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Abstract

A new approach employing carbon nanostructure (Cbl&kypapers (BP) was used to
prepare glass fiber/epoxy composite materials withanced resistance to delamination
along with damage monitoring capability. The CNSAB&s subjected to plasma treatment
to improve its wettability by epoxy and to promai&gonger interfacial bonding. An

increase up to 20% in interlaminar fracture tougisna mode | and mode Il was observed
in composite laminates incorporating CNS BP. Motpbal analysis of the fracture

surfaces indicated that failure in the conductivieClayer provided a more effective

energy dissipation mechanism, resulting in intenten fracture toughness increase.
Moreover, fracture of the conductive CNS layer ée@bdamage monitoring of the

composite by electrical resistance measurementan wieamination. The proposed

approach provides multifunctional ply interphassigwing to couple damage monitoring

with interlaminar reinforcement of composite lanmesa
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Introduction

Composite laminates combining glass fiber and tleetting matrix is an important class
of engineering structural materials which pose hiaglchanical in-plane properties and
have found wide use in various engineering strastdior aerospace, civil and wind power
applications. One of the common design limitatiorssuch materials is the occurrence of
delamination cracks throughout the lifetime of tt@mposite that leads to the loss of
structural stiffness and eventually can threatensthuctural integrity of the composite. The
delamination can result from different precursams|uding buckling, fatigue loading, low
velocity impact, free-edge stresses, mounting andgssing residual thermal stresses [1-
3]

In order to avoid catastrophic failure of the cosipmlaminate, delamination resistance can
be improved adopting different strategies, by usstiff or rubbery inclusions as an
interleave [4,5] or by through-thickness reinforesrin the form of rods or stitches [6-8].
Recently, the use of carbon nanotubes (CNT) has k&plored as a way to reinforce
thermosetting matrices in order to improve matmxathated failure modes including
delamination behavior [9]. The resulting materiaégents a multi-scale structure as it
incorporates fillers of different size and geomefifie use of CNTs in thermosetting
matrices does not disrupt the fiber alignment anesgrves high in-plane mechanical

properties of the laminate. Selective reinforcentsnN€NTSs in composite laminates using a



CNT layer at the interlaminar region of the lamenas been proposed to avoid problems
associated with increased polymer viscosity anafilder dispersion in the matrix [10-15].
Delamination typically does not lead to immediat@ictural failure until a certain critical
crack length is reached, therefore making strutthealth monitoring (SHM) of crack
propagation an important problem of damage tolexaGurrently, there is a great demand
for composite materials with enhanced resistanagetamination and damage monitoring
capabilities [16,17]. Different approaches havenbpmposed for detecting delamination,
including monitoring electrical impedance respoo$eiezoelectric transducers [18,19],
probing changes in natural frequencies of compdaitenates [20], acoustic emission and
thermography [21], use of embedded and surfacedibritber Bragg grating sensors
[22,23]. Conductive carbon nanofillers at volumatemt above percolation were shown to
be effective in monitoring damage initiation andogegation [24-27]. Methods of
introducing nano-reinforcement can range from didespersion of CNTs in the polymeric
matrix before fiber impregnation [26,28], use of TNheets between the plies [29,30],
spraying CNT solution onto fiber mats [15,31] or injroducing CNT coating onto fiber
surface [32,33].

The goal of this study is to present a new appraaaieate a layer of carbon nanofiller at
ply interphases utilizing frictional roller slidingf buckypaper films. Buckypapers (BP)
were prepared through vacuum-assisted filtrationhighly cross-linked CNTSs, further
referred to as carbon nanostructures (CNS), whiahe hrecently been proposed as a
practical and cost-effective solution in comparisem CNTs. In particular, CNS
encapsulated flakes do not shed or produce re$pinanotubes when mixed with polymer

matrices and can result in a uniform dispersiomeatehigh filler loadings. The application



of CNS-BP circumvented using nanotube powder direot dispersed in solvent and
enabled a robust and scalable method for use irpesite manufacturing processes. A
layer of CNS was deposited at the interlaminaraegif the impregnated woven glass fiber
ply by frictional sliding of a BP film attached tbe roller. The proposed approach allowed
covering the area of glass fiber/epoxy ply ovee fiimes larger than the area of the BP
itself. As such, the proposed approach allowed atolu in the amount of nanofiller used
for reinforcement in the most critical region prdoedelamination.

The proposed method enabled enhanced interlamirahamical properties and electrical
conductivity of the composite, thus allowing damag®nitoring capabilities of the
composite. This approach coupled mechanical resefoent and SHM allowing to detect

delamination crack propagation.

Materials

Bi-directional E-glass woven fabrics (GF 4H satipawe) with areal density of 305 ¢fm
were supplied by FibreGlast. A bi-component epoasin (Sigma Aldrich) was used as
matrix. In particular, an epoxy base (density =61glcn?, viscosity = 4000-6000 mFs,
with Bisphenol A-diglycidyl-ether (equivalent epdei weight (EEW) = 172-176-equiv.

1), was mixed with a 5-Amino-1,3,3-trimethylcyclofmemethylamine hardener (density =
0.92 g/cm) at a weight ratio of 100:24.5.

Carbon nanostructure (CNS) encapsulated flakesli@pplanostructured Solutions LLC)
were used as filler to prepare BP. CNS were pratlise cross-linked multiwall carbon
nanotubes and encapsulated in flakes using polggtbyglycol as a surfactant. BP were

prepared following a methodology previously optiedzin our group [34]. Specifically,



CNS-BP were prepared by sonicating a given amol@NS in isopropyl alcohol for 10
min (Fig. la), using a Sonics Materials Vibra Ceé{LX500 (60% amplitude, 13 mm
probe). The suspension was then filtrated througdiligpore vacuum filtration assembly
with nitrocellulose filter (pore size= 048m). After vacuum filtration, the CNS-BP films
wet cakes were dried in a vacuum oven for 6h at@OCNS-BP with diameter of 70 mm
and average thickness 50¢ird were used to create a CNS layer on the wovers glasr
ply impregnated with epoxy matrix. CNS-BP was ditat to the roller by using double
sided adhesive tape (Fig. 1a). Next, the rollehvBP was applied to the impregnated
surface of the GF. Due to frictional forces indudeg the rolling motion the CNS
agglomerates detached from the buckypaper and ediher the composite forming
homogeneous CNS layer. The CNS agglomerates coaeragea of the composite lamina
5 times larger than the area of the buckypapelf itggh an average coating thickness
below 10 um. Consequently, the proposed method allowed a efisctive way of
introducing carbon nanofillers onto the surfaceéhef composite, by comparison with using
the buckypaper directly.

The epoxy base was manually mixed with the hardére?2 minutes and degassed under
vacuum for 20 min. This mixture was then used &ppre composites by wet hand lay-up
of 14 plies. A layer coating of CNS filler was dejgied via frictional roller sliding (Fig. 1b)
at the laminate midplane, namely top and bottorfasas of ¥ and & ply, respectively,
for interlaminar fracture toughness testing. Notgtwg the created CNS layer on the GF
appeared to be formed by overlapping CNS agglomgras shown in Fig. 1b. A thin CNS

layer covering the prepreg surface allowed to awamyg impregnation problems, otherwise



difficult due to the low permeability of the BP rfil [35]. A thin film (~12.5um) of
polytetrafluoroethylene (PTFE) was also placechatrhidplane to serve as an insert for an
initial crack. Composite laminates were thermallyrexl, according to the typically
recommended two stage cure cycle conditions foxgpased composites, namely 2 h at
90 °C followed by 2 h at 180 °C, while applying @8 pressure with the Carver laboratory

press during the second stage [36]

2. Methods

2.2.1 Surface modification of buckypaper by plasma treatment

Oxygen plasma treatment was performed with the afmnducing oxygen-functional
groups on the BP surfaces to promote stronger cdatrbonding between the BP and the
epoxy matrix [37-39]. Functionalization was donengsa plasma reactive ion etcher
(Plasma Etch PE-100-RIE) flowing ,O(OX-UHP300) at 20 sccm (standard cubic
centimeter per minute). BPs were exposed to then@aat room temperature under a
pressure of 13.3 Pa (0.1 Torr), applying a load3@¥ for 2 min in order to achieve
homogeneous surface treatment and limit surfaceirgic Since previous investigations
indicated that even for prolonged times of treatitka penetration depth is around 20-30

pum (corresponding to about the BP midplane), batksbf the BP were treated for 2 min.

2.2.2 X-ray photoel ectron spectroscopy
Surface analysis of the BP was performed by X-rhgtgelectron spectroscopy (XPS)

using a PHI VeraProbe 5000 XPS, adopting a monochtic AlKa radiation fiv= 1486.6



eV, power = 100W, neutralizer of 1.3 eV at|2Q) using a beam diameter of 1@ with
emission angle of 90° and under a pressure of’ ibar. The BP was analyzed on the
outer surface as well as on the inner surface deroto quantify the functionalization
gradient through its thickness. Inner surfaces waytained by cleaving the BP using
scotch tape on both sides of the BP. Noteworthginher surface obtained after cleavage
was about at the midplane of the BP, as measuiird asnicrometer caliper. The obtained

XPS spectra were analyzed in FAT mode and decotewhy VersaProbe software.

2.2.3 Surface wettability analysis

Wettability measurements were performed using ticstantact angle measurement setup.
At least five measurements were carried out by siéipg a microdroplet (i) of DI water

on the surface of the BP before and after plasmatrtrent. Contact angle values were

determined with a manual contact angle goniom&amg-Hart Inc.).

2.2.4 Mode | and mode Il interlaminar fracture toughness testing

Composite laminates consisting of 14 plies werepared for interlaminar fracture
toughness testing in mode | and Il. The compogdatepncorporated a PTFE insert to serve
as crack initiator. Half of the plate at the midmawas coated with CNS-BP layer as
described in the previous section. This procedilosvad manufacturing double cantilever
beam (DCB) specimens for mode | testing with antthevit CNS layer, denoted as Molde
neat and Modé-CNS respectively from a single laminate plate.idilsr procedure was

used to prepare an end notch flexure specimen (EdFnode Il testing using three point



bending loading conditions. The dimensions anddestlitions were adopted from ASTM-
D5528-01 [40]. Specimens presented an initial cladgth,a, of approximately 40 mm.
The CNS layer in the CNS-samples was located #ferinitial crack tip. Piano hinges
were bonded to the outer faces of the specimetisatracked ends using an epoxy paste
adhesive (LORD 310 A/B). Specimen edges were coafifd a white spray primer to
improve the visibility of the crack tip during texy. Moreover, a printed scale was applied
to the edge of the specimen in order to provideference for the measurement of the crack
length.

Specimens were tested in mode | and Il fracturghioass on a MTS electro-mechanic
universal testing machine at a rate of 3 mm/minlevacquiring the load-displacement data
at 10 Hz. The crack advancement was monitored kingaconsecutive pictures using a
Mighty Scope 5.0M Digital Microscope (Aven). In gaular, each specimen was loaded
until the applied load reached a critical valueresponding to visual detection of crack
propagation using the digital microscope. The crgrigth was measured from the load
application point to the location of the crack ppior to crack propagation. Multiple
loading cycles were conducted, following ASTM recoemnded procedure for unloading
the sample [40], to determine the effect of the Clidger on the interlaminar fracture
toughness of the composite and to enable monitaamgposite electrical resistance (ER)
during crack propagation. The crack propagatiomveen different loading cycles in Mode
| testing typically ranged between 3-5 mm. Calaalabf the critical energy release rate,
ERR, for mode | and Il fracture toughne&sqandG,c, respectively) was done using the

following beam model expressions [40]:
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whereP, is the critical maximum forcej, is the corresponding critical displacemetitjs
DCB width; ?? is DCB crack lengthC is beam compliance determined from the
experimental load-displacement cur¥as a half-span of ENF sample.

These calculations for neat composite samples amgles with CNS layer at the midplane

provided quantitative evaluation of the delaminatiesistance.

2.2.5 Monitoring of composite resistance during delamination growth

The incorporation of the conductive CNS layer aé timterlaminar region enabled
monitoring changes in the electrical resistance) (@&Rhe composite laminate during crack
propagation. The ER was monitored along the samgpieg a Fluke 72 series Il digital
multimeter configured according to the setup presgbim Fig. 2. In particular, a suspension
of silver nanoparticles (Pelcocolloidal silver liquid) was used to paint layess silver
paint (width(d) ~ 2mm) on opposing edges of the specimen and cotimem to layers on
the top and bottom surfaces of the specimen. Trkel&yer of paint was located ahead of
the initial PTFE insert at a distance of 15 mm, #reddistance between the first and second
layer was about 20 mm. Copper wires were fixechodilver paint layer of each electrode
as shown in Fig. 2 using a conductive epoxy padtedlcd] 125 epoxy kit). Electrical
resistance was continuously recorded during eacding test to allow correlating

delamination crack propagation with changes in ER.



3. Results and Discussion

3.1 Effect of plasma functionalization on the buckypaper surface properties

XPS analyses indicated significant changes in thfase chemistry on the outer and inner
surfaces of the BP after plasma functionalizatiime C1s spectra were deconvoluted into
five characteristic Gaussian peaks (Fig. 3) charaed by sphybridized graphite-like
carbon atoms (28460.1 eV), sp-hybridized graphite-like carbon atoms (28%.0.1 eV),
C-O (286.6+ 0.2 eV), C=0 (287.4 0.2 eV) and O-C=0 (28840.2 eV). Analysis of the
Cls spectra indicated noticeable changes in thensity of peaks relative to different
chemical bonds, in particular, C-O, C=0 and O-C=Dds upon plasma treatment. It has
been reported that plasma treatment gives risggdookyl and carboxyl functional groups
at the CNT surface as a result of dissociation on vacancies created during the plasma
treatment [37,41,42]. Concurrently, the graphitttusture (C=C) was disrupted at the
expense of the C-C groups due to plasma excitafibis. change was also reflected in the
decrease im— Tt transition (indicating the promotion of an electrisom a m-bonding
orbital to an antibonding orbital occurring due to a raise in the ground state gfefde
C/O atomic ratio significantly changed, indicatitigat plasma treatment was effective in
inducing oxygen functional groups on the BP suradéis change in C/O atomic ratio is
typically associated with increased hydrophilicégd wettability of the treated surfaces
[37]. Contact angle measurements performed on fPeslface before and after plasma
treatment showed that untreated BP surfaces egtibiydrophobic characteristics (contact
angle = 12% 1°), while the treated BP films were highly hydrojphilwater microdroplets

were completely adsorbed on the BP surface). Coaatly, such oxygen functional groups



covalently attached to the CNS offer the opportufidr chemical interactions with the
epoxy system. It is known from the literature tlegbxy groups can directly react with
hydroxyl and carboxylic groups forming strong cardlbonds [43,44]. In particular, epoxy
reacting with carboxyl can form esters, while i thresence of tertiary amines, epoxy
groups are also capable of reacting with hydroxglgs to form ether linkages. Therefore,
hydroxyl and carboxylic functional groups implantedto the CNS by plasma treatment
can provide an in situ chemical integration of tfamotubes into the amine/epoxy system.
This type of interactions could strengthen the riatgal bonding between CNS and the
matrix, as similar chemical reactions have beewipusly observed in traditional carbon
fiber/epoxy interfaces [45]. Stronger interfaciankling between epoxy and CNS could
promote more efficient stress transfer from therimab the glass fibers and improve the
mechanical properties of the composite [46]. Important to point out that initial attempts
were made to integrate BP directly in the compdsit@nate, however, poor impregnation
of BP during manufacturing led to reduced interlaani properties, showing adhesive
failure of the BP. However, plasma treated BP shibetter adherence to the composite
and the mechanism of failure was cohesive. Conselyue the results presented in the
following sections were obtained using plasma é@aCNS-BP incorporated into the
composite using frictional roller sliding, which pmoved impregnation enabling cohesive
fracture in the CNS layer. As discussed furthehesive fracture of CNS was found
beneficial for delamination crack monitoring. Tharface resistivity of the CNS-BP,

measured according to the ASTM D-257 standard uaifyostat PRF-912B miniature

concentric ring fixture set, was (78.4)[10° Q/sq and (10.& 1.8Y10° Q/sq for untreated



and plasma-treated CNS-BP, respectively. Measursmerere carried out at room
temperature at around 50% relative humidity anckaégd on at least 5 different areas of
the film. The electrical resistivity of CNS-BP wahkus sufficiently low to enable

monitoring of the composite resistance upon delaton.

3.2 Experimental results for mode | and mode Il testing

The results of mode | and Il interlaminar fracttoeighness indicated an increase up to
20% in delamination resistance in composite lanematith plasma treated CNS-BP layer
at the interlaminar region, as shown in Fig. 4. Experimental results were found to be
statistically significant a{p<0.05 by conducting the t-test using two-tailed dtjpesis,
which yielded g-value of 6.6E-3.

The more pronounced resistance curve (R-curve)vi@ha mode | was found in samples
with CNS-BP layer at the interlaminar midplane oggi(Figure 5). The increased
delamination resistance can be explained in terntiseomixed cohesive/adhesive mode of
fracture of the CNS layer observed after examirihng fracture surface (Figure 6a). The
area covered with CNS on the post-mortem top artbimofracture surfaces of the DCB
sample, estimated using image processing analysiagéJ), was similar indicating a
combination of cohesive/adhesive fracture (Figuse he crack pinning occurring when
the crack front encounters rigid inclusions durprgpagation was shown to contribute to
the improved toughness of polymeric systems witth isiclusions [47,48]. This fracture
mechanism explains the improv&k: results in the present case. The irregular shapes
CNS coverage on the fracture surfaces indicate mgrack propagation path during

delamination growth. Scanning electron micrographthe fracture surface (Figure 7) also



show microscopic CNS agglomerates breaking the wdne paths upon delamination,

and, as discussed in the next section, inducingggsin the composite ER.

3.3 Delamination crack monitoring using composite electrical resistance

The electrical resistance was monitored during oygemisplacement d) of the DCB
sample under mode | loading conditions as showkigare 8. After crack propagation was
visually detected using microscopy, the test wapmtd and the sample was unloaded
following the ASTM recommended procedure. Since ¢heck propagation in the DCB
sample is stable in a displacement controlled teatk advancement occurs incrementally
with the reduction in the critical load necessaryfurther propagate the crack. Therefore,
the unloading procedure allowed to monitor the ERponse of the composite upon
different opening displacements of the DCB samme 4 given crack length. Each
“loading/unloading” cycle was labeled as “Test”. Naticeable change in ER was observed
before the crack reached the location of paintrldi/e indicative of the beginning of the
ER monitoring region. When the crack reached thetgdayer ‘1" (between Test-7 and
Test-8) the ER spiked. During the unloading cyclefier Test-7 some electrical
conductivity was recovered due to crack closureydwer without reaching the pristine
undamaged electrical conductivity. Shortly aftee tbrack propagated and passed the
location of paint layer|”, the ER continued to increase rapidly at the ehd@est-8. Once
the delamination propagated into the monitoringae@between conductive paint laydf “
and ‘11”) a significant increase in composite resistaniog 200-300%) developed. The
significant change in ER was attributed to delamnmapropagation through the conductive

CNS layer and breaking of the conductive path as seen from the fractured surfaces in



Fig. 6. The cohesive/adhesive fracture behaviothef interleave was responsible for
promoting crack pinning and deflection which resdlin increased critical energy release

rate, while the electrically conductive CNS layksoaenabled damage monitoring.

Conclusions

A layer of conductive filler was introduced in thkass fiber/epoxy composite laminate by
frictional roller sliding of a CNS-BP film on tharminate surface creating a layer of CNS.
Surface functionalization of the CNS-BP was achielg oxygen plasma treatment which
improved hydrophilicity as observed using contaajla measurements. Plasma treatment
provided active polar groups on the surface anerimt of CNS-BP films, strengthening
interfacial bonding with the epoxy matrix and imyireg impregnation of CNS.

The CNS-BP layer incorporated in the composite foaad to promote functionality in the
multi-scale composite by coupling enhanced meclamimoperties with sufficiently high
electrical conductivity. Improved resistance toamehation both in mode | and Il was
observed in multi-scale composites with CNS-BP dayBhe improved interlaminar
toughness was attributed to the cohesive/adhesacufe of the CNS layer, while the
discontinuous CNS pattern on the fracture surfat® anabled monitoring the
delamination propagation.

This study presents a new approach of creatingyar laf carbon nanofiller at ply
interphases by frictional roller sliding of buckyea films onto the impregnated woven
glass fiber plies. The novelty of the approach @issn circumventing the dispersion of
nanotube powder in the epoxy and enabling a robhust scalable method for use in

composite manufacturing processes. The interlamima&chanical properties of the



composite were enhanced, while allowing also damageitoring through changes in
electrical resistance of the carbon nanofiller tayehe proposed method of enabling
mechanical and electrical functionality of ply irdbases in composite laminates provides
an efficient and cost-effective tool in designirgminates with improved interlaminar

mechanical properties and delamination sensinghaiipes.
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Figure 1. Schematics of buckypaper preparatioard)frictional sliding deposition of
CNS layer on the glass fibers (b)
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Figure 2. Schematics of double cantilever beamitmadonditions and electrodes for
resistance measurement
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Figure 3. Cls spectra obtained by XPS analysisatitig the atomic carbon-to-oxygen
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treated BP
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Figure 7. Microscopic view of the fracture surfacehesive/adhesive fracture surface (a)
with CNS agglomerates (b, c)



4 1 70 Relative resistance
] change:
35 | Locatlf:m of conductive 1 &5 e Test 1-6
e paint layer “I" 1
é : . cTw Test 7T
= 3} . . . * 1 60 .
s ] E
E + ] é + Test9
e I T e 0135 =
X e e - = e Crack length
E 21 . 1350 = DCB sample
g ] = (rotated view)
I 1 =
g 15| : 145 O
= 15 1 45 &) I
-z ]
2 ] I h
g 7 40 {
E Region 1: No change ]
o in electrical resistance 1 35
i a
1 3p
0 10 20 30 ,
Displacement, & (mm) < 6=

Figure 8. Relative resistance change recorded glerisick propagation in mode | testing



Highlights:

- A new approach of incorporating carbon nanostructures, CNS, in the interlaminar region
of glass fiber reinforced composite was proposed using frictiona roller sliding of the
buckypaper films

- Interlaminar toughness properties on composite were improved by cohesive failure of the
CNS layer

- Changesin the electrical resistance of composite were observed with crack propagation
enabling damage monitoring functionality



