learning via the
alternating direction method of multipliers. Now Publishers Inc, 2011.

Stéphane Canu and Alex Smola. Kernel methods and the exponential family. Neurocomputing, 69
(7-9):714–720, 2006.

Gavin C Cawley, Gareth J Janacek, and Nicola LC Talbot. Generalised kernel machines. In 2007
International Joint Conference on Neural Networks, pp. 1720–1725. IEEE, 2007.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 6572–6583, 2018.

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for Machine Learning.
Cambridge University Press, 2020.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems, pp. 3140–3150,
2019.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep
learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Stephen Gould, Basura Fernando, Anoop Cherian, Peter Anderson, Rodrigo Santa Cruz, and Edison
Guo. On differentiating parameterized argmin and argmax problems with application to bi-level
optimization. arXiv preprint arXiv:1607.05447, 2016.

Stephen Gould, Richard Hartley, and Dylan John Campbell. Deep declarative networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2021.

Peter J Green and Brian S Yandell. Semi-parametric generalized linear models. In Generalized
linear models, pp. 44–55. Springer, 1985.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In Proceedings of
the 27th international conference on international conference on machine learning, pp. 399–406,
2010.

Boris Hasselblatt and Anatole Katok. A first course in dynamics: with a panorama of recent devel-
opments. Cambridge University Press, 2003.

11

Published as a conference paper at ICLR 2022

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Nicholas J Higham. Computing a nearest symmetric positive semidefinite matrix. Linear algebra
and its applications, 103:103–118, 1988.

Wei Hu, Lechao Xiao, and Jeffrey Pennington. Provable benefit of orthogonal initialization in opti-
mizing deep linear networks. In International Conference on Learning Representations, 2020.

Z Kolter, D Duvenaud, and M Johnson. Deep implicit layers - neural odes, deep equilibirum
models, and beyond. Neural information processing systems tutorial, 2020. URL http:
//implicit-layers-tutorial.org/.

Jiarou Lu, Huafeng Liu, Yazhou Yao, Shuyin Tao, Zhenmin Tang, and Jianfeng Lu. Hsi road:
A hyper spectral image dataset for road segmentation. In IEEE International Conference on
Multimedia and Expo (ICME), 2020.

P. McCullagh and J.A. Nelder. Generalized Linear Models, Second Edition. Chapman & Hall/CRC
Monographs on Statistics & Applied Probability. Taylor & Francis, 1989. ISBN 9780412317606.
URL https://books.google.com.au/books?id=h9kFH2_FfBkC.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Radford M Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto, 1995.

H Chau Nguyen, Riccardo Zecchina, and Johannes Berg. Inverse statistical problems: from the
inverse ising problem to data science. Advances in Physics, 66(3):197–261, 2017.

Finbarr O’sullivan, Brian S Yandell, and William J Raynor Jr. Automatic smoothing of regression
functions in generalized linear models. Journal of the American Statistical Association, 81(393):
96–103, 1986.

Fernando Pineda. Generalization of back propagation to recurrent and higher order neural networks.
In Neural information processing systems, pp. 602–611, 1987.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29:3360–3368, 2016.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, et al. Hopfield networks
is all you need. In International Conference on Learning Representations, 2020.

Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks. arXiv
preprint arXiv:2010.01732, 2020.

Farbod Roosta-Khorasani and Uri Ascher. Improved bounds on sample size for implicit matrix trace
estimators. Foundations of Computational Mathematics, 15(5):1187–1212, 2015.

Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singu-
lar values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In
4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II–IV: Invited Lectures, pp. 1576–1602.
World Scientific, 2010.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
use interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput. Math, 15
(1):3–43, 2016.

12

http://implicit-layers-tutorial.org/
http://implicit-layers-tutorial.org/
https://books.google.com.au/books?id=h9kFH2_FfBkC

Published as a conference paper at ICLR 2022

Craig Saunders, Alexander Gammerman, and Volodya Vovk. Ridge regression learning algorithm
in dual variables. In Proceedings of the Fifteenth International Conference on Machine Learning,
pp. 515–521, 1998.

Bernhard Schölkopf, Ralf Herbrich, and Alex J Smola. A generalized representer theorem. In
International conference on computational learning theory, pp. 416–426. Springer, 2001.

Bernhard Schölkopf, Alexander J Smola, et al. Learning with kernels: support vector machines,
regularization. Optimization, and Beyond. MIT press, 1(2), 2002.

Hanie Sedghi, Vineet Gupta, and Philip M Long. The singular values of convolutional layers. In
International Conference on Learning Representations, 2018.

M.J. Wainwright and M.I. Jordan. Graphical Models, Exponential Families, and Variational Infer-
ence. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. Advances in Neural
Information Processing Systems, 33:10718–10728, 2020.

Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Admm-csnet: A deep learning approach for
image compressive sensing. IEEE transactions on pattern analysis and machine intelligence, 42
(3):521–538, 2018.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):107–
115, 2021.

Ji Zhu and Trevor Hastie. Kernel logistic regression and the import vector machine. Journal of
Computational and Graphical Statistics, 14(1):185–205, 2005.

13

Published as a conference paper at ICLR 2022

A KERNELISED GENERALISED LINEAR MODELS

A.1 KERNEL TRICK AND REPRESENTER THEOREM

The predictions of some classical algorithms depend on the training input data X ∈ Rn×dx only
through the matrix product XX>. A widely exploited technique in machine learning, the kernel
trick, replaces X with ψ(X) ∈ Rn×dψ , where dψ may be large or in fact infinite. Here ψ : Rdx →
Rdψ and with an abuse of notation, when applied to a matrix it is understood to apply individually
to each row so that ψ(X) ∈ Rn×dψ . It is easy to change the resulting predictor since the type
of ψ(X)ψ(X)> ∈ Rn×n matches that of XX>, and scales with n and not dψ . One example is
in kernel ridge regression (Saunders et al., 1998). Following our abuse of notation, we will use
k(X,X) ∈ Rn×n to denote the matrix with ijth entry k(xi, xj) := ψ(xi)

>ψ(xj). Any function
of the form k together with the matrix X characterises the matrix ψ(X)ψ(X)>. Such a function is
called a kernel function, and is a valid choice if and only if it corresponds with an inner product in
feature space or equivalently, if it is positive semi-definite (PSD). The space of functions Hk that
the kernel k characterises is called a reproducing kernel Hilbert space (RKHS).

Let k be a positive semi-definite (PSD) function inducing a reproducing kernel Hilbert space
(RKHS) Hk. We will use K = k(X,X) ∈ Rn×n to denote the matrix with ijth entry k(xi, xj).
We will make use of the representer theorem, which for appropriately regularised empirical risk
minimisation problems, allows one to solve optimisation problems in nonparametric function space.
Theorem 7 (Representer Theorem (Schölkopf et al., 2002)). Denote by R : [0,∞) → R a strictly
monotonic increasing function, by X a set and by L : (X × R2)n → R

⋃{∞} an arbitrary loss
function. LetHk be an RKHS with kernel k. Then

f∗ ∈ arg min
f∈Hk

L
({(

xi, yi, f(xi)
)}n
i=1

)
+R (‖f‖Hk) =⇒ f∗(x) =

n∑
i=1

αik(xi, x).

A.2 KERNELISED GENERALISED LINEAR MODELS

We work with a special case of the exponential family in canonical form (Deisenroth et al., 2020,
Section 6.6), as shown in (10). As has also been noted by others (O’sullivan et al., 1986; Canu
& Smola, 2006; Cawley et al., 2007), the representer theorem allows one to extend appropriately
regularised GLMs (McCullagh & Nelder, 1989) to kGLMs by replacing the linear predictor with an
arbitrary element of an RKHS. Here we demonstrate this fact.

Furnish Y with a σ-algebra B, forming a measurable space (Y,B). Let T be a measurable function
T : Y→ R, called the sufficient statistic. Let ν be some reference measure and h : Y→ R≥0 be any
function such that

∫
Y dH(y) <∞, where dH(y) = h(y)dν(y). We call H the base measure and h

the base density. H is absolutely continuous with respect to ν, which may be the Lebesgue measure
or the counting measure. Define F to be the set of all η ∈ R such that

∫
Y exp(T (y)η)dH(y) < ∞.

Define the log-partition function A : F→ R by A(η) = log
∫
Y exp(ηT (y))dH(y).

We may define a probability measure P (dy | η) = p(y | η)ν(dy), where
p
(
y | η

)
= h(y) exp

(
ηT (y)−A

(
η
))

(10)
is with an abuse of terminology called a probability density function for both discrete and continuous
cases. Finally, we form a joint probability density function as a product of marginals via p(Y | η) =∏n
i=1 p(yi | ηi).

We will assume that F is an open set, so that following the terminology of Wainwright & Jordan
(2008), (10) is called a member of the regular exponential family. Regularity ensures that the log-
partition function is infinitely differentiable, and that ∂A∂η = E[T (y)] (Wainwright & Jordan, 2008,
Proposition 3.1). Since T (y) and η are scalars, (10) satisfies a technical definition of a minimal
exponential family. Convexity of A is guaranteed for members of any regular exponential family,
but minimality ensures that A is strictly convex (Wainwright & Jordan, 2008, Proposition 3.1).

Generalised linear models use an exponential family for the likelihood of observing response yi.
We work exclusively with univariate responses yi and canonical parameters ηi, but GLMs are con-
structed more generally. For GLMs with a canonical link function, one chooses ηi = x>i β = f(xi)
to be a linear function of the predictor variables xi with parameters β ∈ Rdx .

14

Published as a conference paper at ICLR 2022

It is possible to extend GLMs to accommodate a non-linear predictor f in an RKHSHk with a small
modification. This modification can be motivated by either a Bayesian or frequentist perspective by
placing a Gaussian prior over the function values or regularising respectively, and then solving the
resulting functional optimisation problem over an RKHS using the representer theorem. Following
the former philosophy, week seek the maximum a posteriori (MAP) estimate f∗ of p

(
f | X,Y

)
with a prior density (Schölkopf et al., 2001; Canu & Smola, 2006)

φλ
(
f
)

= Z−1 exp
(
− λ‖f‖2Hk/2

)
, (11)

where λ is a parameter and Z is a normalisation constant. If f is an infinite dimensional func-
tion, such a density is not defined (recall that Gaussian processes are defined in terms of their finite
marginal distributions, which are jointly Gaussian). However, if we restrict the underlying coordi-
nate space X to be finite, then f is simply a vector evaluated over all coordinates and such a notation
for the prior may be employed without concern. The restriction of X to a finite space is without prac-
tical restriction in machine learning, since we only ever condition on and predict at a finite number
of data points. Using (11) as the prior and (10) as the likelihood, the MAP satisfies

f∗ = arg min
f∈Hk

n∑
j=1

− log h(yi) +A (f(xi))− f(xi)T (yi) +
λ

2
‖f‖2Hk ,

so that by the representer theorem,

f∗(·) = k(·, X)α∗ where α∗ = arg min
α∈Rn

1
>A (Kα)− α>KT (Y) +

λ

2
α>Kα, K = k(X,X).

As an example, in binary kernel logistic regression, using the representer theorem we seek to min-
imise

− log p (f(X) | X,Y) = −Y >Kα∗ + 1
> log

(
1 + eKα

∗
)

+
λ

2
α∗>Kα∗ + const.,

where K = K(X,X) ∈ Rn×n is the kernel matrix with pqth entry Kpq = k(xp, xq). The solution
can be found by applying Newton’s method, resulting in an iterative fixed-point numerical scheme
for α∗. Details of this method can be found in a number of references (Zhu & Hastie, 2005). A
detailed example of the Ising model is given in Appendix C.

15

Published as a conference paper at ICLR 2022

B DERIVATIVE TEST

We will require the mean value theorem.
Theorem 8 (Mean value theorem). Let S : [a, b] → Rn be continuous on [a, b] and differentiable
on (a, b). Then there exists some t ∈ (a, b) such that

‖S(b)− S(a)‖ ≤
∥∥∥∥ ddtS(t)

∥∥∥∥ (b− a).

We now restate the result to be proven. We follow the approach in theorem 2.2.16 of Hasselblatt &
Katok (2003).
Proposition 2. Let Z be an open strictly convex set, Z its closure, H : Z → Z differentiable on Z
and continuous on Z . If ‖DH‖ ≤ λ < 1 on Z , then H is a contraction on Z .

Proof. Let z1, z2 ∈ Z and define c(t) := z1 + t(z2 − z1) for t ∈ [0, 1] and S(t) := H
(
S(t)

)
. Then

S : (0, 1) → Z by strict convexity. By the mean value theorem, there exists some t ∈ (0, 1) such
that

‖H(z2)−H(z1)‖ = ‖S(1)− S(0)‖ ≤
∥∥∥∥ ddtS(t)

∥∥∥∥ (1− 0) =

∥∥∥∥ ddtS(t)

∥∥∥∥
=

∥∥∥∥DH (S(t))
d

dt
c(t)

∥∥∥∥
= ‖DH (S(t)) (z2 − z1)‖
≤ ‖DH (S(t))‖ ‖z2 − z1‖
≤ λ ‖z2 − z1‖
< ‖z2 − z1‖

and therefore H is a contraction mapping.

16

Published as a conference paper at ICLR 2022

C WARM-UP: A TRACTABLE ISING MODEL

We demonstrate our main result for a special Ising model case. The general case is given in § 3.

C.1 AS A KGLM

Let x and x′ be two dimensional indices on the finite lattice, x ∈ {1, . . . , a}×{1, . . . , b} for integers
a, b ∈ Z. The Ising model prescribes that

p (Y | f(X)) = Z−1 exp

(
t−1

(∑
pq

Jpqyipyiq +
∑
p

fxipyip

))
,

where Z is the partition function, some normalising constant ensuring that p (Y | f(X)) is a valid
probability mass function. Here the parameters Jpq determine interactions between the spin states
yip and yiq , fxip controls an interaction between the spin state yip and an external magnetic field at
lattice position xip and t is a temperature parameter. We let fx = f(x) belong to an RKHSHk with
PSD kernel k. With a standard Gaussian prior over f , we have that

log p (f(X) | Y) = t−1

(∑
p,q

Jp,qyipyiq +
∑
p

f(xip)yip

)
− logZ − λ/2‖f‖2Hk .

Supposing no interactions, Jpq = 0 and Z = 2 cosh (t−1f(xip)) (Nguyen et al., 2017). By Theo-
rem 7, letting K = t−1k(X,X) denote the matrix with pqth entry t−1k(xip, xiq),

α∗ = arg min
α

−Y >Kα+ 1
> log (2 cosh (Kα)) +

tλ

2
α>Kα.

The problem is strictly convex so we may find the solution by applying Newton’s method. Using
that the derivative of log (2 cosh(·)) is tanh(·), stationarity of the solution implies that

0 = −KY +K tanh (Kα∗) + tλKα∗ := F (α∗). (12)

The Jacobian ∂F
∂α∗ is given by

J(α∗) :=
∂F

∂α∗
= K>DK + tλK, where D : = diag

(
sech2(Kα∗)

)
,

so that the cth Newton iteration requires solving a linear system,

J(α∗(c−1))
(
α∗(c) − α∗(c−1)

)
= K

(
Y − tanh (Kα∗(c−1))− tλα∗(c−1)

)
.

We employ the shorthand M(α∗(c)) = M(c) for any matrix function of α∗(c). The Newton update
is typically rearranged as an Iteratively Re-Weighted Least Squares (IRWLS) form by substituting
α∗(c−1) = J−1(c−1)J(c−1)α

∗
(c−1), yielding

J(c−1)α
∗
(c) = KD(c−1)z(c−1),

where z := Kα + D−1(Y − µ) and µ = tanh (Kα∗). Once α∗ has been approximated to some
tolerance using this numerical scheme, the predictor f∗ may be evaluated at points X̃ ∈ Rñ×dx
using the representer theorem,

f(X̃) = tK̃α∗ ∈ Rn∗ , K̃ := t−1k(X̃,X). (13)

C.2 AS A DEQ

Rearranging (12), and applying tanh to both sides of the equation, we obtain

tanh (Kα∗) = tanh

(
1

tλ
K (Y − tanh (Kα∗))

)
.

Choosing z∗ = tanh (Kα∗), W1 = −(tλ)−1K, W2 = (tλ)−1K, we have

z∗ = tanh (W1z
∗ +W2Y) . (14)

17

Published as a conference paper at ICLR 2022

Note that α∗ being a unique fixed point of (12) implies that z∗ is a fixed point of (14), but not that
the fixed point of (14) is necessarily unique. One condition that guarantees the uniqueness of the
fixed point of (14) is that the induced matrix norm of K is less than or equal to 1. Without this
assumption, (14) is still true but when used as a computational model, the output will in general
depend on the fixed-point solver and initial conditions passed to that solver (and even still, might
never return unstable fixed points). Finally by assuming that K is invertible and using (13), we
obtain

f(Y) = tK̃α∗ = tK̃K−1 tanh−1 z∗ =
1

λ
K̃ (Y − z∗) = V1z

∗ + V2Y,

where V1 = −(λ)−1K̃ and V2 = (λ)−1K̃.

18

Published as a conference paper at ICLR 2022

D PROOF OF MAIN RESULT

Theorem 3. Let α∗ be the minimiser of one of the inner optimisation problems (5), inducing a
function f∗(·;X,Y) = k(·, X)α∗. Define z∗ := A′ (Kα∗). Then z∗ is a fixed point satisfying

z∗ = σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)
, (7)

whereW1 = W3 = −λ−1K andW2 = λ−1K are parameter matrices, σ ≡ A′ and ρ ≡ (− log q)′◦
(A′)−1 are monotone non-decreasing. Furthermore, under Assumption 1, for any test index X̃ ∈
Rñ×dx and for at least one z∗ satisfying (7),

f∗(X̃;X,Y) = V1 (z∗ + ρ(z∗)) + V2T (Y), (8)

where V1 = −λ−1k(X̃,X) and V2 = λ−1k(X̃,X).

Proof. Since A is strictly convex, A′ = σ strictly increasing and invertible. Q := − log q(·) is a
convex function, and its derivative Q′ is monotone nondecreasing. Also note that Q′ ◦ (A′)−1 is
monotone nondecreasing. Let K = k(X,X). From (5), stationarity at the minimum, differentiabil-
ity of A and Q, and the representer theorem implies

0 = −KT (Y) +KA′(Kα∗) +KQ′(Kα∗) + λKα∗

Kα∗ =
1

λ
(KT (Y)−KA′(Kα∗)−KQ′(Kα∗))

A′(Kα∗) = A′
(

1

λ
(KT (Y)−KA′(Kα∗)−KQ′(Kα∗))

)
A′(Kα∗) = A′

(
1

λ

(
KT (Y)−KA′(Kα∗)−KQ′ ◦ (A′)−1 ◦A′(Kα∗)

))
(15)

z∗ = σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)
. (16)

Note that z∗ is only a (not necessarily unique) fixed point of (16).

Suppose Assumption 1. Since K is invertible, and σ is invertible (since A is strictly convex), then
again using the representer theorem, new predictions may be formed as

K̃α∗ = K̃K−1σ−1z∗ =
1

λ
K̃ (T (Y)− z∗ − ρ(z∗)) = V1 (z∗ + ρ(z∗)) + V2T (Y),

where K̃ = k(X̃,X).

Proposition 4. Under Assumption 2, (7) admits a unique fixed point on Z .

Proof. Let H be the mapping defined by iteration (16),

H(z∗) = σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)
.

H is a contraction since the induced matrix norm of the Jacobian of H satisfies

‖DH‖ =
∥∥(W1 +W3diagρ′(z∗)

)
diagσ′

(
W1z

∗ +W2T (Y)
)∥∥

≤ ‖K/λ‖ sup
z∈Z
‖I + diagρ′(z)‖ |A′′(z)|

< 1.

The result follows from Theorem 1.

19

Published as a conference paper at ICLR 2022

DEQ for empirical risk minimisation (3)

min
γ,θ,V1,V2,b

N∑
s=1

L
(
Ỹs,Fγ

(
f∗(Ys)

))
s.t. z∗s = gθ(z

∗
s ;Ys)

f∗(Ys) = V1z
∗
s + V2Ys + b

DEQ, fully connected or conv hidden layer

min
γ,W1,W2,
W3,V1,V2,b

N∑
s=1

L
(
Ỹs,Fγ

(
f∗(Ys)

))
s.t. z∗s = σ

(
W1z

∗
s +W2T (Ys) +W3ρ(z

∗
s)
)

f∗(Ys) = V1z
∗
s + V2Ys + b

DEQ, fixed hidden parameters

min
γ

N∑
s=1

L
(
Ỹs,Fγ

(
f∗(Ys)

))
s.t. z∗s = σ

(
W1z

∗
s +W2T (Ys) +W3ρ(z

∗
s)
)

f∗(Ys) = V1z
∗
s + V2Ys + b

DDN, kGLM regularised negative log
likelihood as inner problem (6)

min
γ

N∑
s=1

L
(
Ỹs,Fγ

(
f∗s (X̃s;Xs, Ys)

))
s.t. α∗s = argmin

α
kGLM(α,Xs, Ys)

f∗s (·;Xs, Ys) = k(·, Xs)α∗s

DDN for empirical risk minimisation

min
γ,θ,α∗

N∑
s=1

L
(
ξ̃s,Fγ

(
α∗s , ξ̃s, ξs

))
s.t. α∗s ∈ argmin

α∈Aθ,ξs
Cθ(α, ξs)

Feature embedding
z∗s = σ

(
W1z

∗
s +W2T (Ys) +W3ρ(z

∗
s)
)

Special gθ

Fixed W1,W2,W3, V1, V2, b

Corollary 6
Assumptions 1 and 2
Fixed Xs, X̃s =⇒ f∗s (X̃s;Xs, Ys) ≡ f∗(Ys)
W1 =W3 = −k(X,X)/λ,W2 = −W1

V1 = −k(X̃,X)/λ, V2 = −V1

Dataset {(ξ̃s, ξs)}Ns=1

Loss function L
Neural network Fγ

kGLM as inner problem

Theorem 3
z∗s := σ(Kα∗s)

Figure 7: Connections between implicit layer architectures.

20

Published as a conference paper at ICLR 2022

E CONVOLUTION AS MATRIX MULTIPLICATION

Let w, h ∈ Z>1 denote the pixel width and height of a space of images with c channels. Let

Xwh = {1, . . . , h} × {0, . . . , w}, Xwhc = Xwh × {1, . . . , c} (17)

denote the corresponding pixel and pixel-channel spaces. LetX ∈ R(whc)×c denote a matrix, where
every row is one of the pixel coordinates (i, j, c) ∈ Xwhc. Choose Xs = X for some set of N
images {Ys}Ns=1. The images Ys are of size whc, and contain pixel intensities for the corresponding
pixel coordinates in X .

Let x1, x2 and x3 denote the first, second and third coordinates of an element x ∈ Xwhc. Let

h1(x, x′) = 1(|x1 − x′1| ≤ r1),

h2(x, x′) = 1(|x2 − x′2| ≤ r2),

where 1 is the indicator function for some truncating parameters r1, r2 > 0. Let κ0 : Xwhc ×
Xwhc → R denote any stationary PSD kernel, for example κ0(x, x) = e−

1
2‖x−x

′‖22 . Note that these
functions each define a PSD kernel. Using the fact that kernels are closed under multiplication,
define

κ(x, x′) := h1(x, x′)h2(x, x′)κ0(x, x′). (18)
Here h1 and h2 ensure that only close pixels have non-zero kernel values.

Note that the matrix κ(X,X) is sparse when r1 or r2 are small and has an off-diagonal structure.
More concretely choosing κ(x, x′) = e−

1
20‖[x1,x2]−[x′1,x

′
2]‖

2
21(‖x−x′‖∞ ≤ 5) where ‖·‖∞ denotes

the supremum norm, we obtain a whc×whcmatrix. Each block of size wh is repeated horizontally.

This matrix represents c convolutional filters of filter length 5× 2 + 1 = 11 in both directions. We
plot the induced 322 × 322 kernel matrix when w = h = 32 and c = 1 in Figure 4, as well as the
corresponding operation as a convolution. When c > 1, this matrix is simply repeated vertically
and horizontally c times. For rows in the middle of the matrix, there are 112 non-zero entries,
corresponding to the indices included in the convolution operation when centered on the pixel of the
corresponding row.

The proof is tedious and mostly centres around the notation of appropriate reshaping of arrays and
zero-padding. In order to state our result, we first need to define the neural network convolution
operation.
Definition 9 (Single-channel convolution). Fix X = Xwh (in the sense of (17)) and let the rows of
X be equal to the elements of X. Let ∗1 denote the single-channel image convolution operation (in
the sense of convolutional networks).

More concretely, C ∗1 Y applies a filter C ∈ R(2r1+1)×(2r2+1) to a flattened image Y ∈ Rwh as
follows. First flatten C to be an element C̃ of R(2r1+1)(2r2+1) and zero-pad Y to be an element Ỹ
of R(2r1+w)(2r2+h). Then define for each j ∈ {1, wh} a vector C̃j with the same dimensionality
as Ỹ i, such that C̃j,[j:j+(2r1+1)(2r2+1)] = C̃ and all other elements of C̃j are zero. Then for each
j ∈ {1, wh}, define

(C ∗1 Y)j = C̃>j Ỹ = (CmatỸ)j

so that C ∗1 Y ∈ Rwh, where Cmat ∈ Rwh×(2r1+w)(2r2+h) is a matrix with jth row equal to C̃j .
Definition 10 (Multi-channel convolution). Let ∗ denote the muti-channel image convolution oper-
ation (in the sense of convolutional networks).

More concretely, C ∗ Y applies a set of filters C ∈ Rc1×c2×(2r1+1)×(2r2+1) to a flattened image
Y ∈ Rwhc2 as

(C ∗ Y)j =

c2∑
r=1

Cj,r,:,: ∗1 Yr ∈ Rwh,

so that C ∗ Y ∈ Rc1wh, where Yr ∈ Rwh represents the rth channel of Y .

Generally, we have the following corollary of Theorem 3.

21

Published as a conference paper at ICLR 2022

Corollary 11. In the same setting as Theorem 3, under Definition 9, let k ≡ κ (in the sense of (18))
and let f∗(·;Y,X) = κ(·, X)α∗ be a global minimiser of (5). Then z∗ is a fixed point satisfying

z∗ = σ
(
C1 ∗ z∗ + C2 ∗ T (Y) + C3 ∗ ρ(z∗)

)
, (19)

where z∗ = A′(κ(X,X)α∗). C1 = C3 and C2 are convolutional filters with pqth entry
−λ−1κ0(X>i,[r1+1,r2+1], Xi,[p,q]) and λ−1κ0(X>i,[r1+1,r2+1], Xi,[p,q]) respectively. σ = A′ and
ρ = (− log q)′ ◦ (A′)−1 are monotone non-decreasing. Furthermore,

1. Under Assumption 2, (7) admits a unique fixed point on Z .

2. Under Assumption 1, for any test index X̃ ∈ Rñ×dx and for at least one z∗ satisfying (7),

f∗(X̃;Y,X) = V1 (z∗ + ρ(z∗)) + V2T (Y), (20)

where V1 = −λ−1κ(X̃,X) and V2 = λ−1κ(X̃,X).

Proof. We begin with the case c = 1. By Definition 9, we have that

C1 ∗ z∗ = Cmatz̃∗ ∈ Rwh,

where z̃∗ ∈ R(2r1+w)(2r2+h) is a zero-padded z∗ and Cmat ∈ Rwh×(2r1+w)(2r2+h). The jth row of
Cmat is equal to C̃j , where C̃j,[j:j+(2r1+1)(2r2+1)] = C̃ and all other elements of C̃j are zero. Here
C̃ is a flattened version of C1.

By removing the zero entries from z̃∗ and the corresponding columns from Cmat, we may write

Cmatz̃∗ = Wmatz
∗

for some W1mat ∈ Rwh×wh. The same holds for W2 and W3. We may therefore write

σ
(
C1 ∗ z∗ + C2 ∗ T (Y) + C3 ∗ ρ(z∗)

)
= σ

(
W1matz

∗ +W2matT (Y) +W3matρ(z∗)
)
.

On the other hand, Theorem 3 says that

σ
(
W1z

∗ +W2T (Y) +W3ρ(z∗)
)

= z∗.

Choosing W1mat = W1 = −λ−1κ(X,X) and similarly for W2,W3, we obtain (19). This implies
that the filter C1 has pqth entry −λ−1κ0(X>i,[r1+1,r2+1], Xi,[p,q]). The rest of the corollary follows
from Theorem 3.

22

Published as a conference paper at ICLR 2022

200 400 600 800

Width

10−4

10−3

10−2

T
im

e
(s

ec
on

d
s)

Random initialisation

Kernel initialisation

0 20 40 60

Channels

10−3

10−2

10−1

100

T
im

e
(s

ec
on

d
s)

Random initialisation

Kernel initialisation

Figure 8: Empirically measured cost (in seconds) for initialisation schemes measured on a DELL
Laptop (16GB RAM, Intel®CoreTM i7-8665U CPU), averaged over 100 runs. (Left) Fully con-
nected DEQ layer. (Right) Convolutional DEQ layer. In all cases, initialisation represents a small
cost compared with training.

F DETAILED EXPERIMENTS

Our experiments may be reproduced using the code provided in the supplementary material by
following the README.md file.

Choice of kernel for initialisation. To intialise a convolutional network, we need to
choose r1, r2 and κ0 according to (18). We choose r1 = r2 = 3 and κ0(x, x′) =∑c(c+1)/2
r=1 gr(x3, x

′
3)e
− 1

2`2r
‖x[1,2]−x′[1,2]‖

2

, where gr(a, b) = 1 if a == ar and b == br or a == br
and b == ar and 0 otherwise. We sample the squared lengthscales from a uniform distribution
between 0 and 4.

The cost of kGLM initialisation is minuscule, and often even faster than random initialisation.

For a fully connected layer with hidden and readout weight matrices W and V of size n × n and
ñ× n respectively, we require n2 + nñ evaluations of the kernel function and then a normalisation
by the spectral norm (the default option for this calculation for a Python library such as Numpy
will be the LAPACK divide and conquer algorithm, which will have a worst case of O(n3), but
in practice the computation will be very fast). In contrast, random numbers (the usual method for
initialising neural networks) requires n2 + nñ random number generations, which depending on
software platform, is usually done through calls to the inverse transform sampling method, perhaps
using a stochastic collocation Monte Carlo sampler. Either way, empirically we find that kGLM
initialisation is actually much faster than random Gaussian initialisation for fully connected layers.
See Figure 8.

For convolutional layers, which are basically just extremely sparse large fully connected layers,
the kernel method induces an additional overhead associated with the various reshaping operations
required to put the elements of the kernel matrix in the correct position in the convolutional filter
layer. The calculation of the spectral norm is done through the method of Sedghi et al. (2018) at a
cost of O

(
w2c2(c + logw)), where c is the number of channels and w is the maximum of the pixel

width/height of the image. Our implementation is far from optimised, but we find that even with
this overhead, the initialisation costs less than 1 second on a laptop PC. This is a tiny fraction of the
cost typically associated with training the network, which depends on the problem but will usually
be much less than 1%. See Figure 8.

Scaling up parameter counts. The number of rows of the square kernel matrix is equal to the
number of rows in X . This means, for example, in the setting of CIFAR10 where X ∈ R32∗32∗3×3,
there are roughly 9.4 ∗ 106 elements in the kernel matrix. Using a convolutional representation, the
sparse kernel matrix may be represented as a convolutional layer of size (3, 3, 32, 32). Crucially, the
parameter count scales quadratically with the number of input channels, which in this case is 3.

One way to experiment on larger models is to scale up the size of the input data. To this effect, we
take a dataset containing 3799 hyperspectral (25 channel) images (HSI) of roads (Lu et al., 2020) of
total size (3799, 25, 192, 384). We consider a sequence of denoising tasks when the input data is a

23

Published as a conference paper at ICLR 2022

10 2 10 1 100 101

Average spectral norm

1.00e-02

1.00e-01

1.00e+00

Te
st

 M
SE

Epoch = 0

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 1

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 2

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 3

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 4

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 5

Figure 9: First 4 channels of HSI dataset. Test MSE against the average spectral norm of each layer
for image denoising task using kGLM initialisation (blue, ours) and random initialisation (red). The
vertical axes change between plots. Markers at the edge of the top border indicate that a value greater
than the axis limit or NaN was observed. Our initialisation scheme shows superior performance at
all epochs.

subset of the 25 hyperspectral channels. The resulting plots are given in Figures 9, 10, 11 12. The
results are summarised in Table 1

Table 1: Summary of experimental results. Shown are average log test losses ± one “sample stan-
dard deviation” of the logarithm taken at the best performing spectral norm. The spectral norm grid
was as described in the main text. If NaNs or Infs were observed, these were replaced by the maxi-
mum before the average and variance were recorded. # failed indicates the number of NaNs and Infs
observed over the full grid. Due to training instability causing NaN and Infs data points, especially
in randomly initialised models, the average and “sample standard deviation” are not true unbiased
estimators. kGLM initialisation shows superior performance, both in terms of average performance
and number of failed runs.

Model Parameter (#) Runs (#) Epochs (#) kGLM init Random init
Mean ± std (MSE) Failed (#) Mean ± std (MSE) Failed (#)

4 channel 1600 70 0 −4.80± 0.55 0 −3.37± 0.17 220
3 −6.61± 0.03 17 −6.51± 0.01 222
5 −6.64± 0.02 21 −6.57± 0.01 222

8 channel 6400 100 0 −4.87± 0.37 0 −3.53± 0.15 450
3 −6.76± 0.01 42 −6.73± 0.01 485
5 −6.80± 0.01 46 −6.79± 0.01 486

10 channel 10,000 65 0 −4.95± 0.31 0 −3.63± 0.12 256
3 −6.84± 0.01 33 −6.80± 0.02 268
5 −6.90± 0.01 35 −6.87± 0.02 268

13 channel 16,900 65 0 −4.60± 0.37 0 −3.23± 0.15 185
3 −6.82± 0.22 28 −6.42± 0.40 206
5 −6.87± 0.22 28 −6.46± 0.42 208

24

Published as a conference paper at ICLR 2022

10 2 10 1 100 101

Average spectral norm

1.00e-02

1.00e-01

1.00e+00

Te
st

 M
SE

Epoch = 0

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 1

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 2

10 2 10 1 100 101

Average spectral norm

1.00e-03

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 3

10 2 10 1 100 101

Average spectral norm

1.00e-03

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 4

10 2 10 1 100 101

Average spectral norm

1.00e-03

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 5

Figure 10: First 8 channels of HSI dataset. Test MSE against the average spectral norm of each layer
for image denoising task using kGLM initialisation (blue, ours) and random initialisation (red). The
vertical axes change between plots. Markers at the edge of the top border indicate that a value greater
than the axis limit or NaN was observed. Our initialisation scheme shows superior performance at
all epochs.

10 2 10 1 100 101

Average spectral norm

1.00e-02

1.00e-01

1.00e+00

Te
st

 M
SE

Epoch = 0

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 1

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 2

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 3

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 4

10 2 10 1 100 101

Average spectral norm

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 5

Figure 11: First 10 channels of HSI dataset. Test MSE against the average spectral norm of each
layer for image denoising task using kGLM initialisation (blue, ours) and random initialisation (red).
The vertical axes change between plots. Markers at the edge of the top border indicate that a value
greater than the axis limit or NaN was observed. Our initialisation scheme shows superior perfor-
mance at all epochs.

25

Published as a conference paper at ICLR 2022

10 2 10 1 100 101

Average spectral norm

1.00e-02

1.00e-01

1.00e+00

Te
st

 M
SE

Epoch = 0

10 2 10 1 100 101

Average spectral norm

1.00e-03

2 × 10 3

3 × 10 3

4 × 10 3

6 × 10 3

Te
st

 M
SE

Epoch = 1

10 2 10 1 100 101

Average spectral norm

1.00e-03

1.2 × 10 3

1.4 × 10 3

1.6 × 10 3

1.8 × 10 3

2 × 10 3

Te
st

 M
SE

Epoch = 2

10 2 10 1 100 101

Average spectral norm

1.00e-03

1.2 × 10 3

1.4 × 10 3

1.6 × 10 3

1.8 × 10 3

2 × 10 3

Te
st

 M
SE

Epoch = 3

10 2 10 1 100 101

Average spectral norm

1.00e-03

1.2 × 10 3

1.4 × 10 3

1.6 × 10 3

1.8 × 10 3

2 × 10 3

Te
st

 M
SE

Epoch = 4

10 2 10 1 100 101

Average spectral norm

1.00e-03

1.2 × 10 3

1.4 × 10 3

1.6 × 10 3

1.8 × 10 3

2 × 10 3

Te
st

 M
SE

Epoch = 5

Figure 12: First 11 channels of HSI dataset. Test MSE against the average spectral norm of each
layer for image denoising task using kGLM initialisation (blue, ours) and random initialisation (red).
The vertical axes change between plots. Markers at the edge of the top border indicate that a value
greater than the axis limit or NaN was observed. Our initialisation scheme shows superior perfor-
mance at all epochs.

26

Published as a conference paper at ICLR 2022

G EXAMPLE EMPIRICAL INSTANTIATION OF EQUIVALENCE

We take binarised MNIST and for each image, independently corrupt 30% of bits by randomly
flipping them. We are interested in obtaining a predictive model that can segment the original bi-
narised image Ỹs from its noisy corrupt input Ys, together with the constant coordinate locations
Xs = X̃s = X that may be represented as 784× 2 coordinate indices. The index 1 ≤ s ≤ 60, 000
runs over different images in the training dataset. We evaluate model performance on an independent
testing dataset of size 10, 000. We empirically compare five related models.

1. Kernel logistic regression (KLR). Since each element of Ys ∈ R784 is binary, a natural kGLM
model to use is kernel logistic regression (KLR) (Green & Yandell, 1985; Zhu & Hastie, 2005). With
respect to the exponential family, such a model prescribes that the derivative of the log partition
function A′(·) = σ(·) = (1 + e−·)−1 is the logistic sigmoid and the sufficient statistic T is the
identity. As is common in the literature, we employ a zero-mean Gaussian prior so that ρ ≡ 0.

The only remaining choices are the kernel function k and the regularisation parameter λ. In order to
ensure that Assumption 1 is satisfied, we choose k to be the sum of a squared exponential kernel with
lengthscale 1 and a white noise kernel with variance 10−8. This forces the resulting kernel matrixK
to be strictly positive definite. In order to satisfy Assumption 2, we need to ensure that ‖K/λ‖ ≤ 1
(assumption A3.1 is automatically satisfied due to the setting of A in KLR). Accordingly, we set
λ = 2‖K‖. Note that we do not actually need to ensure that Assumptions 1 and Assumptions 2
are satisfied for Theorem 3 to hold, but we do need these assumptions so that all of our theoretical
results hold.

The KLR model is trained individually using every datapoint in {Ys}60,000s=1 as a dataset and a man-
ually implemented iterated reweighted least squares algorithm consisting of updates according to
(exact) Newton’s method. We allow Newton’s method to run for 5 steps, at which point the norm of
the difference between subsequent values of α is typically on the order of 10−14. The output of the
KLR model is a kernelised predictor f∗ that has been trained using dataXs and Ys, evaluated onXs

and converted to the maximum a posteriori of the Bernoulli distribution through 1
{
σ(f∗) > 0.5

}
.

2. DEQ with kernel initial parameters (DEQ-kernel). Theorem 3 implies an equivalent DEQ
model with fixed parameters. We use this model, namely

z∗ = σ
(
W1z

∗ +W2Ys
)
,

f∗(Y) = V1z
∗ + V2Y,

where W1 = V1 = −λ−1K and W2 = V2 = λ−1K are parameter matrices and σ is the logistic sig-
moid function. To convert the kernelised predictor f∗(Y) to the mean of the Bernoulli distribution,
we must pass it again through the inverse link function,

σ(f∗(Y)) = σ(V1z
∗ + V2Y) (Greyscale prediction)

and the resulting maximum a posteriori prediction is determined by examining whether the mean of
the Bernoulli distribution is greater than 0.5,

1
{
σ(f∗(Y)) > 0.5

}
. (Binarised prediction)

3. DEQ with kernel initialisation and fine-tuned parameters (DEQ-kernel-trained). We
interpret the DEQ with initial parameters model as a neural network, and update the parameters
W1,W2, V1 and V2 using Adam to minimise the squared loss between the greyscale prediction and
binarised ground truth. We also allow biases in both the hidden and readout layers. We train for 5
epochs using a batch size of 100, leading to 5× (60000/100) = 3000 gradient updates.

4. DEQ with random initialisation (DEQ-random). We take the same neural network architecture
as with kernel initialisation, but randomly initialse the parameters from a Gaussian distribution using
the Pytorch default.

5. DEQ with random initialisation and fine-tuned parameters (DEQ-random-trained). We
take the same neural network architecture as with kernel initialisation, but randomly initialse the
parameters from a Gaussian distribution using the Pytorch default. We also allow biases and train
using the same optimiser and loss.

27

Published as a conference paper at ICLR 2022

Observations. Remarkably (but not surprisingly, due to Theorem 3), the binarised prediction agrees
exactly with KLR (an entirely independent piece of software, that uses an entirely different solver)
over all but 11 of 60, 000 MNIST datapoints each containing 784 pixels. For those 11 where dis-
agreements were observed, only 1 of 784 pixels were different. The very small differences arise
due to the tolerance of the solvers and the way tied predictions (i.e. those whose logistic sigmoid
output is 0.5) are handled. In all 11 cases, the DEQ output a value of 0.5 and KLR output some
value less than but very close to 0.5. See Table 2 for posterior probabilities, and Figure 13 for the
corresponding binarised predictions. Figure 14 shows the test error as a function of training epoch
for DEQ-kernel-trained and DEQ-random-trained.

Example index DEQ posterior probability KLR posterior probability
3678 0.5 0.49999999405532286

13774 0.5 0.4999999622825579
18222 0.5 0.49999996963143295
19554 0.5 0.49999999447511095
19857 0.5 0.49999998512994437
22298 0.5 0.4999999968452693
23396 0.5 0.49999997421424147
38328 0.5 0.4999999917996173
43401 0.5 0.4999999890555562
48119 0.5 0.49999998394239925
58961 0.5 0.4999999743936929

Table 2: KLR and the equivalent DEQ agreed on all 784 pixels of 60000 examples in the training
set except for the 11 examples above. In these cases, the predicted posterior probabilities were very
close to borderline.

Figure 13: Visualisation of the 11 datapoints where KLR and DEQ-kernel predictions did not
agree exactly. KLR predictions (top), DEQ-kernel predictions (middle), and DEQ-random pre-
dictions (bottom). The top and middle rows are very close, in contrast with the bottom row. The red
pixel in the middle row shows where it disagrees with the top. On all other 59989 examples, the top
and middle rows agree exactly.

28

Published as a conference paper at ICLR 2022

0 25 50 75 100

Training iteration

10−1

6× 10−2

2× 10−1

3× 10−1

4× 10−1

T
es

t
E

rr
or

Kernel initialisation

Random Initialisation

0 1000 2000 3000

Training iteration

10−1

T
es

t
E

rr
or

Kernel initialisation

Random Initialisation

0 25 50 75 100

Training iteration

10−1

2× 10−1

T
ra

in
E

rr
or

Kernel initialisation

Random Initialisation

0 1000 2000 3000

Training iteration

10−1

T
ra

in
E

rr
or

Kernel initialisation

Random Initialisation

Figure 14: Testing and training error for DEQ-kernel-trained (green) and
DEQ-random-trained (blue) models. The left column shows the first 100 iterations
only, and the right column shows the entire training process. The initial models DEQ-kernel and
DEQ-random are correspondingly represented by iteration 0. KLR is equivalent to DEQ-kernel
(up to tie predictions). The top two plots show mean squared error of the binarised images on the
test set. The bottom two curves show mean squared error of the greyscale images on the training
set. Kernel initialisation out-performs random initialisation. Note that the initial test error of kernel
initialisaton is smaller than after training until about 30 training iterations have passed.

29

Published as a conference paper at ICLR 2022

H EXTENSION TO NONCENTERED CANONICAL PARAMETERS

It is straightforward to extend Theorem 3 (and related corrolaries) to the case where the canonical
parameters η are the sum of evaluations of some deterministic function m and evaluations of the
predictor f . We sketch this now and leave details to the reader to suit their application. Starting
from (10) and using prior (4), we obtain a new MAP objective

f∗ = arg min
f∈Hk

n∑
j=1

− log h(yi) +A (f(xi) +m(xi)) +Q (f(xi) +m(xi))

− (f(xi) +m(xi))T (yi) +
λ

2
‖f‖2Hk ,

so that by the representer theorem, f∗(·) = k(·, X)α∗ is given by

α∗ = arg min
α∈Rn

1
>
(
A (Kα+M) +Q (Kα+M)

)
− α>KT (Y) +

λ

2
α>Kα,

where M := m(X). The same reasoning in the proof of Theorem 3 then still follows if we define
z∗ = A′(Kα∗ +M). That is, the equilibrium condition implies that

0 = −KT (Y) +KA′(Kα∗ +M) +KQ′(Kα∗ +M) + λKα∗

Kα∗ =
1

λ
(KT (Y)−KA′(Kα∗ +M)−KQ′(Kα∗ +M))

A′(Kα∗ +M) = A′
(

1

λ
(KT (Y)−KA′(Kα∗ +M)−KQ′(Kα∗ +M)) +M

)
A′(Kα∗ +M) = A′

(
1

λ

(
KT (Y)−KA′(Kα∗ +M)−KQ′ ◦ (A′)−1 ◦A′(Kα∗ +M) +M

))
z∗ = σ

(
W1z

∗ +W2T (Y) +W3ρ(z∗) +M
)
,

and so on. A similar result holds when an additional linear scaling of f(X) is introduced.

30

Published as a conference paper at ICLR 2022

I SENSITIVITY OF FIXED POINT EQUATIONS TO NON-PSD MATRIX
PERTURBATIONS

The DEQ layers of the models we studied in the main text have parameter matrices that are symmet-
ric PSD kernel matrices. This departs from the established practice, where one randomly initialises
the parameter matrices (say from a zero-mean Gaussian distribution with small variance), and then
trains the parameters using gradient descent. Here we investigate connections between our restricted
parameter setting and more general parameters.

We begin by bounding the difference between fixed points of DEQ layers with the same activation
σ and input Y , but different parameter matrices.
Proposition 12. Let Z be an open strictly convex set and Z its closure. Denote by ‖ · ‖ some vector
norm on Z and its induced matrix norm. Let g1 : Z → Z and g2 : Z → Z be defined by

g1(z) = σ
(
A(Y − z)

)
, A ∈ Rn×n

g2(z) = σ
(
B(Y − z)

)
, B ∈ Rn×n

for some Y ∈ Rn, function σ with Lipschitz constant Lσ ≤ 1 (with respect to ‖ · ‖ on Z) and
matrices A,B with matrix norms LA = ‖A‖ < 1 and LB = ‖B‖ < 1. Define L1 = LσLA and
L2 = LσLB . Then for fixed points z1 = g1(z1) and z2 = g2(z2) (each guaranteed to exist and be
unique),

‖z1 − z2‖ ≤
Lσ‖Y − σ(0)‖

(1− L1)(1− L2)
‖(A−B)‖.

Proof. Existence and uniqueness of fixed points follows directly from Theorem 1. Exploiting only
the triangle inequality and Lipschitz properties, we have

‖z1 − z2‖ = ‖g1(z1)− g2(z2)‖
= ‖g1(z1)− g1(z2) + g1(z2)− g2(z2)‖
≤ ‖g1(z1)− g1(z2)‖+ ‖g1(z2)− g2(z2)‖
≤ L1‖z1 − z2‖+ ‖g1(z2)− g2(z2)‖

(1− L1)‖z1 − z2‖ ≤ ‖g1(z2)− g2(z2)‖

‖z1 − z2‖ ≤
Lσ

1− L1
‖(A−B)(Y − z2)‖,

Using g2(Y) = σ(0), and again the triangle inequality and Lipschitz properties, note that

‖z2 − Y ‖ = ‖g2(z2)− g2(Y) + σ(0)− Y ‖
≤ ‖g2(z2)− g2(Y)‖+ ‖σ(0)− Y ‖
≤ L2‖z2 − Y ‖+ ‖Y − σ(0)‖

‖z2 − Y ‖ ≤
1

1− L2
‖Y − σ(0)‖,

so that

‖z1 − z2‖ ≤
Lσ‖Y − σ(0)‖

(1− L1)(1− L2)
‖(A−B)‖.

We will now use this result to bound the difference between fixed points found by arbitrary parameter
matrices and fixed points found by PSD kernel matrices, which exactly solve kGLMs as in the main
text.

It helps to think of real-valued PSD matrices as being different from general matrices in two respects.
Firstly, real-valued PSD matrices are always symmetric (so their eigenvalues are real). Secondly,
the eigenvalues of PSD matrices are always nonnegative reals. The matrix norm of the difference

31

Published as a conference paper at ICLR 2022

between any matrix and its “closest” PSD counterpart can be decomposed into these two distinct
effects when the matrix norm is the Frobenius norm (Higham, 1988, Theorem 2.1). However, the
Frobenius norm is difficult to work with as it is not induced by a norm over the vector space Z , and
only provides loose bounds to the spectral norm. We instead operate on ‖ · ‖2 directly, and obtain a
bound that contains a similar decomposition of two effects.
Proposition 13. In the same setting as Proposition 12, choose ‖ · ‖ to be the Euclidean and spectral
norms ‖ · ‖2. Let A be any n × n matrix. A admits a decomposition into symmetric and skew
symmetric parts A = A1 + A2 where A1 = 1

2

(
A + A>

)
and A2 = 1

2

(
A − A>

)
. Let {B � 0}

denote the space of PSD matrices. Then

min
{B�0}

‖z1 − z2‖2 ≤
(Lσ‖Y − σ(0)‖2

(1− L1)2

)(
λ̃+ ‖A2‖2

)
,

where λ̃2 be the largest absolute value of the negative eigenvalues of A1.

Proof. From the symmetric, skew-symmetric decomposition, A = 1
2QΛQ>+A2, whereQ is (real)

orthogonal and Λ is a real diagonal matrix. Choose B = 1
2QΛ+Q

>, where Λ+ is the elementwise
maximum of Λ and zero. Then

‖A−B‖2 = ‖A2 +
1

2
Q(Λ− Λ+)Q>‖2

≤ ‖A2‖2 +
1

2
‖Λ− Λ+‖2.

The first term is the operator norm of A2. The second term is the largest absolute value of the
negative eigenvalues of A1. Finally note that LB ≤ ‖A1‖2 ≤ ‖A‖2, so that 1

1−L2
≤ 1

1−L1
, and

apply Proposition 12.

This result helps us understand what happens when parameter matrices that are almost PSD kernel
matrices are used. We note that if A is PSD, the bound evaluates to zero. If A is symmetric and real,
then the bound is a linear scale of the most negative eigenvalue of A. If A is any matrix, we have to
additionally account for the operator norm of the skew-symmetric part of A, which contains purely
imaginary eigenvalues.

A more blunt observation can be made when we do not know anything about the norm of the skew
symmetric part or the most negative eigenvalue of the symmetric part of A, by relating both of these
quantities to the norm of A. Here rather than using relative spectral properties of A, we can just use
the scale of A to conclude that if A contains small entries, there is a PSD matrix B that obtains a
close fixed point, and we can quantify this closeness. This makes use of the coarse inequality that
λ̃+ ‖A2‖2 ≤ 2‖A‖2.

A natural question to ask is when such a blunt device might be applied in practical scenarios. It is
noted in the tutorial material (Kolter et al., 2020) that DEQs parameters are typically initialised with
smaller weight variance than standard feedforward networks. Recall that Xavier Glorot initialisation
for standard feedforward networks chooses a parameter standard deviation of 1√

n
. If we slightly alter

this initialisation scheme to a achieve a smaller weight variance (that is stillO(n−1/2)), we can apply
the conclusion of the rough reasoning above by applying results from random matrix theory.
Proposition 14. In the same setting as Proposition 13, let A be a random matrix with Gaussian
entries having zero mean and standard deviation ν = C/Lσ

2
√
n+t

. Then with probability 1− 2 exp−t
2/2

for t ≥ 0, the smallest sum of squared errors is bounded by

min
{B�0}

‖z1 − z2‖22 ≤ 4
(C‖Y − σ(0)‖2

(1− C)2

)2
.

In particular if ‖Y − σ(0)‖22 ≤ Dn for some D ≥ 0, the smallest mean squared error is bounded
by

min
{B�0}

‖z1 − z2‖22
n

≤ 4D
C2

(1− C)4
.

32

Published as a conference paper at ICLR 2022

Proof. λ̃ is bounded by the largest absolute value of all of the eigenvalues of the symmetric part of
A, which is the operator norm of the symmetric part of A. Thus

λ̃+ ‖A2‖2 ≤
1

2

(
‖A−A>‖2 + ‖A+A>‖2

)
≤ 2‖A‖2 = LA.

By Proposition 13 we therefore have

min
{B�0}

‖z1 − z2‖2 ≤ 2
L1‖Y − σ(0)‖2

(1− L1)2
.

Choosing C such that 0 < C/Lσ < 1 and letting ν = C/Lσ
2
√
n+t

in Theorem 15 below, we have that

‖A‖2 = LA < C/Lσ with probability exceeding 1− 2 exp−t
2/2.

Theorem 15 (Corollary of Theorem 2.6 in Rudelson & Vershynin (2010)). Let A be an n1 × n2
matrix with independent zero-mean Gaussian random entries each having standard deviation ν.
Then for all t ≥ 0,

P
(
‖A‖2 < ν(

√
n1 +

√
n2 + t)

)
≥ 1− 2e−t

2/2.

When C is small, we expect there to exist kernel matrices that perform roughly the same (as poorly)
as random Gaussian initialisation. This result is consistent with our empirical results in the figures
in Appendix F, where we observe that randomly initialised parameter matrices with spectral norm
of around 10−1 or less obtain roughly the same performance as kernel initialised models with the
same norm, and both outperform randomly initialised parameter matrices with large spectral norms.
However, this experimental setup is slightly complicated by the use of convolutional layers, which
when converted to parameter matrices, are very large, sparse and contained shared elements.

33

	Introduction
	Deep equilibrium models
	Exact fixed parameter equivalence between DDNs and DEQs
	Setting: a kGLM inside a DDN
	Main result: deriving a fixed-parameter DEQ
	Remarks on matching DDNs and DEQs

	Experiments
	Discussion and conclusion
	Kernelised generalised linear models
	Kernel trick and representer theorem
	Kernelised Generalised linear models

	Derivative test
	Warm-up: a tractable Ising model
	As a kGLM
	As a DEQ

	Proof of main result
	Convolution as matrix multiplication
	Detailed experiments
	Example empirical instantiation of equivalence
	Extension to noncentered canonical parameters
	Sensitivity of fixed point equations to non-PSD matrix perturbations

