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Abstract

We consider the max-min eigenvalue augmenta-
tion problem: given n × n symmetric positive
semidefinite matrices M,A1, . . . , Am and a pos-
itive integer k < m, the goal is to choose a
subset I ⊂ {1, . . . ,m} of cardinality at most k
that maximizes the minimum eigenvalue of the
matrix M +

∑
i∈I Ai. The problem captures

both the Bayesian E-optimal design and maxi-
mum algebraic connectivity augmentation prob-
lems. In contrast to the existing work, we do not
assume that the augmentation matrices are rank-
one matrices, and we focus on the setting in which
k < n. We show that a simple randomized round-
ing method provides a constant-factor approxima-
tion if the optimal increase is sufficiently large,
specifically, if OPT − λmin(M) = Ω(R ln k),
where OPT is the optimal value, and R is the
maximum trace of an augmentation matrix. To es-
tablish the guarantee, we derive a matrix concen-
tration inequality that is of independent interest.
The inequality can be interpreted as an intrinsic di-
mension analog of the matrix Chernoff inequality
for the minimum eigenvalue of a sum of indepen-
dent random positive semidefinite matrices; such
an inequality has already been established for the
maximum eigenvalue, but not for the minimum
eigenvalue.

1. Introduction
Let Sn

+ denote the set of symmetric positive semidefinite
(PSD) matrices. Given M ∈ Sn

+, augmentation matrices
A1, . . . , Am ∈ Sn

+, and a positive integer k < m, we con-
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sider the max-min eigenvalue augmentation problem:

max
z∈{0,1}m

{
λmin

(
M +

m∑
i=1

ziAi

)
: ∥z∥0 ≤ k

}
, (1)

where λmin (M +
∑m

i=1 ziAi) denotes the minimum eigen-
value of the matrix M +

∑m
i=1 ziAi, and ∥z∥0 is equal to

the number of non-zero entries in z. Problem (1) captures
the Bayesian E-optimal design problem and the maximum
algebraic connectivity augmentation problem, which we
outline in more detail below.

Bayesian E-optimal design. When running experiments
to collect data to build a statistical model, it is naturally
of interest to run fewer experiments to obtain the same
level of “model quality.” The goal in optimal linear exper-
imental design is to determine which experiments to run
in order to minimize the “variance” of a linear regression
model, subject to some cardinality constraint on the number
of the experiments (Fedorov, 2013; Goos & Jones, 2011;
Pukelsheim, 2006). (Note that linear regression models are
unbiased under mild conditions (Hastie et al., 2009).)

More formally, consider design points x1, . . . , xm ∈ Rn

that each correspond to a potential experiment. If we run
the experiment associated with design point xi, then we
observe an outcome yi ∈ R. Suppose that we can run at
most k experiments. Running the experiments associated
with design points xi, i ∈ I ⊂ [m] := {1, . . . ,m} (where
|I| ≤ k) provides us with data {(xi, yi)}i∈I , which then
can be used to construct a linear regression model. The goal
in optimal linear experimental design is to select a subset
I that optimizes a function f (referred to as an optimality
criterion) of the information matrix

∑
i∈I xix

⊤
i . There are

a number of optimality criteria; each captures a different
notion of variance.

The goal in E-optimal design is to maximize the E-
optimality criterion, which is given by the minimum eigen-
value λmin(

∑
i∈I xix

⊤
i ) of the information matrix. E-

optimal design is a special case of (1) with M = 0 and
augmentation matrices Ai = xix

⊤
i , i ∈ [m]. In Bayesian

E-optimal design, we are also given a prior matrix, which
translates to an instance of (1) with M ̸= 0 and the augmen-
tation matrices given by Ai = xix

⊤
i , i ∈ [m]. This setup

assumes that the experiments can be run individually and
hence, the augmentation matrices are each of rank one. If the
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experiments can only be run in certain batches, then, as in
the previous application setting, we must consider augmen-
tation matrices of general rank (Revilla Sancho; Derezinski
et al., 2020; Tantipongpipat, 2020; Che et al., 2024).

Maximum algebraic connectivity augmentation. In
the maximum algebraic connectivity augmentation prob-
lem, the goal is to add at most k edges to a given graph
G = (V,E) in order to maximize the graph’s algebraic
connectivity (Ghosh & Boyd, 2006; Kim, 2009; Kolla et al.,
2010; Mosk-Aoyama, 2008; Somisetty et al., 2024; Wei
et al., 2014). The algebraic connectivity of a graph is
the second smallest eigenvalue λ2(L) of its Laplacian ma-
trix L =

∑
e∈E aea

⊤
e , where ae ∈ Rn for each edge

e = ij ∈ E is defined by ae = ei − ej , where ei and
ej are the i-th and j-th standard n-dimensional unit vectors,
respectively (De Abreu, 2007; Fiedler, 1973).

Algebraic connectivity provides a measure of a graph’s
connectivity. In particular, λ2(L) > 0 if and only if G is
connected. Furthermore, larger values of λ2(G) indicate
that G is, in a sense, more connected. Indeed, algebraic
connectivity appears as a factor in the convergence rates of
various dynamic processes (e.g., Markov chains) on graphs
(Ogiwara et al., 2015). Intuitively, one would expect a
dynamic process to converge faster (e.g., a Markov chain to
mix quicker) if the graph is, to some extent, more connected.
Algebraic connectivity provides us with exactly this notion
of connectivity.

The maximum algebraic connectivity augmentation problem
finds applications in settings in which it is of interest to add
edges to a graph in order to make the graph more robust with
respect to potential edge disruptions. Consider, for example,
adding flight routes to an air transportation network in order
to improve its resiliency to bad weather and airport closures
(Wei et al., 2014).

More formally, it can be shown that λ2(L) = λmin(L +
11⊤), where 1 is the n-dimensional vector of all ones; we
provide a short proof of this fact in Appendix B. Accord-
ingly, we can formulate the maximum algebraic connec-
tivity augmentation problem as a special case of (1) with
M = L + 11⊤ and the augmentation matrices given by
Ae = aea

⊤
e , e /∈ E. The outlined setup assumes that the

edges can be individually added, which gives rise to rank-
one augmentation matrices. If the edges must be added in
groups (e.g., as particular subgraphs), then one must con-
sider augmentation matrices of general rank.

Simple randomized rounding. The max-min eigenvalue
augmentation problem (1) is NP -hard because the maxi-
mum algebraic connectivity augmentation problem is NP -
hard (Mosk-Aoyama, 2008). The E-optimal design problem
is similarly NP -hard (Civril & Magdon-Ismail, 2009).

In this work, we study a simple randomized rounding

method for max-min eigenvalue augmentation. More pre-
cisely, consider the following semidefinite programming
relaxation of (1):

max
z∈[0,1]m,η∈R

{
η : M +

m∑
i=1

ziAi ⪰ ηI and
m∑
i=1

zi ≤ k
}
,

(2)
where I is the n × n identity matrix. Let (zsdp, ηsdp) ∈
[0, 1]m × R denote an optimal solution to the relaxation
(2). We study the randomized method that, for each i ∈
[m], rounds the i-th entry of zsdp to be equal to 1 with
probability [zsdp]i and 0, otherwise. In other words, we
study the random vector zround ∈ {0, 1}m defined by

P([zround]i = 1) = [zsdp]i, ∀i ∈ [m].

Note that zround might not be feasible for (1) because∑m
i=1[zround]i > k with positive probability; recall that

k < m.

The maximum algebraic connectivity augmentation (Kolla
et al., 2010; Wei et al., 2014) and E-optimal design (Allen-
Zhu et al., 2021; Avron & Boutsidis, 2013; Lau & Zhou,
2022) studies also investigate approximately solving the
max-min eigenvalue augmentation problem (1). Our study
is different from these works in the following two key
ways. First, unlike these studies, we do not assume that the
augmentation matrices A1, . . . , Am are rank-one matrices,
which allows us to capture more practical considerations
(e.g., situations in which edges cannot be individually added
to a graph, or experiments must be run in certain batches).
Second, we focus on the regime in which k < n. The (non-
Bayesian) E-optimal design studies assume that k ≥ n;
otherwise, the E-optimal design problem is not interesting
because λmin(

∑
i∈I xix

⊤
i ) = 0 for all I ⊂ [m] such that

|I| < n. To the best of our knowledge, the Bayesian E-
optimal design problem remains unexplored in the k < n
setting. In contrast, the existing maximum algebraic connec-
tivity augmentation work considers the case when k < n.
However, in the algebraic connectivity setting, the augmen-
tation matrices are of a particular form; recall our earlier
discussion on their structure. Thus, the maximum algebraic
connectivity augmentation problem does not capture the full
generality of the max-min eigenvalue augmentation prob-
lem (1), even under the assumption that the augmentation
matrices are rank-one matrices.

Finally, as we discuss in more detail in Subsection 1.1, our
study boils down to understanding the extent to which we
can (in some very particular sense) approximate a PSD
matrix with a sum of random PSD matrices in terms of the
intrinsic dimension of the matrix being approximated. The
results that we develop in this direction are more generally
applicable and are of independent interest.
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1.1. Summary of approach, contributions, and
organization

Approach. Let OPT denote the optimal objective function
value of the max-min eigenvalue augmentation problem (1).
Define

INC := λmin

(
M +

m∑
i=1

[zsdp]iAi

)
− λmin(M)

to be the increase in the minimum eigenvalue provided by
zsdp. Note that INC is an upper bound on the optimal
increase. That is, INC ≥ OPT− λmin(M). We show that
if INC (or more weakly, the optimal increase) is sufficiently
large, then simple randomized rounding provides a constant-
factor approximation.

We exploit the following observation. If INC is larger, then
the quadratic form x⊤(

∑m
i=1[zsdp]iAi)x can only be on the

order of INC in a smaller (actually no larger, but we are
speaking informally) number of directions x ∈ Sn−1 =
{x ∈ Rn : ∥x∥ = 1}, where ∥x∥ is the Euclidean norm
of x. (We refer to points on the unit sphere as directions.)
More precisely, for 0 < γ < 1, the set

S
( m∑

i=1

[zsdp]iAi, γINC
)

:=
{
x ∈ Sn−1 : x⊤

( m∑
i=1

[zsdp]iAi

)
x ≥ γINC

} (3)

of directions is smaller when INC is larger; see Figure 1 for
an illustration.

Hence, when INC is larger, it is sufficient to en-
sure that

∑m
i=1[zround]iAi is a good approximation of∑m

i=1[zsdp]iAi with respect to a smaller number of direc-
tions. (For x /∈ S(

∑m
i=1[zsdp]iAi, γINC), the quadratic

form x⊤Mx must already be large, so we do not need to
account for these directions.) More formally, for some
ϵ ∈ (0, 1), it is sufficient to ensure that

x⊤
( m∑

i=1

[zround]iAi

)
x ≥ (1− ϵ)γINC,

∀x ∈ S
( m∑

i=1

[zsdp]iAi, γINC
) (4)

with some amount of probability. One would imagine that it
is “easier” to ensure (4) when S(

∑m
i=1[zsdp]iAi, γINC) is

smaller, i.e., when INC is larger.

We show that we can ensure (4) with a higher amount
of probability when the set S(

∑m
i=1[zsdp]iAi, γINC) is

smaller. Towards this end, we measure the size of the set

0

{x ∈ Rn : ∥x∥ ≤ 1} {x ∈ Rn : x⊤Qx ≤ α} S(Q,α)

Figure 1. Illustration of set S(Q,α), where Q is a positive definite
matrix and α ≥ 0.

with the quantity

intdim
( m∑

i=1

[zsdp]iAi, γINC
)
:=

tr
(∑m

i=1[zsdp]iAi

)
γINC

,

(5)
which we refer to as the intrinsic dimension of [zsdp]iAi

relative to γINC, and we lower-bound the probability of (4)
in terms of intdim(

∑m
i=1[zsdp]iAi, γINC).

More generally, we consider a generic sum X =
∑m

i=1 Xi

of independent random PSD matrices X1, . . . , Xm ∈ Sn
+.

We develop an upper bound for

P(∃x ∈ S(E[X], α) : x⊤Xx ≤ (1− ϵ)α) (6)

in terms of intdim(E[X], α), where α > 0. Suppose that
α = λmin(E[X]) (in which case α > 0 if E[X] is positive
definite). Then, S(E[X], α) = Sn−1, and it follows that the
probability given in (6) equals

P(∃x ∈ Sn−1 : x⊤Xx ≤ (1− ϵ)λmin(E[X]))

= P(λmin(X) ≤ (1− ϵ)λmin(E[X])).

Accordingly, we, in some sense, develop an “intrinsic di-
mension” lower-tail bound for the minimum eigenvalue
λmin(X) = minx∈Sn−1 x⊤Xx. Although, it is more pre-
cise to state that we develop an intrinsic dimension lower-tail
bound for the quantity minx∈S(E[X],α) x

⊤Xx. Furthermore,
we note that the tail bound that we develop is only interest-
ing when α > λmin(E[X]).

Contributions and organization. First, we provide some
background on matrix Chernoff inequalities for λmin(X)
and λmax(X) in Section 2. In particular, we point out that
an intrinsic dimension matrix Chernoff inequality has been
established for λmax(X), but not for λmin(X). As stated
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above, our work develops an intrinsic dimension analog of
the matrix Chernoff inequality for λmin(X). In Section 2 we
also provide a reformulation of the existing matrix Chernoff
inequality for λmin(X) that plays a key role in our analysis;
see Theorem 2.5 for a statement of the reformulation.

We derive the intrinsic dimension concentration inequality
for λmin(X) in Section 3; see Theorem 3.1 for a statement
of the inequality. The derivation boils down to a careful
application of the existing matrix Chernoff inequalities (in-
cluding the reformulated inequality provided in Theorem
2.5) with respect to subsets of directions that lie in certain
subspaces.

In Section 4 we use the intrinsic dimension concentration
inequality stated in Theorem 3.1 to show that simple random-
ized rounding provides a constant-factor approximation if
INC = Ω(R ln k), where R := maxi∈[m] tr(Ai); see The-
orem 4.1. Our proof of this result follows the argument pro-
vided above in the summary of our approach. If we instead
applied the existing matrix Chernoff inequality for λmin(X),
then we would obtain the condition INC = Ω(W lnn),
where W := maxi∈[m] λmax(Ai). This condition, however,
does not shed light on the setting of interest in which k < n.

2. Background and preliminaries
First, in Subsection 2.1, we provide background on ma-
trix Chernoff inequalities for the minimum and maximum
eigenvalue of a sum of random PSD matrices. Then, in
Subsection 2.2, we present a reformulation of the inequality
for the minimum eigenvalue.

2.1. Matrix Chernoff inequalities

All inequalities that we present in this subsection are taken
from Tropp (Tropp et al., 2015). Consider the following
matrix Chernoff inequality for the maximum eigenvalue of
a sum of independent random PSD matrices that are surely
bounded (in terms of their maximum eigenvalue).

Theorem 2.1 ((Tropp et al., 2015), Theorem 5.1.1). Let
X1, . . . , Xm ∈ Rn×n be independent random PSD ma-
trices such that λmax(Xi) ≤ L for each i ∈ [m]. For
X =

∑m
i=1 Xi, µmax = λmax(E[X]), and t > 0,

P(λmax(X) ≥ tµmax) ≤ n
(e
t

)tµmax/L

.

The dimension factor of n in Theorem 2.1 can essentially be
replaced with a factor of the intrinsic dimension of the ma-
trix E[X] relative to λmax(E[X]). We only need to include
an additional factor of 2 and enforce t ≥ L/µmax + 1:

Theorem 2.2 ((Tropp et al., 2015), Theorem 7.2.1). Let
X1, . . . , Xm ∈ Rn×n be independent random PSD ma-
trices such that λmax(Xi) ≤ L for each i ∈ [m]. Also,

let V ∈ Sn
+ such that V ⪰ E[X]. For X =

∑m
i=1 Xi,

µmax = λmax(V ), and t ≥ L/µmax + 1,

P(λmax(X) ≥ tµmax) ≤ 2 intdim(V, µmax)
(e
t

)tµmax/L

.

Remark 2.3. We define the intrinsic dimension of a ma-
trix relative to a scalar value, but Tropp defines intrinsic
dimension of a PSD matrix V to be equal to the quantity
tr(V )/λmax(V ). Our definition is more general and pro-
vides an an upper bound on Tropp’s intrinsic dimension. The
upper bound is convenient for lower bounding x⊤Xx over
x ∈ S(E[X], α), rather than just upper bounding x⊤Xx
over x ∈ Sn−1.

Next, consider the following matrix Chernoff inequality for
the minimum eigenvalue of a sum of independent random
PSD matrices that are surely bounded.
Theorem 2.4 ((Tropp et al., 2015), Theorem 5.1.1). Let
X1, . . . , Xm ∈ Rn×n be independent random PSD ma-
trices such that λmax(Xi) ≤ L for each i ∈ [m]. For
X =

∑m
i=1 Xi, µmin = λmin(E[X]), and ϵ ∈ (0, 1],

P(λmin(X) ≤ (1− ϵ)µmin) ≤ ne−ϵ2µmin/(2L).

Unlike Theorem 2.1, an intrinsic dimension analog has yet
to be developed for Theorem 2.4. As pointed out in (Tropp
et al., 2015), the techniques employed to establish Theo-
rem 2.2 do not seem to apply in the context of the minimum
eigenvalue.

It is also worthwhile to note that we cannot upper bound
(6) with Theorem 2.4. It there is a direction x per which
x⊤E[X]x = 0, and hence λmin(E[X]) = 0, then Theorem
2.4 provides us with a trivial guarantee. The existence of
such a direction, however, should not impact upper bound-
ing (6). One might hope that we can directly apply Theorem
2.4 to the set S(E[X], α), but the set is not a subspace (as
seen in Figure 1). Although, an idea along these lines is
exploited in the proof of Theorem 3.1; see Lemma 3.2.

2.2. One-sided approximation inequality

Let X1, . . . , Xm be independent random PSD matrices
such that λmax(Xi) ≤ L for each i ∈ [m], X =

∑m
i=1 Xi,

µmin = λmin(E[X]), and ϵ ∈ (0, 1]. Theorem 2.4 enables
us to ensure that

min
x∈Sn−1

x⊤Xx = λmin(X)

> (1− ϵ)λmin(E[X])

= (1− ϵ) min
x∈Sn−1

x⊤E[X]x

with some amount of probability. In this subsection we
show that we can more strongly ensure that

x⊤Xx > (1− ϵ)x⊤E[X]x, ∀x ∈ Sn−1

⇐⇒ X ≻ (1− ϵ)E[X]
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with the same amount of probability. That is, we show that
we can ensure that X is a one-sided approximation of E[X].
A precise statement of the result that we establish is as
follows.

Theorem 2.5. Let X1, . . . , Xm ∈ Rn×n be independent
random PSD matrices such that λmax(Xi) ≤ L for each
i ∈ [m]. For X =

∑m
i=1 Xi, µmin = λmin(E[X]), and

ϵ ∈ (0, 1],

P(X ̸≻ (1− ϵ)E[X])

= P(∃x ∈ Rn \ {0} : x⊤Xx ≤ (1− ϵ)x⊤E[X]x)

≤ ne−ϵ2µmin/(2L).

Proof. See Appendix B.1.

In our proof of Theorem 2.5, we first construct transforma-
tions Yi, i ∈ [m], of the matrices Xi, i ∈ [m], respectively,
with the property that E[

∑m
i=1 Yi] = I . Then, we apply

Theorem 2.4 to the transformed matrices, and the desired
result follows. So, Theorem 2.4 implies Theorem 2.5, but
clearly Theorem 2.5 implies Theorem 2.4, so Theorem 2.5
is best thought of as a reformulation of Theorem 2.4.

Ultimately, we need Theorem 2.5 (instead of Theorem 2.4)
in Section 3 to derive the intrinsic dimension concentration
inequality. We direct the reader to Remark 3.4 at the end of
Section 3 for an explanation.

3. Intrinsic dimension concentration inequality
We provide a statement of the intrinsic dimension concen-
tration inequality that we develop in Theorem 3.1 below.

Theorem 3.1. Let X1, . . . , Xm ∈ Rn×n be independent
random PSD matrices. Suppose that λmax(Xi) ≤ L for
each i ∈ [m]. For X =

∑m
i=1 Xi, ϵ ∈ (0, 1], and

16e2L/ϵ2 ≤ α ≤ λmax(E[X]),

P(∃x ∈ S(E[X], α) : x⊤Xx ≤ (1− ϵ)α)

≤ 48e2 intdim(E[X], ϵ2α)e−ϵ4α/(512e2L).

Proof. See Appendix B.4.

Theorem 3.1 tells us that we can guarantee that the quadratic
form x⊤Xx is larger on a smaller set of directions x ∈
S(E[X], α) per which the quadratic form x⊤E[X]x is larger.
Accordingly, there is a tradeoff: For larger values of α, we
can guarantee x⊤Xx is larger, albeit in a smaller number
of directions x. When we apply Theorem 3.1 in Section 4
towards developing an approximation guarantee for simple
randomized rounding, we choose α to optimize this trade-
off. On a related note, observe that Theorem 3.1 does not
preserve dependence on ϵ like Theorem 2.2. In our approxi-
mation analysis of simple randomized rounding, we take ϵ

to be a constant, in which case the theorems provide similar
guarantees.

Consider the extreme case in which α = λmin(E[X]),
which is still possible under the assumptions of Theorem 3.1.
Using the fact that tr(E[X]) ≥ nλmin(E[X]), it then fol-
lows that Theorem 3.1 provides a weaker guarantee than
Theorem 2.4. Thus, as mentioned at the end of Subsection
1.1, the result is non-trivial when α > λmin(E[X]).

The remainder of this section is dedicated to outlining the
proof of Theorem 3.1. First, we establish preliminaries and
then, we present the proof outline.

Proof preliminaries. Let X1, . . . , Xm ∈ Rn×n be inde-
pendent random PSD matrices such that λmax(Xi) ≤ L for
each i ∈ [m]. Also, let X =

∑m
i=1 Xi.

Let u1, . . . , un be orthonormal eigenvectors of E[X], and
let λ̂1, . . . , λ̂n denote the corresponding respective eigen-
values. That is, E[X]ui = λ̂iui for each i ∈ [n]. We collect
the eigenvectors into the columns of the orthonormal matrix
U := [u1| · · · |un], and we collect the eigenvalues into the
diagonal of the diagonal matrix Λ := diag(λ̂1, . . . , λ̂n).
The spectral decomposition of E[X] is then given by
E[X] = UΛU⊤.

For β > 0, define the sets

I1(β) := {i ∈ [n] : λ̂i ≥ β},

and

I2(β) := [n] \ I1(β) = {i ∈ [n] : λ̂i < β},

which partition [n] based on the size of the eigenvalues
λ̂1, . . . , λ̂n. Note that I1(β) ̸= ∅ if β ≤ λmax(E[X]). Sim-
ilarly, I2(β) ̸= ∅ if β > λmin(E[X]), but we do not exploit
this fact.

For β > 0 and j ∈ [2] such that Ij(β) ̸= ∅, we collect the
eigenvectors ui, i ∈ Ij(β) into the columns of the matrix
Uj(β). Then, we collect the eigenvalues λ̂i, i ∈ Ij(β), into
the diagonal of the diagonal matrix Λj(β), and define

Lj(β) := {Uj(β)π : π ∈ R|Ij(β)|}

to be the subspace spanned by the eigenvectors ui, i ∈ Ij(β).
Next, let

Sj(β) := Sn−1 ∩ Lj(β) = {Uj(β)π : π ∈ S|Ij(β)|−1}

to be the set of points with unit Euclidean norm that lie
within the subspace Lj(β), and we define the independent
random PSD matrices

Yij := Uj(β)
⊤XiUj(β), (i, j) ∈ [m]× [2]

as well as Yj :=
∑m

i=1 Yij = Uj(β)
⊤XUj(β).
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Note that each matrix Yij is a |Ij(β)|×|Ij(β)| matrix. Also,
note that

E[Yj ] = Uj(β)
⊤E[X]Uj(β)

= Uj(β)
⊤UΛU⊤Uj(β)

= Λj ,

(7)

and that for each i ∈ [m],

λmax(Yij) = λmax(Uj(β)
⊤XiUj(β))

≤ λmax(Xi)λmax(Uj(β)
⊤Uj(β)) ≤ L,

(8)

where the first inequality follows from the same argument
provided in the proof of Theorem 2.5 in Appendix B.1
(specifically, see Lemma B.2); the second inequality follows
from λmax(Xi) ≤ L together with λmax(Uj(β)

⊤Uj(β)) =
λmax(I) = 1. Below we apply Theorem 2.5 and 2.2 with
respect to the matrices Yi1, i ∈ [m] and Yi2, i ∈ [m], re-
spectively, and use the facts (7) and (8) in the process.

Proof outline. For larger values of β > 0, the dimension
of the subspace L1(β) is smaller (or at least no larger). Ac-
cordingly, applying Theorem 2.5 with respect to matrices
Yi1, i ∈ [m], which capture the behavior of the matrices Xi,
i ∈ [m], on the subspace L1(β), we should be able to guar-
antee a better one-sided approximation on L1(β) for larger
values of β, as captured by the factor of intdim(E[X], β)
in Lemma 3.2 below. This intrinsic dimension factor ap-
pears (as opposed to n) because the dimension of L1(β) is
bounded above by it.

Lemma 3.2. For β > 0 such that I1(β) ̸= ∅, and δ ∈ (0, 1],
it holds that

P(∃x ∈ L1(β) \ {0} : x⊤Xx ≤ (1− δ)x⊤E[X]x)

≤ intdim(E[X], β)e−δ2β/(2L).

Proof. See Appendix B.2.

Lemma 3.2 provides us with a one-sided approximation
guarantee for the directions S1(β), while Theorem 3.1
states a weaker guarantee for the larger set of directions
S1(E[X], β) ⊇ S1(β). Accordingly, we work towards
showing that Lemma 3.2 implies the weaker guarantee for
the directions S1(E[X], β) \ S1(β).

We are only missing the following ingredient. Applying
Theorem 2.2 to the matrices Yi2, i ∈ [m], which capture
the behavior of the matrices Xi, i ∈ [m] with respect to
the directions S2(β), we can ensure that the quadratic form
x⊤Xx is not too large in each direction x ∈ S2(β). Because
Theorem 2.2 provides an intrinsic dimension inequality, we
obtain an intrinsic dimension inequality:

Lemma 3.3. For β > 0 such that I1(β), I2(β) ̸= ∅, and
t ≥ max{L/β + 1, e2},

P
(

max
x∈S2(β)

x⊤Xx ≥ tβ
)
≤ 2 intdim(E[X], β)e−tβ/L.

Proof. See Appendix B.3.

A sketch of the proof of Theorem 3.1 is as follows. The aim
is to ensure that x⊤Xx > (1− ϵ)α for all x ∈ S(E[X], α)
with some amount of probability. Fix x ∈ S(E[X], α). First,
we carefully specify a value of β > 0 (details behind the
specification to come). Assume that Ij(β) ̸= ∅ for each j ∈
[2]. (The proof otherwise ends up being straightforward.)
Because L1(β) is the orthogonal complement of L2(β), we
can decompose x ∈ S(E[X], β) as x = x1 + x2, where
x1 ∈ L1(β) and x2 ∈ L2(β). Because X is a random PSD
matrix, we can factor X as X = X1/2X1/2, where X1/2 is
a random matrix. From x = x1 + x2 and X = X1/2X1/2,
we have that

x⊤Xx = x⊤
1 Xx1 + 2x⊤

1 X
1/2X1/2x2 + x⊤

2 Xx2

≥ x⊤
1 Xx1 − 2

√
x⊤
1 Xx1

√
x⊤
2 Xx2 + x⊤

2 Xx2

=
(√

x⊤
1 Xx1 −

√
x⊤
2 Xx2

)2

, (9)

where the inequality follows from the Cauchy-Schwarz in-
equality. Taking β to be sufficiently small, we can ensure
that x⊤

2 Xx2 is sufficiently small by Lemma 3.3, and we can
ensure that x⊤

1 Xx1 is sufficiently large by Lemma 3.2.
Remark 3.4. To ensure that x⊤

1 Xx1 is sufficiently large,
it seems critical that we use the one-sided approximation
x⊤
1 Xx1 > (1 − ϵ)x⊤

1 E[X]x1 provided by Lemma 3.2
(which ultimately traces back to Theorem 2.5), rather than a
weaker lower bound of the form x⊤

1 Xx1/∥x1∥2 > (1−ϵ)β,
which could be obtained from Theorem 2.4. When ∥x1∥ is
small, the weaker bound is not helpful, but we can regardless
apply the one-sided approximation as long as x⊤

1 E[X]x1 is
sufficiently large.

4. Approximation guarantee for simple
randomized rounding

We present our main approximation result for simple ran-
domized rounding in Theorem 4.1 below. The theorem
states that simple randomized rounding provides a constant-
factor approximation if INC = Ω(R ln k), where recall that
where R := maxi∈[m] tr(Ai). Note that the theorem does
not account for the fact that zround should be feasible for
(1), i.e., satisfy ∥zround∥0 ≤ k; we address this issue further
below. Also, note that the constants specified in the theorem
are chosen to make the verification of the proof more conve-
nient. For instance, the constant in the lower bound on INC
could be increased to obtain a better approximation factor.
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Theorem 4.1. Suppose that k ≥ 2. If INC ≥ 214e2R ln k,
then

P
(
λmin

(
M +

m∑
i=1

[zround]iAi

)
≥ (1/4)OPT

)
≥ 61/64.

Proof. See Appendix B.5.

Our proof of Theorem 4.1 utilizes Theorem 3.1 and follows
the argument outlined in Subsection 1.1. Recall that W :=
maxi∈[m] λmax(Ai). Following a similar proof, one could
instead apply the matrix Chernoff inequality provided in
Theorem 2.4 to obtain the condition INC = Ω(W lnn),
which unlike our guarantee, does not shed light on the k < n
setting. However, the condition INC = Ω(W lnn) does
depend on W ≤ R. If the augmentation matrices are rank-
one matrices, then R = W , and there is no advantage to
this alternative condition.

To further motivate Theorem 4.1, it is worthwhile to note
that it is possible that INC = Rk. Consider the following
instance of the max-min eigenvalue augmentation problem
(1). Suppose that the augmentation matrices are rank-one
matrices, in which case R = W . Further suppose that
M = Wk(I − e1e

⊤
1 ), where e1 is the 1st standard unit

vector. Finally suppose that there are k (amongst the m)
augmentation matrices that are all equal to We1e

⊤
1 . Then,

it is clearly optimal to select these k matrices. It follows
that INC = Wk, which for sufficiently large k implies that
INC ≥ 214e2R ln k, from which we can conclude from
Theorem 4.1 that simple randomized rounding provides a
constant-factor approximation. However, no matter how
large we take k, we can always take n such that k << lnn,
in which case INC = Wk does not imply that INC =
Ω(W lnn).

Feasibility of zround. To establish a guarantee that addition-
ally ensures zround is feasible, we make use of Proposition
4.2 below. (Curiously, we were not able to find a state-
ment/proof of this fact in a more recent reference.)

Proposition 4.2 ((Jogdeo & Samuels, 1968), Theorem 3.2).
Suppose that the mean µ = E[X] of a Poisson binomial
random variable X is an integer. Then, µ is the median of
X .

Observe that the quantity ∥zround∥0 is a Poisson binomial
random variable with mean ∥zsdp∥1 ≤ k. It follows that

P(∥zround∥0 ≤ k) ≥ 1/2. (10)

Indeed, if ∥zsdp∥ = k, then (10) follows immediately from
Proposition 4.2. Suppose that ∥zsdp∥ < k (which is possi-
ble, as we only require (zsdp, ηsdp) be optimal for the relax-
ation (2)). For a Poisson binomial random variable Z that
has mean k−∥zsdp∥1 and that is independent of ∥zround∥0,

we have that P(∥zround∥0 ≤ k) ≥ P(∥zround∥0+Z ≤ k) ≥
1/2, where the second inequality follows from the fact that
∥zround∥0 + Z is a Poisson binomial random variable with
mean k.

With (10) in hand, we obtain the following corollary to
Theorem 4.1:

Corollary 4.3. Suppose that k ≥ 2. If INC ≥ 214e2R ln k,
then

P
(
λmin

(
M +

m∑
i=1

[zround]iAi

)
≥ (1/4)OPT, ∥z∥0 ≤ k

)
≥ 29/64.

5. Discussion
We considered the max-min eigenvalue augmentation prob-
lem (1) and focused on the setting in which k < n.
We showed that simple randomized rounding provides
a constant-factor approximation if the optimal increase
is sufficiently large, specifically if OPT − λmin(M) =
Ω(R ln k); see Theorem 4.1. To establish the guarantee, we
derived a matrix concentration inequality that is of inde-
pendent interest; see Theorem 3.1. The inequality can be
interpreted as an intrinsic dimension analog of the matrix
Chernoff inequality for the minimum eigenvalue of a sum
of independent random PSD matrices.

There are a number of directions that we aim to pursue
for future work. First, we aim to investigate the extent to
which we can improve the dependence on ϵ in Theorem
3.1. It is also of interest to determine the extent to which
Theorem 4.1 is tight. One would imagine that it is tight (up
to a constant factor) given that Theorem 2.4 is tight; see
(Tropp et al., 2015). Finally, we plan to explore the empirical
approximation performance of simple randomized rounding
through a computational study.
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A. Omitted proofs

B. Algebraic connectivity as a minimum eigenvalue
Lemma B.1. Let G be a simple undirected graph. Then, λ2(L) = λmin(L+ 11⊤), where L is the Laplacian of G.

Proof. Because L is positive semidefinite and L1 = 0, it holds that 1 is an eigenvector of L with eigenvalue λmin(L) = 0.
We consider two cases:

Case 1. Suppose that G is disconnected. Then λ2(L) = 0, and it follows that there is an eigenvector u of L that has
eigenvalue 0 and is orthogonal to 1. Hence (L+ 11⊤)u = 0, implying that λmin(L+ 11⊤) = 0, as L+ 11⊤ is positive
semidefinite. Thus λ2(L) = 0 = λmin(L+ 11⊤).

Case 2. Suppose that G is connected. Hence λ2(L) > 0. Let u1, . . . , un be orthonormal eigenvectors of L with eigenvalues
λ1(L) ≤ · · · ≤ λn(L), respectively. Because λmin(L) = 0 < λ2(L), it follows that u1 = 1.

Note that (L+ 11⊤)1 = n1, and (L+ 11⊤)ui = λi(L)ui for each 2 ≤ i ≤ n. As a result, the eigenvalues of L+ 11⊤

are n, λ2(L), . . . , λn(L). Thus, the desired result follows from the fact that λ2(L) ≤ n.

B.1. Proof of Theorem 2.5

If µmin = 0, then the theorem trivially holds. Hence, suppose that µmin > 0. Let Q = E[X]. Because λmin(Q) = µmin > 0,
the matrix Q is positive definite. Accordingly, we can factor Q as Q = Q1/2Q1/2, where Q1/2 is an n× n invertible matrix.
Define the random PSD matrices Yi := Q−1/2XiQ

−1/2, i ∈ [m]. Also, define Y :=
∑m

i=1 Yi = Q−1/2XQ−1/2.

Our proof of Theorem 2.5 follows from applying Theorem 2.4 to the matrices Yi, i ∈ [m]. Towards this end, note that
E[Y ] = Q−1/2E[X]Q−1/2 = I , and hence, λmin(E[Y ]) = 1. Also, make note of the observations captured in Lemmas B.2
and B.3 below.
Lemma B.2. λmax(Yi) ≤ L/µmin for each i ∈ [m].

Proof. Note that for each i ∈ [m] we have that:

λmax(Yi) = max
x∈Sn−1

x⊤Yix

= max
x∈Sn−1

x⊤Q−1/2XiQ
−1/2x

≤
(

max
x∈Sn−1

x⊤Q−1/2XiQ
−1/2x

∥Q−1/2x∥2
)(

max
x∈Sn−1

∥Q−1/2x∥2
)

=
(

max
y∈Sn−1

y⊤Xiy
)(

max
x∈Sn−1

x⊤Q−1x
)

= λmax(Xi)λmax(Q
−1)

≤ L/µmin,

where the third equality follows from the change of variables y = Q−1x/∥Q−1/2x∥, and the last inequality follows from
λmax(Xi) ≤ L and λmax(Q

−1) = 1/λmin(Q) = 1/µmin.

Lemma B.3. {X ̸≻ (1− ϵ)E[X]} = {Y ̸≻ (1− ϵ)I}.

Proof. It is sufficient to show that {X ≻ (1− ϵ)E[X]} = {Y ≻ (1− ϵ)I}. Suppose that X ≻ (1− ϵ)E[X]. For x ∈ Sn−1,
we have that

x⊤Y x = x⊤Q−1/2XQ−1/2x > (1− ϵ)x⊤Q−1/2E[X]Q−1/2x = (1− ϵ)x⊤Ix,

where the inequality follows from X ≻ (1− ϵ)E[X]. Thus, Y ≻ (1− ϵ)I .

Suppose that Y ≻ (1− ϵ)I . For x ∈ Sn−1, we have that

x⊤Xx = x⊤Q1/2Y Q1/2x > (1− ϵ)x⊤Qx = (1− ϵ)x⊤E[X]x,

where the inequality follows from Y ≻ (1− ϵ)I . Thus, X ≻ (1− ϵ)E[X].
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We are now prepared to prove Theorem 2.5:

Theorem 2.5. From Lemma B.3, we have that

P(X ̸≻ (1− ϵ)E[X]) = P(Y ̸≻ (1− ϵ)I) = P(λmin(Y ) ≤ 1− ϵ) ≤ ne−ϵ2µmin/(2L),

where the inequality follows from Theorem 2.4, which can be applied due to Lemma B.2.

B.2. Proof of Lemma 3.2

Lemma 3.2. For notational convenience, we suppress dependence on β and write I1(β), L1(β), S1(β), U1(β), and Λ1(β)
as I1, L1, S1, U1 and Λ1, respectively.

First, note that tr(E[X]) =
∑n

i=1 λ̂i ≥
∑

i∈I1
λ̂i ≥ |I1|β, where the second inequality follows from the definition of I1,

and hence:

|I1| ≤
tr(E[X])

β
= intdim(E[X], β). (11)

From the definition of L1, we have the following sequence:

P(∃x ∈ L1 \ {0} : x⊤Xx ≤ (1− δ)x⊤E[X]x)

= P(∃π ∈ R|I1|−1 \ {0} : π⊤U⊤
1 XU1π ≤ (1− δ)π⊤U⊤

1 E[X]U1π)

= P(∃π ∈ R|I1|−1 \ {0} : π⊤Y1π ≤ (1− δ)π⊤Λ1π)

≤ |I1|e−δ2λmin(Λ1)/(2L)

≤ intdim(E[X], β)e−δ2 mini∈I1
λ̂i/(2L)

≤ intdim(E[X], β)e−δ2β/(2L),

where the second equality follows from U⊤
1 E[X]U1 = U⊤

1 UΛU⊤U1 = Λ1; the first inequality follows from applying
Theorem 2.5 with respect to the matrices Yi1, i ∈ [m]; the second inequality follows from (11) and λmin(Λ1) = mini∈I1 λ̂i;
and the last inequality follows from the fact that λ̂i ≥ β for i ∈ I1.

B.3. Proof of Lemma 3.3

Lemma 3.3. For notational convenience, we suppress dependence on β in the same spirit as the proof of Lemma 3.2.

Take any index j ∈ I1, and let V = E[Y2] + βuju
⊤
j . We introduce V to apply Theorem 2.2 with V . Note that V ⪰ E[Y2]

because β > 0. Also, note that the eigenvalues of V are given by λ̂i, i ∈ I2, and β, so λmax(V ) = β because λ̂i < β for
each i ∈ I2 by definition. Finally, note that

tr(V ) = tr(E[Y2]) + β = tr(Λ2) + β =
∑
i∈I2

λ̂i + β ≤
n∑

i=1

λ̂i = tr(E[X]), (12)

where the inequality follows from β ≤ λj for j ∈ I1. From the definition of S2,

P
(
max
x∈S2

x⊤Xx ≥ tβ
)
= P

(
max

π∈S|I2|−1
π⊤U⊤

2 XU2π ≥ tβ
)

= P
(
λmax(U

⊤
2 XU2) ≥ tβ

)
= P

(
λmax(Y2) ≥ tλmax(V )

)
≤ 2 intdim(V, λmax(V ))

(e
t

)tλmax(V )/L

= 2
tr(V )

λmax(V )

(e
t

)tλmax(V )/L

≤ 2
tr(E[X])

β

(e
t

)tβ/L

≤ 2 intdim(E[X], β)e−tβ/L,
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where the first inequality follows from Theorem 2.2 with respect to Yi2, i ∈ [m] (here we use the supposition that
t ≥ L/β + 1 = L/λmax(V ) + 1 by λmax(V ) = β); the second inequality follows from (12) and λmax(V ) = β; and the
last inequality follows from t ≥ e2.

B.4. Proof of Theorem 3.1

Theorem 3.1. Let β = ϵ2α/(16e2). For notational convenience, we suppress dependence on β and for each j ∈ [2] write
Ij(β), Lj(β), Sj(β), Uj(β), and Λj(β) as Ij , Lj , Sj , Uj and Λj , respectively.

First, note that because β < α ≤ λmax(X), it holds that I1 ̸= ∅. Thus, from Lemma 3.2 with δ = ϵ/4, we have that:

P(∃x ∈ L1 \ {0} : x⊤Xx ≤ (1− ϵ/4)x⊤E[X]x)

≤ intdim(E[X], β)e−ϵ2β/(32L)

= 16e2 intdim(E[X], ϵ2α)e−ϵ4α/(512e2L), (13)

where the equality follows from β = ϵ2α/(16e2).

Suppose that S2 = ∅. Then, it holds that S1 = Sn−1. From the definition of S(E[X], α),

P(∃x ∈ S(E[X], α) : x⊤Xx ≤ (1− ϵ)α)

≤ P(∃x ∈ S(E[X], α) : x⊤Xx ≤ (1− ϵ)x⊤E[X]x)

≤ P(∃x ∈ S1 : x⊤Xx ≤ (1− ϵ)x⊤E[X]x)

≤ P(∃x ∈ S1 : x⊤Xx ≤ (1− ϵ/4)x⊤E[X]x)

≤ 16e2 intdim(E[X], ϵ2α)e−ϵ4α/(512e2L),

where the second inequality follows from S1 = Sn−1 ⊇ S(E[X], α), and the last inequality follows from (13). Thus, the
desired result follows, so let us assume that S2 ̸= ∅.

Then, note that L/β = 16e2L/(αϵ2) ≤ 1 because α ≥ 16e2L/ϵ2 (recall the conditions in the theorem statement). Hence,
we can apply Lemma 3.3 with t = e2 to obtain that

P
(
max
x∈S2

x⊤Xx ≥ e2β
)
≤ 2 intdim(E[X], β)e−e2β/L

= 32e2 intdim(E[X], ϵ2α)e−ϵ2α/(16L), (14)

where the equality follows from β = ϵ2α/(16e2). Accordingly, for the following conditions:

x⊤Xx > (1− ϵ/4)x⊤E[X]x, ∀x ∈ L1 \ {0} (15)

x⊤Xx < e2β, ∀x ∈ S2, (16)

we have from (13) and (14) that

P((15) and (16) hold)

≥ 1− 16e2 intdim(E[X], ϵ2α)e−ϵ4α/(512e2L) − 32e2 intdim(E[X], ϵ2α)e−ϵ2α/(16L)

≥ 1− 48e2 intdim(E[X], ϵ2α) · e−ϵ4α/(512e2L),

where the second inequality follows from e−ϵ2α/(16L) ≤ e−ϵ4α/(512e2L). Thus, taking x ∈ S(E[X], α) and assuming that
(15)-(16) hold, it is sufficient to show that

x⊤Xx > (1− ϵ)α. (17)

Because L1 is the orthogonal complement of L2, there exists a point x1 ∈ L1 and point x2 ∈ L2 such that x = x1 + x2.
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Because x ∈ S(E[X], α),

α ≤ x⊤E[X]x

= x⊤UΛU⊤x

= x⊤U1Λ1U
⊤
1 x+ x⊤U2Λ2U

⊤
2 x

≤ x⊤U1Λ1U
⊤
1 x+ λmax(U2Λ2U

⊤
2 )

= x⊤U1Λ1U
⊤
1 x+max

i∈I2
λ̂i

≤ x⊤U1Λ1U
⊤
1 x+ β

= x⊤U1Λ1U
⊤
1 x+ ϵ2α/(16e2), (18)

where the second inequality follows from x ∈ Sn−1; the third equality follows from the fact that the eigenvalues of U2Λ2U
⊤
2

are λ̂i, i ∈ I2; and the last inequality follows from the definition of I2. Rearranging (18) gives

(1− ϵ2/(16e2))α ≤ x⊤U1Λ1U
⊤
1 x

= x⊤
1 U1Λ1U

⊤
1 x1

= x⊤
1 UΛU⊤x1

= x⊤
1 E[X]x1, (19)

where the first equality follows from x = x1 + x2 and U⊤
1 x2 = 0, and the second equality follows from U⊤

2 x1 = 0. From
(19), we see that x1 ̸= 0, so x1 ∈ L1 \ {0}. Hence, from (15) we have that

x⊤
1 Xx1 > (1− ϵ/4)x⊤

1 E[X]x1 ≥ (1− ϵ/4)(1− ϵ2/(16e2))α > (1− ϵ/4)2α, (20)

where the second inequality follows from (19).

We claim that
x⊤
2 Xx2 < (ϵ2/16)α. (21)

If x2 = 0, then clearly (21) holds. So, suppose that x2 ̸= 0. Because ∥x2∥ ≤ 1 as well, we have that

x⊤
2 Xx2 ≤ x⊤

2 Xx2

∥x2∥2
< e2β = (ϵ2/16)α,

where the second inequality follows from (16).

Finally, recall from (9) that

x⊤Xx ≥
(√

x⊤
1 Xx1 −

√
x⊤
2 Xx2

)2

> (
√
(1− ϵ/4)2α−

√
(ϵ2/16)α)2

= (1− ϵ+ ϵ2/4)α

> (1− ϵ)α,

where the second inequality follows from x⊤
1 Xx > (1− ϵ/4)2α > (1/16)ϵ2α > x⊤

2 Xx2; recall (20) and (21). Thus, (17)
holds, and the proof is complete.

B.5. Proof of Theorem 4.1

Theorem 4.1. Let C = 214e2, so we have INC ≥ CR ln k. We apply Theorem 3.1 with respect to the random PSD
matrices Xi = [zround]iAi, i ∈ [m]. We take L = maxi∈[m] λmax(Ai) (which is clearly a valid choice), ϵ = 1/2, and
α = (1/2)INC. Verifying the final condition of the theorem, we have that

16e2L/ϵ2 = 64e2L ≤ 214e2L ≤ INC ≤ λmax

( m∑
i=1

[zsdp]iAi

)
,

12
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where the second inequality follows from INC ≥ 214e2R ln k ≥ 64e2L (recall R ≥ L), and the last inequality follows from
the fact that INC = λmin(M +

∑m
i=1[zsdp]iAi)− λmin(M) ≤ λmax(

∑m
i=1[zsdp]iAi).

Thus, the last condition of Theorem 3.1 holds, and we obtain that

P
(
∃x ∈ S

( m∑
i=1

[zsdp]iAi, (1/2)INC
)
: x⊤

( m∑
i=1

[zround]iAi

)
x ≤ (1/4)INC

)
≤ 48e2 intdim

( m∑
i=1

[zsdp]iAi, (1/8)INC
)
e−INC/(214e2L)

= 384e2 intdim
( m∑

i=1

[zsdp]iAi, INC
)
e−INC/(214e2L)

≤ 384e2 intdim
( m∑

i=1

[zsdp]iAi, CR ln k
)
e−R ln k/L

=
384

214
·
tr(

∑m
i=1[zsdp]iAi)

R ln k
· e−R ln k/L

≤ 384

214
· k

ln k
· e− ln k

=
3

128
· 1

ln k

≤ 3

64
(22)

where the second inequality follows from the supposition INC ≥ CR ln k and C = 214e2; the third inequality follows from
tr(

∑m
i=1[zsdp]iAi) ≤ R

∑m
i=1[zsdp]i ≤ Rk and L ≤ R; and the last inequality follows from ln k ≥ (1/2) (as k ≥ 2).

From (22), it holds with probability at least 61/64 that

x⊤
( m∑

i=1

[zround]iAi

)
x > (1/4)INC ∀x ∈ S

( m∑
i=1

[zsdp]iAi, (1/2)INC
)
. (23)

Fix x ∈ Sn−1. Then, it is sufficient to show that

x⊤
(
M +

m∑
i=1

[zround]iAi

)
x ≥ (1/4)OPT (24)

under the assumption that (23) holds.

Case 2.1. Suppose that x /∈ S(
∑m

i=1[zsdp]iAi, (1/4)INC). Because x ∈ Sn−1,

λmin

(
M +

m∑
i=1

[zsdp]iAi

)
≤ x⊤

(
M +

m∑
i=1

[zsdp]iAi

)
x < x⊤Mx+ (1/4)INC, (25)

where the second inequality follows from x /∈ S(
∑m

i=1[zsdp]iAi, (1/4)INC). Now observe that

x⊤
(
M +

m∑
i=1

[zround]iAi

)
x ≥ x⊤Mx

> λmin

(
M +

m∑
i=1

[zsdp]iAi

)
− (1/4)INC

= λmin(M) + (3/4)INC

≥ (3/4)(λmin(M) + INC)

= (3/4)λmin

(
M +

m∑
i=1

[zsdp]iAi

)
≥ (3/4)OPT ≥ (1/4)OPT

13
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where the strict inequality follows from rearranging (25), while the first and last equalities follow from the definition of INC.

Case 2.2. Suppose that x ∈ S(
∑m

i=1[zsdp]iAi, (1/4)INC). Then we have that

x⊤
(
M +

m∑
i=1

[zround]iAi

)
x > λmin(M) + (1/4)INC

≥ (1/4)(λmin(M) + INC)

= (1/4)λmin

(
M +

m∑
i=1

[zsdp]iAi

)
≥ (1/4)OPT,

where the strict inequality follows from x⊤Mx ≥ λmin(M) (as x ∈ Sn−1) and (23), and the equality follows from the
definition of INC.
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