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Abstract001

We propose MAGNET, a principled approach002
to synthesizing high-quality training trajecto-003
ries to enhance the function calling capabil-004
ity of large language model agents in multi-005
turn conversations with humans. To reflect006
the complicated function interactions in multi-007
turn cases, we take a graph perspective and008
design novel node operations to build reliable009
signature path of functions. We iterative trans-010
form the signature path into pairs of multi-011
turn user queries and executable FCs. Mo-012
tivated by context distillation, we propose to013
leverage the pairs of query-FC to sample pos-014
itive trajectories from a teacher model with015
the references as context and negative trajec-016
tories that contrast with the positive ones on017
targeted error types. Experiments show that018
our 14B model trained with the positive tra-019
jectories with supervised fine-tuning and pref-020
erence optimization against negative trajecto-021
ries, MAGNET-14B-mDPO, obtains 68.01 on022
BFCL-v3 and 73.30 on ToolQuery, surpassing023
the performance of the teacher model Gemini-024
1.5-pro-002 by a large margin.025

1 Introduction026

Autonomous agents based on large language mod-027

els (LLMs) have made remarkable progress on028

fulfilling complex agentic tasks (Yin et al., 2024;029

Ma et al., 2024; Zhang et al., 2024), benefiting030

from the high capacity of reasoning and planning031

of LLMs (Achiam et al., 2023; Team et al., 2024;032

Hui et al., 2024). Among the skillset for agents,033

the ability to leverage external tools or applica-034

tion programming interfaces (APIs) 1 and inter-035

act with humans to perform actions in environ-036

ments is in the central of successful completion037

of many agentic tasks. Towards this end, recent038

LLMs have been tailored for function calling (FC)039

abilities (Schick et al., 2023; Patil et al., 2023;040

1The terms, function calling and tool-use, function and
API, are used interchangeably in this paper.

Dubey et al., 2024; Yang et al., 2024), achieving 041

improved performance on benchmarks that simu- 042

late real-world APIs (Yan et al., 2024; Yao et al., 043

2024; Guo et al., 2024; Ma et al., 2024). 044

However, by qualitatively scrutinizing the behav- 045

iors of models, we find that despite the advance- 046

ments in composing independent FCs, it is still 047

challenging for current LLM agents to perform 048

multi-step and multi-turn interactions with users 2 049

where LLM agents reason, compose FCs and ana- 050

lyze outputs from FCs to respond (Yao et al., 2024; 051

Yan et al., 2024). We summarize three main chal- 052

lenges and common mistakes in multi-turn FC, as 053

illustrated in Figure 1: 1) Nested FCs: some turns 054

require multiple or even nested FCs which might 055

not be explicitly requested in the query; 2) Long 056

dependency: some turns require information from 057

the conversation history to compose FCs; 3) Irrel- 058

evance: some turns might contain missing func- 059

tionality or parameter values, for which additional 060

clarification questions are required. Performance- 061

wise, in the Berkeley Function Calling Leaderboard 062

(BFCL-v3) (Yan et al., 2024), the best proprietary 063

model achieves 47.62% success rate on multi-turn 064

cases, while some public models have only around 065

10% success rate. 066

Synthesizing or distilling data from stronger 067

LLMs has been proven a powerful way to improve 068

the reasoning abilities (Guo et al., 2025) of weaker 069

LLMs. Yet the limited performance of existing 070

models on multi-turn cases aggravates the diffi- 071

culty in gathering high-quality training trajectories 072

to improve the multi-turn ability of public mod- 073

els. To bridge the gap between single FC and 074

multi-turn interactions and build reliable trajecto- 075

ries, we propose a principled pipeline, called Multi- 076

turn function-cAlling data synthesis with Graph 077

2Multi-step interactions require the LLMs to execute mul-
tiple internal FCs to address a single user request, while multi-
turn interactions involve an extended exchange between the
user and the agents, resulting in multiple conversational turns.
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Turn 2
With my flight now secured, I need to purchase an insurance 

for this trip.  

Nested and Implicit FC Example
Turn 1

I'm planning a journey from Los Angeles to New York on the 
morning of April 15th 2024, preferring to fly business class. 
Arrange this flight using my pre-linked credit card with id 
'card_123456789' and access token 'abc123xyz' 

Error 1:  ( Not calling necessary functions and hallucinating 
arguments)
book_flight(access_token='abc123xyz', card_id='card_123456789', 
…, travel_class='business', travel_cost=1000.0)

Error 2: (Asking for information which is actually obtainable)
I need the cost of the flight to help book the flight. Please 
provide the cost of your flight from Los Angeles to New York. Long Dependency Example   

Turn 4
I’ve reached the decision to cancel my New York trip due 

to unforeseen personal circumstances. Could you 
proceed with the cancellation process as soon as 

possible?

Missing function and parameters
Turn 5

Lastly, will you fetch the invoice for that recent booking 
using my access token? I need a summary for my records

（The context does not provide the retrieve invoice 
function and the actual access token）

🤖get_flight_cost(travel_from='LAX',travel_to='JFK', 
…')

🛠 {"travel_cost_list": [2400.0]}

🤖book_flight(access_token='abc123xyz',, …, 
,travel_cost=2400.0)

{"booking_id": "3426812", "transaction_id": 
"45451592", "booking_status": true}🛠

🤖

Common Mistakes

MAGNET  Trajectory

Common Mistakes
Error 1:  ( Failed to recall the booking id info from Turn 1)

I need the booking ID to cancel the trip.

🤖cancel_booking(booking_id=3426812)

🛠 {"message": “Booking 3426812 
cancelled.”}

🤖Your flight booking has been 
successfully cancelled

MAGNET  Trajectory

Common Mistakes
Error 1:  ( Call the wrong function)

get_booking_history(booking_id=...)

🤖I’m not provided with the function to retrieve the 
invoice.

I have updated the function …. Can you 
try again? 

🤖

MAGNET  Trajectory

Error 2:  (Hallucinate a value for the access token)

retrieve_invoice (access_token=’ABCDEF’, …)

👤
It seems there's no access token. Could you 
please double-check the access token value?

The specific access token is 
abc123xyz456👤

🤖retrieve_invoice(access_token='abc123xyz
456', booking_id='34268132’')

🛠 {"booking details": ….}

Turn 3
Please message my friend Joey about this recent trip. Use 
the text: Going to visit NYC on 2024-05-14. Come grab a 

coffee!’ 

🤖 send_message(message=’....’, to=’Joey’)

🛠 {"message": “Message sent!”}

MAGNET  Trajectory

(Skipped for Clarity)

Your flight from LAX to JFK on April 15, 2024 has 
been booked. Your booking ID is 3426812 and the 
transaction ID is 45451592

Figure 1: Illustration of challenges and common mistakes in multi-turn FC. An agent needs to understand function
outputs and finish follow-up queries from users. This brings several challenges to the agent such as nested FCs
(turn 1), long output dependencies (turn 4), irrelevant functions (turn 5).

Translation, or MAGNET, to collect trajectories078

to train public models with both supervised fine-079

tuning (SFT) and preference optimization.080

Our method is based on iterative back-and-forth081

translation (Section 3.3). Given a sequence of func-082

tion signatures, i.e., function names and documenta-083

tions, we prompt LLMs to iteratively translate them084

into queries, mimicking user requests, and then085

compose executable FCs as references. However,086

forming the function signature path (FSP) is not087

straightforward. Previous works (Qin et al.) focus088

on single-turn FCs and randomly sample functions089

from the same domains. We propose a graph-based090

perspective to construct multi-turn FSPs.091

Motivated by the fact that two functions from092

the same domain are likely to be relevant in terms093

of their inputs and outputs. Therefore, we organize094

functions as nodes in a graph structure and set a095

directed edge between two nodes when the source096

node’s outputs relate the target node’s inputs. We097

call them local dependency graph as the edges098

reflect the dependencies among functions. Based099

on the local dependency graph, we random walk to100

sample related function signatures and form a FSP.101

In the graph-level, we find that those challenges102

mentioned in Figure 1 can be abstracted as node103

operations. For example, nested FCs can be ab-104

stracted as Insert, which adds extra nodes before105

another node. Therefore, we further design three106

node operations: Insert, Merge, Split to enhance107

the initial FSPs and tailor them to cover the chal- 108

lenges. We show through qualitative (Figure 1) and 109

ablation study (Section 4) that including those op- 110

erations largely improve the reasoning process and 111

reduce common mistakes in multi-turn challenges. 112

Given the queries and FC references pairs as ad- 113

ditional signals, we further control the trajectory 114

generation process with Gemini-1.5-pro-002 as the 115

teacher LLM using context distillation (Snell et al., 116

2022). Specifically, we add FC references as hints 117

while synthesizing trajectories to ensure the quality 118

of positive trajectories. To enable preference-based 119

optimization, we also construct negative trajecto- 120

ries by selecting actions that are making mistakes 121

and deliberately add wrong hints with those mis- 122

takes into the trajectories. This makes clear con- 123

trary between positive and negative trajectories. 124

Experiments on two common benchmarks, 125

BFCL-v3 and ToolQuery, demonstrate the advan- 126

tage of our pipeline. By SFT Qwen2.5-Coder mod- 127

els on 34K trajectories and on 4,556 trajectory 128

pairs with multi-turn direct preference optimization 129

(mDPO) (Xiong et al., 2024), our model MAGNET- 130

14B-mDPO achieves rank 4th on the BFCL-v3 131

benchmark, surpassing proprietary models like o1, 132

GPT-4-turbo, and the teacher model, Gemini-1.5- 133

pro-002, adding to the base model by 32.5 points 134

on multi-turn cases. Ablation study further shows 135

that all the components in the pipeline is helpful to 136

improving its capability, and the performance im- 137
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provement can generalize to different base models.138

Our contributions can be summarized as follows:139

• A graph-based perspective for constructing and140

enhancing high-quality multi-turn queries and FC141

references, covering the challenges in multi-turn142

FCs.143

• A novel technique to distill the information pro-144

vided in FC references to construct training tra-145

jectories for both SFT and mDPO.146

• We demonstrate superior performance on BFCL-147

v3 and ToolQuery benchmarks with public mod-148

els trained with our data. Detailed ablation study149

shows the effectiveness of each component.150

2 Related Work151

FC agents evaluation The ability to use external152

tools to solve a complex task when the agent lacks153

some knowledge intrinsically is crucial in agen-154

tic behaviors. A variety of benchmarks have been155

constructed to evaluate such ability. We roughly156

categorize them as follows based on the amount157

of functions needed for each test instance and the158

interactions among functions: (1) single-step; (2)159

multi-steps, which can be further decomposed into160

parallel, multiple (chained but not nested), nested;161

(3) multi-turns. Among those, BFCL-v3 (Yan162

et al., 2024) is a comprehensive benchmark eval-163

uating single-step, multi-steps, multi-turns scenar-164

ios. NexanRaven 3, Toolbench (Qin et al.), Stable-165

Toolbench (Guo et al., 2024) mainly test for multi-166

steps tool-use. Basu et al. (2024) target nested API167

calls. Yao et al. (2024); Ma et al. (2024); Lu et al.168

(2024) feature multi-turns and multi-steps FCs.169

However, most of the above mentioned datasets170

are human curated (with the assistant of LLMs).171

Training FC agents Due to the lack of train-172

ing trajectories, fine-tuning a tool-use agent typ-173

ically starts with collecting training data. Tool-174

former (Schick et al., 2023) replaces segments in175

texts with API calls to train LLMs. (Qin et al.;176

Chen et al., 2024b) synthesize queries from random177

sampled APIs without clear structure. The xLAM178

and APIGen series (Liu et al., 2024b; Zhang et al.,179

2024) unify the format of tool-use data with other180

agentic tasks and automatically generate queries181

from verified APIs. Lin et al. (2024) improves the182

APIGen (Liu et al., 2024b) dataset and propose183

to add function masking and more irrelevant func-184

tions to improve the robustness of agents. Abde-185

3https://nexusflow.ai/blogs/ravenv2

laziz et al. (2024) introduce fine-tuning with multi- 186

task (function calling, instruction tuning) on 110k 187

data. Liu et al. (2024a) synthesize new APIs au- 188

tomatically and directly prompts LLMs to role- 189

play users, agents, and tools. Chen et al. (2024a) 190

adapt composition to improve the quality of single- 191

turn function calling. Among those works, Qin 192

et al.; Chen et al. (2024b); Liu et al. (2024b) back- 193

translate queries from APIs. While our query gen- 194

eration technique adopt similar ideas, to adapt to 195

multi-turn cases, we propose to organize function 196

signatures in graphs and apply node operations to 197

improve graph complexity. Our trajectory synthe- 198

sis methods also diverge from previous methods by 199

incorporating more controls. 200

3 Methodology: MAGNET 201

In this section, we first discuss the whole train- 202

ing pipeline to provide more context (Section 3.1). 203

Then, we dive into our main contribution of synthe- 204

sizing high-quality FC trajectories (Section 3.2). 205

3.1 Training setup and formulation 206

We leverage the typical two-stage SFT + RLHF 207

training. In the first stage, suppose we have a 208

base model and a set of training trajectories
{
τ i
}

, 209

i = 1 . . . n. Each trajectory involves a sequence 210

(k-steps) of user queries, model actions, and tool 211

responses: τ iw =
(
qi1, a

i
1, t

i
1 · · · qik, aik, tik

)
. The 212

SFT training uses maximum likelihood estimation 213

(MLE) to fit the model actions ai1 · · · aik, i.e., the 214

blue parts in Figure 1, given the rest as context. 215

Then, in the second stage, given the SFT model 216

and trajectory pairs
{
τ iw, τ

i
l

}
, i = 1 . . . m, 217

we adopt the mDPO loss (Xiong et al., 2024) 218

and a MLE loss to further tune the SFT model: 219

L (x; τw, τl) = LSFT (x; τw) + λLmDPO (x; τw, τl) ,

LmDPO (x; τw, τl) =

-logσ

(
η

(∑
τl

πθ
(
al|sl

)
πref (al|sl)

−
∑
τw

πθ (a
w|sw)

πref (aw|sw)

))
,

220

where τl and τw represents the negative and 221

positive trajectories. λ is a weight hyperparameter 222

for balancing the two losses, πref is the SFT 223

reference policy, and πθ is the mDPO policy. Next, 224

we dive into MAGNET, our method that synthesizes 225{
τ i
}

, i = 1 . . . n and
{
τ iw, τ

i
l

}
, i = 1 . . . m. 226

3.2 Data Construction Overview 227

Overall, MAGNET first generates pairs of queries 228

and FC references, and then, transform them into 229

3
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(1) Function Signature Path 

(3) Back-and-forth translation 

(4) Trajectory pair construction 

cities_by_range 

get_distance  set_navigation 

convert_unit 

cities_by_range          get_distance         set_navigation 

Insert 
cities_by_range

Query #1 

get_distance
convert_unit

cities_by_range(range=100, from=SF)

Positive trajectories 
Node 
   name: get_distance 
   tool: geo 
   category: travel 
   out nodes: convert_unit, set_navigation 
   in nodes: cities_by_range 
   parameters: ,,,, 

 
Node 
   name: get_distance 
   tool: geo 
   category: travel 
   out nodes: convert_unit, set_navigation 
   in nodes: cities_by_range 
   parameters: ,,,, 

 
Node 
   name: get_distance 
   tool: geo 
   category: travel 
   out nodes: convert_unit, set_navigation 
   in nodes: cities_by_range 
   parameters: ,,,, 

Function collection 

Local dependency graph

Function signature path 

Random walk on dependency graph 

(2) Node Operation 

Merge 

Split 

cities_by_range get_distance set_navigation

cities_by_range get_distance, set_navigation

cities_by_range get_distance null  set_navigation

Back-translation Forth-translation

I’m planning a short road trip. Can you find cities 
within 100 miles from San Francisco, SF?

Query #2 

Output from last 
function call: San 
Mateo

🤖

May I know the exact 
distance from SF to San 
Mateo in kilometers? 

[Detailed Instruction] [Reference (correct) Hints]

[General Instruction] [Wrong Hints]

Agent-generated path #1

Agent-generated path #2

Agent-generated path #10

...

󰳌 ☑ 

󰳌 ❌ Targeted error types 

Negative trajectories

convert_unit 

...

󰳌 ☑ 

Figure 2: The pipeline for constructing trajectories of function calling. We divide the pipeline into four parts
and depicts each part respectively. (1) Construction of the function pool and function execution graph; (2) Node
operations defined on the function execution graph; (3) Back-and-forth translation to iteratively create multi-turn
queries and fill in function parameters; (4) Construction of positive and negative trajectories by context distillation
of good and bad hints and instructions.

trajectories using a teacher LLM. In the first part,230

the backbone is a back-and-forth translation pro-231

cess inspired by Nguyen et al. (2024); Li et al.232

(2024) that converts FSPs into query-reference233

pairs, which will be introduced in section 3.3. The234

key innovation, however, lies in how we construct235

high-quality multi-turn FSPs with a graph perspec-236

tive and node operations (Section 3.4 and 3.5). In237

the second part, we collect both positive and neg-238

ative trajectories with our newly designed context239

distillation technique. An illustration in the actual240

order of the pipeline is in Figure 2. For the whole241

process, we prompt an LLM to help us on tasks like242

rewriting, back-and-forth translation etc. Without243

extra statement, we will use Gemini-1.5-pro-002244

as the assistant LLM. All the prompts mentioned245

in this section are in Appendix A.246

3.3 Back-and-forth translation247

We start with the back-and-forth translation process.248

Suppose we have obtained a FSP, noted as φ =249

(f1, f2, · · · fk), where each fi, i = 1, 2, · · · , k de-250

notes function signatures used in turn i. In this251

stage, we create the pair of user queries and ex-252

ecutable FC references (qi, ai) with each fi. For253

back-translation, given the function signatures of254

turn i, fi, we prompt the assistant LLM to generate255

qi that involves real information for the parameters.256

Then, for forth-translation, we prompt the assistant257

LLM to convert information in the query into pa- 258

rameter values for the given functions to produce 259

ai. This process is conducted iteratively for each 260

function signature in the FSP to make sure that the 261

outputs from the previous rounds are ready before 262

passing to the later rounds, as illustrated in (3) in 263

Figure 2. From the next section, we highlight how 264

to generate the FSPs, φ. 265

3.4 Function collection and initial FSPs 266

Our function collection inherits from previous 267

works (Liu et al., 2024b). We collect the un- 268

derlined function source codes from the Stable- 269

ToolBench (Guo et al., 2024) and BFCL-v3 multi- 270

turn function implementation (Yan et al., 2024). 271

For functions in BFCL-v3, we rewrite the func- 272

tion name and descriptions using our assistant 273

LLM, i.e., only the real implementation that is 274

not exposed to models are kept. For StableTool- 275

Bench, following APIGen, we select those that 276

contain parameters and are executable verified by 277

simulated calls. In total, we collect 5,011 APIs. 278

Each function in the pool will be viewed as a 279

node. For node attributes, we prompt the assis- 280

tant LLM to label their category and class. For ex- 281

ample, a function like get_current_weather will 282

have category Weather and the tool class Weather 283

condition tool. Our categories come from Sta- 284

bleToolBench, which include 49 categories. 285
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Then, we construct local dependency graph on286

functions from the same category and class. For287

each target node, we sample 30 candidate nodes288

from the same tool class and same category and289

prompt the assistant LLM to judge whether there290

are dependencies between the target node and can-291

didate nodes based on their inputs and outputs. If292

relevant, we will add a directed edge from the target293

node to that candidate node.294

Finally, starting with a random node, we conduct295

a random walk to sample subsequent function calls.296

The random walk ends when the step reaches a pre-297

defined maximum step, which we set as seven. Af-298

ter the random walk, we will collect an initial FSP,299

which consists of function signatures, i.e, function300

names only, shown in part (1) of Figure 2.301

3.5 Node operations for enhanced FSPs302

To better cover the challenges for multi-turn inter-303

actions, we propose to enhance the FSPs obtained304

above with graph-level operations.305

Node OP #1: Insert is designed for handling the306

nested and implicit function call and long depen-307

dency scenario. Consider the query:308

Please check how many kilometers to go309

from San Francisco to San Mateo,310

which should invoke two functions:311

get_distance(from_loc,to_loc)312

convert_unit(in_value=<milage obtained313

from SF to SM>, out_value).314

The first function will return a distance in mileage315

and we need the second function to convert them316

into kilometers. However, the second function is317

not mentioned explicitly in the query to be called.318

Models might not recognize to call the second319

function. To cover this, our Insert operation320

will insert an implicit function signature into the321

current FSP if they are nested. Specifically, for a322

target node in FSP, we check for premise function323

signatures in the function pool using our assistant324

LLM (see the prompts to judge nested functions in325

Appendix A), then, we insert a random premise326

function signature into the target node in FSP.327

Insert will also be useful for creating ex-328

amples covering the long dependency chal-329

lenge. For example, we could Insert330

another cities_by_range(range=) in a few331

rounds later which reuses the outputs from332

get_distance(from_loc,to_loc).333

Node OP #2: Merge is for creating a single-turn334

query that would involve multiple function calls335

and cover short dependency. Notice that the key336

difference with Insert and nested API calls is that 337

we could Merge multiple functions that are rele- 338

vant but not exactly nested. In this case, agents 339

should understand the outputs from the previous 340

functions in this turn to compose the consecutive 341

function. For example, the following query would 342

invoke both get_distance(from_loc,to_loc), 343

set_navigation(distance): 344

Can you check how many kilometers to 345

go from San Francisco to San Mateo and 346

then set up the navigation for me with 347

the obtained distance? 348

Node OP #3: Split is mainly designed for 349

the missing or irrelevant function information 350

scenarios. For the previous query, if the func- 351

tion get_distance is not provided, or the query 352

omits the destination: Please check how many 353

kilometers to go from San Francisco to 354

somewhere, the agent should ask a clarification 355

question. We will create a null node with a ‘miss 356

params’ or ‘miss func’ labels which will act as an 357

indicator when translating. 358

3.6 Positive and negative trajectory sampling 359

To transform (qi, ai), i = 1, 2, · · · , k generated 360

in back-and-forth translation into trajectories, we 361

adopt a novel technique assembles to context distil- 362

lation (Snell et al., 2022). When generating positive 363

trajectories, we hope the teacher model to be as ac- 364

curate as possible. However, none of current LLMs 365

can consistently produce perfect trajectories. So, 366

we propose to add a [Hint] section after each turn 367

to indicate the functions being called during this 368

turn, using the reference FCs and provide detailed 369

instructions when sampling the positive trajecto- 370

ries, to produce high-quality trajectories. We show 371

the prompts in Appendix A. 372

On the contrary, when generating negative trajec- 373

tories, we hope the trajectories reflect the mistakes 374

made by models. So for negative trajectories, we 375

also include such hints but the actual content is a 376

misleading wrong FCs. Those FCs are collected 377

from the mistakes of the SFT model. Specifically, 378

for each data instance, we collect ten trajectories 379

from the SFT model. Then, for each turn in each 380

trajectory, we present it to the assistant LLM as a 381

judge to decide whether this turn includes an incor- 382

rect FC that conforms with any one of the errors 383

defined in the judgement prompt. If so, we will 384

collect them as misleading hints when prompting 385

SFT model to sample negative trajectories. 386
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3.7 Post-processing and data mixture387

We adopt the following post-processing techniques388

to enhance the diversity of the SFT datasets so that389

models trained with our data could be more robust390

to variations in superficial features.391

• For each training data, we shuffle the order of392

available functions in system prompts.393

• We filter out trajectories with rule-based metrics:394

we collect several key words that indicate failed395

FCs at the end of each turn, such as ‘Bad request’.396

‘does not match’ etc. This roughly excludes in-397

correct trajectories or wrong formatting in FCs.398

• Besides multi-turn data, we add the following399

types of data into our final SFT data mix: single-400

turn data including those that invoke single, par-401

allel (same function with different arguments),402

and multiple (different but relevant) FCs. This403

is for warming up the model on function calling;404

2) irrelevance functions where models should be405

able to detect. A study on how to mix those data406

is provided in Section 4.4.407

3.8 Data statistics408

Category # SFT # mDPO

Single-turn 20,000 1,556
Multi-turn 7,800 2,250
Irrelevance 6,200 750
Avg. FCs (for single-turns) 1.80 1.94
Avg. Turns (for multi-turns) 4.71 5.22
Avg. FCs (for multi-turns) 15.13 14.98

Table 1: Data statistics for the training sets. # SFT and
#mDPO represents the number of samples in SFT and
mDPO training sets of the corresponding category.

Our final SFT training set contains 34,000 in-409

stances and the preference learning set contains410

4,556 instances. The total training size, 38,556, is411

around half of other current public datasets such412

as APIGen (60,000), Hammer (67,500) etc. We413

present a detailed statistics about the number of414

each data type, the number of turns, and the num-415

ber of function calls in Table 1.416

4 Experiments417

We conduct experiments on the following two418

benchmarks: BFCL-v3 (Yan et al., 2024) and Tool-419

Query (Ma et al., 2024). BFCL-v3 is a comprehen-420

sive benchmark designed for different aspects of421

function calling, including single-turn, multi-step,422

multi-turn, and irrelevant function calls categories.423

ToolQuery is part of a broader agent benchmark 424

that test model’s ability in composing multi-step 425

and multi-turn function calls in academia, weather, 426

movie areas. BFCL-v3 have in total 4,751 test 427

cases while ToolQuery contains 60 test cases. We 428

use a unified prompt format for both tasks, as 429

shown in Appendix A. 430

4.1 Setup 431

We fine-tune Qwen2.5-Coder-7B-instruct and 432

Qwen2.5-Coder-14B-instruct. For the training, we 433

first train with the 34,000 positive trajectories with 434

SFT. We set a peak learning rate of 1e-5 with warm 435

up and linear decay, and a batch size of 64. Then, 436

in the mDPO stage, we do full fine-tuning on the 437

7B models and set the learning rate to be 5e-7 and 438

batch size 32. For mDPO on 14B model, we con- 439

duct LoRA tuning (Hu et al., 2022) with a learning 440

rate of 1e-6. More details in Appendix B. 441

4.2 Main results on BFCL-v3 442

We compare the performance of our trained model 443

with top ranked and related models on the BFCL-v3 444

benchmark. Results are presented on Table 2. The 445

performance of our best 14B model ranks 4th on 446

the leaderboard, surpassing the o1 model and on par 447

with GPT-4-Turbo on both the overall performance 448

and the multi-turn performance. We show that with 449

mDPO on targeted loss patterns, the performance 450

on multi-turn scenarios can be boosted compared to 451

SFT only models, with a margin of 2.50% success 452

rate for the 14B model. Notice that all of our 7B 453

and 14B models, including SFT and mDPO models, 454

outperform the teacher model Gemini-1.5-pro-002 455

on the multi-turn scenario. This demonstrates that 456

our data synthesis pipeline introduces additional 457

signals and provides better supervision compared 458

to directly distilling from the teacher model. 459

Finally, comparing with base models and other 460

public models of the same size, our trained model 461

boosts the performance by 18.5 and 30.0 on multi- 462

turn scenarios for the base 7B and 14B Qwen2.5- 463

Coder models, respectively. We also outperforms 464

Hammer2.1-7b (FC), a competitive FC agent model 465

trained from the same base model. 466

4.3 Main results on ToolQuery 467

Results for ToolQuery are shown in Table 3. We 468

achieve a success rate of 73.3 on ToolQuery by 469

training Qwen2.5-Coder-14B-instruct on our data, 470

surpassing the performance of a strong proprietary 471

model, GPT-4o, and a much larger public model 472
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Model Overall Single Turn Multi-turn Hallucination Measure
Non-live AST Non-live Exec Live AST Overall Base Miss Func Miss Param Long Relevant Irrelevant

Top six models
WATT-TOOL-70B (FC) 74.31 84.06 89.39 77.74 58.75 67.50 57.50 48.50 61.50 94.44 76.32

GPT-4O-2024-11-20 (PROMPT) 72.08 88.10 89.38 79.83 47.62 59.00 41.00 35.50 55.00 83.33 83.76
GPT-4O-2024-11-20 (FC) 69.58 87.42 89.20 79.65 41.00 62.50 6.00 37.50 58.00 83.33 83.15

GPT-4-TURBO-2024-04-09 67.88 84.73 85.21 80.50 38.12 54.00 13.50 35.50 49.50 72.22 83.81
WATT-TOOL-8B* (FC) 67.33 86.44 87.73 76.23 38.25 46.00 40.00 27.00 40.00 77.78 82.89

O1-2024-12-17 (PROMPT) 66.73 78.92 82.70 78.14 28.25 40.50 5.00 34.50 33.00 61.11 89.62
Gemini models (teachers)

Gemini-1.5-Pro-002 (Prompt) 62.19 88.58 91.27 76.72 20.75 23.00 19.50 17.50 23.00 72.22 78.15
Gemini-2.0-Flash-Exp (Prompt) 61.74 89.96 79.89 82.01 17.88 28.00 3.00 19.00 21.50 77.78 86.44

7B models
Functionary-Small-v3.1 (FC) 56.49 86.75 87.12 73.75 10.12 18.00 2.50 14.00 6.00 77.78 70.89

Hammer2.1-7b (FC) 61.83 88.65 85.48 75.11 23.50 35.50 25.50 19.00 14.00 82.35 78.59
Qwen2.5-Coder-7B-Instruct 53.13 86.83 82.27 66.99 8.25 11.50 6.50 5.50 5.50 88.89 65.39

MAGNET-7B-SFT 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00 66.67 78.67
MAGNET-7B-mDPO 64.64 89.40 89.27 77.92 27.75 39.00 24.00 26.00 22.00 83.33 78.51

14B models
Qwen2.5-Coder-14B-Instruct 51.88 90.94 87.80 65.30 5.38 7.50 7.00 4.00 3.00 100.00 44.58

MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 22.50 72.22 82.59
MAGNET-14B-mDPO 68.01 90.13 89.75 79.14 37.88 52.00 36.00 35.50 28.00 88.89 84.78

Table 2: Main results on BFCL-v3. Our MAGNET series demonstrate substantial improvements compared to their
base model, Qwen2.5-Coder series, in both the multi-turn function calling and overall evaluations. Our 14B model
ranked #4 in the leaderboard, surpassing o1 and the teacher model Gemini-1.5-pro-002. Best numbers under each
test category and base models are bold. * indicates reproduced results with the exact same process as our models.

Success rate Progress rate
Qwen-Coder-7B-instruct 15.0 34.0
Qwen-Coder-14B-instruct 51.7 68.7
GPT-4o 63.3 80.1
Gemini-1.5-pro-002 68.3 74,6
xLAM-8x22b-r 68.3 75.8
MAGNET-7B-mDPO 67.7 73.4
MAGNET-14B-mDPO 73.3 78.7

Table 3: Main results on ToolQuery. Our 14B model
achieved the best performance on success rate.

tuned on the function-calling task, xLAM-8x22b-r.473

Notice that all the functions from ToolQuery are un-474

seen in the training set. This further demonstrates475

the generalization ability of our trained models on476

unseen functions.477

4.4 Ablation Study and Analysis478

We conduct ablation study to answer the questions:479

(1) how each component in our pipeline affects480

the overall performance? (2) how our synthetic481

data is better than other public training datasets?482

(3) is the effects of the synthetic data consistent483

among different base models? The full results are484

presented in Table 4. Findings below:485

Pipeline design We conduct experiments to see486

the effects of local dependency graph construction,487

each node operation, positive trajectories sampled488

with correct hints, and negative trajectory sampled489

with wrong hints in the model performance. As490

shown in the first part (first six rows) in Table 4, we491

demonstrate that each component is helpful in the492

final performance of the model. Especially, with493

the initial local dependency graph, we are able to494

improve upon the base model by around 8% on 495

multi-turn success rate. Building upon that, both 496

merge and insert operations boost the multi-turn 497

performance by a large margin, especially on the 498

base multi-turn test cases. Finally, adding split op- 499

eration directly helps with the missing function, 500

missing parameters, and irrelevance detection sce- 501

narios 5.5%, 7.5%, and 3.69%, respectively. We 502

also observe a substantial boost in performance 503

when we distill FC references into positive trajecto- 504

ries compared to directly distilling Gemini-15-pro- 505

002 trajectories from the multi-turn queries. This 506

brings a 14.50% gain in multi-turn performance. 507

Finally, adding negative trajectories using our con- 508

text distillation technique brings around 0.5% im- 509

provements compared to randomly sample rejected 510

trajectories from the SFT model. 511

Data sources To demonstrate the benefits of our 512

constructed data against other public training 513

data, we train the same base model using differ- 514

ent sources of open-sourced data. Specifically, 515

amongst the top-performance models, the only 516

open-sourced training datasets are APIGen (Liu 517

et al., 2024b) and a subset of ToolAce (Liu et al., 518

2024a). Further, the Hammer2.1-7b model (Lin 519

et al., 2024), although not open-sourcing the full 520

training data, is trained from the same base model 521

with an augmented dataset with irrelevant func- 522

tions and masking techniques. Therefore, we com- 523

pare our model with two other models: the same 524

based model trained with a combination of all open- 525

sourced training data, i.e., APIGen and ToolAce, 526

and Hammer2.1-7b (FC). As shown in the second 527
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Model Overall Single Turn Multi-turn Hallucination Measure
Non-live AST Non-live Exec Live AST Overall Base Miss Func Miss Param Long Relevant Irrelevant

Ablation on pipeline components
init graph 58.54 89.60 87.13 76.96 12.75 14.50 13.00 13.50 10.00 94.44 78.95
+ merge 60.83 89.76 87.81 76.92 20.63 26.50 18.00 19.00 19.00 77.78 76.87

+ merge + insert 64.39 90.89 87.91 77.37 29.25 42.00 26.50 24.50 24.00 88.89 78.90
MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 22.50 72.22 82.59
MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 22.50 72.22 82.59

- context-distillation-positive 60.26 88.27 84.29 76.63 18.88 21.00 20.00 15.50 19.00 72.22 78.00
MAGNET-14B-mDPO 68.01 90.13 89.75 79.14 37.88 52.00 36.00 35.50 28.00 88.89 84.78

- context-distillation-negative 67.35 90.34 88.96 78.84 36.25 48.50 34.50 35.00 27.00 88.89 83.79
Comparison between training data source: Qwen-Coder-7B-instruct as base model

MAGNET-7B-SFT 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00 66.67 78.67
APIGen + ToolAce 50.30 88.85 89.59 59.04 7.13 10.50 6.50 5.50 4.50 100.00 39.17

APIGen + ToolAce + Irrelevant 57.24 87.44 89.54 76.99 6.25 9.00 5.50 7.00 3.50 77.78 83.79
Hammer2.1-7b (FC) 61.83 88.65 85.48 75.11 23.50 35.50 25.50 19.00 14.00 b82.35 78.59

Effectiveness of MAGNET across different base models
QWEN2.5-CODER-INSTRUCT 50.01 86.15 82.45 64.46 4.25 6.00 6.50 3.50 1.00 100.00 51.60

MAGNET-QWEN2.5-CODER-INSTRUCT 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00 66.67 78.67
QWEN2.5-INSTRUCT 52.58 86.83 82.27 66.99 7.25 8.50 10.00 5.50 5.00 88.89 65.39

MAGNET-QWEN2.5-INSTRUCT 59.84 88.12 85.48 72.86 21.12 31.00 19.00 21.00 13.50 83.33 76.67
MIXTRAL-8X7B-INSTRUCT-V0.1 36.93 47.94 51.59 57.71 0.50 1.00 0.00 0.00 1.00 38.89 75.37

MAGNET-MIXTRAL 58.17 88.46 80.20 68.46 19.75 24.50 22.50 19.00 13.00 94.44 66.47

Table 4: Ablation results on BFCL-v3. We show the effects of ablating out different components in our data
synthesis pipeline. We also compare with different base models and different data sources. Results demonstrate
the effectiveness of our training data from different aspects.
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Figure 3: The performance when changing the data
mixture with different number of irrelevance data.

section in Table 4, our MAGENT-7B-SFT surpasses528

other open-source data by a large margin, espe-529

cially in the multi-turn scenario. We outperform530

Hammer2.1-7B by 3 points and models trained531

with APIGen and ToolAce data by 20.25. This532

demonstrates the effectiveness of our training data.533

Base model We analyze on the effects of base534

model on the final performance. Besides the orig-535

inal Qwen2.5-Coder-instruct series, we compare536

with Qwen2.5-instruct series, which are trained537

without additional code data, and Mixtral-8x7B-538

instruct-v1. We observe that Coder series models,539

although obtaining slightly weaker performance on540

multi-turn and irrelevance detection without fine-541

tuning on our data, have better potential to learn542

from the training data, which achieves 5.38 bet-543

ter performance on multi-turn cases. Besides, by544

training comparing Mixtral-8x7B-instruct-v1 and545

MAGENT-Mixtral, we demonstrate that the per-546

formance boost brought by our data on function547

calling can be generalized to other models as well.548

Discussion: the impact of data mixture We an-549

alyze the impact of data mixture to the final per- 550

formance. As discussed in (Lin et al., 2024), the 551

proportion of queries that involve missing or irrele- 552

vant functions would impact the overall behavior 553

of models. We conduct an analysis to study the 554

ratio of single-turn irrelevance samples versus the 555

multi-turn samples. We fix the number of single- 556

turn function call samples and multi-turn samples 557

to 20k and 8k and adjust the ratio of irrelevance 558

samples among 6.7%, 9.6%, 12.5%, 15.2%, 17.5%, 559

20.0%, and 26.3%, which corresponds to 2k, 3k 560

. . . 7k and 10k irrelevance samples. We test on our 561

development set which consists of 200 irrelevance 562

test cases and 200 multi-turn test cases. Figure 3 ex- 563

hibits a performance trade-off between multi-turn 564

success and irrelevance detection when adjusting 565

the number of irrelevance examples. The optimal 566

ratio of irrelevance data that balances the two as- 567

pects lies around 15% to 17%, based on which we 568

set the final training data mixture in our case. The 569

exact ratio is subject to changes based on differ- 570

ent tasks and models but would provide a general 571

guideline when considering data mixture. 572

5 Conclusion 573

We proposed a novel pipeline, MAGNET, for syn- 574

thesizing multi-turn trajectories for training tool- 575

use LLM agents. Targeted at the challenges in 576

multi-turn FC, We proposed a graph-based multi- 577

turn queries and reference FCs synthesis method to 578

cover those challenges. We further converted those 579

query-reference pairs into trajectories for both SFT 580

and then mDPO training of LLMs. We demon- 581

strated strong performance on agentic benchmarks. 582
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Limitations583

In this section, we discuss the limitations of the584

work. First, the function signatures we studied585

in the paper mainly consist of English and pure586

texts. It is possible some conclusions of this work587

might not generalize well to other languages and588

modalities. Future work could consider study multi-589

lingual and multi-modal tools as an extension to590

this work.591

Second, in our qualitative study, we observe that592

our trained model might make mistakes when the593

knowledge retrieved by the tool is conflicted with594

the internal knowledge of the model. For exam-595

ple, consider a function get_todays_date, the596

tool might return a value that would be changing597

permanently. However, we found that even with598

the tool outputs, the model might still output some599

fixed date such as 2024-05-02. This reflects some600

limitations in resolving knowledge conflicts within601

context and internal knowledge.602

Third, more exploration abilities could be incor-603

porated into the model in future work. An ideal604

agent would be able to reflect on their wrong ac-605

tions and restart the exploration, which is currently606

limited in our model, due to lack of such data in607

our training set.608
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A Prompts766

In this section, we list the prompts we used over767

the data synthesis and model inference process.768

System prompts for training and evaluation We769

use the following system prompt following BFCL-770

v3 for both the training trajectories and the BFCL-771

v3, ToolQuery inference.772

You are an expert in composing773

functions. You are given a question and774

a set of possible functions. Based on775

the question, you will need to make one776

or more function/tool calls to achieve777

the purpose. If none of the function778

can be used, point it out. If the given779

question lacks the parameters required780

by the function, also point it out.781

You should only return the function782

call in tools call sections. If you783

decide to invoke any of the function(s),784

you MUST put it in the format of785

[func_name1(params_name1=params_value1,786

params_name2=params_value2...),787

func_name2(params)]. You SHOULD NOT788

include any other text in the response.789

Here is a list of functions in JSON790

format that you can invoke.791

For the list of functions, each function is format-792

ted in this way:793

1 template = {
2 "category": "",
3 "tool_name": "",
4 "tool_description": "",
5 "api_name": "",
6 "api_description": "",
7 "parameters": {
8 "type": "dict",
9 "properties": {

10 },
11 "required": [],
12 "optional": [],
13 }
14 }

Function domain classification prompt We use794

the following prompt to classify the domains of795

functions:796

You will be given a few domains and797

a function from one of those domains.798

You will be given the function name,799

description, and the required parameters800

of it. Your task is to classify801

the function into one of the domains. 802

The domains are: ‘Cybersecurity’, 803

‘Artificial_Intelligence’, ‘Commerce’, 804

‘Advertising’, ‘Payments’, ‘News_Media’, 805

‘Cryptography’, ‘Devices’, ‘Business’, 806

‘eCommerce’, ‘Logistics’, ‘Finance’, 807

‘Events’, ‘Email’, ‘Business_Software’, 808

‘Music’, ‘Database’, ‘Translation’, 809

‘Jobs’, ‘Gaming’, ‘Monitoring’, 810

‘func_source_code’, ‘Education’, 811

‘Entertainment’, ‘Visual_Recognition’, 812

‘Sports’, ‘SMS’, ‘Media’, ‘Search’, 813

‘Finance’, ‘Location’, ‘Movies’, 814

‘Transportation’, ‘Text_Analysis’, 815

‘Mapping’, ‘Energy’, ‘Customized’, 816

‘Medical’, ‘Storage’, ‘Food’, 817

‘Health’, ‘Video_Images’, “Science’, 818

’Communication’, ‘Travel’, ‘Social’, 819

‘Data’, ‘Reward’, ‘Weather’. Return one 820

line with the name of the domain. Or, if 821

you cannot decide on which domain the 822

function belongs to or think the function 823

does not belong to any of the domains, 824

output ’misc’. 825

Dependency prompt We use the following prompt 826

to determine whether any of the candidates function 827

could be neighbors to a target function: 828

You will be given a few API functions. 829

You will also be given a target API. Your 830

task is to create the adjacent list of the 831

target API from those APIs. Each element 832

in the adjacent list should be related to 833

the target API. We say another function 834

is related to the target API if: 1) the 835

output of the target API is the premise 836

of executing the function. For example, 837

the output of fileexists(’file.txt’) 838

API determines whether we can call 839

downloadfile(’file.txt’). 2) the output 840

of the target API is exactly the input 841

parameters of the function. For example, 842

when calculating the area of a circle, 843

the function getradius(obj) is the source 844

node and calculate(radius) is the target 845

node. 3) the output of the target API is 846

partial input parameters of the function. 847

For example, when posting something to 848

social media, one might first get the 849

content. In this case, the content = 850

getcontent(’file.txt’) is the source node 851

and posting(content, id, tags) is the 852

target node. Notice that the relation 853
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might cross the boundary of domains. For854

example, when the given APIs are in855

the domain of weather and travel, it856

is possible that a weather API could be857

related to a travel API since the weather858

determines the travel schedule. Also,859

the target API itself should not be in860

the adjacent list. For example, if the861

target API is get_id, there should not be862

a get_id function in the adjacent list.863

Return only the adjacency dictionary in864

a json format. Use exactly the original865

name of the tool as the key and values.866

In the adjacency dictionary, the only key867

is the target API, and each value is a868

list that contains the relevant APIs for869

that target API.870

Check nested prompt We use the following871

prompt to determine whether two functions are872

nested:873

You will be given two function874

information including their descriptions,875

parameters, response info etc. Your task876

is to determine whether the two functions877

can be nested. We call two functions878

to be nested when some parameter values879

for the later function call can be880

obtained by the first function call.881

For example when the first function882

is convert_usd_from_rmb(rmb_number=),883

and the second function is884

set_budget_limit(budget_limit_in_usd=).885

The two functions are nested because886

set_budget_limit needs a parameter value887

in dollars and convert_usd_from_rmb888

could output a dollar value. As another889

example, when the first function is890

get_airport_symbol_by_city(city=,range=),891

the second function892

get_flight_by_airport(airport_symbol=).893

The two functions are nested because the894

second function needs a symbol of airport895

while the first function provides that896

in the output. Please judge whether the897

input functions satisfy this nesting898

relationship. Return two lines: In the899

first line, If those two functions are900

nested, output yes, otherwise output no,901

Use lower case. In the second line, give902

a brief explanation on why you think they903

are nested.904

Context distillation for positive trajectories905

prompt We use the following prompt for con- 906

text distillation of positive trajectories: You 907

are an expert in composing functions. 908

You are given a question and a set 909

of possible functions. Based on the 910

question, you will need to make one or 911

more function/tool calls to achieve the 912

purpose. If none of the function can 913

be used, point it out. If the given 914

question lacks the parameters required 915

by the function, also point it out. 916

You should only return the function 917

call in tools call sections. If you 918

decide to invoke any of the function(s), 919

you MUST put it in the format of 920

[func_name1(params_name1=params_value1, 921

params_name2=params_value2...), 922

func_name2(params)]. You SHOULD NOT 923

include any other text in the response. 924

Here is a list of functions in JSON 925

format that you can invoke. Notice that 926

for each question, I already added hint 927

function calls, following the [Hint] key 928

words. Please compose your answer based 929

on those hints while not mentioning 930

those hints explicitly in your responses, 931

i.e., when you decide to invoke function 932

calls, just return the functions, and 933

when you provide textual response, do 934

not mention that there is a hint. Your 935

textual response should summarize the 936

function call outputs. Most of the time 937

the hints are correct answers, just 938

follow it... However, sometimes, those 939

hints might not be perfectly correct, for 940

example, you might see placeholders in 941

the hints parameters like param1=unknow. 942

So, when the hints are not correct, you 943

need to identify them and compose the 944

proper functions by looking for those 945

parameter values from all previous turns. 946

When you see [Hint]: miss function, 947

this means the function needed in this 948

step is missed. You should not simply 949

output miss function in this case but 950

try to use natural language to describe 951

the situation and what functionality is 952

missed. Similarly, when you see [Hint]: 953

missed params, this means that some 954

required parameters for the function 955

is not mentioned in the query, just 956

output some pure texts to ask for the 957
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information. However, in your response,958

do not mention the hint, just answer to959

the query. When you encounter errors in960

function outputs, please try composing961

the functions again based on the error962

information in the errors. Do not just963

output textual response at once. **This964

is important**: when you see the [Hint]965

contains multiple function calls, i.e.,966

more than one functions should be called967

for the query, this means those functions968

are relevant and nested. In this case,969

at each turn of your response, call970

only one function. Then, wait for the971

feedback from the user and then, call the972

next function. This is because sometimes973

the parameters of the later functions974

are missed without the user feedback.975

For example, when you see [Hint]:976

func_name1(params_name1=params_value1),977

func_name2(params_name2=params_value2),978

you should first output [func_name1(...)]979

with the correct parameter values and980

wait for the user response. Then, after981

you get the user response, based on the982

response, you call the next function983

[func_name2(...)] with the correct984

parameter values.985

Hints selection for negative trajectories We use986

the following prompt for the judgement model987

which is also a Gemini-1.5-pro-002, for deter-988

mining a negative trajectory hint: You will be989

given a multi-turn conversation between990

a user and an agent, the agent response991

for a single turn, which is possibly a992

function call, and a reference response.993

Your task is to judge whether the model994

response is a correct one based on the995

reference response. Below are possible996

error types. When both the reference and997

the model response are function calls,998

your judgement is for whether the model999

response accurately invoke the correct1000

function call.1001

A response might be wrong in the following1002

way:1003

1. Nested function calls: There are1004

missing function calls. Model fails to1005

call some necessary functions because1006

they are not explicitly mentioned in the1007

query.1008

2. Short dependency: There are outputs1009

from a previous function call in this 1010

turn that is not used correctly in later 1011

function calls. 1012

3. Long dependency: There are 1013

some parameter values exist in the 1014

conversation history but not properly 1015

used in this turn. 1016

When both the reference and the model 1017

response are not function call but general 1018

textual response, your judgement is for 1019

whether the model response covers all 1020

the necessary information but also not 1021

hallucination based on the reference 1022

response. 1023

4. Wrong summarization: whether the model 1024

response is a wrong summarization of the 1025

reference response. 1026

When either one of the reference or the 1027

model response is not a function call 1028

while the other one is: 1029

5. Missed function or parameters: there 1030

are some parameter values or functions 1031

present or not present in the context 1032

while the model thinks the opposite. 1033

Additional guidelines: If one of the 1034

reference and model responses is function 1035

call while the other is not, directly 1036

output no. 1037

Notice that when you see redundant 1038

parameters from the model response when 1039

it is function call, it might because it 1040

gives all the parameters even the default 1041

ones. So, as long as other parameters take 1042

the same values, regard this as correct. 1043

In the first line, return yes or no. If 1044

your answer is no, in the second line, 1045

return a number to represent the error 1046

type. 1047

Forth-translation prompt We use the following 1048

prompt for forth-translation to fill in function call 1049

parameters to make them executable: Now you 1050

are role-playing as a function-calling 1051

agent that involves in a multi-turn 1052

conversation with a user. You will 1053

be given the functions called by the 1054

history of this multi-turn conversation, 1055

indicated by round numbers. The functions 1056

called last round start with [Last 1057

Round].You will also be provided with a 1058

candidate function in a dictionary format 1059

with its descriptions and parameters. I 1060

would like you to generate the function 1061
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call for the next round using this1062

function signature. Make sure the1063

parameters for this candidate function1064

should be derived from the user query1065

and reference outputs from the last round1066

function call. Rules: - You should1067

use the function with the original name1068

without any changes.1069

- For all the functions, make sure1070

your generated function calls contain1071

ALL the required parameters fields from1072

the function documentation. You may1073

also include some optional parameters.1074

However, do not hallucinate any1075

parameters outside of those. Use only1076

the parameters indicated in the required1077

and optional fields of the function1078

documentation.1079

- Then, the parameter values for the new1080

function should be related to the output1081

from last round, please refer to the1082

[Reference Output] for the corresponding1083

values. - You can have parallel function1084

call with the candidate function, i.e.,1085

call the function with different set of1086

parameters, for your new query. However,1087

**do not call more than three parallel1088

functions**.1089

Format:1090

Thought: <the thought on which parameter1091

values to use>1092

Answer: <You need to provide a1093

groundtruth for the function calls that1094

will be invoked in the next round as1095

well as the parameters. Separate your1096

reference function calls by comma. No any1097

other separator is acceptable, only using1098

comma. Also, if any of your parameters are1099

with string value, use double quotation1100

marks to include the parameters. If no1101

answer can be generated, output FINISH1102

in this line>1103

Back-translation prompt We use the following1104

prompt for back-translation from a function sig-1105

nature to a query. The in-context examples are1106

skipped for clarity:1107

Now you are role-playing as a user that1108

involves in a multi-turn conversation1109

with a function-calling agent. You will1110

be given the functions called by the1111

history of this multi-turn conversation,1112

indicated by round numbers. The functions1113

called last round start with [Last Round]. 1114

You will also be provided with a list 1115

of candidate functions in a dictionary 1116

format where the keys are the functions 1117

called last round and values are related 1118

and candidate functions that can be called 1119

in this round. I would like you to 1120

generate the query of this round which 1121

calls one or multiple functions from the 1122

candidate function list. When calling 1123

multiple functions, make sure you call 1124

no more than three functions at a single 1125

round. 1126

Rules: 1127

- The preferred next round query should 1128

be motivated by the outputs from the last 1129

round function output. Preferably, those 1130

outputs are used as the input parameters 1131

for as least one of the functions being 1132

called at this round. 1133

- You should NOT mention which functions 1134

to use in your query explicitly. 1135

- After you decide on which function 1136

to use, make sure your new query 1137

contains information for all the required 1138

parameters of the functions you want to 1139

call, although some information may be 1140

referred to implicitly as the outputs 1141

from the last round. If the value for 1142

some required parameters are not clear 1143

given the context, you may want to create 1144

a value for that required parameter but 1145

just remember, have information for all 1146

required parameters. 1147

- Use no parameters besides the parameters 1148

indicated in the required and optional 1149

fields of the function documentation. 1150

- For outputs from the last round, try not 1151

to mention the exact parameters that you 1152

will use. Instead, use references such as 1153

’the location you just found’, ’With the 1154

listed items’... to refer to the output 1155

of last round that will be leveraged next. 1156

- Do not repeat any queries in the 1157

conversation history. This means your new 1158

query should not call the same function 1159

with the same set of parameters as any of 1160

the queries in the conversation, even the 1161

function exists in the adjacent list. 1162

- Avoid using the APIs in [Do not use these 1163

APIs]. 1164

- Try to make the conversation as natural 1165

15



as possible. Mind the logic between two1166

consecutive queries. Do not just create1167

an independent new query.1168

- Below are some examples of good output1169

given conversation history. Please follow1170

the style of conversation and make your1171

new query chained with previous queries.1172

B Training setup1173

We fine-tune Qwen2.5-Coder-7B-instruct and1174

Qwen2.5-Coder-14B-instruct as the starting point1175

and conduct SFT+RLHF over them. The reason for1176

choosing these base models is that they have been1177

adopted by other strong function calling models1178

as the base model and have demonstrated strong1179

potential for function calling abilities. All exper-1180

iments are conducted on 16 Nvidia A100 GPUs1181

on the same node. For SFT training, we fine-1182

tune the full parameters for both sizes. We use1183

a fixed max length of 8,172, warm up date of 0.1,1184

Adam (Kingma, 2014) as optimizer and search over1185

learning rate {1e-5, 5e-5}, batch size {64, 128}1186

with gradient accumulation, and epochs {1, 2}. In1187

general, we find that training for 1 epoch works the1188

best. Other parameters are set as in the Section 4.1.1189

For mDPO, we use LoRA tuning for 14B SFT1190

model with a fixed rank 32 and alpha 64 and fully1191

train the 7B SFT model. We search over learning1192

rate {5e-7, 1e-6, 5e-6}, batch size {32, 64}, epoch1193

{1, 2, 3}, beta {0.1, 0.01, 0.3}.1194

We use the transformer-trl 4 package for train-1195

ing SFT models and use the implementation1196

from Xiong et al. (2024), which is also based on1197

transformer-trl, for the mDPO training.1198

4https://github.com/huggingface/trl
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