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Abstract

We propose MAGNET, a principled approach
to synthesizing high-quality training trajecto-
ries to enhance the function calling capabil-
ity of large language model agents in multi-
turn conversations with humans. To reflect
the complicated function interactions in multi-
turn cases, we take a graph perspective and
design novel node operations to build reliable
signature path of functions. We iterative trans-
form the signature path into pairs of multi-
turn user queries and executable FCs. Mo-
tivated by context distillation, we propose to
leverage the pairs of query-FC to sample pos-
itive trajectories from a teacher model with
the references as context and negative trajec-
tories that contrast with the positive ones on
targeted error types. Experiments show that
our 14B model trained with the positive tra-
jectories with supervised fine-tuning and pref-
erence optimization against negative trajecto-
ries, MAGNET-14B-mDPOQO, obtains 68.01 on
BFCL-v3 and 73.30 on ToolQuery, surpassing
the performance of the teacher model Gemini-
1.5-pro-002 by a large margin.

1 Introduction

Autonomous agents based on large language mod-
els (LLMs) have made remarkable progress on
fulfilling complex agentic tasks (Yin et al., 2024;
Ma et al., 2024; Zhang et al., 2024), benefiting
from the high capacity of reasoning and planning
of LLMs (Achiam et al., 2023; Team et al., 2024,
Hui et al., 2024). Among the skillset for agents,
the ability to leverage external tools or applica-
tion programming interfaces (APIs) ! and inter-
act with humans to perform actions in environ-
ments is in the central of successful completion
of many agentic tasks. Towards this end, recent
LLMs have been tailored for function calling (FC)
abilities (Schick et al., 2023; Patil et al., 2023;

The terms, function calling and tool-use, function and
API, are used interchangeably in this paper.

Dubey et al., 2024; Yang et al., 2024), achieving
improved performance on benchmarks that simu-
late real-world APIs (Yan et al., 2024; Yao et al.,
2024; Guo et al., 2024; Ma et al., 2024).

However, by qualitatively scrutinizing the behav-
iors of models, we find that despite the advance-
ments in composing independent FCs, it is still
challenging for current LLM agents to perform
multi-step and multi-turn interactions with users 2
where LLM agents reason, compose FCs and ana-
lyze outputs from FCs to respond (Yao et al., 2024;
Yan et al., 2024). We summarize three main chal-
lenges and common mistakes in multi-turn FC, as
illustrated in Figure 1: 1) Nested FCs: some turns
require multiple or even nested FCs which might
not be explicitly requested in the query; 2) Long
dependency: some turns require information from
the conversation history to compose FCs; 3) Irrel-
evance: some turns might contain missing func-
tionality or parameter values, for which additional
clarification questions are required. Performance-
wise, in the Berkeley Function Calling Leaderboard
(BFCL-v3) (Yan et al., 2024), the best proprietary
model achieves 47.62% success rate on multi-turn
cases, while some public models have only around
10% success rate.

Synthesizing or distilling data from stronger
LLMs has been proven a powerful way to improve
the reasoning abilities (Guo et al., 2025) of weaker
LLMs. Yet the limited performance of existing
models on multi-turn cases aggravates the diffi-
culty in gathering high-quality training trajectories
to improve the multi-turn ability of public mod-
els. To bridge the gap between single FC and
multi-turn interactions and build reliable trajecto-
ries, we propose a principled pipeline, called Multi-
turn function-cAlling data synthesis with Graph

“Multi-step interactions require the LLMs to execute mul-
tiple internal FCs to address a single user request, while multi-
turn interactions involve an extended exchange between the
user and the agents, resulting in multiple conversational turns.



Nested and Implicit FC Example
Turn1
I'm planning a journey from Los Angeles to New York on the
morning of April 15th 2024, preferring to fly business class.
Arrange this flight using my pre-linked credit card with id
‘card_123456789' and access token 'abc123xyz'

>

Turn3
Please message my friend Joey about this recent trip. Use
the text: Going to visit NYC on 2024-05-14. Come graba
coffee!”

Missing function and parameters
Turn S
Lastly, will you fetch the invoice for that recent booking
using my access token? | need a summary for my records
(The context does not provide the retrieve invoice
function and the actual access token)

i Common Mistakes
1Error 1: (Not calling necessary functions and hallucinating

!
* !
| arguments) i ! Error 1: ( Call the wrong function)
i ! i
tbook_flight(access_token="abc123xyz', card_id="card_123456789, 1 e . - . | get_booking_history(booking_id=...)
., travel_class="business, travel_cost=1000.0) ! A {message’s Message sentr) ;
| i
i

MAGNET Trajectory

send_message(message="..., to="Joey’) 193)

Common Mistakes

[
'
'
1 Error 2: (Asking for information which is actually obtainable) '[--=--=--=-=---=--=-==-
:
'

i
I need the cost of the flight to help book the flight. Please .
i provide the cost of your flight from Los Angeles to New York. |
i

MAGNET Trajectory
get_flight_cost(travel_from='"LAX travel_to=UFK, 192)
)

“‘{ {“travel_cost_st": [2400.0]}

book_flight(access_token=abc123xyz,, .. .
travel_cost=2400.0) [(oe]

Long Dependency Example !
Turn 4
I've reached the decision to cancel my New York trip due
to unforeseen personal circumstances. Could you
proceed with the cancellation process as soon as
possible?

i i
: :
i i
! Error 1: (Failed to recall the booking id info from Turn 1) ! !
i i
i i
i i

! Error 2: (Hallucinate a value for the access token)
i retrieve_invoice (access_token=’ABCDEF’, ...)

MAGNET Trajectory
I'm not provided with the function to retrieve the

invoice. oo ]

I have updated the function .... Can you
try again?

4 {"booking_id": "3426812", "transaction_id":
\ "45451592", "booking_status": true}

? | i ing_id=34: - .
Your fight from LAX to JFK on April 16, 2024 has iy CEncelbookiobsoKio s e 1) ! The specifc accesstoen's
been booked. Your booking ID is 3426812 and the EClEsZ
transaction ID is 45451592 L' {"message": “Booking 3426812
A | cancelied?) .
retrieve_invoice(access_token=abc123xyz oo
Turn2 . 456, booking._id=34268132") L
With my flight now secured, | need to purchase an insurance = Your flight booking has been oo
for this trip. successfully cancelled - £ {booking details" .}
(Skipped for Clarity) ‘{

MAGNET Trajectory

It seems there's no access token. Couldyou  [G0)
please double-check the access token value?

Figure 1: Illustration of challenges and common mistakes in multi-turn FC. An agent needs to understand function
outputs and finish follow-up queries from users. This brings several challenges to the agent such as nested FCs
(turn 1), long output dependencies (turn 4), irrelevant functions (turn 5).

Translation, or MAGNET, to collect trajectories
to train public models with both supervised fine-
tuning (SFT) and preference optimization.

Our method is based on iterative back-and-forth
translation (Section 3.3). Given a sequence of func-
tion signatures, i.e., function names and documenta-
tions, we prompt LLMs to iteratively translate them
into queries, mimicking user requests, and then
compose executable FCs as references. However,
forming the function signature path (FSP) is not
straightforward. Previous works (Qin et al.) focus
on single-turn FCs and randomly sample functions
from the same domains. We propose a graph-based
perspective to construct multi-turn FSPs.

Motivated by the fact that two functions from
the same domain are likely to be relevant in terms
of their inputs and outputs. Therefore, we organize
functions as nodes in a graph structure and set a
directed edge between two nodes when the source
node’s outputs relate the target node’s inputs. We
call them local dependency graph as the edges
reflect the dependencies among functions. Based
on the local dependency graph, we random walk to
sample related function signatures and form a FSP.

In the graph-level, we find that those challenges
mentioned in Figure 1 can be abstracted as node
operations. For example, nested FCs can be ab-
stracted as Insert, which adds extra nodes before
another node. Therefore, we further design three
node operations: Insert,Merge, Split toenhance

the initial FSPs and tailor them to cover the chal-
lenges. We show through qualitative (Figure 1) and
ablation study (Section 4) that including those op-
erations largely improve the reasoning process and
reduce common mistakes in multi-turn challenges.

Given the queries and FC references pairs as ad-
ditional signals, we further control the trajectory
generation process with Gemini-1.5-pro-002 as the
teacher LLM using context distillation (Snell et al.,
2022). Specifically, we add FC references as hints
while synthesizing trajectories to ensure the quality
of positive trajectories. To enable preference-based
optimization, we also construct negative trajecto-
ries by selecting actions that are making mistakes
and deliberately add wrong hints with those mis-
takes into the trajectories. This makes clear con-
trary between positive and negative trajectories.

Experiments on two common benchmarks,
BFCL-v3 and ToolQuery, demonstrate the advan-
tage of our pipeline. By SFT Qwen2.5-Coder mod-
els on 34K trajectories and on 4,556 trajectory
pairs with multi-turn direct preference optimization
(mDPO) (Xiong et al., 2024), our model MAGNET-
14B-mDPO achieves rank 4th on the BFCL-v3
benchmark, surpassing proprietary models like o1,
GPT-4-turbo, and the teacher model, Gemini-1.5-
pro-002, adding to the base model by 32.5 points
on multi-turn cases. Ablation study further shows
that all the components in the pipeline is helpful to
improving its capability, and the performance im-



provement can generalize to different base models.
Our contributions can be summarized as follows:

* A graph-based perspective for constructing and
enhancing high-quality multi-turn queries and FC
references, covering the challenges in multi-turn
FCs.

* A novel technique to distill the information pro-
vided in FC references to construct training tra-
jectories for both SFT and mDPO.

* We demonstrate superior performance on BFCL-
v3 and ToolQuery benchmarks with public mod-
els trained with our data. Detailed ablation study
shows the effectiveness of each component.

2 Related Work

FC agents evaluation The ability to use external
tools to solve a complex task when the agent lacks
some knowledge intrinsically is crucial in agen-
tic behaviors. A variety of benchmarks have been
constructed to evaluate such ability. We roughly
categorize them as follows based on the amount
of functions needed for each test instance and the
interactions among functions: (1) single-step; (2)
multi-steps, which can be further decomposed into
parallel, multiple (chained but not nested), nested;
(3) multi-turns. Among those, BFCL-v3 (Yan
et al., 2024) is a comprehensive benchmark eval-
uating single-step, multi-steps, multi-turns scenar-
ios. NexanRaven >, Toolbench (Qin et al.), Stable-
Toolbench (Guo et al., 2024) mainly test for multi-
steps tool-use. Basu et al. (2024) target nested API
calls. Yao et al. (2024); Ma et al. (2024); Lu et al.
(2024) feature multi-turns and multi-steps FCs.
However, most of the above mentioned datasets
are human curated (with the assistant of LLMs).

Training FC agents Due to the lack of train-
ing trajectories, fine-tuning a tool-use agent typ-
ically starts with collecting training data. Tool-
former (Schick et al., 2023) replaces segments in
texts with API calls to train LLMs. (Qin et al.;
Chen et al., 2024b) synthesize queries from random
sampled APIs without clear structure. The xLAM
and APIGen series (Liu et al., 2024b; Zhang et al.,
2024) unify the format of tool-use data with other
agentic tasks and automatically generate queries
from verified APIs. Lin et al. (2024) improves the
APIGen (Liu et al., 2024b) dataset and propose
to add function masking and more irrelevant func-
tions to improve the robustness of agents. Abde-

Shttps://nexusflow.ai/blogs/ravenv2

laziz et al. (2024) introduce fine-tuning with multi-
task (function calling, instruction tuning) on 110k
data. Liu et al. (2024a) synthesize new APIs au-
tomatically and directly prompts LLMs to role-
play users, agents, and tools. Chen et al. (2024a)
adapt composition to improve the quality of single-
turn function calling. Among those works, Qin
et al.; Chen et al. (2024b); Liu et al. (2024b) back-
translate queries from APIs. While our query gen-
eration technique adopt similar ideas, to adapt to
multi-turn cases, we propose to organize function
signatures in graphs and apply node operations to
improve graph complexity. Our trajectory synthe-
sis methods also diverge from previous methods by
incorporating more controls.

3 Methodology: MAGNET

In this section, we first discuss the whole train-
ing pipeline to provide more context (Section 3.1).
Then, we dive into our main contribution of synthe-
sizing high-quality FC trajectories (Section 3.2).

3.1 Training setup and formulation

We leverage the typical two-stage SFT + RLHF
training. In the first stage, suppose we have a
base model and a set of training trajectories {Ti},
1 =1 ... n. Each trajectory involves a sequence
(k-steps) of user queries, model actions, and tool
responses: 7., = (¢i,al,t} -+ g, ai,t;). The
SFT training uses maximum likelihood estimation
(MLE) to fit the model actions a! - - - a}, i.e., the
blue parts in Figure 1, given the rest as context.
Then, in the second stage, given the SFT model
and trajectory pairs {Tfu, Tf} , 1t = 1... m,
we adopt the mDPO loss (Xiong et al., 2024)
and a MLE loss to further tune the SFT model:

L(z;7w,m) = LspT (T3 Tw) + ALmpPO (%5 Tws 71) 5
EmDPO (J); Tw, Tl) =
g (al|s!) o (a®|s™)
-logo | 1 — i — — | |,
( (; Tres (al]st) ; Tref (a]s™)

where 7, and 7, represents the negative and
positive trajectories. A is a weight hyperparameter
for balancing the two losses, m..r is the SFT
reference policy, and 7y is the mDPO policy. Next,

we dive into MAGNET, our method that synthesizes
{ri},i=1... nand {7}, 7/},i=1... m.

3.2 Data Construction Overview

Overall, MAGNET first generates pairs of queries
and FC references, and then, transform them into


https://nexusflow.ai/blogs/ravenv2

(1) Function Signature Path

o oget

d.éarﬁz_noavigation

: cities_by_range ¥

r
1 Random walk on dependency graph

|
a
_______________

convert_unit

cities_by range — get_distance — set_navigation

_______

-
¢ convert_unit
|

(2) Node Operation

\
|
| / I o
Insert ci!ies_by_rangaI get_distance : set_navigation
O——0U—0
S -
- T T T T T s s N
Merge cities_by_range| get_distance, set_navigation |
| |
(O)—+— I 1B
NN 7 -
Split cities_by_range get_distance "l set_navigation

o—0O —0O

(4) Trajectory pair construction

oV

Agent-generated path #10
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Output from last
function call: San

| May | know the exact
E I'm planning a short road trip. Can you find cities | i distance from SFto San |
+ within 100 miles from San Francisco, SF? i | Mateo in kilometers?

Figure 2: The pipeline for constructing trajectories of function calling. We divide the pipeline into four parts

and depicts each part respectively. (1) Construction of

the function pool and function execution graph; (2) Node

operations defined on the function execution graph; (3) Back-and-forth translation to iteratively create multi-turn
queries and fill in function parameters; (4) Construction of positive and negative trajectories by context distillation

of good and bad hints and instructions.

trajectories using a teacher LLM. In the first part,
the backbone is a back-and-forth translation pro-
cess inspired by Nguyen et al. (2024); Li et al.
(2024) that converts FSPs into query-reference
pairs, which will be introduced in section 3.3. The
key innovation, however, lies in how we construct
high-quality multi-turn FSPs with a graph perspec-
tive and node operations (Section 3.4 and 3.5). In
the second part, we collect both positive and neg-
ative trajectories with our newly designed context
distillation technique. An illustration in the actual
order of the pipeline is in Figure 2. For the whole
process, we prompt an LLM to help us on tasks like
rewriting, back-and-forth translation etc. Without
extra statement, we will use Gemini-1.5-pro-002
as the assistant LLM. All the prompts mentioned
in this section are in Appendix A.

3.3 Back-and-forth translation

We start with the back-and-forth translation process.
Suppose we have obtained a FSP, noted as ¢ =
(f1, fo, -+ fx), where each f;, i =1,2,---  k de-
notes function signatures used in turn . In this
stage, we create the pair of user queries and ex-
ecutable FC references (¢;, a;) with each f;. For
back-translation, given the function signatures of
turn 4, f;, we prompt the assistant LLM to generate
¢@; that involves real information for the parameters.
Then, for forth-translation, we prompt the assistant

LLM to convert information in the query into pa-
rameter values for the given functions to produce
a;. This process is conducted iteratively for each
function signature in the FSP to make sure that the
outputs from the previous rounds are ready before
passing to the later rounds, as illustrated in (3) in
Figure 2. From the next section, we highlight how
to generate the FSPs, ¢.

3.4 Function collection and initial FSPs

Our function collection inherits from previous
works (Liu et al., 2024b). We collect the un-
derlined function source codes from the Stable-
ToolBench (Guo et al., 2024) and BFCL-v3 multi-
turn function implementation (Yan et al., 2024).
For functions in BFCL-v3, we rewrite the func-
tion name and descriptions using our assistant
LLM, i.e., only the real implementation that is
not exposed to models are kept. For StableTool-
Bench, following APIGen, we select those that
contain parameters and are executable verified by
simulated calls. In total, we collect 5,011 APIs.
Each function in the pool will be viewed as a
node. For node attributes, we prompt the assis-
tant LLM to label their category and class. For ex-
ample, a function like get_current_weather will
have category Weather and the tool class Weather
condition tool. Our categories come from Sta-
bleToolBench, which include 49 categories.



Then, we construct local dependency graph on
functions from the same category and class. For
each target node, we sample 30 candidate nodes
from the same tool class and same category and
prompt the assistant LLM to judge whether there
are dependencies between the target node and can-
didate nodes based on their inputs and outputs. If
relevant, we will add a directed edge from the target
node to that candidate node.

Finally, starting with a random node, we conduct
a random walk to sample subsequent function calls.
The random walk ends when the step reaches a pre-
defined maximum step, which we set as seven. Af-
ter the random walk, we will collect an initial FSP,
which consists of function signatures, i.e, function
names only, shown in part (1) of Figure 2.

3.5 Node operations for enhanced FSPs

To better cover the challenges for multi-turn inter-
actions, we propose to enhance the FSPs obtained
above with graph-level operations.
Node OP #1: Insert is designed for handling the
nested and implicit function call and long depen-
dency scenario. Consider the query:
Please check how many kilometers to go
from San Francisco to San Mateo,
which should invoke two functions:
get_distance(from_loc,to_loc)
convert_unit(in_value=<milage obtained
from SF to SM>, out_value).
The first function will return a distance in mileage
and we need the second function to convert them
into kilometers. However, the second function is
not mentioned explicitly in the query to be called.
Models might not recognize to call the second
function. To cover this, our Insert operation
will insert an implicit function signature into the
current FSP if they are nested. Specifically, for a
target node in FSP, we check for premise function
signatures in the function pool using our assistant
LLM (see the prompts to judge nested functions in
Appendix A), then, we insert a random premise
function signature into the target node in FSP.
Insert will also be useful for creating ex-
amples covering the long dependency chal-
lenge. For example, we could Insert
another cities_by_range(range=) in a few
rounds later which reuses the outputs from
get_distance(from_loc,to_loc).
Node OP #2: Merge is for creating a single-turn
query that would involve multiple function calls
and cover short dependency. Notice that the key

difference with Insert and nested API calls is that
we could Merge multiple functions that are rele-
vant but not exactly nested. In this case, agents
should understand the outputs from the previous
functions in this turn to compose the consecutive
function. For example, the following query would
invoke both get_distance(from_loc,to_loc),
set_navigation(distance):

Can you check how many kilometers to
go from San Francisco to San Mateo and
then set up the navigation for me with
the obtained distance?

Node OP #3: Split is mainly designed for
the missing or irrelevant function information
scenarios. For the previous query, if the func-
tion get_distance is not provided, or the query
omits the destination: Please check how many
kilometers to go from San Francisco to
somewhere, the agent should ask a clarification
question. We will create a null node with a ‘miss
params’ or ‘miss func’ labels which will act as an
indicator when translating.

3.6 Positive and negative trajectory sampling

To transform (¢;, a;), i = 1,2,--- ,k generated
in back-and-forth translation into trajectories, we
adopt a novel technique assembles to context distil-
lation (Snell et al., 2022). When generating positive
trajectories, we hope the teacher model to be as ac-
curate as possible. However, none of current LLMs
can consistently produce perfect trajectories. So,
we propose to add a [Hint] section after each turn
to indicate the functions being called during this
turn, using the reference FCs and provide detailed
instructions when sampling the positive trajecto-
ries, to produce high-quality trajectories. We show
the prompts in Appendix A.

On the contrary, when generating negative trajec-
tories, we hope the trajectories reflect the mistakes
made by models. So for negative trajectories, we
also include such hints but the actual content is a
misleading wrong FCs. Those FCs are collected
from the mistakes of the SFT model. Specifically,
for each data instance, we collect ten trajectories
from the SFT model. Then, for each turn in each
trajectory, we present it to the assistant LLM as a
judge to decide whether this turn includes an incor-
rect FC that conforms with any one of the errors
defined in the judgement prompt. If so, we will
collect them as misleading hints when prompting
SFT model to sample negative trajectories.



3.7 Post-processing and data mixture

We adopt the following post-processing techniques
to enhance the diversity of the SFT datasets so that
models trained with our data could be more robust
to variations in superficial features.

* For each training data, we shuffle the order of
available functions in system prompts.

* We filter out trajectories with rule-based metrics:
we collect several key words that indicate failed
FCs at the end of each turn, such as ‘Bad request’.
‘does not match’ etc. This roughly excludes in-
correct trajectories or wrong formatting in FCs.

* Besides multi-turn data, we add the following
types of data into our final SFT data mix: single-
turn data including those that invoke single, par-
allel (same function with different arguments),
and multiple (different but relevant) FCs. This
is for warming up the model on function calling;
2) irrelevance functions where models should be
able to detect. A study on how to mix those data
is provided in Section 4.4.

3.8 Data statistics

Category #SFT #mDPO
Single-turn 20,000 1,556
Multi-turn 7,800 2,250
Irrelevance 6,200 750
Avg. FCs (for single-turns) 1.80 1.94
Avg. Turns (for multi-turns) 4.71 5.22
Avg. FCs (for multi-turns) 15.13 14.98

Table 1: Data statistics for the training sets. # SFT and
#mDPO represents the number of samples in SFT and
mDPO training sets of the corresponding category.

Our final SFT training set contains 34,000 in-
stances and the preference learning set contains
4,556 instances. The total training size, 38,556, is
around half of other current public datasets such
as APIGen (60,000), Hammer (67,500) etc. We
present a detailed statistics about the number of
each data type, the number of turns, and the num-
ber of function calls in Table 1.

4 [Experiments

We conduct experiments on the following two
benchmarks: BFCL-v3 (Yan et al., 2024) and Tool-
Query (Ma et al., 2024). BFCL-v3 is a comprehen-
sive benchmark designed for different aspects of
function calling, including single-turn, multi-step,
multi-turn, and irrelevant function calls categories.

ToolQuery is part of a broader agent benchmark
that test model’s ability in composing multi-step
and multi-turn function calls in academia, weather,
movie areas. BFCL-v3 have in total 4,751 test
cases while ToolQuery contains 60 test cases. We
use a unified prompt format for both tasks, as
shown in Appendix A.

4.1 Setup

We fine-tune Qwen2.5-Coder-7B-instruct and
Qwen?2.5-Coder-14B-instruct. For the training, we
first train with the 34,000 positive trajectories with
SFT. We set a peak learning rate of 1e-5 with warm
up and linear decay, and a batch size of 64. Then,
in the mDPO stage, we do full fine-tuning on the
7B models and set the learning rate to be 5e-7 and
batch size 32. For mDPO on 14B model, we con-
duct LoRA tuning (Hu et al., 2022) with a learning
rate of 1e-6. More details in Appendix B.

4.2 Main results on BFCL-v3

We compare the performance of our trained model
with top ranked and related models on the BFCL-v3
benchmark. Results are presented on Table 2. The
performance of our best 14B model ranks 4th on
the leaderboard, surpassing the o1 model and on par
with GPT-4-Turbo on both the overall performance
and the multi-turn performance. We show that with
mDPO on targeted loss patterns, the performance
on multi-turn scenarios can be boosted compared to
SFT only models, with a margin of 2.50% success
rate for the 14B model. Notice that all of our 7B
and 14B models, including SFT and mDPO models,
outperform the teacher model Gemini-1.5-pro-002
on the multi-turn scenario. This demonstrates that
our data synthesis pipeline introduces additional
signals and provides better supervision compared
to directly distilling from the teacher model.

Finally, comparing with base models and other
public models of the same size, our trained model
boosts the performance by 18.5 and 30.0 on multi-
turn scenarios for the base 7B and 14B Qwen2.5-
Coder models, respectively. We also outperforms
Hammer2.1-7b (FC), a competitive FC agent model
trained from the same base model.

4.3 Main results on ToolQuery

Results for ToolQuery are shown in Table 3. We
achieve a success rate of 73.3 on ToolQuery by
training Qwen2.5-Coder-14B-instruct on our data,
surpassing the performance of a strong proprietary
model, GPT-40, and a much larger public model



Model Overall Single Turn Multi-turn Hallucination Measure
Non-live AST Non-live Exec Live AST | Overall Base Miss Func Miss Param Long | Relevant Irrelevant
Top six models

© WATT-TOOL-70B (FC) [ 7431 | 8406 8939 7774 ] 5875 6750 5750 4850 6150 9444 7632
GPT-40-2024-11-20 (PROMPT) | 72.08 88.10 89.38 79.83 47.62 59.00  41.00 35.50 55.00| 83.33 83.76
GPT-40-2024-11-20 (FC) 69.58 87.42 89.20 79.65 41.00 62.50 6.00 37.50 58.00| 83.33 83.15
GPT-4-TURBO-2024-04-09 67.88 84.73 85.21 80.50 38.12 54.00 13.50 35.50 49.50| 72.22 83.81
WATT-TOOL-8B* (FC) 67.33 86.44 87.73 76.23 38.25 46.00  40.00 27.00 40.00| 77.78 82.89
01-2024-12-17 (PROMPT) 66.73 78.92 82.70 78.14 28.25 40.50 5.00 34.50 33.00| 61.11 89.62

Gemini models (teachers)

" Gemini-1.5-Pro-002 (Prompt) | 62.19 | 88.58 9127 7672 ] 2075 23.00 1950 1750  23.00[ 7222 7815

Gemini-2.0-Flash-Exp (Prompt) ( 61.74 W 89.96 79.89 82.01 l 17.88 28.00 3.00 19.00 21 50( 71.78 86.44
7B models

" Functionary-Small-v3.1 (FC) [ 5649 | ¢ 86.75 8112 7375 ] 1012 18.00 250 14007 6.00 [ 7778 7089
Hammer2.1-7b (FC) 61.83 88.65 85.48 75.11 2350 3550 @ 25.50 19.00 14.00| 8235 78.59
Qwen2.5-Coder-7B-Instruct 53.13 86.83 82.27 66.99 825 1150 6.50 5.50 5.50 | 88.89 65.39
MAGNET-7B-SFT 62.73 88.60 85.73 74.19 26.50 35.50  24.00 27.50 19.00| 66.67 78.67
MAGNET-7B-mDPO 64.64 89.40 89.27 77.92 2775 39.00 24.00 26.00 22.00| 8333 78.51

14B models

" Qwen2.5-Coder-14B-Instruct | 51.88 | ¢ 90.94 8780 6530 | 538 750 7.00 400  3.00 [ 100.00 4458
MAGNET-14B-SFT 66.83 90.02 88.20 77.92 33.38 47.00 32.00 32.00 2250 7222 82.59
MAGNET-14B-mDPO 68.01 90.13 89.75 79.14 37.88 52.00 36.00 35.50 28.00 | 88.89 84.78

Table 2: Main results on BFCL-v3. Our MAGNET series demonstrate substantial improvements compared to their
base model, Qwen2.5-Coder series, in both the multi-turn function calling and overall evaluations. Our 14B model
ranked #4 in the leaderboard, surpassing ol and the teacher model Gemini-1.5-pro-002. Best numbers under each
test category and base models are bold. * indicates reproduced results with the exact same process as our models.

Success rate Progress rate
Qwen-Coder-7B-instruct 15.0 34.0
Qwen-Coder-14B-instruct 51.7 68.7
GPT-40 63.3 80.1
Gemini-1.5-pro-002 68.3 74,6
xLAM-8x22b-r 68.3 75.8
MAGNET-7B-mDPO 67.7 73.4
MAGNET-14B-mDPO 73.3 78.7

Table 3: Main results on ToolQuery. Our 14B model
achieved the best performance on success rate.

tuned on the function-calling task, xLAM-8x22b-r.
Notice that all the functions from ToolQuery are un-
seen in the training set. This further demonstrates
the generalization ability of our trained models on
unseen functions.

4.4 Ablation Study and Analysis

We conduct ablation study to answer the questions:
(1) how each component in our pipeline affects
the overall performance? (2) how our synthetic
data is better than other public training datasets?
(3) is the effects of the synthetic data consistent
among different base models? The full results are
presented in Table 4. Findings below:

Pipeline design We conduct experiments to see
the effects of local dependency graph construction,
each node operation, positive trajectories sampled
with correct hints, and negative trajectory sampled
with wrong hints in the model performance. As
shown in the first part (first six rows) in Table 4, we
demonstrate that each component is helpful in the
final performance of the model. Especially, with
the initial local dependency graph, we are able to

improve upon the base model by around 8% on
multi-turn success rate. Building upon that, both
merge and insert operations boost the multi-turn
performance by a large margin, especially on the
base multi-turn test cases. Finally, adding split op-
eration directly helps with the missing function,
missing parameters, and irrelevance detection sce-
narios 5.5%, 7.5%, and 3.69%, respectively. We
also observe a substantial boost in performance
when we distill FC references into positive trajecto-
ries compared to directly distilling Gemini-15-pro-
002 trajectories from the multi-turn queries. This
brings a 14.50% gain in multi-turn performance.
Finally, adding negative trajectories using our con-
text distillation technique brings around 0.5% im-
provements compared to randomly sample rejected
trajectories from the SFT model.

Data sources To demonstrate the benefits of our
constructed data against other public training
data, we train the same base model using differ-
ent sources of open-sourced data. Specifically,
amongst the top-performance models, the only
open-sourced training datasets are APIGen (Liu
et al., 2024b) and a subset of ToolAce (Liu et al.,
2024a). Further, the Hammer2.1-7b model (Lin
et al., 2024), although not open-sourcing the full
training data, is trained from the same base model
with an augmented dataset with irrelevant func-
tions and masking techniques. Therefore, we com-
pare our model with two other models: the same
based model trained with a combination of all open-
sourced training data, i.e., APIGen and ToolAce,
and Hammer2.1-7b (FC). As shown in the second



Model ‘ Overall Single Turn Multi-turn Hallucination Measure
Non-live AST Non-live Exec Live AST |Overall Base Miss Func Miss Param Long | Relevant Irrelevant
Ablation on pipeline components

T initgraph ] 5854 | 89.60 8713 7696 [ 1275 1450 13.00 1350 10.00] 94.44 7895
+ merge 60.83 89.76 87.81 76.92 20.63  26.50 18.00 19.00 19.00| 77.78 76.87
+ merge + insert 64.39 90.89 8791 77.37 2925 4200 2650 24.50 24.00| 88.89 78.90
MAGNET-14B-SFT 66.83 90.02 88.20 717.92 33.38 47.00 32.00 32.00 2250 7222 82.59
MAGNET-14B-SFT 66.83 90.02 88.20 77.92 3338 47.00  32.00 32.00 2250| 7222 82.59
- context-distillation-positive 60.26 88.27 84.29 76.63 18.88 21.00 20.00 15.50 19.00| 72.22 78.00
MAGNET-14B-mDPO 68.01 90.13 89.75 79.14 37.88 52.00 36.00 35.50 28.00| 88.89 84.78
- context-distillation-negative 67.35 90.34 88.96 78.84 36.25 48.50 34.50 35.00 27.00| 88.89 83.79

Comparison between training data source: Qwen-Coder-7B-instruct as base model

~  MAGNET-7B-SFT | | 6273 | 8860 8573 7419 [ 2650 3550 2400 2750 19.00[ 66.67 7867
APIGen + ToolAce 50.30 88.85 89.59 59.04 7.13 1050 6.50 5.50 4.50 | 100.00 39.17
APIGen + ToolAce + Irrelevant 57.24 87.44 89.54 76.99 625  9.00 5.50 7.00 350 | 77.78 83.79
Hammer2.1-7b (FC) 61.83 88.65 85.48 75.11 2350 3550 2550 19.00 14.00| b82.35 78.59

Effectiveness of MAGNET across different base models

"~ QWEN2.5-CODER-INSTRUCT | . 5001 | 8615 8245 6446 [ 425 600 650 350 1.00 [ 100.000 5160
MAGNET-QWEN2.5-CODER-INSTRUCT | 62.73 88.60 85.73 74.19 26.50 35.50 24.00 27.50 19.00| 66.67 78.67
QWEN2.5-INSTRUCT 52.58 86.83 8227 66.99 725 850 10.00 5.50 5.00 | 88.89 65.39
MAGNET-QWEN2.5-INSTRUCT 59.84 88.12 85.48 72.86 21.12 31.00 19.00 21.00 13.50| 83.33 76.67
MIXTRAL-8X7B-INSTRUCT-VO. 1 36.93 47.94 51.59 57.71 0.50  1.00 0.00 0.00 1.00 | 38.89 75.37
MAGNET-MIXTRAL 58.17 88.46 80.20 68.46 19.75 24.50 22.50 19.00 13.00| 94.44 66.47

Table 4: Ablation results on BFCL-v3. We show the effects of ablating out different components in our data
synthesis pipeline. We also compare with different base models and different data sources. Results demonstrate
the effectiveness of our training data from different aspects.
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Figure 3: The performance when changing the data
mixture with different number of irrelevance data.

section in Table 4, our MAGENT-7B-SFT surpasses
other open-source data by a large margin, espe-
cially in the multi-turn scenario. We outperform
Hammer2.1-7B by 3 points and models trained
with APIGen and ToolAce data by 20.25. This
demonstrates the effectiveness of our training data.

Base model We analyze on the effects of base
model on the final performance. Besides the orig-
inal Qwen2.5-Coder-instruct series, we compare
with Qwen2.5-instruct series, which are trained
without additional code data, and Mixtral-8x7B-
instruct-v1l. We observe that Coder series models,
although obtaining slightly weaker performance on
multi-turn and irrelevance detection without fine-
tuning on our data, have better potential to learn
from the training data, which achieves 5.38 bet-
ter performance on multi-turn cases. Besides, by
training comparing Mixtral-8x7B-instruct-v1 and
MAGENT-Mixtral, we demonstrate that the per-
formance boost brought by our data on function
calling can be generalized to other models as well.

Discussion: the impact of data mixture We an-

alyze the impact of data mixture to the final per-
formance. As discussed in (Lin et al., 2024), the
proportion of queries that involve missing or irrele-
vant functions would impact the overall behavior
of models. We conduct an analysis to study the
ratio of single-turn irrelevance samples versus the
multi-turn samples. We fix the number of single-
turn function call samples and multi-turn samples
to 20k and 8k and adjust the ratio of irrelevance
samples among 6.7%, 9.6%, 12.5%, 15.2%, 17.5%,
20.0%, and 26.3%, which corresponds to 2k, 3k
... Tk and 10k irrelevance samples. We test on our
development set which consists of 200 irrelevance
test cases and 200 multi-turn test cases. Figure 3 ex-
hibits a performance trade-off between multi-turn
success and irrelevance detection when adjusting
the number of irrelevance examples. The optimal
ratio of irrelevance data that balances the two as-
pects lies around 15% to 17%, based on which we
set the final training data mixture in our case. The
exact ratio is subject to changes based on differ-
ent tasks and models but would provide a general
guideline when considering data mixture.

5 Conclusion

We proposed a novel pipeline, MAGNET, for syn-
thesizing multi-turn trajectories for training tool-
use LLM agents. Targeted at the challenges in
multi-turn FC, We proposed a graph-based multi-
turn queries and reference FCs synthesis method to
cover those challenges. We further converted those
query-reference pairs into trajectories for both SFT
and then mDPO training of LLMs. We demon-
strated strong performance on agentic benchmarks.



Limitations

In this section, we discuss the limitations of the
work. First, the function signatures we studied
in the paper mainly consist of English and pure
texts. It is possible some conclusions of this work
might not generalize well to other languages and
modalities. Future work could consider study multi-
lingual and multi-modal tools as an extension to
this work.

Second, in our qualitative study, we observe that
our trained model might make mistakes when the
knowledge retrieved by the tool is conflicted with
the internal knowledge of the model. For exam-
ple, consider a function get_todays_date, the
tool might return a value that would be changing
permanently. However, we found that even with
the tool outputs, the model might still output some
fixed date such as 2024-05-02. This reflects some
limitations in resolving knowledge conflicts within
context and internal knowledge.

Third, more exploration abilities could be incor-
porated into the model in future work. An ideal
agent would be able to reflect on their wrong ac-
tions and restart the exploration, which is currently
limited in our model, due to lack of such data in
our training set.
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A Prompts

In this section, we list the prompts we used over
the data synthesis and model inference process.
System prompts for training and evaluation We
use the following system prompt following BFCL-
v3 for both the training trajectories and the BFCL-
v3, ToolQuery inference.

You are an expert in composing
functions. You are given a question and
a set of possible functions. Based on
the question, you will need to make one
or more function/tool calls to achieve
the purpose. If none of the function
can be used, point it out. If the given
question lacks the parameters required
by the function, also point it out.
You should only return the function
call in tools call sections. If you
decide to invoke any of the function(s),
you MUST put it in the format of
[func_name1(params_namel=params_valueTl,
params_name2=params_value2...),
func_name2(params)]. You SHOULD NOT
include any other text in the response.
Here is a list of functions in JSON
format that you can invoke.

For the list of functions, each function is format-
ted in this way:

template = {
"category": "",
"tool_name”: "",
"tool_description”: "",
"api_name”: "",
"api_description”: "",
"parameters”: {
"type": "dict”,
"properties”: {
}!
"required”: [],
"optional”: [],

3

Function domain classification prompt We use
the following prompt to classify the domains of
functions:

You will be given a few domains and
a function from one of those domains.
You will be given the function name,
description, and the required parameters
of it. Your task is to <classify

12

the function into one of the domains.

The domains are: ‘Cybersecurity’,
‘Artificial_Intelligence’, ‘Commerce’,
‘Advertising’, ‘Payments’, ‘News_Media’,
‘Cryptography’, ‘Devices’, ‘Business’,
‘eCommerce’, ‘Logistics’, ‘Finance’,
‘Events’, ‘Email’, ‘Business_Software’,
‘Music’, ‘Database’, ‘Translation’,
‘Jobs’, ‘Gaming’, ‘Monitoring’,
‘func_source_code’, ‘Education’,
‘Entertainment’, ‘Visual_Recognition’,
‘Sports’, ‘SMS’ | ‘Media’, ‘Search’,
‘Finance’, ‘Location’, ‘Movies’,
‘Transportation’, ‘Text_Analysis’,
‘Mapping’, ‘Energy’, ‘Customized’,
‘Medical’, ‘Storage’, ‘Food’,
‘Health’, ‘Video_Images’, “Science’,
’Communication’, ‘Travel’, ‘Social’,
‘Data’, ‘Reward’, ‘Weather’. Return one

line with the name of the domain. Or, if
you cannot decide on which domain the
function belongs to or think the function
does not belong to any of the domains,
output ’misc’.

Dependency prompt We use the following prompt
to determine whether any of the candidates function
could be neighbors to a target function:

You will be given a few API functions.
You will also be given a target API. Your
task is to create the adjacent list of the
target API from those APIs. Each element
in the adjacent list should be related to
the target API. We say another function
is related to the target API if: 1) the
output of the target API is the premise
of executing the function. For example,
the output of fileexists(’file.txt’)
API determines whether we can call
downloadfile(’file.txt’). 2) the output
of the target API is exactly the input
parameters of the function. For example,
when calculating the area of a circle,
the function getradius(obj) is the source
node and calculate(radius) is the target
node. 3) the output of the target API is
partial input parameters of the function.
For example, when posting something to
social media, one might first get the
content. In this case, the content =
getcontent(’file.txt’) is the source node
and posting(content, id, tags) is the
target node. Notice that the relation



might cross the boundary of domains. For
example, when the given APIs are in
the domain of weather and travel, it
is possible that a weather API could be
related to a travel API since the weather
determines the travel schedule. Also,
the target API itself should not be in
the adjacent list. For example, if the
target API is get_id, there should not be
a get_id function in the adjacent list.
Return only the adjacency dictionary in
a json format. Use exactly the original
name of the tool as the key and values.
In the adjacency dictionary, the only key
is the target API, and each value is a
list that contains the relevant APIs for
that target API.

Check nested prompt We use the following
prompt to determine whether two functions are
nested:

You will be given two function
information including their descriptions,
parameters, response info etc. Your task
is to determine whether the two functions
can be nested. We call two functions
to be nested when some parameter values
for the 1later function call can be
obtained by the first function call.

For example when the first function
is convert_usd_from_rmb(rmb_number=),
and the second function is

set_budget_limit(budget_limit_in_usd=).
The two functions are nested because
set_budget_limit needs a parameter value
in dollars and convert_usd_from_rmb
could output a dollar value. As another
example, when the first function is
get_airport_symbol_by_city(city=,range=),
the second function
get_flight_by_airport(airport_symbol=).
The two functions are nested because the
second function needs a symbol of airport
while the first function provides that
in the output. Please judge whether the
input functions satisfy this nesting
relationship. Return two lines: In the
first line, If those two functions are
nested, output yes, otherwise output no,
Use lower case. In the second line, give
a brief explanation on why you think they
are nested.

Context distillation for positive trajectories
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prompt We use the following prompt for con-
text distillation of positive trajectories: You
are an expert in composing functions.
You are given a question and a set
of possible functions. Based on the
question, you will need to make one or
more function/tool calls to achieve the
purpose. If none of the function can
be used, point it out. If the given
question lacks the parameters required
by the function, also point it out.
You should only return the function
call in tools call sections. If you
decide to invoke any of the function(s),
you MUST put it in the format of
[func_namel (params_namel=params_valuel,
params_name2=params_value2...),
func_name2(params)]. You SHOULD NOT
include any other text in the response.
Here is a 1list of functions in JSON
format that you can invoke. Notice that
for each question, I already added hint
function calls, following the [Hint] key
words. Please compose your answer based
on those hints while not mentioning
those hints explicitly in your responses,
i.e., when you decide to invoke function

calls, just return the functions, and
when you provide textual response, do
not mention that there is a hint. Your

textual response should summarize the
function call outputs. Most of the time
the hints are correct answers, just
follow it... However, sometimes, those
hints might not be perfectly correct, for
example, you might see placeholders in
the hints parameters like paraml=unknow.
So, when the hints are not correct, you
need to identify them and compose the
proper functions by looking for those
parameter values from all previous turns.
When you see [Hint]: miss function,
this means the function needed in this
step is missed. You should not simply
output miss function in this case but
try to use natural language to describe
the situation and what functionality is

missed. Similarly, when you see [Hint]:
missed params, this means that some
required parameters for the function

is not mentioned in the query, just
output some pure texts to ask for the



information. However, in your response,
do not mention the hint, just answer to
the query. When you encounter errors in
function outputs, please try composing
the functions again based on the error
information in the errors. Do not just
output textual response at once. **This
is important**: when you see the [Hint]
contains multiple function calls, i.e.,
more than one functions should be called
for the query, this means those functions
are relevant and nested. 1In this case,
at each turn of your response, call
only one function. Then, wait for the
feedback from the user and then, call the
next function. This is because sometimes
the parameters of the later functions
are missed without the user feedback.
For example, when you see [Hint]:
func_namel (params_namel=params_valuel),
func_name2 (params_name2=params_value2),
you should first output [func_namel(...)]
with the correct parameter values and
wait for the user response. Then, after
you get the user response, based on the
response, you call the next function
[func_name2(...)] with the correct
parameter values.

Hints selection for negative trajectories We use
the following prompt for the judgement model
which is also a Gemini-1.5-pro-002, for deter-
mining a negative trajectory hint: You will be
given a multi-turn conversation between
a user and an agent, the agent response
for a single turn, which is possibly a
function call, and a reference response.
Your task is to judge whether the model
response is a correct one based on the
reference response. Below are possible
error types. When both the reference and
the model response are function calls,
your judgement is for whether the model
response accurately invoke the correct
function call.

A response might be wrong in the following
way:

1. Nested function calls: There are
missing function calls. Model fails to
call some necessary functions because
they are not explicitly mentioned in the
query.

2. Short dependency: There are outputs
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from a previous function call in this
turn that is not used correctly in later
function calls.

3. Long dependency: There are
some parameter values exist in the
conversation history but not properly

used in this turn.

When both the reference and the model
response are not function call but general
textual response, your judgement is for
whether the model response covers all
the necessary information but also not
hallucination based on the reference
response.

4. Wrong summarization: whether the model
response is a wrong summarization of the
reference response.

When either one of the reference or the
model response is not a function call
while the other one is:

5. Missed function or parameters: there
are some parameter values or functions
present or not present in the context
while the model thinks the opposite.
Additional guidelines: If one of the
reference and model responses is function

call while the other is not, directly
output no.
Notice that when you see redundant

parameters from the model response when
it is function call, it might because it
gives all the parameters even the default
ones. So, as long as other parameters take
the same values, regard this as correct.
In the first line, return yes or no. If
your answer is no, in the second line,
return a number to represent the error
type.

Forth-translation prompt We use the following
prompt for forth-translation to fill in function call
parameters to make them executable: Now you
are role-playing as a function-calling
agent that involves in a multi-turn
conversation with a user. You will
be given the functions called by the
history of this multi-turn conversation,
indicated by round numbers. The functions
called 1last round start with [Last
Round].You will also be provided with a
candidate function in a dictionary format
with its descriptions and parameters. I
would like you to generate the function



call for the next round using this
function signature. Make sure the
parameters for this candidate function
should be derived from the user query
and reference outputs from the last round
function call. Rules: You should
use the function with the original name
without any changes.

For all the functions, make sure
your generated function calls contain
ALL the required parameters fields from
the function documentation. You may
also
However, do not hallucinate any
parameters outside of those. Use only
the parameters indicated in the required
and optional fields of the function
documentation.

- Then, the parameter values for the new
function should be related to the output
from last round, please refer to the
[Reference Output] for the corresponding
values. - You can have parallel function
call with the candidate function, i.e.,
call the function with different set of
parameters, for your new query. However,
**do not call more than three parallel
functions**,

Format:

Thought: <the thought on which parameter
values to use>

Answer: <You need to provide a
groundtruth for the function calls that
will be invoked in the next round as
well as the parameters. Separate your
reference function calls by comma. No any
other separator is acceptable, only using
comma. Also, if any of your parameters are
with string value, use double quotation
marks to include the parameters. If no
answer can be generated, output FINISH
in this line>

Back-translation prompt We use the following
prompt for back-translation from a function sig-
nature to a query. The in-context examples are
skipped for clarity:

Now you are role-playing as a user that
involves in a multi-turn conversation
with a function-calling agent. You will
be given the functions called by the
history of this multi-turn conversation,
indicated by round numbers. The functions

include some optional parameters.
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called last round start with [Last Round].
You will also be provided with a list
of candidate functions in a dictionary
format where the keys are the functions
called last round and values are related
and candidate functions that can be called
in this round. I would like you to
generate the query of this round which
calls one or multiple functions from the
candidate function list. When calling
multiple functions, make sure you call
no more than three functions at a single
round.

Rules:

- The preferred next round query should
be motivated by the outputs from the last
round function output. Preferably, those
outputs are used as the input parameters
for as least one of the functions being
called at this round.

- You should NOT mention which functions
to use in your query explicitly.

- After you decide on which function
to use, make sure your new query
contains information for all the required
parameters of the functions you want to
call, although some information may be
referred to implicitly as the outputs
from the last round. If the value for
some required parameters are not clear
given the context, you may want to create
a value for that required parameter but
just remember, have information for all
required parameters.

- Use no parameters besides the parameters
indicated in the required and optional
fields of the function documentation.

- For outputs from the last round, try not
to mention the exact parameters that you
will use. Instead, use references such as
"the location you just found’, ’With the
listed items’... to refer to the output
of last round that will be leveraged next.
Do not repeat any queries in the
conversation history. This means your new
query should not call the same function
with the same set of parameters as any of
the queries in the conversation, even the
function exists in the adjacent list.

- Avoid using the APIs in [Do not use these
APIs].

- Try to make the conversation as natural



as possible. Mind the logic between two
consecutive queries. Do not just create
an independent new query.

- Below are some examples of good output
given conversation history. Please follow
the style of conversation and make your
new query chained with previous queries.

B Training setup

We fine-tune Qwen2.5-Coder-7B-instruct and
Qwen2.5-Coder-14B-instruct as the starting point
and conduct SFT+RLHF over them. The reason for
choosing these base models is that they have been
adopted by other strong function calling models
as the base model and have demonstrated strong
potential for function calling abilities. All exper-
iments are conducted on 16 Nvidia A100 GPUs
on the same node. For SFT training, we fine-
tune the full parameters for both sizes. We use
a fixed max length of 8,172, warm up date of 0.1,
Adam (Kingma, 2014) as optimizer and search over
learning rate {le-5, 5e-5}, batch size {64, 128}
with gradient accumulation, and epochs {1, 2}. In
general, we find that training for 1 epoch works the
best. Other parameters are set as in the Section 4.1.
For mDPO, we use LoRA tuning for 14B SFT
model with a fixed rank 32 and alpha 64 and fully
train the 7B SFT model. We search over learning
rate {Se-7, le-6, 5e-6}, batch size {32, 64}, epoch
{1, 2, 3}, beta {0.1, 0.01, 0.3}.

We use the transformer-trl * package for train-
ing SFT models and use the implementation
from Xiong et al. (2024), which is also based on
transformer-trl, for the mDPO training.

*https://github.com/huggingface/trl
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