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Abstract

There has been growing interest in using ML models for prediction of reaction
yields and selectivity in synthetic chemistry. However, the difficulty and cost of
generating experimental data has proved a roadblock in creating practical models
for these tasks. For this reason, rational dataset design strategies are emerging in
the field, typically limited to clustering approaches to sample the overall chemical
space broadly. However, in many real-world contexts like synthetic route planning,
the chemist is often narrowly interested in accurate predictions on a specific,
known target. As such, we propose a contrasting dataset design strategy that
exploits knowledge of the target to create small models focused on local regions
of chemical space. We design a series of acquisition functions that consider
model uncertainty, several metrics of chemical similarity, and varying degrees
of dataset diversity. We find that an active learning strategy that selects training
molecules similar to uncertain regions of the target outperforms approaches that
consider target similarity alone. Target-focused data sets significantly reduced
data requirements; in fact, these smaller datasets could achieve accuracy on targets
where larger, diversity-oriented or randomly selected data sets failed. Evaluation
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was performed on two literature datasets of C–H functionalization reactions, along
with experimental validation on five complex targets. To conclude, we discuss our
ongoing work in developing a stopping criterion for the active learning loop to
enable a full experimental implementation of this workflow.

1 Introduction

Data science and machine learning (ML) tools have recently been used to provide quantitative
guidance for aspects of synthetic organic chemistry that historically have been largely driven by
expert chemical intuition. There is great interest in the development of ML models that predict
the regioselectivity of direct C–H functionalization reactions, which are controlled by the innate
reactivity of the substrate and/or reagent rather than by a directing group. These predictive models
can derisk direct C–H activation in the late stage of a multistep synthesis campaign, aid synthetic
planning,Guillemard et al. [2021] and provide rationale for late-stage diversification efforts. Notably,
for these tasks, there is a proposed, difficult-to-access complex target of interest for the chemist. This
target has been designed, but is only worth a lengthy synthetic campaign if the subsequent reaction
proceeds as desired. In this common scenario, conducting a few experiments on simple substrates to
train an accurate, target-specific model may cost less time and money than synthesizing the complex
target only to discover that it does not undergo the desired transformation.

A major obstacle in predicting regioselectivity is the development of a dataset to support the task,
especially on complex substrates. Generating experimental data for direct C–H activation involves
elucidation of potentially multiple products per substrate, as well as quantification of these products.
High-throughput experimentation (HTE)Mennen et al. [2019] is ill-suited to generate data that
explores substrate space due to the large upfront time investment required to obtain calibrated yields
for many unique reaction products, even in contexts where the expected product is known.Wang et al.
[2024], McDonald et al. [2024] Thus, the purification, characterization, and assignment of the site of
C-H activation on a complex molecule often becomes the rate-limiting step in dataset generation.

Additionally, a recent report shows that, even with an HTE dataset, regioselectivity prediction models
may fail when molecules of interest are far from the training set distribution.Nippa et al. [2023]
Despite significant progress in designing substrate scopes to assess the domain of applicability
of new methods,Rana et al. [2024], Dreher and Krska [2021] extrapolation to complex substrates
often remains challenging. The difficulty associated with quantifying the applicability domain and
extrapolation capabilities of ML models renders their use on complex targets risky. To overcome the
experimental constraints that limit dataset size and avoid inaccurate extrapolation from the training
set, we propose a dataset acquisition approach that focuses on target-specific dataset generation,
based on both chemical similarity and model uncertainty.

1.1 Related Works

The notion of assessing the local chemical space where a model can predict accurately has previously
appeared in the regioselectivity prediction literature. Guan et al. [2023] develop a prediction tool
that triggers a domain-independent, time-intensive quantum mechanical calculation, when the query
molecule is outside the domain of a machine learning model (with domain assessed by model
confidence). Caldeweyher et al. [2023] develop a model that dynamically mixes a partial least squares
(PLS) prediction and a more extrapolative neighboring substituent penalty, de-prioritizing the PLS
prediction when the query molecule has low Tanimoto similarity to the training set.

Developing training datasets based on target similarity has appeared in other chemistry contexts,
namely for quantum chemistry,Lemm et al. [2023] property prediction, Kim et al. [2024], and gas
content evaluation.Yu et al. [2021] The latter two reports cluster the available training data using
k-means clustering and develop models specific to each cluster. The former work, given a target
query, suggests the nearest N neighbors as training molecules. Since the initial publication of this
work, Reid and coworkers have published a radius-based random forest regression algorithm for the
synthetic chemistry context that uses a similarity threshold to assess whether a training point should
be included when building a model for a given target.Betinol et al. [2025] Our approach is the first
that we know of for synthetic chemistry, and moreover introduces an active-learning component to
the dataset design, incorporating model uncertainty on the target as a consideration along with target
similarity.
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1.2 Contributions

We report similarity- and uncertainty-aware dataset design methods to efficiently train ML models
to predict the regioselectivity of innate C–H functionalization reactions on complex targets. Our
contributions are as follows:

• We design a suite of acquisition functions (AFs) for target-oriented training set selection
that consider molecule- and atom-level similarity, model uncertainty, model predictions, and
overall training set diversity when selecting the most informative training points.

• We develop models to predict the regioselectivity of dioxirane C(sp3)–H oxidation, a reaction
employed in complex molecule synthesisKanda et al. [2020] that has not previously been
modeled.

• We evaluate the acquisition workflow on two literature reaction datasets, finding that the
AFs which performed best considered both the model uncertainty on the target as well as
atom-level similarity.

• We show that the AFs achieve accuracy at smaller datasets than random selection. On a
dataset of 135 reactions, select AFs achieve top-1 accuracy 40-50 datapoints earlier than
random selection.

• We demonstrate that small, well-designed datasets can achieve accuracy when large datasets
fail. Of the 50 target molecules studied, 12 that could not be predicted accurately using
random selection at any dataset size were successfully predicted using a smaller, AF-selected
training set.

2 Regioselectivity prediction of C(sp3)–H Oxidation

2.1 Dataset

As a proof-of-concept, we focused on dioxirane-mediated C–H oxidation reactions, which are
controlled by the substrate’s innate reactivity. We mined reaction regioselectivity data for dimethyl-
dioxirane (DMDO) and trifluoromethyl-dioxirane (TFDO), curating reports providing detailed infor-
mation about yields and selectivity (complete list in Appendix A.1). After preprocessing the dataset
(Appendix A.2), 185 unique reactions remained and were used for further modeling. We noticed
that (a) reaction conditions vary little across the dataset (Appendix A.3) and (b) reports showed that
TFDO and DMDO maintained the same regioselectivity.Curci et al. [2006] Consequently, we decided
to leverage data from both dioxirane reagents and rely solely on the description of the C–H bonds,
not the reagents, for the design of relevant reaction descriptors.

2.2 Modeling

We framed the regioselectivity modeling task as learning a mapping f : x − − > y, where x
is a vector representation of a C-H site and y is the experimental selectivity. To build a C-H site
representation without extensive computational cost, we leveraged semi-empirical methodsBannwarth
et al. [2019] and machine-learned descriptorsS. V. et al. [2023] for the C-H featurization. Specifically,
we computed descriptors encoding the steric (Sterimol, buried volume), electronic (C and H charge),
and local atomic (hybridization, neighboring atom-types) environments of the C–H bond. In addition,
the bond dissociation energy (BDE) was computed. Full details are provided in Appendix A.4. These
descriptors were benchmarked against several machine learning models (random forest, K-nearest
neighbors, linear regression, support vector regression, Gaussian process regression).

Model performance was evaluated on two tasks: a leave-one-out (LOO) cross-validation and a
train-test split on molecule complexity. The latter task was designed to understand how our models
performed on the complex targets of interest when trained only on simpler, readily available substrates.
The training set contains all molecules with less than 15 carbons (135 molecules), and the test set
contains the complex molecules (50 molecules with more than 15 carbons). In terms of molecular
structure, the complex molecule dataset consists of 7 di- and tri-peptides, 3 taxol derivatives, 3
macrocycles, 22 steroids, and 15 miscellaneous compounds (Appendix A.5). To put the modeling
results in context, a heuristic baseline was designed according to empirical rules-of-thumb on the
reactivity of C(sp3)–H sites, which decreases in the following order: benzylic, tertiary, secondary,
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Random Forest KNN Linear Reg SVR GPR
BDE 55.46 ± 1.0 55.14 56.22 9.19 44.43 ± 0.22
Sterics 64.76 ± 0.58 57.84 55.14 57.3 41.24 ± 2.11
Electronics 72.86 ± 0.72 79.46 38.38 65.41 60.38 ± 0.8
Local Environment 55.84 ± 0.59 56.76 51.35 47.03 57.89 ± 0.8
xTB-Morfeus 79.08 ± 0.8 71.89 54.05 58.92 46.16 ± 2.31
Human-selected 77.95 ± 0.63 73.51 60.0 64.86 40.0
Model-selected 79.95 ± 0.89 73.51 72.97 69.19 43.41 ± 2.82

Table 1: Benchmarking of C-H bond descriptors against model type on LOO cross-validation. Bold
numbers indicate the best-performing model per descriptor type. Bold and underlined indicates the
best-performing model overall. "Human-selected" are a set of descriptors chosen using chemical
intuition, and "model-selected" are a set of descriptors chosen using RF feature importance.

Figure 1: Regioselectivity predictions on selected complex targets of RF trained on small molecules.

and primary (Baseline LOO: 38%, Complex-split: 12%). Top-1 accuracy was used as the evaluation
metric.

Random Forest KNN Linear Reg SVR GPR
BDE 22.0 22.0 22.0 22.0 16.0
Sterics 36.6 ± 2.0 28.0 40.0 36.0 1.4 ± 0.9
Electronics 47.8 ± 1.1 44.0 8.0 32.0 30.0
Local Environment 24.4 ± 0.8 26.0 20.0 22.0 28.0
xTB-Morfeus 47.6 ± 1.8 26.0 26.0 28.0 28.0 ± 18.3
Human-selected 48.6 ± 1.8 42.0 24.0 24.0 4.0
Model-selected 51.0 ± 2.2 54.0 34.0 50.0 25.0 ± 25.0

Table 2: Benchmarking of C-H bond descriptors against model type on simple-complex molecule
train-test split. Bold numbers indicate the best-performing model per descriptor type. Bold and
underlined indicates the best-performing model overall. "Human-selected" are a set of descriptors
chosen using chemical intuition, and "model-selected" are a set of descriptors chosen using RF feature
importance.

Random forest (RF) provided the best balance in performance across both tasks (2, 1). The RF
models significantly outperform the rule-based baseline on the LOO task (˜80% top-1 accuracy for
the best-performing models versus heuristic baseline 38%) and when predicting on large molecules
(˜50% top-1 accuracy versus heuristic baseline 12%).

As expected, we observe that predictive performances on the more complex targets are significantly
lower than when the models are evaluated as leave-one-out (performances drop from 80% top-1 to
50%). Error analysis of the different molecules in the complex target dataset reveals the following:

• On the so-called miscellaneous molecules, good performance is achieved (13/15 correct
top-1), perhaps due to a large proportion of molecules containing reactive benzylic sites.
Good performance is also achieved on the macrocycle class.
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• On peptides, the model also performs well, likely due to the small number of more-reactive
tertiary C–H sites compared to primary and secondary sites. The main source of error is
differentiation between isopropyl groups (4/7 rank the most-reactive site correctly, and the
rest predict it as the second-most reactive)

• In the steroid class, 7/11 steroids having a C5α–H configuration are predicted correctly,
while the reactive site of the 5β-steroids is never ranked higher than top-4. Challenges in
distinguishing this reactivity might stem from the featurization failing to adequately capture
the stereochemistry on the ring, which has been shown to play a crucial role in determining
the selectivity of dioxirane-mediated oxidations.Zou et al. [2013]

• The C1 position in the taxol derivatives was difficult for the model to identify (Fig. 1).
This is likely because our model does not differentiate between hydrogen isotopes. It was
shown that the deuteration of the C2 position was crucial to mitigate its oxidation and obtain
C1 oxidation as a major product.Kanda et al. [2020] Even though silyl ethers and alkenes
are both absent from our training set, the reactivity predicted at the C13 position seems
reasonable as it has been observed by Kanda et al. [2020] in similar substrates.

Aside from potential weaknesses in the featurization, we hypothesized that poor prediction of some
complex targets stems from under-representation of their C–H bonds in the overall training set.
Instead of undertaking a prohibitively expensive experimental campaign to balance the C-H site
representation in the dataset, we describe the development of an algorithmic approach for selecting
the most informative dataset for each individual target.

3 Acquisition Functions for Target-Specific Dataset Design

3.1 Proposed Workflow

The dataset selection algorithm uses an acquisition function to select a tailored dataset for each target
one training point at a time. In the proposed workflow, the AF is used to score potential candidate
molecules and the best-scored candidate is subjected to the reaction under study. This additional data
point is used to refine the predictions further. If needed, the cycle is repeated.

3.2 Design Principles

Acquisition functions to select candidate training molecules were implemented based on five design
principles: (1) substructure-level molecular similarity, (2) site-level bond similarity, (3) training set
diversity, (4) use of model information, and (5) ease of experimental validation.

Substructure similarity AFs: Substructure similarity was quantified as the number of atoms
in the largest shared common substructure of the target molecule and the candidates (maximum
common substructure or MCS). AF-2-1 (or AFSC) considers only similarity to target and naively
selects the candidate molecule with the largest shared substructure to the target. To incorporate
diversity considerations, spectral clustering was performed on substructure-based RDKit fingerprints
to divide the molecules into ten clusters. A diversity-only strategy was implemented (AF-3), with
no consideration of similarity to target, where the AF would select a molecule randomly from each
cluster, alternating between all clusters. Hybrid diversity- and similarity-based AFs were designed
(AF-4-1), which select the molecule with the highest substructural similarity score from each cluster,
rather than selecting randomly.

Site similarity AFs: C–H site similarity was computed for all target-candidate C–H pairs as the
Euclidean distance between their feature vectors. Then, to arrive at a single score per candidate
carbon, each candidate site was labeled with its best similarity to a target site. The maximum of
these labels was taken as the candidate score (AF-6, or AFCH). To incorporate diversity, k-means
clustering was used to divide the C–H sites of the candidate molecule pool into ten clusters. An
exclusively diversity-based method to include molecules that represent the full C–H space of the
candidate molecules was implemented (AF-8). In the selection process, one molecule from each
cluster was sequentially added, prioritizing the most representative molecules in the cluster. The most
representative molecule from each cluster was determined to be the molecule possessing the most
C–H sites belonging to that cluster. A hybrid diversity- and similarity-based AF was also designed,
which aimed to select a pool of molecules that matched all sites of the target (AF-9). In this selection
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strategy, each C–H site of the target was analyzed successively and the candidate with the most
similar C–H site was selected.

Active learning AFs: Given that we wanted to design the smallest, most informative datasets, we
anticipated that including model insights would reduce redundancy in molecule selection. Thus,
an additional AF (AF-1 or AFAL) was designed that integrates the predictions of the model and its
uncertainty.

The AF score is given as the weighted mean of all target-candidate C–H similarities( 1
d(j,i) , where

d(j, i) is the Euclidean distance between the candidate C-H site j and the target C-H site i). An
adjustable parameter db was added, ensuring the scoring function is always well-defined. The
similarity of each C-H site i of the target is weighted by the product of the model uncertainty δ(reg, i)
and the predicted reactivity r(reg, i) on that site. The uncertainty is calculated as the standard
deviation of the reactivity predictions of an ensemble of 10 models, and the predicted reactivity is
given as the mean.

scoreAF−1 =
∑

i∈target r(reg, i) ∗ δ(reg, i) ∗
(

1
ncand

∑
j∈candidate

1
d(j,i)+db

)
,

where ncand is the total carbon count of the candidate molecule

Consequently, the selection was biased toward molecules that reduce model uncertainty, while
focusing on improving the model’s accuracy at the reactive centers of the target. The uncertainty
consideration should provide an incentive towards diverse candidate selection, so no additional
diversity-based selection was implemented. As a final consideration, with an eye towards experimental
validation in the future, incorporating a selection bias towards easy-to-characterize substrates seemed
important to avoid extensive, time-consuming experimental analysis. As a simple proxy for ease of
characterization, the scores of the active learning acquisition function were divided by the carbon
count of the candidate molecules, effectively biasing selection towards candidates that have fewer
carbons (AF-10).

scoreAF−10 =
∑

i∈target r(reg, i) ∗ δ(reg, i) ∗
(

1
n2
cand

∑
j∈candidate

1
d(j,i)+db

)
3.3 Experiment Setup

To evaluate the AFs without extensive synthetic burden, the acquisition workflow was simulated
on the literature dataset of dioxirane-mediated oxidations. In this simulated workflow, AFs score
candidates from the "simple" set of 135 reactions, and the best-scored reaction is added to the training
set until the candidate pool is empty. A training trajectory is generated by fitting a random forest
model on the training set at each time point. Since the AFs are target-specific, there will be one
training trajectory per AF for each of the 50 complex target molecules in the dataset. The training
molecule with the largest substructural overlap with the target was used to initiate sampling. The
performance of each AF was measured by the number of experiments required to have a consistent
top-1 accuracy on the target for at least 10 iterations. Random selection was used as a baseline.

3.4 Evaluation of Acquisition Strategies

To evaluate the AFs across the dataset, the difference in performances of the AF relative to random
selection was computed over the subset of complex molecules that were predicted accurately by
either random selection or the AF considered. The AFAL, AFSC, and AFCH respectively spared 50,
51, and 40 data points on average compared to random selection (Fig 2b.). In the case where the AF
did not provide improvement above the random selection, it was typically because random selection
afforded an accurate prediction with fewer than 20 data points. In other words, the largest gains using
the AF strategy were realized on targets that were most difficult to predict. Moreover, we observed
that 27 to 31 targets were predicted accurately using AF-1 and AF-10, whereas random selection only
predicts 19 correctly (Fig. 2c). This further suggests that a small but intentionally designed dataset
can give better performance than larger ones for this type of task.

This analysis also provided some insight into the necessity of factoring in diversity versus similarity
considerations (Fig. 2d) in dataset design. At least on this dataset, the pure diversity-based strategies
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Figure 2: a) Example learning curve on steroid. b) Comparison of AFs with random selection on both
literature datasets. c) Molecule-wise comparison of AFAL with random selection. d) Performance of
AFs with varying degrees of diversity selection.

(AF-3, AF-8) underperformed compared to their counterparts with similarity considerations. Indeed,
their performance is comparable to random selection. This supports the conclusion that in low-
data contexts where targets are known, optimizing for training set diversity alone is unwise. The
hybrid approaches (AF-4-1 and AF-9) provided comparable, if slightly lower performances than their
pure similarity-based counterparts. The literature dataset is a fairly diverse sampling space due to
publishing pressures that aim to maximize novelty. It is possible that on more redundant datasets,
these hybrid approaches may become more effective, though further testing is needed.

4 Additional Validation

4.1 Experimental Validation on Unseen Complex Targets

Encouraged by the results on molecules mined from literature, we tested whether similar gains could
be observed on complex molecules outside of the dataset. Molecules were sourced from the in-house
stockroom and an archival library of compounds generated in past projects from the Reisman group.
Compounds were then subjected to oxidation by TFDO without significant reaction optimization,
and resulting isolated yields were used to evaluate prediction accuracy and AF performance.

Target molecules were selected that reflected the synthetic interests of total synthesis chemists and
were anticipated to challenge the model to choose between similarly reactive sites. These targets
included terpenes cedrol (2) and (+)-sclareolide (6), steroid 3 – which provides interesting competition
between carbinol protons, and sterically hindered alcohol 4, which forces the model to choose between
a tertiary site and a hindered carbinol proton. Adamantane 5 was a product of a synthetic methodology
project in the lab and requires the model to prioritize between tertiary and benzylic positions.

On 4/5 targets, the model scores the reactive sites correctly, and the AFs provide stable, accurate
predictions at smaller dataset sizes than random selection. For molecules 2, 3, 4, and 5 respectively,
the active learning-based AF beats random selection by 76, 78, 115, and 46 data points. Molecules
2, 4, and 5 can achieve stable accuracy within a dozen data points depending on the choice of
AF. The improvement is especially pronounced for targets 3 and 4, where stable accuracy cannot
be achieved under random selection in 135 data points. The model struggles with (+)-sclareolide,
perhaps weighting tertiary positions over electronic features. Longer range interactions, such as the
deactivation of the top-ranked tertiary site by the lactone, seem to not be picked up by the selected
descriptors. However, even on this difficult-to-predict substrate, the AFs still provide improvement
over random: the rank of the most experimentally reactive C–H site is consistently better with the
active learning-based AFs than with random selection.

To sum up, on this validation set, target-specific dataset selection reduces the size of the dataset
needed to reach accuracy by more than 50% and increases the accuracy from 2 out of 5 with random
selection to 4 out of 5 using AFAL or AFCH.

4.2 Literature Validation on C(sp2)-H Radical Borylation

To probe the generality of the target-specific dataset design strategy for regioselectivity predictions, the
workflow was repeated on another reaction of interest for late-stage functionalization, the C(sp2)–H
radical borylation. The workflow was applied to a subset of a recently reported borylation reaction
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Figure 3: a) Bar plots of the performances of four AFs against random selection on the correctly
predicted experimental targets. b) Learning curve depicting how the model’s ranking of the most
reactive site for (+)-sclareolide evolves with dataset size.

datasetNippa et al. [2023] (82 reactions including 22 large targets), filtered to include only reactions
conducted under the same conditions. On this reaction, AFAL, AFSC, and AFCH beat the random
baseline, which is consistent with what was observed for C(sp3)–H oxidation. Specifically, in a
search space of 60 reactions, AFAL, AFSC, and AFCH spare 18, 16, and 21 data points on average,
respectively, compared to random selection (Fig 2b). Additionally, molecules that could not be
predicted accurately using random selection were predicted accurately with the AF strategies (12
were predicted accurately with random selection versus 15, 16, and 16 with AFAL, AFSC, and AFCH
respectively – an increase of 14 to 18%).

5 Studies on Stopping Criteria

A key component for full experimental implementation of the workflow described in 3.1 is assessment
of when the acquisition loop can terminate. Our efforts thus far explore model uncertainty on the
target, Laws and Schütze [2008] prediction stability, Bloodgood and Vijay-Shanker [2009] and AF
scores as properties that can predict whether the model has achieved accuracy. As similarity-based
thresholding has performed well in other predictive tasks in synthetic chemistry, we envisioned that
the similarity-based AF scores could be an informative metric to track. Uncertainty was measured
as the inverse of the fraction of models in the ensemble that agree on the top-ranked carbon, and
prediction stability was calculated as the number of models that agree on the top-ranked carbon over a
window of n training steps. These properties were paired with a gradient-, value-, or percentage-based
threshold at which the acquisition loop would be stopped.

We define two objectives for a good stopping criterion: 1) Goodness: accuracy at the stop index,
and 2) Lateness: area under the curve at the stop index. The ideal stopping criterion will have high
goodness and low lateness. As a baseline, we compare to stopping at 10 training data points, which
was the most common dataset size at which accuracy was reached across AFs. For reference, the
lateness associated with stopping at the first instance of stable accuracy on AF-10 is 0.11.

Baseline Prediction Stability Uncertainty AF Score
Mean Goodness 0.31 0.41 0.12 0.33
Mean Lateness 0.02 0.03 0.0004 0.01

Table 3: Benchmarking of stopping criteria on AF-10. Bold numbers indicate the best-performing
property per objective

From this initial work, we have the following findings:

• We observe modest improvement over the fixed baseline. With the AF score property on
AF-10, we see improvement in both objectives simultaneously, but the gains are quite
limited.

• A common failure point is that predictions always stabilize and uncertainty always falls,
even on molecules that are never predicted accurately. For molecules that are predicted well,
they tend to reach that accuracy quite early and therefore there is little differentiation from
the baseline.

8



To build upon this, we are exploring additional properties, e.g., cross-validation accuracy on the
training set, and the pairwise distances between carbon reactivity predictions as this distribution
should become bimodal as the model differentiates reactive and unreactive sites. Additionally, we
have ˜1100 training trajectories of 135 training steps. We are interested in whether a learning task can
be framed around predicting whether acquisition should stop or not, given the training trajectory up
to that point.

6 Conclusion

A reaction-agnostic acquisition-function based strategy for target-specific dataset design is reported.
The approach presented is effective in reducing the size of the datasets needed to predict the re-
gioselectivity of complex molecules. Two datasets of reactions: C(sp3)–H dioxirane oxidation and
C(sp2)–H borylation were used for validation and showed that models trained on datasets designed by
the best AFs needed, respectively, only 30% and 55%, of the data required when trained on randomly
selected data points. Furthermore, this work demonstrates that AF-designed datasets can provide
accuracy on more targets than larger, randomly acquired datasets; an improvement of 24% and 23%
is reported for the two datasets respectively. An experimental validation on a set of five complex
targets was performed and confirmed the trends observed on the literature data. To conclude, efforts
towards developing a stopping criterion for terminating the active learning loop are included.
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A Technical Appendices and Supplementary Material

All the code and the data needed to reproduce the results are available on GitHub at the address:
(removed to maintain anonymity). A detailed README file is given to facilitate reproduction of the
results. Links to the notebooks and python scripts used to reproduce figures and results are provided
along with the supporting information.

A.1 List of publications mined for dioxirane regioselectivity reaction data

Data extraction was performed manually from 16 publications as follows Asensio et al. [1996],
González-Nuñez et al. [2000], Bovicelli et al. [1992a], Adam et al. [2008], Bovicelli et al. [1992b],
Crandall et al. [2016], Fusco et al. [1996], Mello et al. [1989, 1990], D’Accolti et al. [2019], Oritani
et al. [2000], Kovač and Baumstark [1994], Lesieur et al. [2019], Saladino et al. [1999], Shustov and
Rauk [1998], El-Assaad et al. [2022].

A.2 Dataset preprocessing

The main preprocessing workflow is detailed in the script: preprocess_reactions.py The preprocessing
work is as follows. First, data is loaded from the shared Google spreadsheet or any other spreadsheet
with the same column names. Second, the following filters are applied:

• Remove the reactions with a "Yes" in the "Discard" column: chemist’s decision to remove the
reaction (example reasons that caused reactions to be discarded: reactants are not dioxiranes,
an additional catalyst is used).

• Drop reactions with nan in the "Reactant_SMILES" column.
• Drop reactions with no selectivity or yield data.
• Canonicalize reactants and products SMILES.
• Concatenate reactant and product to generate rxn_SMILES.
• Map reactant to product atoms with RXN_mapper to generate rxn_mapper_smiles.
• Identify reactive sites.
• Map rxn_mapper_smiles to canonical SMILES.

Third, the results for each pair of reactant-product are combined into a single dictionary with canonical
carbon indexes mapped to their corresponding selectivity. We then account for symmetry by looking
for equivalent sites and reduce the number of carbons to the unique ones. The number of equivalent
carbons present in the molecule then normalizes selectivity. Selectivity is normalized such that the
sum over all unique carbons equals 1.

12

https://doi.org/10.1021/jo9802877
https://doi.org/10.1021/jo9802877
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9321565
https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/9321565
https://doi.org/10.1021/jo400350v


Figure 4: Distribution TFDO/DMDO: 105/111 reactions respectively

Finally, the resulting data is saved in numbered_reaction_1.csv: which has the columns "Reac-
tant_SMILES" giving the canonical SMILES of the substrate and "Selectivity _Reduced" which is a
dictionary relating atom_idx in the canonical SMILES to the corresponding selectivity.

Additional filters: Additional filters are described in detail and realized using the script:
data/Filter_data.py. The filters implemented are as follows: - All reactions in which the reac-
tant was a mixture of diastereomers that were not specified were filtered out. Racemic mixtures were
tolerated. - Amines were used in their protonated form to compute the descriptors because these
reactions are usually conducted in the presence of HBF4 to avoid the reaction of the dioxirane with
the amine leading to the formation of the N-oxides instead of C–H activation products. - Directed
C–H oxidations were excluded, given the scope of the work is limited to undirected reactions. The
data from two articles were excluded because they are examples of intramolecular directed C–H
oxidation.

A.3 Reaction conditions in the dataset

Using the data mined, we have 216 reactions distributed between TFDO and DMDO reagents as
depicted in the figures below. Details on reaction solvent, time, and temperature are provided. Figures
can be reproduced using the notebook figures/04reactionconditions.ipynb.

TFDO reactions are run at lower temperatures on average compared to DMDO, which balances the
stronger reactivity of TFDO. DMDO is mostly used in acetone or acetone-containing solvent mixtures,
and TFDO is mostly used in trifluoroacetone or trifluoroacetone-containing solvent mixtures. The
co-solvent tends to be halogenated solvents, with the exception of acetonitrile (ACN). The reaction
times tend to follow similar distributions for both TFDO and DMDO.

A.4 Descriptor Calculation

The featurization is done with the functions written in utils/modelling.py and utils/descriptors.py. It
works as follows:

• "prepare_reactivity_mapping" is called on a dataframe containing the list of SMILES whose
descriptors will be extracted
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Figure 5: Distribution of reaction solvent

Figure 6: Distribution of reaction time
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Figure 7: Distribution of reaction temperature

• "prepare_reactivity_mapping" calls “extract_features”, which reads the json files in
data/descriptors/smiles_descriptors/ to retrieve the descriptors for each SMILES. If the
descriptors are not in the json file, they will be computed on the fly. Note that BDE must be
computed separately; a warning is displayed when running the code if BDE has not been
computed. Details of BDE calculation is provided in a subsequent section.

• If requested, features are normalized between 0 and 1.
• If threshold is not equal to None, correlated features (with correlation coefficient exceeding

the threshold) are dropped
• A data frame is returned for later modeling.

The script data/preprocess_reactions.py is provided to avoid recompiling descriptors when evaluating
regioselectivity performances and acquisition functions, by storing the precomputed descriptor
dataframes in a subfolder of data/descriptors/. In this script, descriptor types and the input file can be
specified through command line arguments.

Descriptors reported: Our modeling is framed such that reactive “carbon” sites are compared
and not C–H bonds, because of (1) the difficulty to automatically map C–H bonds from reactants to
products, and (2) the fact that some reactions feature a formal CH2 to C=O transformation making it
impossible to differentiate the reactivity of the two C–H bonds in the reactant, which is important if
these protons are diastereotopic. Therefore, to gather a homogeneous representation for the carbon
sites of primary, secondary, and tertiary carbons we decided to report maximum, average, and
minimum values of the descriptors that are hydrogen based. The descriptors are computed using the
script: utils/descriptors.py.

BDE: Each carbon center is featured with max, min, and average of C–H BDE and Bond Dissociation
Free Energies (BDFE) predicted for the carbon center, using the model reported by the Paton group.16
The script we use is provided in data/bdes/compute_bdes.py and requires a python environment that
has the TensorFlow package installed.

xTB-Morfeus: The 3D geometries of the molecules are optimized with xTB, then the descriptors are
generated using the morfeus-ml python package.

xtb command line options used: xtb temp.xyz –opt extreme –gnf=2 –json
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DBSTEP (Sterics): The 3D geometries of the molecules are optimized with xTB, then the descriptors
are generated using DBSTEP.

dbstep command: mol = db.dbstep(f"base_cwd/utils/xtb_utils/xtb_f_name/temp.xyz", atom1 =
C_idx+1, atom2 = H_idx_dbstep, commandline = True, verbose = False, sterimol = True, volume =
True, scan = ’2.0:4.5:0.5’, measure = ’classic’)

Gasteiger (Electronics): Gasteiger charges generated by RDkit.

ENV1 (Local Environment): Descriptors for the environment of the carbon in the reactive site are the
number of neighbors in the following categories: O, N, H, C, C(sp2), C(sp3), aromatic C.

Any combination of the descriptors above can be made a posteriori, and any dataframe with descrip-
tors can be modeled as long as the columns: ’Reactant_SMILES’, ’Atom_nº’, ’Selectivity’, ’Reactive
Atom’ are present. As such, we also tested the model with the following combinations of descriptors:

Custom (Chemist Selection): We decided to describe the molecules with a simple featurization that
makes chemical sense using 5 parameters: %Vbur for C and H, charges for C and H (computed with
AIMNET2), and the predicted BDE.

Selected (ML Selection): These descriptors are selected using permutation importance from the
RF2 model described in section IV. The permutation importance of each feature in the previously
described descriptors is computed and then all the descriptors with an importance of more than 0.1
are concatenated. The selected features are the following:

XTB-Morfeus: ’Buried_Volume_C’, ’V_occ_avg’, ’Pyramidalization_H_max’,
’Buried_Volume_H_max_MFF’, ’Pyramidalization_C_MFF’, ’Pyramidalization_H_max_MFF’,
’Local_Nucleophilicity_H_max’, ’dual_H_max’

Local env.: ’num_H’, ’num_C’, ’n_Csp3’

Electronics: ’gas_charge_H_max’, ’gas_charge_C’,

Sterics: ’Bmax_2.0_min’, ’Bmax_2.0_avg’, ’Bmin_3.5_avg’, ’L_ch1_avg’, ’L_cc1_min’,
’Bmin_2.0_avg’, ’Bmin_3.0_avg’

BDE: ’bde_avg’

Analysis of the ML selected features revealed that the 23 machine-selected descriptors included the 5
that were chosen a priori by experts to build the custom chemist-selected feature set, suggesting that
the model was able to extract some relevant reactivity features from the regioselectivity dataset.

A.5 Dioxirane target molecules
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Figure 8: Complex peptide targets

Figure 9: Complex macrocycle targets
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Figure 10: Complex taxinine targets

Figure 11: Complex C5-alpha steroid targets
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Figure 12: Complex C5-alpha steroid targets (cont.)
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Figure 13: Complex C5-beta steroid targets
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Figure 14: Complex uncategorized targets
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