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ABSTRACT

Quantum Machine Learning (QML) has the potential to significantly advance the
state-of-the-art in artificial intelligence, due to recent developments in quantum
computing hardware and algorithm design. Particularly, an avenue opened up by
these advances is the possibility of enhancing classical models through developing
quantum analogues, which have greater representational power at no extra cost
in terms of training and inference. Here, we investigate analogues of classical
networks with stochastic layers, by introducing a class of hybrid stochastic networks
that combine layers of several types, including stochastic quantum and classical
layers and deterministic classical layers. Further, we introduce Quantum-Annealing
(QA)-based sampling techniques that allow such models to be efficiently learned
on current QA architectures, using variational and importance-sampling based
approaches. Our framework provides benefits in training existing models, including
Quantum Boltzmann Machines (QBMs) and Quantum Variational Autoencoders,
by allowing local transverse field weights to be optimized jointly with other model
parameters, and allows novel hierarchical hybrid models to be learned efficiently.
We use classical simulations on synthetic and genomics data to test the impact of
including quantum mechanical transverse field terms in such models relative to
their classical counterparts. We show that hybrid models are able to achieve better
predictive accuracy compared to classical models of matching architecture in these
settings, and provide evidence that the local transverse terms can be interpreted
as introducing tunable higher-order interactions by connecting genes belonging to
common biological pathways.

1 INTRODUCTION

Recent approaches to quantum machine learning (QML) have leveraged the potential of quantum
circuits and models to efficiently represent complex distributions and functions to enhance classical
machine-learning approaches, including traditional regression-based approaches [2], Support Vector
Machines [6], and Deep Neural-Networks [1,3,5,6,9]. The latter are examples of Quantum Deep
Learning approaches, which include both gate-based algorithms [3,5] and Quantum-Annealing-based
methods [1,9]. Further, both gate- and annealing-based approaches make use of hybrid classical-
quantum methods during training. For the former, methods have been developed based on the
Variational Quantum Eigensolver [8] to train deep quantum circuits [3,5,6], while the latter use a
quantum analogue of the variational evidence lower-bound (Q-ELBO) [1,9].

Classical deep neural networks may be deterministic or stochastic, where stochastic networks are
those that include probabilistic latent variables at internal layers and/or non-deterministic weights
[15,18,19]. Quantum (neural) networks may also evolve deterministically or stochastically, with the
former being primarily associated with gate-based circuit network models, and the latter associated
with annealing-based approaches that use thermalization to sample from a desired quantum distri-
bution over observables. However, the possibility of using quantum distributions to generate latent
variables in a stochastic network is rarely considered, with the exception of the Quantum Variational
Autoencoder (QVAE) [9], which includes a single layer of latent variables distributed according
to a Quantum Boltzmann Machine (QBM) [1]. Here, we consider the case of stochastic networks
containing multiple layers of probabilistic latent variables, whose layer-wise joint distributions may
be derived from a classical or quantum models or sub-networks, and which may also include classical
deterministic layers. We call such models ‘Hybrid Stochastic Networks’ (HSNs). Such models have
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Figure 1: Summary of Hybrid Stochastic Networks explored in paper, and existing models. (A)
shows combinations of stochastic layers used for various different HSN models (N : Normal, BM:
Boltzmann machine, QBM: Quantum Boltzmann machine layers, -p: structured parameter space, -h:
hierarchical, magenta: hybrid quantum-classical, grey: existing model). (B) shows detailed schematic
for the hierarchical-QBM (QBM-h) model. Notation as in Eq. 1.

intrinsic interest, since using probabilistic latent variables potentially enhances interpretability of
the latent representations of the network, while maintaining the enhanced flexibility of quantum
models. However, while techniques for training arbitrarily deep circuit-based QNN models have been
developed [3,5], as noted, for hybrid-stochastic quantum networks the focus has been on architectures
with a single stochastic quantum layer, such as the QVAE. Further, the Q-ELBO bound used during
QVAE training does not permit direct optimization of the transverse weights in the embedded QBM,
since the gradient of the bounded approximation always drives the transverse weights to zero [1].

In response to the above, we introduce a general framework for learning hybrid stochastic quantum-
classical networks of arbitrary depth. Our framework naturally embeds previous models (QBMs and
QVAEs) as well as allowing more powerful models to be built with multiple latent stochastic layers.
Particularly, we focus on models which contain various combinations of classical Gaussian and QBM
layers, and we define and investigate Hierarchical-QBMs and QBMs with structured parameter spaces
(QBM-h and QBM-p, respectively). Further, we introduce an efficient representation of the clamped
phase of the QBM; this allows clamped statistics (including those of the transverse weights) to be
evaluated directly by drawing samples from a quantum annealer, while requiring only O(log(T ))
space, where T is the implicit number of Trotter slices underlying the representation. As we show,
this representation may be used in the context of score-function gradient [13] and reparameterization
gradient-based methods [9,10,17] for training hybrid stochastic models, including joint optimization
of the transverse weights.

We demonstrate our method’s efficiency and representational accuracy using classical simulations
on synthetic data. Particularly, we show that increasing model expressivity allows models in our
framework to capture structure more effectively than shallow models, and how the accuracy of our
clamped QBM representation compares to continuous time QMC approaches for sampling. We
further test the ability of multiple models in our framework to extract structure from psychiatric
genomics data, showing that our hybrid approach learns generalizable structure more effectively
than entirely classical models on matched architectures. Further, we consider the interpretability
of the quantum models trained on genomics data; particularly, we provide evidence that the local
transverse terms allow tunable higher-order interactions to be learned by connecting genes into
common biological pathways.

2 HYBRID QUANTUM-CLASSICAL STOCHASTIC NETWORKS

We first define the Hybrid Quantum-Classical Stochastic Network model in general form. We
formulate it as a generative model in which the inputs are unobserved latent variables, although these
may be treated as observed in a supervised setting. For a model with L levels of latent variables:

z0 ∼ P0(.; θ0)

z1 ∼ P1(.; θ1 = NNφ1
(z0))

...

x ∼ PL(.; θL = NNφL
(zL−1)). (1)
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Here, NNφ(.) denotes a classical neural network (of arbitrary width and height) with parameters φ,
and z0...L−1, x are vector-valued random variables, which may be continuous or discrete. The model
is fully specified by the set of distributions P0...PL, which may be classical or quantum (containing
at least one quantum layer), and parameters θ0, φ1..φL. We focus particularly on the case where each
Pl is either a classical Gaussian, or a Quantum Boltzmann Machine (QBM). For a Gaussian Pl, we
have θl = {µl,Σl}, where Σl may be a symmetric, diagonal or full covariance matrix. For a QBM
Pl (over a binary observed/latent vector), θl = {bl,Wl, γl}, where b and γ are real vectors of length
N , where N is the number of qubits in the layer, and W is a symmetric matrix of real values with
zero diagonal (dropping the layer suffixes for convenience). Given this parameterization, the QBM is
associated with the following quantum Hamiltonian:

H(θ) =
∑
i

γiσ
(x)
i −

∑
i

biσ
(z)
i −

∑
i,j

Wi,jσ
(z)
i σ

(z)
j , (2)

where i, j range over the qubits 1...N , and we use the notation:

σ(z)
a =

a− 1 times︷ ︸︸ ︷
I ⊗ ...⊗ I ⊗σz ⊗

N − a times︷ ︸︸ ︷
I ⊗ ...⊗ I, (3)

where I = [1 0 ; 0 1], σz = [1 0 ; 0 − 1], and σ(x)
a is defined as in Eq. 3, where σx = [0 1 ; 1 0] is

substituted for σz (here, σz and σx are Pauli matrices). The parameters b and W specify the local
field biases and couplings of the qubits in the computational basis, while γ specifies the strength of a
transverse field local to each qubit (setting γ = 0 results in a classical Boltzmann Machine, BM).
The probabilistic model for the QBM is specified via the density matrix, ρ(θ) = Z−1 exp(−H(θ)),
where Z is the partition function, Z = Tr[exp(−H(θ))]. The probability of a joint configuration x
(or zl if l < L) corresponds to the probability that measuring the qubits in the computational basis
(the z-basis) will result in the configuration x being observed. This corresponds to a partial trace:

PQBM(x; θ) = Tr[Λxρ(θ)], (4)

where Λx limits the trace to only those configurations consistent with x (which will be a single
configuration if x has lengthN ). Note that in this definition of a QBM, the spin observables take on the
values {−1, 1}, but due to the prevalence of the {0, 1} convention in the machine learning literature,
all the following methods are presented with spins taking on values {0, 1}. The transformation
between the two conventions is easily achieved.

We briefly note some special forms of the model in Eq. 1 (see Fig. 1A). If all distributions are
Gaussian, we have a Deep Latent Gaussian Model, as defined in [15], which for the case L = 1
reduces to a traditional VAE [10]. If L = 1 and we set P0 to a classical Boltzmann Machine, and
P1 is Gaussian, we recover a Discrete-VAE [17], while if P0 is a QBM and P1 Gaussian, we have a
Quantum-VAE [9]. We may also define a hybrid model with L = 1, where P0 is Gaussian and P1 is
a QBM, which we call a QBM with structured parameter space (QBM-p). Notice that while a QVAE
models continuous observations, a QBM-p is a model of discrete (binary) observations. Further, we
also define a hybrid Hierarchical QBM (QBM-h), with L > 1, setting P0 to be Gaussian, and all
other distributions to QBMs (which models discrete observations, see Fig. 1B), and a Hierarchical
QVAE (QVAE-h) with L > 1, setting PL to be Gaussian, and all others to QBMs (which models
continuous observations).

Below we discuss training for models in the class defined by Eq. 2. A common requirement for
a number methods is the need to evaluate gradients of the parameters of a QBM conditioned on
a given observed output. In Sec. 2.2, we introduce an efficient representation for approximating
such gradients via sampling; for convenience we discuss this method in the context of a generic
Monte-Carlo estimator of the gradient of the ELBO and Q-ELBO bounds on the log-likelihood
discussed in Sec. 2.1. Sec. 2.3 then discusses how our sampling approach may be applied in the
context of score-function and reparameterization gradient-based methods.

2.1 LOG-LIKELIHOOD BOUNDS

Evidence Lower Bound (ELBO). We briefly review here the evidence lower bound (ELBO), which
is typically optimized when training classical latent variable models [10,15,17,19]. For the model in
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Eq. 2, we may write the ELBO as:

LELBO = EQ(z|x)[logP (x, z)] +H(Q(z|x)),

= EQ(zL−1|x)[logPL(x|zL−1)] +

L−1∑
l=1

EQ(zl,zl−1|x)[logPl(zl|zl−1)] +

EQ(z0|x)[logP0(z0)]−H(Q(z|x)), (5)

where H(.) is the Shannon entropy, and Q(z|x) is a variational distribution over the latent variables,
which typically has a simple form. For a layer l with a QBM distribution, Eq. 4 may be substituted
into the term involving Pl in Eq. 5. We can then express the gradient with respect to the parameters
as:

∂LELBO

∂θl
= EQ(zl,zl−1|x)

[
∂ log(Tr[Λx exp(−H(θl))])

∂θl
− ∂ log(Tr[exp(−H(θl))])

∂θl

]
. (6)

A generic Monte-Carlo estimator for Eq. 6 is formed by taking the difference of the partial derivatives
of the two terms on the RHS, each estimated by averaging over samples from Q(zl, zl−1|x). The
two terms are analogues of the ‘clamped’ and ‘unclamped’ distribution used in classical Boltzmann
machine training. For the QBM, the unclamped term may be estimated as in the classical model
by using samples from PQBM(.; θl) to estimate the required partial derivatives for each sample from
Q(zl, zl−1|x). However, the partial derivatives for the clamped term cannot be estimated analogously
to the classical case (see [1,9]); for small systems, the gradients of the log-trace may be explicitly
calculated, although we discuss alternative sampling strategies in Sec. 2.2.

Quantum Evidence Lower Bound (Q-ELBO). To allow gradients for the QBM to be calculated
analogously to the classical BM, [1,9] introduce a Quantum analogue to the ELBO, which we state
in general form below for the HSN model. This is based on the Golden-Thompson inequality:
Tr[eAeB ] ≥ Tr[eA+B ] for matrices A and B. Applying this to the generative QBM log-likelihood:

P̃l(zl; θ) =
Tr[exp(−Hzl

(θ))]

Tr[exp(−H(θ))]
≤ Pl(zl; θ). (7)

where Hz(θ) = H(θ)− log(Λz) is the Hamiltonian of a ‘clamped’ QBM. The lower-bound P̃l in Eq.
7 may be substituted for the terms involving QBM distributions Pl in the ELBO bound, resulting in
a lower-bound on the ELBO (and hence also the log-likelihood), LQ-ELBO. As shown in [1,9], this
substitution allows the partial derivatives for the first term in Eq. 6 to be estimated by using samples
from the clamped-QBM based on the Hamiltonian Hzl

(θ). However, while this allows the bi and
wij QBM parameters to be trained, the gradient for the γi’s is always negative, meaning that the
transverse weights cannot be trained using this bound since they will always be driven to zero (hence
in [1], a global transverse field term is optimized as a hyperparameter).

2.2 WORLD-LINE REPRESENTATIONS

As discussed, a Monte-Carlo estimate for the Q-ELBO gradient may be derived by sampling from
QBMs with the unclamped and clamped Hamiltonians, H(θ) and Hx(θ), respectively (for con-
venience, we consider a QBM over the output layer, x in the following). Conveniently, these
Hamiltonians may be represented using pairwise energy models over N qubits, allowing samples
to be drawn efficiently by Quantum Annealing, using for instance a D-Wave Annealer [1]. Both
Hamiltonians may also be simulated classically. Most directly, the QBM can be approximated by
a classical Hamiltonian formed by expanding the system over T ‘Trotter slices’; for instance, the
unclamped model corresponds to the following classical BM:

E(x0...T−1; θ) =
∑
i,k

γ′i[xi,k = xi,k+1]−
∑
i,k

b′ixi,k −
∑
i,j,k

w′i,j [xi,k = xj,k],

PQBM(x; θ) ≈ exp(−E(x; θ))∑
x exp(−E(x; θ))

(8)

where k ranges over the 0...T − 1 (with periodic boundary conditions, slice T ≡ slice 0), γ′i ≈
log(γi/T )/2, b′i = 2bi/T , w′i,j = 2wi,j/T , and [.] is the Iverson bracket, which is 1 for a true
proposition, and 0 otherwise. The clamped model may be simulated similarly by clamping the visible

4



Under review as a conference paper at ICLR 2021

units in all Trotter slices to their observed values, and the approximation becomes exact as T →∞.
The continuous limit may also be simulated classically using Continuous Time Quantum Monte
Carlo (CT-QMC) [16] and Population Annealing (PA) [9, 11]. We run a simplified version of the
CT-QMC+PA approach for the unclamped case to evaluate classical, annealing-based simulation
methods for calculating the gradient statistics to train quantum models. For the PA analysis, our
simplification is to use the variable temperature parameter only in the replica reweighting process,
without scaling the parameters at each step (as was done in [9]). We demonstrate that CT-QMC+PA
is able to recover the ground-truth gradient statistics in a synthetic model for a range of γ values, to
an accuracy of < 3e− 4 in mean-squared error (App. A.1, Fig. 3C).

While sampling from Hx(θ) allows the Q-ELBO gradient to be estimated, classical simulation may
also be used to estimate the partial derivatives of the term log(Tr[Λx exp(−H(θ))]) in the ELBO
gradient (Eq. 6). This can be achieved by evaluating the expected statistics needed for the partial
derivatives relative to the distribution below (following [9], and assuming all N units are visible),
which we refer to as ‘partially-clamped’:

E(x1...T−1|x0; θ) =
∑
i,k

γ′i[xi,k = xi,k+1]−
∑
i,k>0

b′ixi,k −
∑

i,j,k>0

w′i,j [xi,k = xj,k],

Tr[Λx0 exp(−H(θ))] ≈ exp(−E(x1...T−1|x0; θ))∑
x1...T−1

exp(−E(x1...T−1|x0; θ))
(9)

Since Eq. 9 is a classical pairwise BM, samples from it may also be drawn using a physical Quantum
Annealer by letting γ → 0 for all qubits. This may be advantageous for small systems, since it avoids
the need for classical Gibbs sampling (or other Monte-Carlo approaches), and leverages any potential
benefits of tunneling in QA [4]. However, the need to replicate the system T times (requiring space
O(NT )), means that for large N and T the number of logical qubits required will exceed the capacity
of current physical annealers (∼2000 physical qubits on D-Wave’s 2000Q system). For this reason,
below (and in App. A.1) we introduce a compressed discrete representation for the partially-clamped
QBM, requiring only space O(N(log(T ) +D)) (for a degree D graph underlying W ).

Auxiliary energy for restricted world-lines. We may approximate Eq. 9, by representing the model
as an energy over world-lines, [xi,1, ..., xi,T−1]. For small γi, we may assume that the number of
flips between 0 and 1 along each world-line are small, and hence a given world-line may be efficiently
represented by a set of break-points denoting the Trotter slices at which the flips occur, which must
be even in number to enforce cycle consistency. This representation is used in classical MCMC
simulations for unclamped distributions (see [21]). In the clamped case, we assume that at most two
break-points occur per world-line, denoted (ui, vi), where ui, vi ∈ {0...T − 1}, ui ≤ vi, and ui = t
implies a 0/1 flip occurs between slices t and t + 1 (similarly for vi) unless ui = vi. Necessarily,
x0 is fixed to its observed value. We show in App. A.1 that this energy over world-lines can be
represented as a binarized pairwise energy, by using B = log(T ) bits to represent ui and vi each,
and introducing one auxiliary binary variable per world-line and two per pair of world-lines with a
non-zero wij coupling. The compressed representation has a classical energy of the form:

E(u,v,a) = −
∑
i,α

ψi(u
α
i , v

α
i , ai)−

∑
(i,j)∈G,α

ψi,j(u
α
i , u

α
j , v

α
i , v

α
j , a

(1...4)
i,j ), (10)

where α ranges from 1...B, ui =
∑
α 2B−αuαi (similarly for vi), G is the set of edges with non-zero

wij couplings, and the potential functions ψi and ψi,j are each boolean polynomials of degree two.
Since each world-line requires only 2N log(T ) bits, and up to 4 auxiliary bits are required per
pairwise edge (|G| = ND/2 if each node is connected to D others), the number of qubits required
to represent Eq. 10 is O(N(log(T ) + D)). As noted in Appendix A.1, not all configurations of
u,v,a will result in valid world-line configurations in the partially-clamped QBM model. For this
reason, rejection sampling must be used for non-valid configurations. However, we show that the
representation may be fine-tuned to trade off the number of samples rejected versus the variance of
the Monte-Carlo gradient estimator by an importance-sampling based approach. Particularly, we
show that, by tuning the acceptance probability, the auxiliary energy can efficiently estimate the
necessary gradient statistics for QBM training with an accuracy comparable to CT-QMC+PA (App.
A.1, Fig 3B-C; note that the relative efficiency of drawing samples using CT-QMC+PA and our
auxiliary energy implemented on a physical quantum annealer is likely to depend strongly on system
size). Further, Appendix A.1 shows that the auxiliary energy may be expanded to include an arbitrary
number of breakpoints, at the cost of an increased space complexity.
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2.3 ALGORITHMS

Above, we have discussed the application of QBM sampling approaches to generate generic Monte-
Carlo estimates for the ELBO and Q-ELBO gradients in Sec. 2.1. We now briefly consider alternative
methods to which the sampling-based approaches of Sec. 2.2 may be applied. Most directly, variance
reduction methods may be applied, such as score function gradients, to the Monte-Carlo estimates
outlined [13,14]. Further, the reparametrization trick for discrete latent variables introduced in [17],
and used in the context of QVAE training in [9], may also be used to learn HSNs having a QBM
only as P0 and all other layers Gaussian. Models of this form may be optimized using the Q-ELBO
by directly extending the methods of [9]. In this context, however, our efficient auxiliary restricted
world-line energy representation may also be applied to avoid lower-bounding the QBM terms in
the ELBO objective, allowing efficient training of local transverse terms which is not permitted
by the Q-ELBO bound. Finally, our sampling methods may also be applied to train HSNs using
recent importance sampling and multi-sampling approaches [12,18], which have not previously been
explored in the context of QML models. In the experimentation (Sec. 3) we focus on score-function
gradient methods, which are used for both quantum and classical models (see Appendix A.2 for
details).

3 RESULTS

3.1 DENSITY ESTIMATION

Synthetic Data. We begin by comparing HSN models with different architectures and distributions
on a synthetic density estimation task. Here, we particularly investigate (a) the relative performance
of quantum and classical models with matching architectures, (b) the effects of adding hierarchical
structure, and (c) the performance of quantum models trained using the auxiliary restricted world-line
energy from Sec. 2.2. For this purpose, we use the following synthetic task: The training, validation
and test data each consist of 100 data points, each being a binary vector of length 8. The binary
vectors are generated by (a) choosing uniformly from 20 prototype vectors (each generated by uniform
sampling), and (b) adding ‘correlated noise’ to the prototype. To generate the correlated noise, 5 pairs
of bits are predefined by uniform sampling (common to all prototypes), and with probability 1/3,
each pair is activated for a given data point. For those pairs activated, the prototype bits are flipped at
those positions (for intersecting pairs, the common bits are only flipped once). We then test the ability
of each model to represent the underlying distribution, which by design incorporates a complex web
of dependencies between pairs of bits and the prototype patterns. We compare the performance of
4 HSN models on this data: (1) a BM-p with a latent space of dimension 2 (z0), a fully connected
output BM over 8 bits (x), and a classical NN with two hidden layers of 20 units connecting the
two; (2) a QBM-p with the same architecture as (1), along with individual γ terms for each of the
output units; (3) a QBM-h, which adds an intermediate latent stochastic QBM layer (z1) over 4
qubits, and connects each pair of stochastic layers with two level, 20 unit, classical NNs; and (4) a
model identical to (3), but trained with the auxiliary energy from Sec. 2.2, labeled QBM-h-aux. We
optimize all models using score-function gradients and Gibbs sampling, and monitor the validation
error as an early stopping criterion to stop training. The log-likelihood is estimated on the test-set
using an Approximate Bayesian Computation estimator (see Appendix A.2 for details), and 5 Trotter
slices are used to simulate all quantum models. The results for all models over 5 synthetic datasets
are shown in Fig. 2A. As shown, there is a clear separation in performance between the hierarchical
(3-level) and non-hierarchical (2-level) models (p < 0.001, ANOVA, and p < 0.05, paired t-test).
The QBM-p performance is slightly higher than the BM-p, and the QBM-h-aux is marginally lower
than the QBM-h (p < 0.05 and n.s. respectively, paired t-test); in the latter case, this suggests that
the auxiliary energy function does not have a significant adverse affect on training the QBM-h model.

Genomics Data. We duplicate the set-up used above to analyze psychiatric genomics data from the
PsychENCODE project [20], consisting of gene expression (RNA-Seq) levels from post-mortem
prefrontal cortex samples of control, schizophrenia (SCZ), bipolar (BDP) and autistic (ASD) subjects.
We select restricted subsets of the data by choosing N = 50 or N = 200 samples each for training,
validation and testing sets, balanced for control and SCZ subjects, and selecting 8 genes out of the
‘high-confidence schizophrenia genes’ subset found in [20], which are most strongly correlated with
SCZ (SLC35G1, SERPINA3, GFAP, SLC14A1, C2CD2, CP, C4A, PENK). To replicate the set-up for
the synthetic task defined above, we binarize each gene’s expression by thresholding it at the median
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Figure 2: Results for density estimation, and model interpretation of γ-terms. (A) shows test-set
likelihood of models on synthetic data, and (B) on psychiatric genomics data density estimation tasks.
Bracketed significance levels are shown for 1-Factor ANOVA tests across models, while braces show
pairwise comparisons (1-tailed paired t-test). Box plots are evaluated over 5 data partitions, with
median, inter-quartile and 0.9-quantile ranges shown. (C) shows distribution of −γ′-terms across
models/layers and grouped by gene. Bars show 0.75 percentile magnitudes, and crosses show median
values. See text for discussion.

Table 1: Comparing classification accuracy on psychiatric genomics data. Table shows mean and
standard deviation for the classification of case-control status using a kernel classifier in the latent
space of each of the model classes (single), and a classifier based on a weighted combination of
kernels in the latent and observed spaces (joint).

Kernel BM-p QBM-p QBM-h QBM-h-aux
Single 0.645± 0.027 0.65± 0.024 0.648± 0.028 0.65± 0.031
Joint 0.667± 0.032 0.667± 0.035 0.668± 0.036 0.67± 0.037

value across all subjects. Fig. 2B shows the corresponding model performances on the genomics
data where differing amounts of data are used for testing and training, across 5 partitions of the
data. As shown, each exhibits a similar pattern of model performances relative to the synthetic data.
Additionally, the gain in performance of the QBM-p relative to the BM-p model appears to be more
evident in the small dataset size (N = 50), suggesting that the extra expressive power and associated
biases of the QBM-p model (including implicit higher-order interactions, as explored below) is useful
for identifying generalizable structure in the small data setting. Further, the separation between
hierarchical and non-hierarchical models is accentuated in the large-data setting (QBM-p vs. QBM-h,
p < 0.01, 2-sample t-test), indicating that these models are able to more fully exploit their increased
capacity in this setting. Finally, we also compare the ability of quantum and hierarchical HSN
models to model continuous gene expression data densities using the VAE, QVAE and QVAE-h
network models (see Fig. 1), defined using identical architectures to the BM, QBM-p and QBM-h
models above, with binary and continuous units exchanged where relevant. These achieve estimated
log-likelihoods of -297/-293, -260/-279, and -239/-263 for training/testing using VAE, QVAE and
QVAE-h models respectively (mean across 5 folds), showing that our hierarchical framework can
also improve the fit of models with continuous outputs, such as the QVAE [9].

3.2 CLASSIFICATION OF PSYCHIATRIC DISORDERS

We further investigate each model by testing the ability of the representations learned in the latent
space to perform classification of case-control status (for Schizophrenia) using the genomics data
above (N = 200). We use a kernel classifier, calculating the Mahalanobis distance between a
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given test point and all training points using the z0 returned for each data point by the encoder, and
predicting the class by taking the weighted mean across the vectors [0 1] and [1 0], representing
cases and controls respectively, while optimizing the variance of the Mahalanobis kernel σ on the
validation partition. The results are shown in Table. 1 in the ‘single’ kernel line (note that, due to the
data balancing, chance is 0.5). As shown, the quantum and hierarchical models achieve slightly better
predictive performance, although the increase is smaller here than in the case of density estimation.
Further, we compared to logistic regression and kernel predictors using the original raw features x0.
These give performances of 0.645± 0.27 and 0.665± 0.029 respectively. Notably, while the logistic
predictor is lower than the models above, the kernel predictor on the raw features is slightly higher;
we thus tested whether the latent space kernels of the trained models are capturing complementary
information beyond the kernel on the raw features by optimizing a joint kernel consisting of a
weighted combination of the raw-features and latent-space kernels for each model on the validation
partition. The ’joint’ kernel line in Table. 1 shows the results for these combinations, showing that
indeed the joint kernel is able to enhance performance, although the improvements are again small.

3.3 INTERPRETATION OF γ-TERMS

Given the enhanced performance of the hybrid quantum-classical models compared to classical
models with matching architectures, we were interested to investigate possible interpretations of the
the novel model parameters introduced in the hybrid networks, namely the γi transverse terms. We
thus investigated the statistics of these parameters across models, both plotting their characteristic
magnitudes per layer in each hybrid model, and per gene in the output stochastic layer across models
(see Fig. 2C). We note that, in order to estimate these distributions, we feed-forward the z0 latent
vectors encoding each training instance, and collect the −γ′i ≈ − log(γi/T )/2 parameters for the
QBM distributions generated by the decoder (the couplings between the Trotter slices). As shown,
the hierarchical models exhibit a characteristic pattern whereby the −γ′ terms in the first stochastic
layer are generally larger than those in the output layer. Further, the per-gene −γ′i parameters show
a remarkable consistency across models, with the genes SLC35G1, SLC14A1, CP, PENK having
notably higher values across models than the others. Particularly, this group includes two members
of the SLC family of membrane transport proteins, and the membranous/extra-cellular synaptic
protein PENK. Potentially, increased −γ′i terms for these genes permits the model to use implicit
higher-order interactions between them, by strengthening the connections between the Trotter slices
on the world-lines for these genes, while other genes rely primarily on intra-slice pairwise interactions.
We perform an investigation of a simple synthetic energy in Appendix A.3 to demonstrate how the
introduction of transverse terms can distort the classical pairwise energy to generate an effect similar
to the introduction of a higher-order (non-pairwise) potential into the classical energy. Potentially,
therefore, large −γ′i magnitudes (couplings) may be used to identify genes engaged in higher-order
interactions (epistasis) involving biological pathways significant for a disorder.

4 DISCUSSION

We have introduced a framework for constructing hybrid stochastic networks, with layers of prob-
abilistic latent variables governed by both classical and quantum distributions. Further, we have
introduced methods for learning such networks, which allow the transverse γ terms in all layers
to be optimized jointly using the ELBO bound, by formulating an efficient representation for the
partially-clamped QBM distribution; a number of existing models fall into our framework (such as the
QBM and QVAE), which may be optimized using our approach. Future directions include adaptation
of our model for testing on a physical QA architecture (including an additional mapping from logical
qubits to physical qubits [2]). Further, additional types of quantum layer may be included in the
model, defined not only by QBMs, but more generally by a quantum circuit, using a gate-based
model; in this case, the techniques we have developed may be ported to optimize gate-based models
with latent variables, which are currently under-explored [3]. Finally, we plan to explore further
the interpretability of hybrid networks trained using our approach. Particularly, we have suggested
that the γ terms may consistently distort the energy to allow higher-order interactions to be learned
between features; we plan to investigate this phenomenon further across domains, as well as the
potential for using domain-specific knowledge [20] to place priors on the latent structure of both the
pairwise and transverse terms based on these observations.
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A APPENDIX

A.1 AUXILIARY ENERGY FOR RESTRICTED WORLD-LINES

We show here how the ‘partially-clamped’ energy in Eq. 9 can be expressed in the form of Eq. 10. To do so,
we consider an energy across the variables ui=1. . . N and vi=1. . . N , where 0 ≤ ui < vi < T or ui = vi = 0
(whereN and T are the number of qubits and Trotter slices respectively; note that we index the qubits from 1...N
and the Trotter slices from 0...T − 1). For convenience, we will also write ui = (ui, vi), and u = {ui=1. . . N}.
Here, ui and vi represent break-points in each column of clamped energy Trotter expansion, E(x1. . . T−1|x0).
Hence:

xi,1. . . ui = xi,0,

xi,ui+1. . . vi = 1− xi,0,
xi,vi+1. . . T−1 = xi,0. (11)

We can write the energy of a given configuration implied by this representation directly as an energy over u:

E2(u) = −
∑
i

φi(ui)−
∑
i,j

φi,j(ui,uj). (12)

Here, φi and φi,j are respectively unary and pairwise potentials across columns in the original Trotter formulation.
These have the form:

φi(ui) = −2γ′i[vi > ui] + bui (vi − ui),
φi,j(ui,uj) = w

(1)
i,j |ūi ∩ ūj |+ w

(2)
i,j |ūi ∩ uj |+ w

(2)
i,j |ui ∩ ūj |+ w

(1)
i,j |ui ∩ uj | (13)

We use the set notation here to operate on the columns ui, so that as a set, ui represents the (discrete) interval
{ui+1. . . vi}, and ūi represents its complement, {1. . . T −1}\ui (see Fig. 3A for schematic). The coefficients
in Eq. 13 are defined as:

bui = b′i(1− 2xi,0),

w
(1)
i,j = w′i,j [xi,0 = xj,0],

w
(2)
i,j = w′i,j [xi,0 6= xj,0]. (14)

This gives us a reformulation of the energy of Eq. 9, since E2(u) = E(x(u)|x0) + C, writing x(u) for the
configuration of x1. . . T−1 corresponding to u.

We wish to represent Eq. 14 in a binarized form (corresponding to Eq. 10). To do so, we introduce binary variables
to represent u, uα=1. . . B

i and vα=1. . . B
i , where uαi is the α most significant bit in the binary representation of

ui. Hence, B = log2 T , and ui =
∑
α 2B−αuαi . Further, we introduce auxiliary binary variables a, which will

be used as part of the binary representation, and implicitly allow each energy potential in the model to have
local copies of the uαi and vαi variables (to be explicitly defined below). We now specify the binarized auxiliary
energy function, E3, as introduced in the main paper (Eq. 10), where we use ubin, vbin and a to collectively refer
to sets of binarized variables, and G to refer to the graph of pairwise edges:

E3(ubin,vbin,a) = −
∑
i,α

ψi(u
α
i , v

α
i , ai)−

∑
(i,j)∈G,α

ψi,j(u
α
i , u

α
j , v

α
i , v

α
j , a

(1...4)
i,j ), (15)

We now define the explicit forms of the binary potentials, ψi and ψi,j . For ψi, we set:

ψi(u
α
i , v

α
i , ai) = ai · 2B−α(bui + ci)(v

α
i − uαi ) + (1− ai)(2γ′i −K(uαi + vαi )). (16)

Here, we introduce an auxiliary binary variable ai, which represents, for a given column, whether vi > ui. If so,
then the potential represents the cost or benefit incurred by the unary terms between the breakpoints, otherwise it
represents the benefit gained by having no breakpoints in the column (2γ′i). Further, we also introduce a large
constant K; this is used to drive both the column breakpoints towards zero if ai = 0, hence enforcing vi = ui.
We note that the constraint, vi ≥ ui will only be satisfied stochastically. If bui > 0, this constraint will tend to be
satisfied, since the energy will be lower in configurations for which vi ≥ ui. However, when bui < 0 the reverse
is true. For this reason, we allow the positive constant ci to be added to the unary cost in Eq. 16, whose value
can be optimized to allow efficient importance sampling as discussed below.

ψi,j(u
α
i , u

α
j , v

α
i , v

α
j , a

(1...4)
i,j ) = (w

(2)
i,j − w

(1)
i,j )2B−α[a

(1)
i,j (uαi − uαj ) + (1− a(1)i,j )(uαj − uαi ) +

a
(2)
i,j (vαi − vαj ) + (1− a(2)i,j )(vαj − vαi )− a(3)i,j (uαi − vαj )−

a
(4)
i,j (uαj − vαi )]−Ka(3)i,j a

(4)
i,j . (17)
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Figure 3: Auxiliary energy for restricted world-lines. (A) provides a schematic of the notation used in
App. A.1. (B) compares the efficiency of importance sampling methods for estimating the expected
bias statistics in a partially-clamped QBM model using the auxiliary energy introduced in App. A.1
versus uniform sampling as the proposal distribution. (C) compares the accuracy of continuous-time
MCMC with population annealing for estimating both bias and pairwise weight statistics in QBMs
with different γ terms.

The auxiliary variables here represent the conditions a(1)i,j = [ui > uj ], a
(2)
i,j = [vi > vj ], a

(3)
i,j = [ui > vj ],

a
(4)
i,j = [uj > vi]. When these conditions are met, the potential represents the correct energy, according to Eq.

13. Assuming (w
(2)
i,j − w

(1)
i,j ) > 0, a(1)i,j and a(2)i,j , will tend to take the correct values, since the first four terms in

the summation over α will minimize the energy for these settings. However, the settings of a(3)i,j and a(4)i,j will

tend to violate the conditions above. Conversely, when (w
(2)
i,j − w

(1)
i,j ) < 0, the reverse will be true. We discuss

below how to address this issue using importance sampling.

With the binary energy so defined, we have that, for K =∞ and c = 0:

E2(u) = E3(ubin,vbin,a) + C (18)

where ubin,vbin are the binarized representation of u, for all configurations in which the following conditions
hold for all i and (i, j) ∈ G:

vi ≥ ui

a
(1)
i,j = [ui > uj ]

a
(2)
i,j = [vi > vj ]

a
(3)
i,j = [ui > vj ]

a
(4)
i,j = [uj > vi] (19)

A possible approach to sampling from P2(u)) ∝ exp(−E2(u)) is thus to sample from E3(ubin,vbin,a), and
reject all samples violating any of the conditions in Eq. 19. As K → ∞, this approach will approximate
drawing samples from the true distribution arbitrarily closely. However, as discussed above, the specific
values of the unary and pairwise terms will cause certain constraints to be rarely satisfied, meaning that
for a large model, the accepted proportion of samples will be low. To increase the proportion of accepted
samples, we fine-tune the offset c discussed above in Eq. 16 to reach a desired acceptance ratio, and set
a
(3)
i,j = a

(4)
i,j = 0 for pairwise potentials where (w

(2)
i,j − w

(1)
i,j ) > 0 in Eq. 17 (dropping constraints 4-5 in Eq.

19), and a(1)i,j = a
(2)
i,j = 0 otherwise (dropping constraints 1-2 in Eq. 19). Since the accepted samples are now

from a modified energy function, we use importance sampling to estimate the desired expectations of samples
drawn from this distribution (Eq. 6); hence, for a given sample, we calculate r̃ = p̃/q̃, where p̃ and q̃ are the
unnormalized true (exp(−E2(u))) and approximating (exp(−E3(ubin,vbin,a))) distributions respectively, for
samples drawn from q. For a given function f and samples 1...S, and letting r̃tot =

∑
s r̃s, we then have:

Ep[f(x)] ≈ 1

S

∑
s

r̃s
r̃tot

f(x). (20)

The efficiency with which the required gradient statistics can be calculated will depend on a trade-off between
the acceptance probability, and the rate of convergence of the approximation in Eq. 20. In Fig. 3B, we
show that the constant c may be tuned to enable efficient estimation of the bias update statistics from Eq. 6,
as compared to a baseline importance sampling approach, which uses uniform sampling as the approximate
distribution q in place of the auxiliary energy E3. Here, we calculate updates for a 2-spin QBM, having
{b1, b2, w, γ} = {1,−0.5, 0.5, 4} and T = 4 Trotter slices, and set c = 1 (performance is evaluated over
500 trials drawn from each clamped configuration). In Fig. 3C, we show that the discretized auxiliary energy
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approach is able to reach a similar level of error in estimating the gradient statistics to a continuous-time MCMC
approach based on population annealing [11], where the statistics in Fig. 3C are estimated from a QBM over 5
qubits, where we sample bias terms uniformly between -0.5 and 0.5, generate a fully connected weight matrix
W with weights uniformly sampled between 0 and 5, and set γ as shown in Fig. 3C. As noted in the main paper,
the space complexity of Eq. 15 is O(N(log(T ) +D)), where |G| ≤ ND/2, assuming each node is connected
to at most D others.

Finally, we note that the auxiliary energy construction above may be generalized to allow an arbitrary number
of break-points. To do so, we form M groups of T Trotter slices. Each group m has its own break-points
0 ≤ ui,m ≤ vi,m < T . However, the break-points in neighboring groups m and m+ 1 may be connected by
setting vi,m = T − 1 and ui,m+1 = 0. Hence, there will be at most 2M break-points per world-line, although
some of these may be joined, or not present, and each group of Trotter slices can contain at most 2 break-points.
The auxiliary energy may then be written:

E4(ubin,vbin,a) = −
∑
i,m,α

ψi(u
α
i,m, v

α
i,m, ai,m)−

∑
(i,j)∈G,α

ψi,j(u
α
i,m, u

α
j,m, v

α
i,m, v

α
j,m, a

(1...4)
i,j,m ),(21)

where:

ψi(u
α
i,m, v

α
i,m, ai,m) = a1ai,m · 2B−α(bui + ci)(v

α
i,mα− uαi ) + (1− a1ai,m)(2γ′i −K(ũαi,m + ṽαi,m)) +

[m > 0] · a1bi,m[K(B + uαi,m − vαi,m)− 2γ′i] (22)

where we let ũαi,m = (1− uαi,m) for α = 1, and uαi,m otherwise (and similarly for ṽαi,m). The pairwise terms
are are identical to Eq. 17, with subscript m’s added to all break-point and auxiliary variables. Similarly to the 2
break-point case, when K =∞ and c = 0 we have E2(u) = E4(ubin,vbin,a) + C when the conditions of Eq.
19 are satisfied for each Trotter slice group. The space complexity of Eq. 21 is O(NM(log(T ) +D)); since
the full Trotter expansion requires space O(NT ), this representation is therefore only efficient if M << T .

A.2 TRAINING USING SCORE-FUNCTION GRADIENTS AND LIKELIHOOD EVALUATION

We briefly discuss here how models in our HSN framework may be optimized using score-function gradient, and
reparameterization gradient methods. For our experimentation, we use score function gradients to calculate the
updates in Eq. 6 [14,22]. The derivatives in Eq. 6 with respect to the model parameters θ are straightforward
to estimate by drawing samples from the clamped and free distributions either using the full Trotter expansion
for QBMs, or our auxiliary energy formulation (see App. A.1). To update the parameters of the variational
distributions, Qφl(zl|x) we use the score-function estimator:

∇φlLELBO =
1

S

∑
s

(logPθ(x, z
(s)
l )− logQφ(z

(s)
l |x))×∇φl logQφ(z

(s)
l |x), (23)

where z(s)l , s = 1...S are samples drawn from Qφl(zl|x) (for which we use a product of Bernoulli distributions
for QBM layers, whose expectation is determined by a neural network parameterized by φ). As noted in [14],
the distribution logPθ need only be evaluated in up to a normalizing constant; hence, we use log of the expected
value of exp(−EQBM-sc(z

(s)
l )), over samples drawn from EQBM-sc, which is the partially-clamped energy from

Eq. 9.

An alternative possibility for optimization would be to use the reparametrization formulation for BM and QBM
hidden variables introduced in [9]. We note that [9] uses the reparameterization scheme to calculate both ELBO
and Q-ELBO gradients, where the ELBO gradients are calculated using the full Trotter expansion. Hence, our
auxiliary energy may be directly substituted in the ELBO updates, avoiding the need to resort to the Q-ELBO
approximation, and providing an efficient alternative for QVAE training which allows the local γ terms to be
trained concurrently with the other model parameters.

Finally, we outline our approach to estimating the likelihood of a binary output vector with respect to the HSN
model as a whole, using Approximate Bayesian Computation (ABC, see [23]). To do so, we set a deviation
threshold, δ, and sample a fixed number S of output vectors xs from the HSN (by sampling from all latent
variables and finally from the output layer). We then estimate the likelihood of a given output x0 as the fraction
of samples which are within a Hamming distance δ of the observed vector:

P (x0) ≈
∑
s[D(x0,xs) ≤ δ]

S
. (24)

When δ = 0 this reduces to the standard frequentist estimator. Throughout our experimentation, we take δ = 2.

A.3 SYNTHETIC MODEL FOR γ-TERM INTERPRETATION

Finally, we provide details of a synthetic investigation to support the claim in Sec. 2.3 that the γ-terms in
the QBM layers provide a tunable mechanism for introducing higher-order interactions into a BM energy.
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Figure 4: Synthetic model for γ-term interpretation. (A) and (B) show histograms of outputs evaluated
using the QBM and higher-order BM energies defined in Eqs. 25 and 26 respectively for varying
settings of the model parameters (1000 trials for each configuration). Increasing −γ′ in (A) is shown
to have a similar effect to increasing the weight of the higher-order term V in (B) by comparing
models with similar weight on the lowest-energy configuration. See App. A.3 for further details and
interpretation.

Particularly, we investigate the following 4-qubit pairwise QBM energy:

H = −
∑
i

γσ
(x)
i −

∑
i 6=j

wσ
(z)
i σ

(z)
j , (25)

in which we note that the γ parameter is chosen to be the same across all the qubits. We compare this to the
following classical BM, with an additional 4-way higher-order term:

E(x) = −
∑
i6=j

w[xi = xj ] +
∑
i 6=j

w[xi 6= xj ]− V [x1 = x2 = x3 = x4]. (26)

Due to symmetry, both of these energy functions can be summarized by the probability that a given output is in
one of three possible equivalence classes: (1) all outputs identically 0 (resp. 1); (2) three outputs are 0 (resp.
1) and one is 1 (resp. 0); (3) two outputs are 0 and two 1. All outputs in a given equivalence class have the
same probability. Further, when γ = 0 and V = 0, the two models agree. In Fig. 4, we plot the histograms
for the three equivalence classes above as we vary γ and V for the first (A) and second (B) model respectively.
We are interested in comparing models with approximately the same probability for class (1) when γ = 0 and
V = 0, versus when either of these terms is non-zero. The numerical grids on the lower-right pick out pairs
of histograms for which this is the case, and the exact numerical values for these histograms are given in the
colored boxes (the γ = 0/V = 0 case is given first). As can be seen, increasing −γ′ or V has the similar effect
of decreasing the frequency with which equivalence class (2) is observed, and increasing class (3) for a fixed
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probability of class (1). We may interpret this as increasing the ’stability’ of the lowest energy configurations
(i.e. those in class (1)): by reducing the probability mass in class (2), a system at the lowest energy is more
resilient to single bit-flips away from this configuration. In this way, increasing −γ′ in this toy problem has
a similar effect to explicitly including an extra higher-order potential in a classical BM to enforce the lowest
energy configuration. We suggest that in larger systems, the local γi terms may similarly reinforce the joint
configurations of restricted groups of outputs by increasing the coupling magnitudes (−γ′i) between the Trotter
slices for outputs participating in higher-order interactions. We note, however, that the precise effect will depend
on the relative strengths of the γi and wij terms, as well as the differences between the γi terms.
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