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Abstract

There has been growing interest in using ML models for prediction of reaction1

yields and selectivity in synthetic chemistry. However, the difficulty and cost of2

generating experimental data has proved a roadblock in creating practical models3

for these tasks. For this reason, rational dataset design strategies are emerging in4

the field, typically limited to clustering approaches to sample the overall chemical5

space broadly. However, in many real-world contexts like synthetic route planning,6

the chemist is often narrowly interested in accurate predictions on a specific,7

known target. As such, we propose a contrasting dataset design strategy that8

exploits knowledge of the target to create small models focused on local regions9

of chemical space. We design a series of acquisition functions that consider10

model uncertainty, several metrics of chemical similarity, and varying degrees11

of dataset diversity. We find that an active learning strategy that selects training12

molecules similar to uncertain regions of the target outperforms approaches that13

consider target similarity alone. Target-focused data sets significantly reduced14

data requirements; in fact, these smaller datasets could achieve accuracy on targets15

where larger, diversity-oriented or randomly selected data sets failed. Evaluation16

was performed on two literature datasets of C–H functionalization reactions, along17

with experimental validation on five complex targets. In this process, we developed18

a new regioselectivity prediction tool for a reaction that had not been modeled19

prior. To conclude, we discuss our ongoing work in developing a stopping criterion20

for the active learning loop to enable a full experimental implementation of this21

workflow.22

1 Introduction23

Data science and machine learning (ML) tools have recently been used to provide quantitative24

guidance for aspects of synthetic organic chemistry that historically have been largely driven by25

expert chemical intuition. There is great interest in the development of ML models that predict26

the regioselectivity of direct C–H functionalization reactions, which are controlled by the innate27

reactivity of the substrate and/or reagent rather than by a directing group. These predictive models28

can derisk direct C–H activation in the late stage of a multistep synthesis campaign, aid synthetic29

planning,Guillemard et al. [2021] and provide rationale for late-stage diversification efforts. Notably,30

for these tasks, there is a proposed, difficult-to-access complex target of interest for the chemist. This31

target has been designed, but is only worth a lengthy synthetic campaign if the subsequent reaction32

proceeds as desired. In this common scenario, conducting a few experiments on simple substrates to33

train an accurate, target-specific model may cost less time and money than synthesizing the complex34

target only to discover that it does not undergo the desired transformation.35
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A major obstacle in predicting regioselectivity is the development of a dataset to support the task,36

especially on complex substrates. Generating experimental data for direct C–H activation involves37

elucidation of potentially multiple products per substrate, as well as quantification of these products.38

High-throughput experimentation (HTE)Mennen et al. [2019] is ill-suited to generate data that39

explores substrate space due to the large upfront time investment required to obtain calibrated yields40

for many unique reaction products, even in contexts where the expected product is known.Wang et al.41

[2024], McDonald et al. [2024] Thus, the purification, characterization, and assignment of the site of42

C-H activation on a complex molecule often becomes the rate-limiting step in dataset generation.43

Additionally, a recent report shows that, even with an HTE dataset, regioselectivity prediction models44

may fail when molecules of interest are far from the training set distribution.Nippa et al. [2023]45

Despite significant progress in designing substrate scopes to assess the domain of applicability46

of new methods,Rana et al. [2024], Dreher and Krska [2021] extrapolation to complex substrates47

often remains challenging. The difficulty associated with quantifying the applicability domain and48

extrapolation capabilities of ML models renders their use on complex targets risky. To overcome the49

experimental constraints that limit dataset size and avoid inaccurate extrapolation from the training50

set, we propose a dataset acquisition approach that focuses on target-specific dataset generation,51

based on both chemical similarity and model uncertainty.52

1.1 Related Works53

The notion of assessing the local chemical space where a model can predict accurately has previously54

appeared in the regioselectivity prediction literature. Guan et al. [2023] develop a prediction tool55

that triggers a domain-independent, time-intensive quantum mechanical calculation, when the query56

molecule is outside the domain of a machine learning model (with domain assessed by model57

confidence). Caldeweyher et al. [2023] develop a model that dynamically mixes a partial least squares58

(PLS) prediction and a more extrapolative neighboring substituent penalty, de-prioritizing the PLS59

prediction when the query molecule has low Tanimoto similarity to the training set.60

Developing training datasets based on target similarity has appeared in other chemistry contexts,61

namely for quantum chemistry,Lemm et al. [2023] property prediction, Kim et al. [2024], and gas62

content evaluation.Yu et al. [2021] The latter two reports cluster the available training data using63

k-means clustering and develop models specific to each cluster. The former work, given a target64

query, suggests the nearest N neighbors as training molecules. Since the initial publication of this65

work, Reid and coworkers have published a radius-based random forest regression algorithm for the66

synthetic chemistry context that uses a similarity threshold to assess whether a training point should67

be included when building a model for a given target.Betinol et al. [2025] Our approach is the first68

that we know of for synthetic chemistry, and moreover introduces an active-learning component to69

the dataset design, incorporating model uncertainty on the target as a consideration along with target70

similarity.71

1.2 Contributions72

We report similarity- and uncertainty-aware dataset design methods to efficiently train ML models73

to predict the regioselectivity of innate C–H functionalization reactions on complex targets. Our74

contributions are as follows:75

• We design a suite of acquisition functions (AFs) for target-oriented training set selection76

that consider molecule- and atom-level similarity, model uncertainty, model predictions, and77

overall training set diversity when selecting the most informative training points.78

• We develop models to predict the regioselectivity of dioxirane C(sp3)–H oxidation, a reaction79

employed in complex molecule synthesisKanda et al. [2020] that has not previously been80

modeled.81

• We evaluate the acquisition workflow on two literature reaction datasets, finding that the82

AFs which performed best considered both the model uncertainty on the target as well as83

atom-level similarity.84

• We show that the AFs achieve accuracy at smaller datasets than random selection. On a85

dataset of 135 reactions, select AFs achieve top-1 accuracy 40-50 datapoints earlier than86

random selection.87
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• We demonstrate that small, well-designed datasets can achieve accuracy when large datasets88

fail. Of the 50 target molecules studied, 12 that could not be predicted accurately using89

random selection at any dataset size were successfully predicted using a smaller, AF-selected90

training set.91

2 Regioselectivity prediction of C(sp3)–H Oxidation92

2.1 Dataset93

As a proof-of-concept, we focused on dioxirane-mediated C–H oxidation reactions, which are94

controlled by the substrate’s innate reactivity. We mined reaction regioselectivity data for dimethyl-95

dioxirane (DMDO) and trifluoromethyl-dioxirane (TFDO), curating reports providing detailed infor-96

mation about yields and selectivity (complete list in Appendix A.1). After preprocessing the dataset97

(Appendix A.2), 185 unique reactions remained and were used for further modeling. We noticed98

that (a) reaction conditions vary little across the dataset (Appendix A.3) and (b) reports showed that99

TFDO and DMDO maintained the same regioselectivity.Curci et al. [2006] Consequently, we decided100

to leverage data from both dioxirane reagents and rely solely on the description of the C–H bonds,101

not the reagents, for the design of relevant reaction descriptors.102

2.2 Modeling103

We framed the regioselectivity modeling task as a regression from the descriptors of an individual104

C-H site to the experimental selectivity. Therefore, for each reaction, there are multiple data points105

corresponding to the number of C-H sites on the reaction substrate. With the goal of reducing com-106

putational cost, we leveraged semi-empirical methodsBannwarth et al. [2019] and machine-learned107

descriptorsS. V. et al. [2023] for the C-H featurization. Specifically, we computed descriptors encod-108

ing the steric (Sterimol, buried volume), electronic (C and H charge), and local atomic (hybridization,109

neighboring atom-types) environments of the C–H bond. In addition, the bond dissociation en-110

ergy (BDE) was computed. Full details are provided in Appendix A.4. These descriptors were111

benchmarked against several machine learning models (random forest, K-nearest neighbors, linear112

regression, support vector regression, Gaussian process regression).

Random Forest KNN Linear Reg SVR GPR
BDE 55.46 ± 1.0 55.14 56.22 9.19 44.43 ± 0.22
Sterics 64.76 ± 0.58 57.84 55.14 57.3 41.24 ± 2.11
Electronics 72.86 ± 0.72 79.46 38.38 65.41 60.38 ± 0.8
Local Environment 55.84 ± 0.59 56.76 51.35 47.03 57.89 ± 0.8
xTB-Morfeus 79.08 ± 0.8 71.89 54.05 58.92 46.16 ± 2.31
Human-selected 77.95 ± 0.63 73.51 60.0 64.86 40.0
Model-selected 79.95 ± 0.89 73.51 72.97 69.19 43.41 ± 2.82

Table 1: Benchmarking of C-H bond descriptors against model type on LOO cross-validation. Bold
numbers indicate the best-performing model per descriptor type. Bold and underlined indicates the
best-performing model overall. "Human-selected" are a set of descriptors chosen using chemical
intuition, and "model-selected" are a set of descriptors chosen using RF feature importance.

113

Model performance was evaluated on two tasks: a leave-one-out (LOO) cross-validation and a114

train-test split on molecule complexity. The latter task was designed to understand how our models115

performed on the complex targets of interest when trained only on simpler, readily available substrates.116

The training set contains all molecules with less than 15 carbons (135 molecules), and the test set117

contains the complex molecules (50 molecules with more than 15 carbons). In terms of molecular118

structure, the complex molecule dataset consists of 7 di- and tri-peptides, 3 taxol derivatives, 3119

macrocycles, 22 steroids, and 15 miscellaneous compounds (Appendix A.5). To put the modeling120

results in context, a heuristic baseline was designed according to empirical rules-of-thumb on the121

reactivity of C(sp3)–H sites, which decreases in the following order: benzylic, tertiary, secondary,122

and primary (Baseline LOO: 38%, Complex-split: 12%). Top-1 accuracy was used as the evaluation123

metric.124
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Random Forest KNN Linear Reg SVR GPR
BDE 22.0 22.0 22.0 22.0 16.0
Sterics 36.6 ± 2.0 28.0 40.0 36.0 1.4 ± 0.9
Electronics 47.8 ± 1.1 44.0 8.0 32.0 30.0
Local Environment 24.4 ± 0.8 26.0 20.0 22.0 28.0
xTB-Morfeus 47.6 ± 1.8 26.0 26.0 28.0 28.0 ± 18.3
Human-selected 48.6 ± 1.8 42.0 24.0 24.0 4.0
Model-selected 51.0 ± 2.2 54.0 34.0 50.0 25.0 ± 25.0

Table 2: Benchmarking of C-H bond descriptors against model type on simple-complex molecule
train-test split. Bold numbers indicate the best-performing model per descriptor type. Bold and
underlined indicates the best-performing model overall. "Human-selected" are a set of descriptors
chosen using chemical intuition, and "model-selected" are a set of descriptors chosen using RF feature
importance.

Figure 1: Regioselectivity predictions on selected complex targets of RF trained on small molecules.

Random forest (RF) provided the best balance in performance across both tasks (2, 1). The RF125

models significantly outperform the rule-based baseline on the LOO task (˜80% top-1 accuracy for126

the best-performing models versus heuristic baseline 38%) and when predicting on large molecules127

(˜50% top-1 accuracy versus heuristic baseline 12%).128

As expected, we observe that predictive performances on the more complex targets are significantly129

lower than when the models are evaluated as leave-one-out (performances drop from 80% top-1 to130

50%). Error analysis of the different molecules in the complex target dataset reveals the following:131

• On the so-called miscellaneous molecules, good performance is achieved (13/15 correct132

top-1), perhaps due to a large proportion of molecules containing reactive benzylic sites.133

Good performance is also achieved on the macrocycle class.134

• On peptides, the model also performs well, likely due to the small number of more-reactive135

tertiary C–H sites compared to primary and secondary sites. The main source of error is136

differentiation between isopropyl groups (4/7 rank the most-reactive site correctly, and the137

rest predict it as the second-most reactive)138

• In the steroid class, 7/11 steroids having a C5α–H configuration are predicted correctly,139

while the reactive site of the 5β-steroids is never ranked higher than top-4. Challenges in140

distinguishing this reactivity might stem from the featurization failing to adequately capture141

the stereochemistry on the ring, which has been shown to play a crucial role in determining142

the selectivity of dioxirane-mediated oxidations.Zou et al. [2013]143

• The C1 position in the taxol derivatives was difficult for the model to identify (Fig. 1).144

This is likely because our model does not differentiate between hydrogen isotopes. It was145

shown that the deuteration of the C2 position was crucial to mitigate its oxidation and obtain146

C1 oxidation as a major product.Kanda et al. [2020] Even though silyl ethers and alkenes147

are both absent from our training set, the reactivity predicted at the C13 position seems148

reasonable as it has been observed by Kanda et al. [2020] in similar substrates.149

Aside from potential weaknesses in the featurization, we hypothesized that poor prediction of some150

complex targets stems from under-representation of their C–H bonds in the overall training set.151

Instead of undertaking a prohibitively expensive experimental campaign to balance the C-H site152
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representation in the dataset, we describe the development of an algorithmic approach for selecting153

the most informative dataset for each individual target.154

3 Acquisition Functions for Target-Specific Dataset Design155

3.1 Proposed Workflow156

The dataset selection algorithm uses an acquisition function to select a tailored dataset for each target157

one training point at a time. In the proposed workflow, the AF is used to score potential candidate158

molecules and the best-scored candidate is subjected to the reaction under study. This additional data159

point is used to refine the predictions further. If needed, the cycle is repeated.160

3.2 Design Principles161

Acquisition functions to select candidate training molecules were implemented based on five design162

principles: (1) substructure-level molecular similarity, (2) site-level bond similarity, (3) training set163

diversity, (4) use of model information, and (5) ease of experimental validation.164

Substructure similarity AFs: Substructure similarity was quantified as the number of atoms165

in the largest shared common substructure of the target molecule and the candidates (maximum166

common substructure or MCS). AF-2-1 (or AFSC) considers only similarity to target and naively167

selects the candidate molecule with the largest shared substructure to the target. To incorporate168

diversity considerations, spectral clustering was performed on substructure-based RDKit fingerprints169

to divide the molecules into ten clusters. A diversity-only strategy was implemented (AF-3), with170

no consideration of similarity to target, where the AF would select a molecule randomly from each171

cluster, alternating between all clusters. Hybrid diversity- and similarity-based AFs were designed172

(AF-4-1), which select the molecule with the highest substructural similarity score from each cluster,173

rather than selecting randomly.174

Site similarity AFs: C–H site similarity was computed for all target-candidate C–H pairs as the175

Euclidean distance between their feature vectors. Then, to arrive at a single score per candidate176

carbon, each candidate site was labeled with its best similarity to a target site. The maximum of177

these labels was taken as the candidate score (AF-6, or AFCH). To incorporate diversity, k-means178

clustering was used to divide the C–H sites of the candidate molecule pool into ten clusters. An179

exclusively diversity-based method to include molecules that represent the full C–H space of the180

candidate molecules was implemented (AF-8). In the selection process, one molecule from each181

cluster was sequentially added, prioritizing the most representative molecules in the cluster. The most182

representative molecule from each cluster was determined to be the molecule possessing the most183

C–H sites belonging to that cluster. A hybrid diversity- and similarity-based AF was also designed,184

which aimed to select a pool of molecules that matched all sites of the target (AF-9). In this selection185

strategy, each C–H site of the target was analyzed successively and the candidate with the most186

similar C–H site was selected.187

Active learning AFs: Given that we wanted to design the smallest, most informative datasets, we188

anticipated that including model insights would reduce redundancy in molecule selection. Thus,189

an additional AF (AF-1 or AFAL) was designed that integrates the predictions of the model and its190

uncertainty.191

The AF score is given as the weighted mean of all target-candidate C–H similarities( 1
d(j,i) , where192

d(j, i) is the Euclidean distance between the candidate C-H site j and the target C-H site i). An193

adjustable parameter db was added, ensuring the scoring function is always well-defined. The194

similarity of each C-H site i of the target is weighted by the product of the model uncertainty δ(reg, i)195

and the predicted reactivity r(reg, i) on that site. The uncertainty is calculated as the standard196

deviation of the reactivity predictions of an ensemble of 10 models, and the predicted reactivity is197

given as the mean.198

scoreAF−1 =
∑

i∈target r(reg, i) ∗ δ(reg, i) ∗
(

1
ncand

∑
j∈candidate

1
d(j,i)+db

)
,199

where ncand is the total carbon count of the candidate molecule200
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Figure 2: a) Example learning curve on steroid. b) Comparison of AFs with random selection on both
literature datasets. c) Molecule-wise comparison of AFAL with random selection. d) Performance of
AFs with varying degrees of diversity selection.

Consequently, the selection was biased toward molecules that reduce model uncertainty, while201

focusing on improving the model’s accuracy at the reactive centers of the target. The uncertainty202

consideration should provide an incentive towards diverse candidate selection, so no additional203

diversity-based selection was implemented. As a final consideration, with an eye towards experimental204

validation in the future, incorporating a selection bias towards easy-to-characterize substrates seemed205

important to avoid extensive, time-consuming experimental analysis. As a simple proxy for ease of206

characterization, the scores of the active learning acquisition function were divided by the carbon207

count of the candidate molecules, effectively biasing selection towards candidates that have fewer208

carbons (AF-10).209

scoreAF−10 =
∑

i∈target r(reg, i) ∗ δ(reg, i) ∗
(

1
n2
cand

∑
j∈candidate

1
d(j,i)+db

)
210

3.3 Experiment Setup211

To evaluate the AFs without extensive synthetic burden, the acquisition workflow was simulated212

on the literature dataset of dioxirane-mediated oxidations. In this simulated workflow, AFs score213

candidates from the "simple" set of 135 reactions, and the best-scored reaction is added to the training214

set until the candidate pool is empty. A training trajectory is generated by fitting a random forest215

model on the training set at each time point. Since the AFs are target-specific, there will be one216

training trajectory per AF for each of the 50 complex target molecules in the dataset. The training217

molecule with the largest substructural overlap with the target was used to initiate sampling. The218

performance of each AF was measured by the number of experiments required to have a consistent219

top-1 accuracy on the target for at least 10 iterations. Random selection was used as a baseline.220

3.4 Evaluation of Acquisition Strategies221

To evaluate the AFs across the dataset, the difference in performances of the AF relative to random222

selection was computed over the subset of complex molecules that were predicted accurately by223

either random selection or the AF considered. The AFAL, AFSC, and AFCH respectively spared 50,224

51, and 40 data points on average compared to random selection (Fig 2b.). In the case where the AF225

did not provide improvement above the random selection, it was typically because random selection226

afforded an accurate prediction with fewer than 20 data points. In other words, the largest gains using227

the AF strategy were realized on targets that were most difficult to predict. Moreover, we observed228

that 27 to 31 targets were predicted accurately using AF-1 and AF-10, whereas random selection only229

predicts 19 correctly (Fig. 2c). This further suggests that a small but intentionally designed dataset230

can give better performance than larger ones for this type of task.231

This analysis also provided some insight into the necessity of factoring in diversity versus similarity232

considerations (Fig. 2d) in dataset design. At least on this dataset, the pure diversity-based strategies233

(AF-3, AF-8) underperformed compared to their counterparts with similarity considerations. Indeed,234

their performance is comparable to random selection. This supports the conclusion that in low-235

data contexts where targets are known, optimizing for training set diversity alone is unwise. The236

hybrid approaches (AF-4-1 and AF-9) provided comparable, if slightly lower performances than their237

pure similarity-based counterparts. The literature dataset is a fairly diverse sampling space due to238
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Figure 3: a) Bar plots of the performances of four AFs against random selection on the correctly
predicted experimental targets. b) Learning curve depicting how the model’s ranking of the most
reactive site for (+)-sclareolide evolves with dataset size.

publishing pressures that aim to maximize novelty. It is possible that on more redundant datasets,239

these hybrid approaches may become more effective, though further testing is needed.240

4 Additional Validation241

4.1 Experimental Validation on Unseen Complex Targets242

Encouraged by the results on molecules mined from literature, we tested whether similar gains243

could be observed on complex molecules outside of the dataset. Molecules were sourced from244

the in-house stockroom and an archival library of compounds generated in past projects from the245

Anonymous group. Compounds were then subjected to oxidation by TFDO without significant246

reaction optimization, and resulting isolated yields were used to evaluate prediction accuracy and AF247

performance.248

Target molecules were selected that reflected the synthetic interests of total synthesis chemists and249

were anticipated to challenge the model to choose between similarly reactive sites. These targets250

included terpenes cedrol (2) and (+)-sclareolide (6), steroid 3 – which provides interesting competition251

between carbinol protons, and sterically hindered alcohol 4, which forces the model to choose between252

a tertiary site and a hindered carbinol proton. Adamantane 5 was a product of a synthetic methodology253

project in the lab and requires the model to prioritize between tertiary and benzylic positions.254

On 4/5 targets, the model scores the reactive sites correctly, and the AFs provide stable, accurate255

predictions at smaller dataset sizes than random selection. For molecules 2, 3, 4, and 5 respectively,256

the active learning-based AF beats random selection by 76, 78, 115, and 46 data points. Molecules257

2, 4, and 5 can achieve stable accuracy within a dozen data points depending on the choice of258

AF. The improvement is especially pronounced for targets 3 and 4, where stable accuracy cannot259

be achieved under random selection in 135 data points. The model struggles with (+)-sclareolide,260

perhaps weighting tertiary positions over electronic features. Longer range interactions, such as the261

deactivation of the top-ranked tertiary site by the lactone, seem to not be picked up by the selected262

descriptors. However, even on this difficult-to-predict substrate, the AFs still provide improvement263

over random: the rank of the most experimentally reactive C–H site is consistently better with the264

active learning-based AFs than with random selection.265

To sum up, on this validation set, target-specific dataset selection reduces the size of the dataset266

needed to reach accuracy by more than 50% and increases the accuracy from 2 out of 5 with random267

selection to 4 out of 5 using AFAL or AFCH.268

4.2 Literature Validation on C(sp2)-H Radical Borylation269

To probe the generality of the target-specific dataset design strategy for regioselectivity predictions, the270

workflow was repeated on another reaction of interest for late-stage functionalization, the C(sp2)–H271

radical borylation. The workflow was applied to a subset of a recently reported borylation reaction272

datasetNippa et al. [2023] (82 reactions including 22 large targets), filtered to include only reactions273

conducted under the same conditions. On this reaction, AFAL, AFSC, and AFCH beat the random274

baseline, which is consistent with what was observed for C(sp3)–H oxidation. Specifically, in a275

search space of 60 reactions, AFAL, AFSC, and AFCH spare 18, 16, and 21 data points on average,276

respectively, compared to random selection (Fig 2b). Additionally, molecules that could not be277
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predicted accurately using random selection were predicted accurately with the AF strategies (12278

were predicted accurately with random selection versus 15, 16, and 16 with AFAL, AFSC, and AFCH279

respectively – an increase of 14 to 18%).280

5 Studies on Stopping Criteria281

A key component for full experimental implementation of the workflow described in 3.1 is assessment282

of when the acquisition loop can terminate. Our efforts thus far explore model uncertainty on the283

target, Laws and Schütze [2008] prediction stability, Bloodgood and Vijay-Shanker [2009] and AF284

scores as properties that can predict whether the model has achieved accuracy. As similarity-based285

thresholding has performed well in other predictive tasks in synthetic chemistry, we envisioned that286

the similarity-based AF scores could be an informative metric to track. Uncertainty was measured287

as the inverse of the fraction of models in the ensemble that agree on the top-ranked carbon, and288

prediction stability was calculated as the number of models that agree on the top-ranked carbon over a289

window of n training steps. These properties were paired with a gradient-, value-, or percentage-based290

threshold at which the acquisition loop would be stopped.291

We define two objectives for a good stopping criterion: 1) Goodness: accuracy at the stop index,292

and 2) Lateness: area under the curve at the stop index. The ideal stopping criterion will have high293

goodness and low lateness. As a baseline, we compare to stopping at 10 training data points, which294

was the most common dataset size at which accuracy was reached across AFs. For reference, the295

lateness associated with stopping at the first instance of stable accuracy on AF-10 is 0.11.296

Baseline Prediction Stability Uncertainty AF Score
Mean Goodness 0.31 0.41 0.12 0.33
Mean Lateness 0.02 0.03 0.0004 0.01

Table 3: Benchmarking of stopping criteria on AF-10. Bold numbers indicate the best-performing
property per objective

From this initial work, we have the following findings:297

• We observe modest improvement over the fixed baseline. With the AF score property on298

AF-10, we see improvement in both objectives simultaneously, but the gains are quite299

limited.300

• A common failure point is that predictions always stabilize and uncertainty always falls,301

even on molecules that are never predicted accurately. For molecules that are predicted well,302

they tend to reach that accuracy quite early and therefore there is little differentiation from303

the baseline.304

To build upon this, we are exploring additional properties, e.g., cross-validation accuracy on the305

training set, and the pairwise distances between carbon reactivity predictions as this distribution306

should become bimodal as the model differentiates reactive and unreactive sites. Additionally, we307

have ˜1100 training trajectories of 135 training steps. We are interested in whether a learning task can308

be framed around predicting whether acquisition should stop or not, given the training trajectory up309

to that point.310

6 Conclusion311

A reaction-agnostic acquisition-function based strategy for target-specific dataset design is reported.312

The approach presented is effective in reducing the size of the datasets needed to predict the re-313

gioselectivity of complex molecules. Two datasets of reactions: C(sp3)–H dioxirane oxidation and314

C(sp2)–H borylation were used for validation and showed that models trained on datasets designed by315

the best AFs needed, respectively, only 30% and 55%, of the data required when trained on randomly316

selected data points. Furthermore, this work demonstrates that AF-designed datasets can provide317

accuracy on more targets than larger, randomly acquired datasets; an improvement of 24% and 23%318

is reported for the two datasets respectively. An experimental validation on a set of five complex319

targets was performed and confirmed the trends observed on the literature data. To conclude, efforts320

towards developing a stopping criterion for terminating the active learning loop are included.321
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A Technical Appendices and Supplementary Material476

All the code and the data needed to reproduce the results are available on GitHub at the address:477

(removed to maintain anonymity). A detailed README file is given to facilitate reproduction of the478

results. Links to the notebooks and python scripts used to reproduce figures and results are provided479

along with the supporting information.480

A.1 List of publications mined for dioxirane regioselectivity reaction data481

Data extraction was performed manually from 16 publications as follows Asensio et al. [1996],482

González-Nuñez et al. [2000], Bovicelli et al. [1992a], Adam et al. [2008], Bovicelli et al. [1992b],483

Crandall et al. [2016], Fusco et al. [1996], Mello et al. [1989, 1990], D’Accolti et al. [2019], Oritani484

et al. [2000], Kovač and Baumstark [1994], Lesieur et al. [2019], Saladino et al. [1999], Shustov and485

Rauk [1998], El-Assaad et al. [2022].486

A.2 Dataset preprocessing487

The main preprocessing workflow is detailed in the script: preprocess_reactions.py The preprocessing488

work is as follows. First, data is loaded from the shared Google spreadsheet or any other spreadsheet489

with the same column names. Second, the following filters are applied:490

• Remove the reactions with a "Yes" in the "Discard" column: chemist’s decision to remove the491

reaction (example reasons that caused reactions to be discarded: reactants are not dioxiranes,492

an additional catalyst is used).493

• Drop reactions with nan in the "Reactant_SMILES" column.494

• Drop reactions with no selectivity or yield data.495

• Canonicalize reactants and products SMILES.496

• Concatenate reactant and product to generate rxn_SMILES.497

• Map reactant to product atoms with RXN_mapper to generate rxn_mapper_smiles.498

• Identify reactive sites.499

• Map rxn_mapper_smiles to canonical SMILES.500

Third, the results for each pair of reactant-product are combined into a single dictionary with canonical501

carbon indexes mapped to their corresponding selectivity. We then account for symmetry by looking502

for equivalent sites and reduce the number of carbons to the unique ones. The number of equivalent503

carbons present in the molecule then normalizes selectivity. Selectivity is normalized such that the504

sum over all unique carbons equals 1.505

Finally, the resulting data is saved in numbered_reaction_1.csv: which has the columns "Reac-506

tant_SMILES" giving the canonical SMILES of the substrate and "Selectivity _Reduced" which is a507

dictionary relating atom_idx in the canonical SMILES to the corresponding selectivity.508

Additional filters: Additional filters are described in detail and realized using the script:509

data/Filter_data.py. The filters implemented are as follows: - All reactions in which the reac-510

tant was a mixture of diastereomers that were not specified were filtered out. Racemic mixtures were511

tolerated. - Amines were used in their protonated form to compute the descriptors because these512

reactions are usually conducted in the presence of HBF4 to avoid the reaction of the dioxirane with513

the amine leading to the formation of the N-oxides instead of C–H activation products. - Directed514

C–H oxidations were excluded, given the scope of the work is limited to undirected reactions. The515

data from two articles were excluded because they are examples of intramolecular directed C–H516

oxidation.517

A.3 Reaction conditions in the dataset518

Using the data mined, we have 216 reactions distributed between TFDO and DMDO reagents as
depicted in the figures below. Details on reaction solvent, time, and temperature are provided. Figures
can be reproduced using the notebook figures/04reactionconditions.ipynb.
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Figure 4: Distribution TFDO/DMDO: 105/111 reactions respectively

Figure 5: Distribution of reaction solvent

TFDO reactions are run at lower temperatures on average compared to DMDO, which balances the519

stronger reactivity of TFDO. DMDO is mostly used in acetone or acetone-containing solvent mixtures,520

and TFDO is mostly used in trifluoroacetone or trifluoroacetone-containing solvent mixtures. The521

co-solvent tends to be halogenated solvents, with the exception of acetonitrile (ACN). The reaction522

times tend to follow similar distributions for both TFDO and DMDO.523
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Figure 6: Distribution of reaction time

Figure 7: Distribution of reaction temperature
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A.4 Descriptor Calculation524

The featurization is done with the functions written in utils/modelling.py and utils/descriptors.py. It525

works as follows:526

• "prepare_reactivity_mapping" is called on a dataframe containing the list of SMILES whose527

descriptors will be extracted528

• "prepare_reactivity_mapping" calls “extract_features”, which reads the json files in529

data/descriptors/smiles_descriptors/ to retrieve the descriptors for each SMILES. If the530

descriptors are not in the json file, they will be computed on the fly. Note that BDE must be531

computed separately; a warning is displayed when running the code if BDE has not been532

computed. Details of BDE calculation is provided in a subsequent section.533

• If requested, features are normalized between 0 and 1.534

• If threshold is not equal to None, correlated features (with correlation coefficient exceeding535

the threshold) are dropped536

• A data frame is returned for later modeling.537

The script data/preprocess_reactions.py is provided to avoid recompiling descriptors when evaluating538

regioselectivity performances and acquisition functions, by storing the precomputed descriptor539

dataframes in a subfolder of data/descriptors/. In this script, descriptor types and the input file can be540

specified through command line arguments.541

Descriptors reported: Our modeling is framed such that reactive “carbon” sites are compared542

and not C–H bonds, because of (1) the difficulty to automatically map C–H bonds from reactants to543

products, and (2) the fact that some reactions feature a formal CH2 to C=O transformation making it544

impossible to differentiate the reactivity of the two C–H bonds in the reactant, which is important if545

these protons are diastereotopic. Therefore, to gather a homogeneous representation for the carbon546

sites of primary, secondary, and tertiary carbons we decided to report maximum, average, and547

minimum values of the descriptors that are hydrogen based. The descriptors are computed using the548

script: utils/descriptors.py.549

BDE: Each carbon center is featured with max, min, and average of C–H BDE and Bond Dissociation550

Free Energies (BDFE) predicted for the carbon center, using the model reported by the Paton group.16551

The script we use is provided in data/bdes/compute_bdes.py and requires a python environment that552

has the TensorFlow package installed.553

xTB-Morfeus: The 3D geometries of the molecules are optimized with xTB, then the descriptors are554

generated using the morfeus-ml python package.555

xtb command line options used: xtb temp.xyz –opt extreme –gnf=2 –json556

DBSTEP (Sterics): The 3D geometries of the molecules are optimized with xTB, then the descriptors557

are generated using DBSTEP.558

dbstep command: mol = db.dbstep(f"base_cwd/utils/xtb_utils/xtb_f_name/temp.xyz", atom1 =559

C_idx+1, atom2 = H_idx_dbstep, commandline = True, verbose = False, sterimol = True, volume =560

True, scan = ’2.0:4.5:0.5’, measure = ’classic’)561

Gasteiger (Electronics): Gasteiger charges generated by RDkit.562

ENV1 (Local Environment): Descriptors for the environment of the carbon in the reactive site are the563

number of neighbors in the following categories: O, N, H, C, C(sp2), C(sp3), aromatic C.564

Any combination of the descriptors above can be made a posteriori, and any dataframe with descrip-565

tors can be modeled as long as the columns: ’Reactant_SMILES’, ’Atom_nº’, ’Selectivity’, ’Reactive566

Atom’ are present. As such, we also tested the model with the following combinations of descriptors:567

Custom (Chemist Selection): We decided to describe the molecules with a simple featurization that568

makes chemical sense using 5 parameters: %Vbur for C and H, charges for C and H (computed with569

AIMNET2), and the predicted BDE.570

Selected (ML Selection): These descriptors are selected using permutation importance from the571

RF2 model described in section IV. The permutation importance of each feature in the previously572
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Figure 8: Complex peptide targets

described descriptors is computed and then all the descriptors with an importance of more than 0.1573

are concatenated. The selected features are the following:574

XTB-Morfeus: ’Buried_Volume_C’, ’V_occ_avg’, ’Pyramidalization_H_max’,575

’Buried_Volume_H_max_MFF’, ’Pyramidalization_C_MFF’, ’Pyramidalization_H_max_MFF’,576

’Local_Nucleophilicity_H_max’, ’dual_H_max’577

Local env.: ’num_H’, ’num_C’, ’n_Csp3’578

Electronics: ’gas_charge_H_max’, ’gas_charge_C’,579

Sterics: ’Bmax_2.0_min’, ’Bmax_2.0_avg’, ’Bmin_3.5_avg’, ’L_ch1_avg’, ’L_cc1_min’,580

’Bmin_2.0_avg’, ’Bmin_3.0_avg’581

BDE: ’bde_avg’582

Analysis of the ML selected features revealed that the 23 machine-selected descriptors included the 5583

that were chosen a priori by experts to build the custom chemist-selected feature set, suggesting that584

the model was able to extract some relevant reactivity features from the regioselectivity dataset.585

A.5 Dioxirane target molecules586
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Figure 9: Complex macrocycle targets

Figure 10: Complex taxinine targets

17



Figure 11: Complex C5-alpha steroid targets
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Figure 12: Complex C5-alpha steroid targets (cont.)
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Figure 13: Complex C5-beta steroid targets
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Figure 14: Complex uncategorized targets

21


	Introduction
	Related Works
	Contributions

	Regioselectivity prediction of C(sp3)–H Oxidation
	Dataset
	Modeling

	Acquisition Functions for Target-Specific Dataset Design
	Proposed Workflow
	Design Principles
	Experiment Setup
	Evaluation of Acquisition Strategies

	Additional Validation
	Experimental Validation on Unseen Complex Targets
	Literature Validation on C(sp2)-H Radical Borylation

	Studies on Stopping Criteria
	Conclusion
	Technical Appendices and Supplementary Material
	List of publications mined for dioxirane regioselectivity reaction data
	Dataset preprocessing
	Reaction conditions in the dataset
	Descriptor Calculation
	Dioxirane target molecules


