Proceedings of Machine Learning Research 304, 2025 ACML 2025

Round Attention: A Novel Round-Level Attention
Mechanism to Accelerate LLM Inference

Yaohua Tang* YAOHUA.TANG@MTHREADS.COM
Zhicheng Hu* ZHICHENG.HU@QMTHREADS.COM
Kun Cheng* KUN.CHENG@MTHREADS.COM
Fan Mo FAN.MO@QMTHREADS.COM
Qiheng Lv QIHENG.LV@MTHREADS.COM
Hua Wang WHQMTHREADS.COM
Zhi Chen ZHICQMTHREADS.COM

Moore Threads

Editors: Hung-yi Lee and Tongliang Liu

Abstract

The increasing context window size in large language models (LLMs) has improved their
ability to handle complex, long-text tasks. However, as the conversation rounds continue, it
is required to store a large amount of KV cache in GPU memory, which significantly affects
the efficiency and even availability of the model serving systems. This paper analyzes
dialogue data from real users on the granularity of round and discovers that the LLM
inference manifests a watershed layer, after which the distribution of round-level attention
shows notable similarity. Based on this, we propose Round Attention - a novel round-level
attention mechanism that selectively processes the KV cache of top-k relevant rounds,
where k is dynamically determined through the attention matrix in the watershed layer.
Theoretical analysis demonstrates that our method reduces memory usage by 54% to 82%,
while experimental results confirm that loading sparse critical-round KV cache maintains
answer accuracy without performance degradation.

Keywords: LLM inference; KV Cache Eviction; Attention Matrix Analysis

1. Introduction

Recent advancements in large language models have facilitated the wider adoption of lan-
guage model services for everyday problem-solving tasks. However, prolonged interactions
expose two significant challenges. First, the rapid expansion of context length incurs sub-
stantial computational overhead due to the quadratic scaling of self-attention mechanisms.
Second, although key-value (KV) caching alleviates redundant computations, it substan-
tially increases GPU memory requirements, resulting in limited inference batch sizes and
GPU under-utilization. For instance, an NVIDIA A100 with 40GB of memory can accom-
modate only a single LLaMA request with a context length of 128K, spending nearly 50%
of its processing time on KV cache access (He and Zhai, 2024).

To enhance inference efficiency, previous research has investigated KV cache eviction
and sparse attention techniques for LLMs, noting that attention is inherently sparse. These
methods either store the entire KV cache in GPU memory, selecting key tokens during auto-
regression to reduce cross-attention computation time (Tang et al., 2024), or maintain the

* Equal contribution.

© 2025 Y. Tang, Z. Hu, K. Cheng, F. Mo, Q. Lv, H. Wang & Z. Chen.

TANG Hu CHENG Mo Lv WANG CHEN

answer kv cache
question kv cache

E U4 Un-3,

—-——mememmEm————————————= e

Figure 1: The inference pipeline of Round Attention. Our KV cache is managed and stored
in a round-based manner. For a given token, the KV cache is divided into two
tensors: the upper and lower halves. The complete KV cache is offloaded to CPU
memory, while only the lower half tensor is retained in GPU memory. The upper
half tensor is transferred from CPU memory to GPU memory at real-time based
on query relevance, thereby optimizing memory usage.

KV cache in CPU memory, transferring it to GPU memory token by token during inference
(Chen et al., 2024; Sun et al., 2024; He and Zhai, 2024; Lee et al., 2024). The former does
not reduce GPU memory usage, while the latter incurs significant communication overhead.
Furthermore, current methods often require an expensive calculation of the most relevant
tokens for each layer.

Another common issue with the aforementioned studies is that they restrict their analysis
of contextual relationships to the token level. Analysis in Sun et al. (2024) reveals that
most post-RoPE keys exhibit high cosine similarity with adjacent tokens, enabling chunk-
level approximations for selecting important tokens. LONGMEMEVAL benchmark(Wu
et al., 2024) explores the memory design options for memory-augmented chat assistants
and discovers that round is “the best” granularity for storing and utilizing the interactive
history. Inspired by this, we analyze the attention matrix under round granularity and
identify two interesting patterns. First, the attention score distributions at the round
granularity in prevalent open-source large models exhibit considerable variability in the
initial layers; however, from a certain layer onward, the distributions between layers become
remarkably similar. Second, within a single dialogue round, the attention scores computed
for the “question” in relation to previous dialogue turns closely resemble those computed
for the “answer” in relation to previous dialogue turns.

Building on these observations, we propose Round Attention, a method that leverages
the sparsity of the attention matrix. Specifically, in Round Attention, the KV caches for only
the initial layers are retained in GPU memory, while those for the deeper layers are offloaded
to CPU memory. During inference, for each question in a dialogue round, we compute

ROUND ATTENTION

the attention scores between the current question and previous dialogue rounds, and then
collectively load the KV caches of the top-k rounds from CPU memory back into GPU
memory to facilitate subsequent computations. This strategy enables us to substantially
reduce GPU memory consumption. Due to the first identified pattern, we only need to
compute the top-k rounds once at a specific layer and then perform a single host-to-device
(h2d) operation to transfer the corresponding KV cache tensor to GPU memory. This
approach contrasts with other methods that require top-k computations at each layer and
transfer the KV cache at the token granularity, significantly reducing the latency overhead
associated with top-k calculations and offoading mentioned in other approaches.
Our primary contributions are as follows:

e We dissect the attention patterns in LLM post-deployment at the round granularity
and reveal two enlightening characteristics in attention matrix in real applications.

e Based on these characteristics, we design a novel method, Round Attention, associated
with an array of techniques for long-context dialogues. This approach stores and
transfers the KV cache at round granularity.

e We conduct extensive experiments on the proposed approach. The results show that
it can reduce the GPU memory footprint by 54% to 82% with no accuracy loss.
More importantly, thanks to the one-time top-k selection and host-to-device (h2d)
transfer, our method achieves lower latency compared to standard non-offloaded Flash
Attention.

2. Related Work

2.1. Attention Matrix Analysis

The sparsity of attention weights in pre-trained LLMs, especially in long-context scenarios,
has been well-documented (Liu et al., 2022; Ribar et al., 2023; Liu et al., 2023b; Xiao et al.,
2023). Ma et al. (2024) investigates the distribution of important tokens in the context
and discovered that recent tokens are more important than distant ones. They also find
that attention scores between consecutive layers are similar, which has also been previously
observed in smaller models (Xiao et al., 2019; Bhojanapalli et al., 2021).

Mu et al. (2024) reports that Attention weights were remarkably similar between the
transformer layers, particularly the adjacent layers. Men et al. (2024) identify notable
redundancy across LLM layers, where some layers contribute marginally to the model. Fan
et al. (2024) shows that for some tasks, LLMs can achieve results comparable to the final
output at some intermediate layers.

2.2. KV Cache Eviction Algorithm

Many previous efforts focuse on KV cache compression to accelerate attention and reduce
memory usage. H20 (Zhang et al., 2023) retains a limited budget for the important KV
cache regarding the sum of historical attention scores. FastGen (Ge et al., 2023) further
categorizes tokens and only keeps partial KV cache using a more sophisticated strategy.
TOVA (Oren et al., 2024) simplifies the policy by determining the permanently discarded

TANG Hu CHENG Mo Lv WANG CHEN

tokens using the current query. StreamingLLM (Xiao et al., 2023) handles infinitely long
text with attention sinks and a finite KV cache. SparQ (Ribar et al., 2023) computes
approximate attention scores by channel pruning and selects important tokens through
them. (Tang et al., 2024) concludes that the importance of a token is highly dependent on
the query and proposes Quest, a method that records the min and max key values in KV
cache pages and estimates the importance of a page using query vectors.

However, these approaches face several challenges. First, it is costly to identify the top-k
attention. For example, applying a naive search algorithm, e.g. IVF (Douze et al., 2024),
requires access over 30% key states to obtain the top-k results (Liu et al., 2024), which is
quite compute-intensive. Second, these approaches save the KV cache in the GPU memory
to avoid loading them from the CPU memory, which does not reduce the total memory
consumption of KV cache, hence limiting the max context window and inference batch size.

Some papers attempted to offload KV cache to CPU memory to reduce the active GPU
memory usage. Liu et al. (2024) proposes to build approximate nearest neighbor search
(ANNS) indexes for KV vectors in CPU memory and retrieve the most relevant ones through
vector search during generation. Sun et al. (2024) stores the low-rank key cache and offloads
the value cache to reduce the memory footprint for larger batch sizes and longer sequences.
Chen et al. (2024) stores the LSH hash tables and runs the attention computation on the
CPU, which significantly reduces the workload of attention computation. However, these
works transmit the key-value (KV) cache at the token level, and in some approaches, the
top-k selection is computed on a per-layer basis, which implies that the KV cache is also
transferred layer by layer, resulting in significant overhead for h2d transfers.

3. Methodology

This section presents Round Attention, a novel approach that dissects the attention matrix
at the round level for multi-round dialogue tasks by taking < ¢,a > pairs as the basic
analysis unit. The objective is to reduce the memory footprint and inference latency without
sacrificing the accuracy of LLMs.

3.1. Attention Distribution

Given an input sequence X = [z1,x2,...], a standard Transformer (Vaswani et al., 2023)
network computes a set of queries @), keys K, and values V using linear transformations on
X. It then computes the self-attention scores as Att(Q, K) = softmax(Q—f/(;). To investigate
the attention pattern among rounds, we denote the sum of the attention scores of the tokens

in q,,, a, and the tokens in < q,,, a;;, > of the previous m-th round for layer [as:

qAtt! = > Att(QL KL, aAtt!, = > At(QL KL (1)

1€q,,,] €<, ,am> i€an,]€<q,,,am>
The distribution Pé is calculated by normalizing thtfn, and P! is calculated by normal-
izing aAttin. We examine the distribution patterns of Pé and Pé within the same layer, as
well as the distribution patterns of qu across different layers. SharedGPT(ShareGPT52K,

2024), a dataset produced by conversations between real users and ChatGPT, is adopted
to analyze the distribution patterns. Qwen2.5-0.5B (Yang et al., 2024) is used as the LLM.

ROUND ATTENTION

Observation 1: Attention distributions of ¢, and a, are similar.

As an example, in Figure 2(a), we selected one dialogue comprising 85 rounds to analyze
the attention probability distribution of the 85th round in relation to the preceding rounds
across different layers. As shown in the figure, the trends of Pé and P! are highly similar
in each layer, indicating that rounds highly correlated with the question of the 85th round
are also highly correlated with its answer. Thus, after performing prefill on the question
of the 85th round, we can identify the most relevant historical rounds’ KV caches for AR
computation based on the round attention distribution, rather than utilizing the KV caches
from all rounds. We would like to emphasize that this pattern is not only applicable to this
particular example. We have derived such pattern after analyzing a substantial number of
dialogues, and we are using this example as a subject for demonstration.

,,,,,

| [| | |
s ooal o | o0 \ os
|V | NV NOTY. I W | NIE (SN | N
(a) KL among rounds (b) KL among layers

Figure 2: Round attention distribution patterns. (a). The horizontal axis represents the
round index and the vertical axis represents the attention scores of ¢,/a, in
relation to historical rounds. It can be observed that the variation trend of the
attention scores calculated for ¢, is highly similar to that of a,. (b). The
horizontal axis is the layer index. The vertical axis represents the average KL
divergence between Pé of each layer and Pé of subsequent layers. It can be
observed that nearly all mainstream models exhibit a similar pattern.

Observation 2: Attention distributions among layers are similar. Next, we analyze
the correlation of Pé across different layers. For a given layer, we compute the Kullback-
Leibler (KL) divergence between that layer and each subsequent layer, averaging these values
to obtain the mean KL divergence between the layer and all following layers. We then plot
these values for all layers, resulting in Figure 2(b). It can be observed that for nearly all
currently mainstream open-source models, regardless of their size, a similar pattern emerges.
The initial few layers exhibit significant differences compared to the subsequent layers;
however, after reaching a certain layer, the disparity suddenly diminishes substantially. We
designate this layer as “watershed layer” L,, and we list this layer for several open-source
models in Appendix B. From this layer onward, the Pé values of the subsequent layers
are very close to each other. Although there are occasional instances of slight increases
in divergence, these differences remain significantly smaller than those observed in the

TANG Hu CHENG Mo Lv WANG CHEN

earlier layers. This indicates that we can select the rounds most relevant to the question at
the watershed layer for subsequent attention calculations, thereby eliminating the need to
perform this selection computation at every layer, which would incur additional time costs.
Based on these two observations, we propose our inference pipeline, Round Attention.

3.2. Round Attention Inference Pipeline

Figure 1 depicts the pipeline for Round Attention. First, we design a strategy to determine
the watershed layer for a given LLM. In real multi-turn dialogue LLM serving systems,
it is impractical to store all historical KV caches from all users in the GPU memory. A
user’s historical KV cache will normally be swapped out to the host memory or even slower
storage devices when she is inactive for some period, so that the precious GPU memory can
be well-utilized. For simplicity, we assume that the LLM has L layers. b, denotes the KV
cache of 1 ~ L,, layers for the m-th dialogue round, u,, denotes the KV cache of L,, ~ L
layers for the m-th dialogue round. b,, and u,, are stored as separate tensor in memory.

When the user becomes active, e.g. asking LLM the n-th question q,,, the following
steps will be executed to conduct the inference for this turn.

e stepl: Load by ...b,_1 to the GPU memory from the host memory.
e step2: Perform prefill computation for q,, on layer 1 ~ L,,.

e step3: Select the most relevant top-k dialogue rounds via the strategies proposed in
Section 3.3 with qAtt’w, load the KV cache {u,,} : m € top-k for layer L, 1 ~ L.

e step4: Finish prefill for the remaining layers.

e step5: Decode a,.

Compared to the previous works that work on the token level, therefore invoking multiple
fragmented KV cache transfers between host and device memory, our method works at the
dialogue round level where a monolithic tensor for all tokens in a prior round is transferred
to GPU at once. Upon the accomplishment of the computation of u, for layer Ly41 ~ L
in the n-th round, the new KV cache is saved to the host memory as a monolithic tensor
as well. Therefore, our methods reduces the number of expensive host-to-device(H2D) and
device-to-host(D2H) data transferring. In addition, moving data in a large chunk is able to
better utilize PCle bandwidth. The algorithm is summarized in Algorithm 1.

3.3. Round Strategy

Three strategies are considered to determine the top k most relevant dialogue rounds after
L,, is discovered and tht,%“ is computed.

Strategy 1: Fixed rounds selects the satisfied rounds using a predefined threshold, e.g.
qAttle > u. Analyzing the distribution of attention scores across rounds we find that
the attention values are concentrated in a limited number of rounds, with the majority of
rounds exhibiting minimal attention scores. Thus we selected v = 0.1.

Strategy 2: top-k rounds picks that rounds that correspond to the top 10% thtfnw.
Analyzing the distribution of round attention scores reveals that the top 10% of rounds
account for over 80% of the cumulative attention.

ROUND ATTENTION

Algorithm 1 Round Attention
Input: by ...b5_1, U1 ... Up_1
Initialize: transfer by ...b,_1 from host to device memory
for i = n to co do
New query q,,, conduct prefill calculation for layer 1 ~ Ly,
Calculate top-k rounds based on gqAtt
transfer {u,} : m € top-k to device memory
finish prefill and AR calculation
transfer {u,,} : m € top-k and u,, to host memory
end for

transfer by, ... by to host memory

Strategy 3: Adaptive rounds chooses the rounds adaptively with the thtﬁ;“ distribu-
tion. The condition is defined as: tht#j“ > mean + 3 x std, where mean and std are the
mean and standard deviation of qAtt .

The selection of top-k relevant rounds is performed for each new query, not just once
for the entire dialogue. To be precise, when the user provides a new query ¢,, our method
identifies the top-k relevant past rounds. When the next query, ¢,+1, is processed, the entire
selection process is repeated. A new set of top-k rounds is calculated based on ¢+ 1.

3.4. KV cache Dropping

We observed that the KV caches of some dialogue rounds in the ShareGPT are never active
and do not affect the inference quality even if removed for attention computation. For these
rounds, we delete the KV cache in the corresponding tokens to avoid saving them.

3.5. Memory Footprint Analysis

Given an LLM with context length S, hidden size H, total layers L, and inference batch size
B, the amount of memory consumed by the KV cache is calculated by My;q = 2%2x B xS
H x L, where the first 2 represents K and V, and the second 2 means that float16 occupies
2 bytes. For Round Attention, assuming that the K most relevant rounds are chosen from
the total T rounds of dialogue, the amount of memory used by each round on average is
calcualted as M,oyng = 4B* S+ H * Ly, + 4B K /T xS H % (L — L,,). This is because layer
1 ~ Ly, uses the entire KV cache, and the subsequent layers (L1 ~ L) only compute the
attention with the most relevant K rounds. The memory saving ratio of Round Attention
can be expressed as Equation 2.
Mround_Lw+K*(L—Lw)/T_Lw K L

(1= 2
Morig L rtrteT) @

Since K is much smaller than T in practice, e.g. 6 ~ 8 vs tens to hundreds, the upper
bound of Equation 2 approximates to LT“J When K equals T, that is, all dialogue rounds
are selected, Round Attention degrades to the original inference with virtually no memory
cost. As shown in Table B, for mainstream large models, the ratio wa ranges from 0.18 to

0.46, indicating a memory saving percentage of 54% to 82%, which is quite substantial.

TANG Hu CHENG Mo Lv WANG CHEN

4. Experiments And Analysis

4.1. Experiment Setting

Data. Two widely used datasets, ShareGPT(ShareGPT52K, 2024) and LONGMEMEVAL(Wu
et al., 2024), are used to evaluate the effectiveness of Round Attention. ShareGPT contains
a collection of approximately 52K user-shared conversations scraped through the ShareGPT
API. These conversations are multi-turn, including both user prompts and responses from
ChatGPT. LONGMEMEVAL is a comprehensive benchmark designed to evaluate five core
long-term memory capabilities of commercial chat assistants: information extraction, multi-
session reasoning, temporal reasoning, knowledge updates, and abstention. This benchmark
also records the historical user-assistant conversations with 250 rounds on average. This is
a difficult dataset, on which GPT-40’s accuracy is only 0.5773.

Baselines. A suite of the latest open-source LLMs, e.g. Qwen2.5, LLaMA3, and LLaMA3.2
(Grattafiori et al., 2024), are tested on the above datasets, but our approach can be applied
to any other long-context LLMs. We use PyTorch and FlashAttention (Dao et al., 2022)
as the default inference framework, which are refered as Flash. All testing are conducted
on a single Nvidia A100 GPU with 80GB of memory, equipped with PCle. The CPU used
was an Intel(R) Xeon(R) Gold 6346 CPU operating at 3.10GHz (1.16/3.60GHz), and the
system had 1TB of memory.

Table 1: Accuracy for Qwen2.5- Table 2: Accuracy for different Model
3B under different round under the top-k round strategy
strategies
Attribute smatli “‘edtiul’f 1artg1
Flash tOp—k Fixed Adaptive score okens score okens score okens
Flash 6.39 4339 5.95 11491 5.8 19548
L score 7.51 7.5 7.33 7.5 g
mini 00 515 560 15 Qwen2.5-0.5B 5.74 1245 5.85 1199 6.06 2391
cmayy Score 749 747 748 7.5 Flash 7.77 4339 7.8 11491 7.44 19548
tokens 4339 1245 1245 1245 Qwen2.5-7B 7.08 1218 7.49 1382 7.57 2448
. score 7.42 7.5 7.5 7.48
medium tokens 11491 1276 1089 1089 Flash 7.45 4260 4.05 11735 3.01 19812
1arge score 7.49 7.46 7.43 7.4 Llama3-8B 7.6 1227 3.84 1695 3.47 3376
tokens 19548 2343 1142 1639 Flash 7.35 4260 7.1 11735 7.38 19812
Ave score TATT T.483 TA35 7470 Llama3.1-8B 7.39 1212 7.17 1369 7.46 2477

4.2. Accuracy Evaluation

We classify ShareGPT into four categories with respect to dialogue rounds, mini (0-10
rounds), small (10-30 rounds), medium (30-50 rounds), and large (50-100 rounds). We
treat the last prompt in each category as q,,, and then use the default inference framework
and Round Attention to compute a,,. GPT-40 is employed as the Judger to evaluate the
quality of the generated results. Each a,, is evaluated 5 times and the average score is taken
as the final score of the response. The prompts are chosen from AlignBench (Liu et al.,
2023a), where the samples can be found in Appendix A.

As shown in Table 1, the top-k strategy is the most effective, with an average score
exceeding that of the standard inference engine. This indicates that using only the KV
caches from the top-k rounds doesn’t have notable impact on the quality of model responses,
as the attention matrix is highly sparse, particularly for the extremely large conversational

ROUND ATTENTION

rounds. Furthermore, the number of tokens we processed was reduced by 88% compared
to the standard inference engine for large rounds, which suggests a substantial decrease in
attention computation and a significant saving in GPU memory.

To validate the generalize ability of this method, we test the accuracy on various sizes of
the Qwen2.5 model, as well as on some models from Llama3 and Llama3.2. All experiments
employed the top-k round strategy. The results are presented in Table 2. It is evident that
the overall scores of the responses generated by our method on these models are comparable
to those produced by the standard inference engine. However, we also observe that for
the Qwen-2.5 series models, the accuracy of Round Attention may decrease with fewer
rounds. In contrast, when the number of rounds exceeds 50, Round Attention consistently
outperforms Flash Attention.

Since the responses from ShareGPT are subjective, we also utilize the objective dataset,
LONGMEMEVAL, as the test bench to further validate the effectiveness of our approach.
The original LONGMEMEVAL benchmark evaluate the results yielded by Llama3-8B. For
consistency purpose, we also run tests on the same model. To showcase the generalization
of our approach, we conduct the same experiments on Qwen2.5-7B as well.

As shown in Table 3, despite the challenging nature of LONGMEMEVAL, Round Atten-
tion performs remarkably well. For the Llama 3-8B model, Round Attention is comparable
to Flash Attention, whereas for the Qwen 2.5-7B model, the accuracy of Round Attention
is twice that of Flash Attention. Interestingly, in the temporal reasoning tasks, Round At-
tention consistently outperforms Flash Attention, indicating that excessive information can
lead to interference in reasoning tasks. Identifying the key rounds allows for more accurate
inference results.

4.3. GPU Memory Reduction and Latency Reduction

To empirically evaluate the latency of Round Attention compared to Flash Attention, we
selected 20 dialogue samples from each of the four categories mentioned earlier. Fach sample
was run 10 times, and the average latency was computed and plotted in Figure 3.

Time Cost of Different Generation Stages

n

o

30
2.
2.
1

== round
= orig

05

0.0

1
round 10-30 round 30-50 round 50-100 round 200+
Generation Stage

Time (s)
&

o

Figure 3: The statistical results of end-to-end inference time for Round Attention compared
to Flash Attention across different round categories.

It can be observed that for all different round categories, the latency of Round Attention
is lower than that of Flash Attention. This improvement is due to our KV cache storage and

TANG Hu CHENG Mo Lv WANG CHEN

transfer strategy, which keeps the h2d transfer time manageable, and our top-k selection is
computed only once rather than at each layer. We provide a detailed breakdown of latency
in the Appendix C. Due to the h2d transfer and the selection of top-k, the latency during
the g, prefill phase exhibits a slight peak at layer L,,; however, this peak is minor and
occurs only once. In contrast, during the a,, decode phase, the reduction in the KV cache
leads to decreased attention computation time. As the number of decode steps increases,
this reduction accumulates and ultimately surpasses the one-time overhead from the h2d
transfer and top-k selection, resulting in an overall latency that is superior to that of Flash
Attention.

4.4. Round vs Token

In this section, we compare the two granularities. For both granularities, we employed the
same top-k calculation strategy to retrieve the KV cache. Specifically, we first computed
the average attention score for all tokens/rounds at each granularity, selecting those with
attention scores greater than the average. The model used for testing was Llamag3.1-8B. The
results are presented in Table 4. It is evident that, with the same top-k calculation strategy,
the recall accuracy at the round granularity surpasses that of the token granularity. This is
particularly pronounced in the Single-session-assistant task, where the answers reside within
several sessions. The recall at the round granularity effectively retrieves the most relevant
sessions, whereas the recall at the token granularity is dispersed across multiple sessions,
resulting in a significantly lower accuracy compared to the round granularity.

Table 3: Accuracy for Llama3-8B on Table 4: Accuracy for
LONGMEMEVAL Benchmark two granularities.
Llama3-8B Qwen2.5-7B token round
Flash Round Flash Round
Single-session-user 0.2857 0.2857
Single-session-user 0.2714 0.2857 0.1 0.2286 Knowledge-update 0.2 0.3333
Knowledge-update 0.4872 0.4744 0.2821 0.4872 multi-session 0.1111 0.1111
multi-session 0.1353 0.0977 0.0376 0.1353 temporal-reasoning 0.1481 0.1111
temporal-reasoning 0.1504 0.1729 0.0752 0.1429 Single-session-assistant 0.1818 0.4545
Single-session-assistant ~ 0.5357 0.4821 0.2321 0.4464 Single-session-preference 0.0 0.0
Single-session-preference 0.0 0.0333 0.0 0.1333
Accuracy 0.16 0.2

Accuracy 0.25 0.242 0.114 0.24

5. CONCLUSION AND DISCUSSION

In the context of real-world applications providing services with large language models
(LLMs), the historical key-value (KV) cache accumulates as users engage in increasingly
lengthy dialogue exchanges. We propose that, during inference with such extended dia-
logue rounds, employing a round-based approach offers a more effective means of managing
the KV cache and handling interactions with historical information. Through an analysis
of the attention matrix patterns at the round granularity, we observed that contemporary
large models exhibit a watershed layer, beyond which the distribution of round-based atten-
tion becomes remarkably similar. This observation allows us to compute the most relevant
rounds just once at the watershed layer. Consequently, we can significantly reduce GPU
memory usage while effectively limiting the time required for selection. By storing the KV

ROUND ATTENTION

cache based on rounds, we can transfer all necessary KV cache data to GPU memory in a
single host-to-device (h2d) operation, thereby minimizing the time overhead associated with
h2d transfers. We validated the effectiveness of our approach through experiments, demon-
strating that it is able to significantly reduce inference latency, with inference accuracy
remaining largely consistent with that of the full KV cache.

Limitations

Limitation 1: Offloading to memory incurs additional memory overhead. Although mem-
ory is much cheaper than GPU memory, it still adds extra overhead to the system.
Limitation 2: While Round Attention reduces GPU memory usage, out-of-memory (OOM)
issues may still arise when the number of dialogue rounds reaches a certain threshold.
This indicates that Round Attention alone cannot fundamentally resolve the GPU memory
issues associated with very long dialogues. It needs to be combined with other techniques
to effectively address memory problems, such as the continuous dropping of infrequently
used key-value caches mentioned in Section 3.4. Additionally, various other key-value cache
compression and dropping strategies can be utilized in combination to tackle GPU memory
issues in practical dialogue systems.

Limitation 3: The benefits of serving are limited for scenarios with shorter dialogue rounds,
making it more suitable for longer user dialogue interactions.

References

Srinadh Bhojanapalli, Ayan Chakrabarti, Andreas Veit, Michal Lukasik, Himanshu Jain,
Frederick Liu, Yin-Wen Chang, and Sanjiv Kumar. Leveraging redundancy in attention
with reuse transformers. arXiv preprint arXiv:2110.06821, 2021.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte,
Yuandong Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling
for efficient llm generation. arXiv preprint arXiv:2410.16179, 2024.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness, 2022. URL https://arxiv.
org/abs/2205.14135.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-
Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library,
2024. URL https://arxiv.org/abs/2401.08281.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan
Wang, and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv
preprint arXiv:2403.02181, 2024.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model
tells you what to discard: Adaptive kv cache compression for llms. arXiv preprint
arXw:2310.01801, 2023.

https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2401.08281

TANG Hu CHENG Mo Lv WANG CHEN

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, and et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Jiaao He and Jidong Zhai. Fastdecode: High-throughput gpu-efficient llm serving using
heterogeneous pipelines. arXiv preprint arXiv:2403.11421, 2024.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. Infinigen: Efficient generative
inference of large language models with dynamic kv cache management, 2024. URL
https://arxiv.org/abs/2406.19707.

Di Liu, Meng Chen, Baotong Lu, Huiqiang Jiang, Zhenhua Han, Qianxi Zhang, Qi Chen,
Chengruidong Zhang, Bailu Ding, Kai Zhang, et al. Retrievalattention: Accelerating
long-context llm inference via vector retrieval. arXiv preprint arXiv:2409.10516, 2024.

Liu Liu, Zheng Qu, Zhaodong Chen, Fengbin Tu, Yufei Ding, and Yuan Xie. Dynamic
sparse attention for scalable transformer acceleration. IEEFE Transactions on Computers,
71(12):3165-3178, 2022.

Xiao Liu, Xuanyu Lei, Shengyuan Wang, Yue Huang, Zhuoer Feng, Bosi Wen, Jiale Cheng,
Pei Ke, Yifan Xu, Weng Lam Tam, Xiaohan Zhang, Lichao Sun, Hongning Wang, Jing
Zhang, Minlie Huang, Yuxiao Dong, and Jie Tang. Alignbench: Benchmarking chinese
alignment of large language models, 2023a.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali
Shrivastava, Ce Zhang, Yuandong Tian, Christopher Re, et al. Deja vu: Contextual
sparsity for efficient llms at inference time. In International Conference on Machine
Learning, pages 22137-22176. PMLR, 2023b.

Da Ma, Lu Chen, Situo Zhang, Yuxun Miao, Su Zhu, Zhi Chen, Hongshen Xu, Hanqi Li,
Shuai Fan, Lei Pan, et al. Compressing kv cache for long-context llm inference with
inter-layer attention similarity. arXiv preprint arXiv:2412.02252, 2024.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei
Han, and Weipeng Chen. Shortgpt: Layers in large language models are more redundant
than you expect. arXiv preprint arXiv:2403.03853, 2024.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong Wang, Hengyu Li, Qiaozhi He, Murun
Yang, Tong Xiao, and Jingbo Zhu. Cross-layer attention sharing for large language
models. arXiv preprint arXiv:2408.01890, 2024.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers
are multi-state rnns. arXiv preprint arXiv:2401.06104, 2024.

Luka Ribar, Ivan Chelombiev, Luke Hudlass-Galley, Charlie Blake, Carlo Luschi, and
Douglas Orr. Sparq attention: Bandwidth-efficient llm inference. arXiv preprint
arXiw:2312.04985, 2023.

ShareGPT52K, 2024. URL https://huggingface.co/datasets/RyokoAl/ShareGPT52K.

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2406.19707
https://huggingface.co/datasets/RyokoAI/ShareGPT52K

ROUND ATTENTION

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong,
Yuejie Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-
context llm inference. arXiv preprint arXiv:2410.21465, 2024.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han.
Quest: Query-aware sparsity for efficient long-context llm inference. arXiv preprint
arXiv:2406.10774, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL
https://arxiv.org/abs/1706.03762.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-Wei Chang, and Dong Yu. Long-
memeval: Benchmarking chat assistants on long-term interactive memory, 2024. URL
https://arxiv.org/abs/2410.10813.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient stream-
ing language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Tong Xiao, Yinqgiao Li, Jingbo Zhu, Zhengtao Yu, and Tongran Liu. Sharing attention
weights for fast transformer. arXiv preprint arXiv:1906.11024, 2019.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei
Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang
Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Zihao Ye, Lequn Chen, Ruihang Lai, Yilong Zhao, Size Zheng, Junru Shao, Bohan Hou,
Hongyi Jin, Yifei Zuo, Liangsheng Yin, Tianqi Chen, and Luis Ceze. Accelerating self-
attentions for llm serving with flashinfer, February 2024. URL https://flashinfer.
ai/2024/02/02/introduce-flashinfer.html.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for
efficient generative inference of large language models. Advances in Neural Information
Processing Systems, 36:34661-34710, 2023.

Appendix A. GPT-4 judged prompt

The following is the prompt used for GPT-4 to judge the answer quality.

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2410.10813
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html
https://flashinfer.ai/2024/02/02/introduce-flashinfer.html

TANG Hu CHENG Mo Lv WANG CHEN

You are an assistant skilled in evaluating text quality. Please assess the quality of an AI assistant’s response to a user’s
question as an impartial judge. You need to evaluate the response based on the following dimensions

We will provide historical chat information, which consists of the content from previous multi-turn conversations between the
user and the assistant. We will give you the current user’s question and the AI assistant’s response. When you begin your
evaluation, you need to follow the process outlined below:

il

Evaluate the AI assistant’s response from different dimensions, and after assessing each dimension, assign a score from 1

to 10 for each dimension.

2. Finally, based on the evaluations from each dimension, provide an overall score from 1 to 10 for the AI assistant’s
response.
3. Your scoring needs to be as strict as possible, and you must adhere to the following scoring rules: Generally, the higher

the quality of the model’s response, the higher the score. Among the dimensions, factual accuracy and meeting user needs are
the most important, and the scores for these two dimensions will dominate the final overall score.

When the model’s response contains irrelevant information, has fundamental factual errors, or generates harmful content, the
total score must be between 1 and 2.

When the model’s response has no serious errors and is generally harmless, but is of low quality and does not meet user needs,
the total score should be between 3 and 4.

When the model’s response generally meets user requirements but performs poorly in some dimensions, resulting in an average
quality, the total score can be between 5 and 6.

When the model’s response quality performs well across all dimensions, the total score should be between 7 and 8.

Only when the model’s response quality fully addresses the user’s questions and all needs, and performs nearly perfectly
across all dimensions, can it receive a score of 9 to 10.

As an example, a reference answer can receive a score of 8.

Return all your evaluations and scoring results in the following dictionary format (including parentheses), and ensure that
your scores are integers:

{{’dimension 1’: score, ’dimension 2’: score, ..., ’overall score’: score}}, for example:{{’factual accuracy’: 9,
‘meeting user needs’: 6, ..., ’overall score’: T7}}.

Historical chat information: {review}

User’s question: {instruction}

[Assistant’s response start]

{response}

[Assistant’s response end]

Appendix B. Layer-W

Here, we present the values of L, obtained from several mainstream open-source models in
Table 5. The watershed layer L., is determined as follows:

Data Sampling: We first sample a large collection of dialogues from the ShareGPT dataset.

Attention Vector Generation: For a given dialogue, we process it through the model. At each
layer i, we extract the attention scores of the final query token with respect to all previous
dialogue rounds, forming a 1 * n attention distribution vector for that layer.

Divergence Calculation: To measure the stability of attention patterns, for each layer i, we
calculate the average KL divergence between its attention vector and the corresponding vectors
from all subsequent layers (j > ¢). This gives us a single stability score for layer .

Identifying L.,: By repeating this for every layer in an L-layer model, we obtain a 1 % L
vector of these average divergence scores. The watershed layer, L,,, is identified as the first
significant local minimum in this vector. This minimum indicates the point where the round-
level attention patterns stabilize for the rest of the model’s forward pass.

Appendix C. Latency decomposition analysis

In the transformer architecture, the forward computation of attention is divided into four
steps: calc_gkv_and_rope, update_cache, attn_forward, and attn_output. Our algorithm
primarily modifies the update_cache and attn_forward steps. We analyze the execution

ROUND ATTENTION

Table 5: L,, for several models

Model size L Ly save ratio
05B 24 11 54%
1.5B 28 13 54%
3B 36 12 67%
Qwen25 -5 95 1o 64%
14B 42 19 55%
72B 80 18 78%
Llamas 8B 28 5 82%
70B 28 5 82%
IB 16 5 69%
Llama3.2 qap o5 5 82%

times of step 2, step 3, step 4, and step 5 from Figure 1. Steps 2, 3, and 4 correspond to
the prefill phase of ¢,, which we refer to as the append phase, following the methodology
outlined in Flash Infer (Ye et al., 2024). Step 5 represents the decode phase for a,. We
selected five examples from 50 to 100 rounds and conducted 100 experiments, plotting the
trend of the average time for these two phases as a function of layer, resulting in Figure 4.

(e) Attention stage calc_gkv_and_rope time cost (g) Attention stage attn_forward time cost (h) Attention stage attn_output time cost

00012 0025

000046

oo
0020 000044

00010
00020 000052

oo1s

5 00009 @) 000040

Time (s)

H
F 00008 o010 000038

0.0007 A
0.005 ;m ‘/\
o006 o005 — a0003s =
- v

A AN o000 T .

000035

00005 000032

(a) Latency decompose for Flash Attention

(a) Attention stage calc_qkv_and_rope time cost (b) Attention stage update_cache time cost (c) Attention stage attn_forward time cost (d) Attention stage attn_output time cost
00030
L update_cache — sppend_ain_attn forward — append. aln]_attn_output

nl_update_cache decode el attn_forward | *%%107 —— decode_aln]_attn output

— append_alnl_calc_akv_and_rope. 0025 — append_al
o010 —— decode_alnl_calc_qkv_and_rope — decodeal
00025
000044 |
0020
00009
00020 000042 |

0015 _ _
@ S 000040 {

© 00015 T

E E

S 00008

Time (5)

010 000038 |

0.0005 0.0000

(b) Latency decompose for Round Attention

Figure 4: Latency decomposition

From the figures, it can be observed that the execution times for round attention for
the calc_gkv_and_rope and attn_output steps closely align with those of Flash Attention.
The primary differences arise in the update_cache and attn_forward steps. Notably, the
trends for these two steps remain consistent until layer L,,, where a divergence from Flash
Attention emerges starting at layer 11.

In the append phase, as shown in Figure 4(b), there is a noticeable peak in update_cache
at layer 11, indicating two sources of overhead: one related to the computational cost
of the top-k selection strategy, and the other pertaining to the h2d transfer time of the
selected rounds’ KV cache to the GPU memory. Similarly, Figure 4(b) reveals a peak in the
attn_forward step at layer 11, which also corresponds to the computational cost of the top-k

TANG Hu CHENG Mo Lv WANG CHEN

strategy. It is evident that both the time taken for top-k computation and the h2d transfer
time are relatively small. Moving on to the decode phase, Round Attention demonstrates its
advantages. The yellow lines in Figure 4(b) show a decline starting from layer 11, reflecting
the reduced time for update_cache and attn_forward due to the shorter length of the KV
cache. Overall, the time overhead introduced by Round Attention occurs only once at layer
L,,, while the benefits in the decode phase accumulate with an increasing number of decode
steps. Ultimately, these advantages offset the additional time incurred, resulting in a lower
overall execution time for Round Attention compared to Flash Attention.

Appendix D. GPU Memory decomposition analysis

In the experiments presented in this Section, we synchronously monitored the variations in
GPU memory usage. The GPU memory consumption was measured using the
‘torch.cuda.allocated _memory’ function.

(f) Attention attn_start (g) Attention calc_gkv_and_rope (h) Attention update_cache (i) Attention attn_forward (j) Attention attn_output
16000 16200 16200 {
) @ 16000 @ 16000 4 3 102007 3 192°%7
g 1o £ £ £ 16000 £ 15000
g 15600 8 15800 8 15800 4 8 8
3 15400 2 15600 2 15600 3 18007 3 198007
> > 2 2 15600 1 2 15600
2 15200 —— prefill gafo ~ n-1] | £ 13400 —— prefillqafo ~ n-1] | 2 134009 —— prefill gafo ~ n-1] | 2 —— prefillgafo ~ n-1] | 2 —— prefill ga[o ~ n-1]
2 15000 append g[n] £ 15200 append q[n] 2 150004 append q[n] 2 154007 append q[n] 2 154007 append q[n]
—— decode a[n] —— decode a[n] —— decode a[n] 152004/ — decode aln] 152004/ — decode aln]
14800 T T 15000 1 T T 15000 <, T v T T T T T v
0 10 20 0 10 20 0 10 20 o 10 20 o 10 20
Layer Layer Layer Layer Layer
(a) Memory decompose for Flash Attention
Memory Usage of Attention Layers

(a) Attention attn_start (b) Attention calc_gkv_and_rope (c) Attention update_cache (d) Attention attn_forward (e) Attention attn_output
5 15400 & 196009 & 15600 = 5
£ £ £ £ 15600 £ 15600
??J 15200 “,?J 154004 —— prefillgal0 ~ n-1] “g’ 15400 — prefill ga[0 ~ n-1] “%’« —— prefill ga[0 ~ n-1] % —— prefill ga[0 ~ n-1]
S S append q[n] K] append q[n] £ 15400 append q[n] 2 15400 append q[n]
2 J/— prefil qajo ~n1] | 2 —— decode a[n] = —— decode a[n] > —— decode aln] > —— decode a[n]
£ 15000 1 append qln] g 152007 g 15200 £ 15200 £ 15200
g g g g s
= — decode a[n] = = = =

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Layer Layer Layer Layer Layer

(b) Memory decompose for Round Attention

Figure 5: Latency decomposition

As illustrated in Figure 5, Flash Attention exhibits a slight increase in memory usage
during the append and decode phases, although the magnitude is minimal. Conversely,
for Round Attention, there is a noticeable increase in GPU memory usage after the 11th
layer during the append phase, attributed to the selection and host-to-device (h2d) transfer
processes within the algorithm. Additionally, both the append and decode phases show a
consistent overhead of several megabytes after the 11th layer, which is allocated for storing
intermediate results of the selection process. It is also evident that Round Attention exhibits
lower GPU memory usage during both the append and decode phases compared to Flash
Attention.

	Introduction
	Related Work
	Attention Matrix Analysis
	KV Cache Eviction Algorithm

	Methodology
	Attention Distribution
	Round Attention Inference Pipeline
	Round Strategy
	KV cache Dropping
	Memory Footprint Analysis

	Experiments And Analysis
	Experiment Setting
	Accuracy Evaluation
	GPU Memory Reduction and Latency Reduction
	Round vs Token

	CONCLUSION AND DISCUSSION
	GPT-4 judged prompt
	Layer-W
	Latency decomposition analysis
	GPU Memory decomposition analysis

