
SpatialBoost: Enhancing Visual Representation through Language-Guided Reasoning

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Despite the remarkable performance of large-scale pre-trained image representation
2 models (i.e., vision encoders) across various vision tasks, they often fail to learn
3 spatial relationships within images, constraining their effectiveness in various
4 downstream tasks, e.g., visual spatial reasoning and vision-based robot control,
5 etc. This limitation stems from the scarcity of 3D or multi-view images, making
6 it challenging to inject 3D spatial knowledge into the encoders. To overcome
7 this limitation, we propose a novel learning framework that enhances spatial
8 awareness in existing pre-trained image representation models. The core idea
9 involves converting 3D spatial information into linguistic expressions, which is then
10 used to inject such spatial knowledge into vision encoders through a Large Vision
11 Language Model (LVLM). To further improve spatial awareness, we introduce a
12 multi-turn visual spatial reasoning approach; specifically, we adopt a Chain-of-
13 Thought (CoT) framework to build hierarchical spatial understanding through
14 sequential reasoning turns. The proposed approach enhances pre-trained vision
15 encoders, for example, improving average accuracy on the SpatialRGPT visual
16 language spatial reasoning benchmark from 13.3% to 52.0% simply by replacing
17 the vision encoder in LLaVA-1.5-7B.

18

1 Introduction

19 Pre-trained image representation models [23, 14, 7, 31, 3, 16] have shown remarkable success in
20 various downstream tasks, such as image classification [11, 30], semantic segmentation [59, 32],
21 monocular depth prediction [44, 20], and vision-language understanding [2, 26]. The core idea
22 behind these successes is extracting transferrable representation from large-scale image datasets such
23 as ImageNet [13], enabling the model to understand semantic information within images that are
24 significantly useful for various downstream tasks.

25 Despite their success, these models are predominantly trained on 2D images and hence face a
26 fundamental challenge in acquiring 3D spatial awareness capabilities. Large vision language models
27 struggle to discern 3D spatial relationships between objects in images [33, 19, 47, 8], and demonstrate
28 sub-optimal performance in vision-based robotic control tasks compared to approaches that directly
29 utilize 3D information [54, 28, 56]. Training visual models on multi-view images can encode
30 spatial information [55, 48, 5], however, broader applicability is constrained by the need to use
31 carefully curated data [53] or simulation environments [43]. These challenges indicate the need for
32 methodologies that encode spatial information while leveraging widely available 2D image datasets.

33 We introduce **SpatialBoost**, a learning framework to enhance the spatial understanding of existing
34 pre-trained vision encoders by using language-guided reasoning (see Figure 1). The key idea is to
35 transform geometric and semantic information within images into language descriptions and then use
36 them to enhance the visual encoder via language supervision. This injection of linguistic knowledge

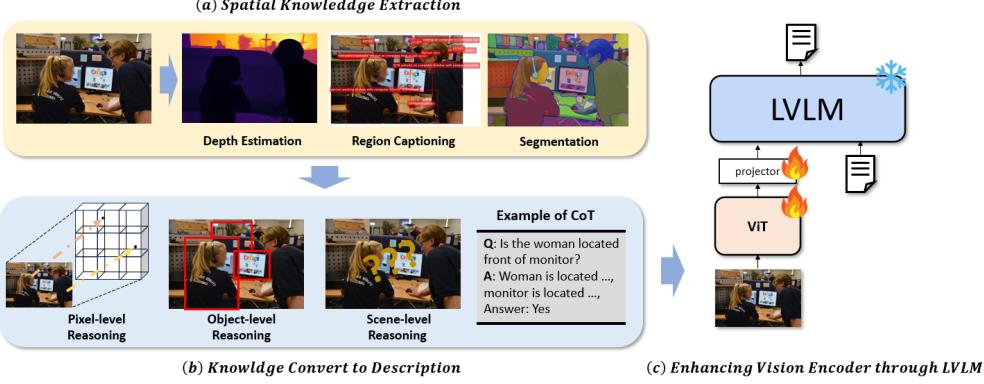


Figure 1: **Overview of the proposed framework**, which enhances spatial and geometric understanding of pre-trained vision encoders by leveraging language-guided spatial reasoning. Our framework, *i.e.*, SpatialBoost, consists of (a) spatial knowledge extraction, (b) converting extracted knowledge into multi-turn spatial reasoning from pixel to scene levels, and (c) building a spatial-aware vision encoder using LVLM.

utilizes an LVLM like LLaVA [33], with all parameters frozen except for a trainable dual-channel attention layer added to the image encoder. We also adopt a multi-turn visual spatial reasoning approach using a Chain-of-Thought (CoT) framework to build hierarchical spatial understanding through 10 sequential reasoning turns.

We apply SpatialBoost to DINOv2 [38] and OpenCLIP [9]. LLaVA-1.5-7B [34] trained with Spatial Boost OpenCLIP and DINOv2 improved from 13.3% to 52.0% and 18.8% to 54.2%, respectively, surpassing GPT-4o [1] (39.7%) and Gemini 2.0-flash [12] (42.5%) simply by changing the encoder. In embodied environments, average score increases by 6.0% for OpenCLIP ViT-L/14 and 7.2% for DINOv2 ViT-L/14. We also show applicability to depth estimation and semantic segmentation, where ViT variants achieve performance comparable to significantly larger models.

2 Method

In this section, we present SpatialBoost, a framework that leverages linguistic expressions of geometric and semantic information within images to enhance pre-trained vision encoders for spatial understanding. We describe how we leverage an LVLM and use dual-channel attention layers to inject linguistic information into image representations, and how we extract 3D spatial information from 2D images and express it in language via a multi-turn visual spatial reasoning dataset (see Figure 1).

2.1 Preliminary: LLaVA

LLaVA [33, 34] is an LVLM designed to generate natural language responses to questions about visual inputs. Given an image \mathbf{x} and QA pairs $(Q_{\mathbf{x}}, A_{\mathbf{x}})$, LLaVA extracts visual feature vectors using a pre-trained visual encoder f_V , projects them via g_P to obtain $\mathbf{v}_{\mathbf{x}} = g_P(f_V(\mathbf{x}))$, and processes textual embeddings and $\mathbf{v}_{\mathbf{x}}$ through the LLM decoder h_L to predict $A_{\mathbf{x}}$ auto-regressively.

2.2 Training Strategy for SpatialBoost

We train the model to generate answers containing the knowledge that we aim to inject by taking images and prompts as input to the LVLM. This process employs supervised fine-tuning (SFT) loss while keeping all hyperparameters of the LLM component fixed, allowing only the vision encoder and projector parameters to be trainable. Through this method, the vision encoder learns to generate representations necessary for producing answers. However, this process risks losing useful image representations previously possessed by the vision encoder. To address this challenge, we implement a dual-channel attention mechanism (see Figure 3 and Appendix B).

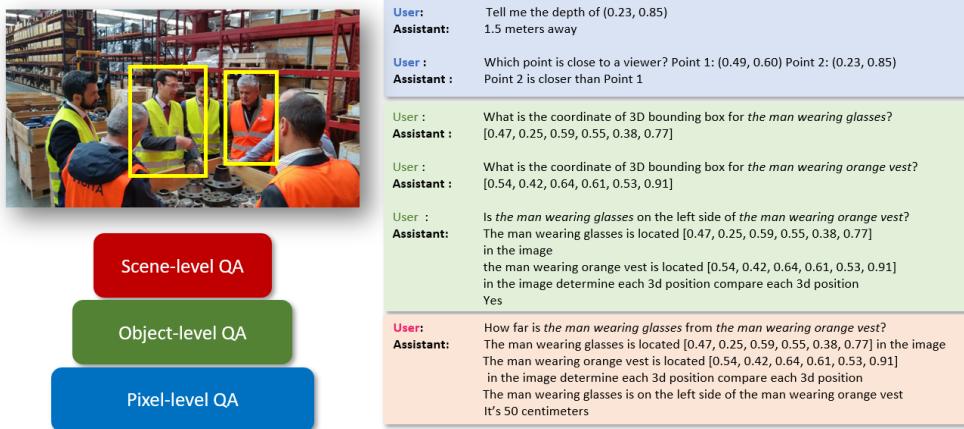


Figure 2: **Illustration of multi-turn visual spatial reasoning dataset**, exhibiting pixel-level, object-level, and scene-level reasoning QAs. At the pixel-level, the QA task queries the 3D positions of points (*e.g.*, via depth estimation). At the object-level, it extracts spatial properties of objects (*e.g.*, by predicting bounding cubes or relative positions). At the scene-level, it determines the exact distances between multiple objects that require the rationales of the previous steps. These are listed in order and constitute 10 multi-turn visual spatial reasoning conservation.

66 2.3 Enhancing Vision Encoder with Spatial CoT

67 We now describe our process for extracting 3D spatial information from 2D images and converting
 68 it into linguistic expressions. Our key idea is to utilize VQA data rich in spatial relationships that
 69 can be effectively processed by LVLMs, enabling us to optimize vision encoders for enhanced
 70 spatial understanding. To achieve this, we introduce a multi-turn visual spatial reasoning approach
 71 implementing a Chain-of-Thought (CoT) framework [49]. This method builds hierarchical spatial
 72 understanding through 10 sequential reasoning turns that progress from narrow to broad view. Each
 73 new turn generates reasoning that depends on previous answers, enabling the model to develop
 74 progressively deeper spatial comprehension. By fine-tuning vision encoders with this dataset, we
 75 effectively transfer spatial knowledge into image representations.

76 **Multi-turn Visual Spatial Reasoning Dataset.** We construct a multi-turn visual spatial reasoning
 77 dataset, *i.e.*, multi-turn question-answering (QA) dataset specialized in spatial reasoning. Given an
 78 image \mathbf{x} , we use depth estimation and segmentation models [4, 42] to extract a 3D point cloud and
 79 then synthesize QA pairs specialized in spatial reasoning. We construct QA pairs at three levels:
 80 **pixel-level** (*e.g.*, depth prediction or comparison), **object-level** (*e.g.*, semantic spatial information via
 81 3D bounding cubes or relative positional relations), and **scene-level** (*e.g.*, exact distances between
 82 multiple objects). This hierarchy enables CoT reasoning in order of pixel-, object-, and scene-level.

83 **Multi-turn Fine-tuning.** We fine-tune the vision encoders by presenting spatial reasoning as a
 84 multi-turn conversation. For each image, we format the 10 QA turns into a single chat template
 85 where each turn builds upon previous turns. The complete conversation is then used for supervised
 86 fine-tuning, enabling the model to learn the connected nature of spatial reasoning through the entire
 87 sequence at once. This approach allows the LVLM to reason at broader view levels based on
 88 information obtained from narrower views (see the reasoning process in Figure 2).

89 3 Experiments

90 In this section, we design experiments to investigate whether SpatialBoost can effectively enhance
 91 visual representations by capturing geometric and semantic information within images. In particular,
 92 we evaluate SpatialBoost on VQA tasks that require 3D geometric spatial reasoning, vision-based
 93 robot learning tasks, and dense prediction tasks (see Section 3.1). We also provide ablation studies
 94 and analysis on our design choices (see Section 3.2). Details of each experiment are described in
 95 Appendix C.

Table 1: **Results on visual question answering (VQA) tasks.** We report the accuracy (%) of large vision-language models (LVLM) with various vision encoders on general VQA tasks and spatial reasoning from SpatialRGPT-Bench [8] and BLINK’s Relative Depth Benchmark (BLINK-bench). We use ViT-L/14 model for both OpenCLIP [9] and DINOv2 [38].

Model	Vision encoder	Spatial Reasoning		General VQA			
		SpatialRGPT-bench [8]	BLINK-bench [19]	VQAv2 [22]	GQA [26]	MMBench [36]	MME [18]
GPT-4o [1]	-	39.7	64.5	-	-	-	-
Gemini 2.0-flash [12]	-	42.5	68.3	-	-	-	-
LLaVA-1.5-7B [34]	OpenCLIP [9]	13.3	51.6	77.8	61.8	63.9	1510.2
	+ SpatialBoost	52.0	85.1	79.0	65.6	67.7	1516.3
DINOv2 [38]		18.8	55.2	75.2	61.5	64.0	1506.2
	+ SpatialBoost	54.2	87.5	76.8	62.5	67.4	1514.2

Table 2: **Results on vision-based robot learning.** We report imitation learning agents on 4 domains from CortexBench [37], trained upon frozen representations.

Method	Robot learning				
	Adroit	MetaWorld	DMControl	Trifinger	Avg.
OpenCLIP [9]	50.8 \pm 3.3	75.7 \pm 1.9	58.9 \pm 2.0	64.8 \pm 0.7	62.6
+ SpatialBoost	53.8 \pm 3.7	84.0 \pm 2.2	67.9 \pm 1.6	68.7 \pm 0.4	68.6
DINOv2 [38]	36.8 \pm 3.5	62.6 \pm 1.8	48.4 \pm 1.4	62.3 \pm 0.4	52.5
+ SpatialBoost	50.1 \pm 3.0	66.5 \pm 2.1	55.0 \pm 1.9	67.2 \pm 1.2	59.7

Table 3: **Results on dense prediction tasks.** We report RMSE for monocular depth estimation and mIoU for semantic segmentation. All results are linear probing with frozen representations.

Method	Depth estimation (↓)		Segmentation (↑)	
	NYUd [44]	KITTI [21]	ADE20k [58]	Pascal VOC [17]
OpenCLIP [9]	0.56	3.66	39.1	70.8
+ SpatialBoost	0.40	2.82	40.0	74.3
DINOv2 [38]	0.38	2.78	47.7	82.1
+ SpatialBoost	0.32	2.56	49.2	83.5

96 3.1 Results on Downstream Tasks

97 **Visual Question-Answering (VQA) Tasks.** SpatialBoost consistently enhances spatial reasoning
98 capabilities while preserving general VQA abilities. In Table 1, LLaVA-1.5-7B with SpatialBoost
99 DINOv2 improves average performance across SpatialRGPT-bench from 18.8% to 54.2%, and with
100 OpenCLIP from 13.3% to 52.0%, surpassing GPT-4o (39.7%) and Gemini 2.0-flash (42.5%) simply
101 by changing the encoder.

102 **Vision-based Robot Learning.** Across CortexBench domains, agents using SpatialBoost backbones
103 outperform baselines. In Table 2, SpatialBoost OpenCLIP achieves 67.9% vs. 58.9% on DMControl,
104 with average gains of 6.0%p for OpenCLIP and 7.2%p for DINOv2.

105 **Dense Prediction Tasks.** SpatialBoost improves both geometric and semantic spatial understanding.
106 For instance, in Table 3, RMSE on NYUd decreases from 0.56 to 0.40 for OpenCLIP and mIoU on
107 ADE20k rises from 47.7% to 49.2% for DINOv2.

108 3.2 Ablation Study and Analysis

109 **Effect of Multi-turn Visual Reasoning.** We investigate the effect of the construction of a multi-turn
110 visual reasoning dataset. Forward curriculum (*i.e.*, pixel \rightarrow object \rightarrow scene) yields larger gains than
111 single-turn, shuffled, or reversed orders, indicating that the order of reasoning has a greater impact
112 than merely using multi-turn data. We provide details in Appendix D.1.

113 **Effect of Dual-channel Attention Layer.** We investigate the effect of the dual-channel attention layer,
114 specifically examining whether it preserves original knowledge. Dual-channel attention preserves pre-
115 trained knowledge and improves classification performance on ImageNet-1K [13] and CIFAR-100
116 [30], while full fine-tuning or LoRA [25] degrades performance. We provide details in Appendix D.2.

117 **Dataset Scalability.** We find that increasing the size of dataset consistently improves the performance
118 of monocular depth estimation and semantic segmentation under matched update budgets, demon-
119 strating robustness to scaling and potential for further gains. We provide details in Appendix D.3.

120 4 Conclusion

121 In this paper, we have presented SpatialBoost, a framework to enhance the vision encoders by
122 leveraging linguistic expressions of geometric and semantic information within images. SpatialBoost
123 uses an LVLM and dual-channel attention layers, generates a multi-turn visual spatial reasoning
124 dataset, and leverages it to improve image representations.

125 **References**

- 126 [1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
127 J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. *arXiv preprint*
128 *arXiv:2303.08774*, 2023.
- 129 [2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh. Vqa: Visual
130 question answering. In *IEEE International Conference on Computer Vision*, 2015.
- 131 [3] M. Assran, Q. Duval, I. Misra, P. Bojanowski, P. Vincent, M. Rabbat, Y. LeCun, and N. Ballas.
132 Self-supervised learning from images with a joint-embedding predictive architecture. In *IEEE*
133 *Conference on Computer Vision and Pattern Recognition*, 2023.
- 134 [4] A. Bochkovskii, A. Delaunoy, H. Germain, M. Santos, Y. Zhou, S. R. Richter, and
135 V. Koltun. Depth pro: Sharp monocular metric depth in less than a second. *arXiv preprint*
136 *arXiv:2410.02073*, 2024.
- 137 [5] D. Charatan, S. L. Li, A. Tagliasacchi, and V. Sitzmann. pixelsplat: 3d gaussian splats from
138 image pairs for scalable generalizable 3d reconstruction. In *IEEE Conference on Computer*
139 *Vision and Pattern Recognition*, 2024.
- 140 [6] B. Chen, Z. Xu, S. Kirmani, B. Ichter, D. Sadigh, L. Guibas, and F. Xia. Spatialvlm: Endowing
141 vision-language models with spatial reasoning capabilities. In *IEEE Conference on Computer*
142 *Vision and Pattern Recognition*, 2024.
- 143 [7] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever. Generative pretraining
144 from pixels. In *International Conference on Machine Learning*, 2020.
- 145 [8] A.-C. Cheng, H. Yin, Y. Fu, Q. Guo, R. Yang, J. Kautz, X. Wang, and S. Liu. Spatialrgpt:
146 Grounded spatial reasoning in vision-language models. 2024.
- 147 [9] M. Cherti, R. Beaumont, R. Wightman, M. Wortsman, G. Ilharco, C. Gordon, C. Schuhmann,
148 L. Schmidt, and J. Jitsev. Reproducible scaling laws for contrastive language-image learning.
149 In *IEEE Conference on Computer Vision and Pattern Recognition*, 2023.
- 150 [10] W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E.
151 Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality.
152 See <https://vicuna.lmsys.org> (accessed 14 April 2023), 2023.
- 153 [11] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie. Large scale fine-grained categorization
154 and domain-specific transfer learning. In *IEEE Conference on Computer Vision and Pattern*
155 *Recognition*, 2018.
- 156 [12] G. DeepMind. Gemini 2.0 model updates: 2.0 flash, flash-lite, pro experimental.
157 <https://blog.google/technology/google-deepmind/gemini-model-updates-february-2025/>, Feb.
158 2025.
- 159 [13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
160 image database. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2009.
- 161 [14] J. Donahue and K. Simonyan. Large scale adversarial representation learning. 2019.
- 162 [15] Z. Dong, K. Xu, Y. Yang, H. Bao, W. Xu, and R. W. Lau. Location-aware single image reflection
163 removal. In *IEEE International Conference on Computer Vision*, 2021.
- 164 [16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
165 M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
166 image recognition at scale. In *International Conference on Learning Representations*, 2021.
- 167 [17] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual
168 object classes (voc) challenge. 2010.
- 169 [18] C. Fu, P. Chen, Y. Shen, Y. Qin, M. Zhang, X. Lin, J. Yang, X. Zheng, K. Li, X. Sun, Y. Wu, and
170 R. Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models,
171 2024. URL <https://arxiv.org/abs/2306.13394>.

- 172 [19] X. Fu, Y. Hu, B. Li, Y. Feng, H. Wang, X. Lin, D. Roth, N. A. Smith, W.-C. Ma, and R. Krishna.
173 Blink: Multimodal large language models can see but not perceive. In *European Conference on*
174 *Computer Vision*, 2024.
- 175 [20] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision
176 benchmark suite. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2012.
- 177 [21] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets robotics: The kitti dataset. *The*
178 *international journal of robotics research*, 2013.
- 179 [22] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and D. Parikh. Making the v in vqa matter:
180 Elevating the role of image understanding in visual question answering. In *Proceedings of the*
181 *IEEE conference on computer vision and pattern recognition*, pages 6904–6913, 2017.
- 182 [23] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast for unsupervised visual
183 representation learning. In *IEEE Conference on Computer Vision and Pattern Recognition*,
184 2020.
- 185 [24] W. Hong, M. Ding, W. Zheng, X. Liu, and J. Tang. Cogvideo: Large-scale pretraining for text-
186 to-video generation via transformers. In *International Conference on Learning Representations*,
187 2023.
- 188 [25] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora:
189 Low-rank adaptation of large language models. *arXiv preprint arXiv:2106.09685*, 2021.
- 190 [26] D. A. Hudson and C. D. Manning. Gqa: A new dataset for real-world visual reasoning and
191 compositional question answering. In *IEEE Conference on Computer Vision and Pattern*
192 *Recognition*, 2019.
- 193 [27] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic
194 manipulation. *IEEE Robotics and Automation Letters*, 2022.
- 195 [28] T.-W. Ke, N. Gkanatsios, and K. Fragkiadaki. 3d diffuser actor: Policy diffusion with 3d scene
196 representations. *arXiv preprint arXiv:2402.10885*, 2024.
- 197 [29] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
198 A. C. Berg, W.-Y. Lo, et al. Segment anything. In *IEEE International Conference on Computer*
199 *Vision*, 2023.
- 200 [30] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- 201 [31] T. Li, H. Chang, S. Mishra, H. Zhang, D. Katabi, and D. Krishnan. Mage: Masked generative
202 encoder to unify representation learning and image synthesis. In *IEEE Conference on Computer*
203 *Vision and Pattern Recognition*, 2023.
- 204 [32] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
205 Microsoft coco: Common objects in context. In *European Conference on Computer Vision*,
206 2014.
- 207 [33] F. Liu, G. Emerson, and N. Collier. Visual spatial reasoning. *Transactions of the Association*
208 *for Computational Linguistics*, 2023.
- 209 [34] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning. *arXiv*
210 *preprint arXiv:2310.03744*, 2024.
- 211 [35] H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee. Llava-next: Improved reasoning,
212 ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
- 214 [36] Y. Liu, H. Duan, Y. Zhang, B. Li, S. Zhang, W. Zhao, Y. Yuan, J. Wang, C. He, Z. Liu, et al.
215 Mmbench: Is your multi-modal model an all-around player? In *European conference on*
216 *computer vision*, pages 216–233. Springer, 2024.

- 217 [37] A. Majumdar, K. Yadav, S. Arnaud, J. Ma, C. Chen, S. Silwal, A. Jain, V.-P. Berges, T. Wu,
 218 J. Vakil, et al. Where are we in the search for an artificial visual cortex for embodied intelligence?
 219 2023.
- 220 [38] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
 221 F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
 222 *arXiv preprint arXiv:2304.07193*, 2023.
- 223 [39] D. A. Pomerleau. Alvinn: An autonomous land vehicle in a neural network. 1988.
- 224 [40] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov, and S. Levine.
 225 Learning complex dexterous manipulation with deep reinforcement learning and demonstrations.
 226 *arXiv preprint arXiv:1709.10087*, 2017.
- 227 [41] R. Ranftl, A. Bochkovskiy, and V. Koltun. Vision transformers for dense prediction. In *IEEE*
 228 *International Conference on Computer Vision*, 2021.
- 229 [42] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rädle, C. Rolland,
 230 L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dol-
 231 lár, and C. Feichtenhofer. Sam 2: Segment anything in images and videos. *arXiv preprint*
 232 *arXiv:2408.00714*, 2024.
- 233 [43] M. Savva, A. Kadian, O. Maksymets, Y. Zhao, E. Wijmans, B. Jain, J. Straub, J. Liu, V. Koltun,
 234 J. Malik, et al. Habitat: A platform for embodied ai research. In *IEEE International Conference*
 235 *on Computer Vision*, 2019.
- 236 [44] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference
 237 from rgbd images. In *European Conference on Computer Vision*, 2012.
- 238 [45] Q. Sun, Y. Fang, L. Wu, X. Wang, and Y. Cao. Eva-clip: Improved training techniques for clip
 239 at scale. *arXiv preprint arXiv:2303.15389*, 2023.
- 240 [46] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
 241 J. Merel, A. Lefrancq, et al. Deepmind control suite. *arXiv preprint arXiv:1801.00690*, 2018.
- 242 [47] J. Wang, Y. Ming, Z. Shi, V. Vineet, X. Wang, S. Li, and N. Joshi. Is a picture worth a thousand
 243 words? delving into spatial reasoning for vision language models. 2025.
- 244 [48] S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud. Dust3r: Geometric 3d vision made
 245 easy. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2024.
- 246 [49] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al. Chain-of-
 247 thought prompting elicits reasoning in large language models. 2022.
- 248 [50] M. Wüthrich, F. Widmaier, F. Grimminger, J. Akpo, S. Joshi, V. Agrawal, B. Hammoud,
 249 M. Khadiv, M. Bogdanovic, V. Berenz, et al. Trifinger: An open-source robot for learning
 250 dexterity. *arXiv preprint arXiv:2008.03596*, 2020.
- 251 [51] B. Xiao, H. Wu, W. Xu, X. Dai, H. Hu, Y. Lu, M. Zeng, C. Liu, and L. Yuan. Florence-
 252 2: Advancing a unified representation for a variety of vision tasks. In *IEEE Conference on*
 253 *Computer Vision and Pattern Recognition*, 2024.
- 254 [52] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
 255 benchmark and evaluation for multi-task and meta reinforcement learning. In *CoRL*, 2020.
- 256 [53] X. Yu, M. Xu, Y. Zhang, H. Liu, C. Ye, Y. Wu, Z. Yan, C. Zhu, Z. Xiong, T. Liang, et al.
 257 Mvimgnet: A large-scale dataset of multi-view images. In *IEEE Conference on Computer*
 258 *Vision and Pattern Recognition*, 2023.
- 259 [54] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy: Generalizable
 260 visuomotor policy learning via simple 3d representations. *arXiv preprint arXiv:2403.03954*,
 261 2024.

- 262 [55] J. Zhang, C. Herrmann, J. Hur, V. Jampani, T. Darrell, F. Cole, D. Sun, and M.-H. Yang.
263 Monst3r: A simple approach for estimating geometry in the presence of motion. *arXiv preprint*
264 *arXiv:2410.03825*, 2024.
- 265 [56] H. Zhen, X. Qiu, P. Chen, J. Yang, X. Yan, Y. Du, Y. Hong, and C. Gan. 3d-vla: A 3d
266 vision-language-action generative world model. *arXiv preprint arXiv:2403.09631*, 2024.
- 267 [57] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing,
268 et al. Judging llm-as-a-judge with mt-bench and chatbot arena. 2023.
- 269 [58] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba. Scene parsing through
270 ade20k dataset. In *IEEE Conference on Computer Vision and Pattern Recognition*, 2017.
- 271 [59] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba. Semantic
272 understanding of scenes through the ade20k dataset. 2019.

460 **NeurIPS Paper Checklist**

461 The checklist is designed to encourage best practices for responsible machine learning research,
462 addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
463 the checklist: **The papers not including the checklist will be desk rejected.** The checklist should
464 follow the references and follow the (optional) supplemental material. The checklist does NOT count
465 towards the page limit.

466 Please read the checklist guidelines carefully for information on how to answer these questions. For
467 each question in the checklist:

- 468 • You should answer **[Yes]** , **[No]** , or **[NA]** .
469 • **[NA]** means either that the question is Not Applicable for that particular paper or the
470 relevant information is Not Available.
471 • Please provide a short (1–2 sentence) justification right after your answer (even for NA).

472 **The checklist answers are an integral part of your paper submission.** They are visible to the
473 reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
474 (after eventual revisions) with the final version of your paper, and its final version will be published
475 with the paper.

476 The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
477 While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a
478 proper justification is given (e.g., "error bars are not reported because it would be too computationally
479 expensive" or "we were unable to find the license for the dataset we used"). In general, answering
480 "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we
481 acknowledge that the true answer is often more nuanced, so please just use your best judgment and
482 write a justification to elaborate. All supporting evidence can appear either in the main paper or the
483 supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification
484 please point to the section(s) where related material for the question can be found.

485 **IMPORTANT**, please:

- 486 • **Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",**
487 • **Keep the checklist subsection headings, questions/answers and guidelines below.**
488 • **Do not modify the questions and only use the provided macros for your answers.**

489 **1. Claims**

490 Question: Do the main claims made in the abstract and introduction accurately reflect the
491 paper's contributions and scope?

492 Answer: **[Yes]**

493 Justification: All claims in the introduction and abstract accurately reflect the contribution
494 and scope.

495 Guidelines:

- 496 • The answer NA means that the abstract and introduction do not include the claims
497 made in the paper.
498 • The abstract and/or introduction should clearly state the claims made, including the
499 contributions made in the paper and important assumptions and limitations. A No or
500 NA answer to this question will not be perceived well by the reviewers.
501 • The claims made should match theoretical and experimental results, and reflect how
502 much the results can be expected to generalize to other settings.
503 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
504 are not attained by the paper.

505 **2. Limitations**

506 Question: Does the paper discuss the limitations of the work performed by the authors?

507 Answer: **[No]**

508 Justification: We did not discuss limitations in this paper.

509 Guidelines:

- 510 • The answer NA means that the paper has no limitation while the answer No means that
511 the paper has limitations, but those are not discussed in the paper.
- 512 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 513 • The paper should point out any strong assumptions and how robust the results are to
514 violations of these assumptions (e.g., independence assumptions, noiseless settings,
515 model well-specification, asymptotic approximations only holding locally). The authors
516 should reflect on how these assumptions might be violated in practice and what the
517 implications would be.
- 518 • The authors should reflect on the scope of the claims made, e.g., if the approach was
519 only tested on a few datasets or with a few runs. In general, empirical results often
520 depend on implicit assumptions, which should be articulated.
- 521 • The authors should reflect on the factors that influence the performance of the approach.
522 For example, a facial recognition algorithm may perform poorly when image resolution
523 is low or images are taken in low lighting. Or a speech-to-text system might not be
524 used reliably to provide closed captions for online lectures because it fails to handle
525 technical jargon.
- 526 • The authors should discuss the computational efficiency of the proposed algorithms
527 and how they scale with dataset size.
- 528 • If applicable, the authors should discuss possible limitations of their approach to
529 address problems of privacy and fairness.
- 530 • While the authors might fear that complete honesty about limitations might be used by
531 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
532 limitations that aren't acknowledged in the paper. The authors should use their best
533 judgment and recognize that individual actions in favor of transparency play an impor-
534 tant role in developing norms that preserve the integrity of the community. Reviewers
535 will be specifically instructed to not penalize honesty concerning limitations.

536 **3. Theory assumptions and proofs**

537 Question: For each theoretical result, does the paper provide the full set of assumptions and
538 a complete (and correct) proof?

539 Answer: [NA]

540 Justification: We do not have theory in this paper.

541 Guidelines:

- 542 • The answer NA means that the paper does not include theoretical results.
- 543 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
544 referenced.
- 545 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 546 • The proofs can either appear in the main paper or the supplemental material, but if
547 they appear in the supplemental material, the authors are encouraged to provide a short
548 proof sketch to provide intuition.
- 549 • Inversely, any informal proof provided in the core of the paper should be complemented
550 by formal proofs provided in appendix or supplemental material.
- 551 • Theorems and Lemmas that the proof relies upon should be properly referenced.

552 **4. Experimental result reproducibility**

553 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
554 perimental results of the paper to the extent that it affects the main claims and/or conclusions
555 of the paper (regardless of whether the code and data are provided or not)?

556 Answer: [Yes]

557 Justification: We provide implementation details in Appendix A and Appendix E.

558 Guidelines:

- 559 • The answer NA means that the paper does not include experiments.

- 560 • If the paper includes experiments, a No answer to this question will not be perceived
561 well by the reviewers: Making the paper reproducible is important, regardless of
562 whether the code and data are provided or not.
- 563 • If the contribution is a dataset and/or model, the authors should describe the steps taken
564 to make their results reproducible or verifiable.
- 565 • Depending on the contribution, reproducibility can be accomplished in various ways.
566 For example, if the contribution is a novel architecture, describing the architecture fully
567 might suffice, or if the contribution is a specific model and empirical evaluation, it may
568 be necessary to either make it possible for others to replicate the model with the same
569 dataset, or provide access to the model. In general, releasing code and data is often
570 one good way to accomplish this, but reproducibility can also be provided via detailed
571 instructions for how to replicate the results, access to a hosted model (e.g., in the case
572 of a large language model), releasing of a model checkpoint, or other means that are
573 appropriate to the research performed.
- 574 • While NeurIPS does not require releasing code, the conference does require all submis-
575 sions to provide some reasonable avenue for reproducibility, which may depend on the
576 nature of the contribution. For example
 - 577 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
578 to reproduce that algorithm.
 - 579 (b) If the contribution is primarily a new model architecture, the paper should describe
580 the architecture clearly and fully.
 - 581 (c) If the contribution is a new model (e.g., a large language model), then there should
582 either be a way to access this model for reproducing the results or a way to reproduce
583 the model (e.g., with an open-source dataset or instructions for how to construct
584 the dataset).
 - 585 (d) We recognize that reproducibility may be tricky in some cases, in which case
586 authors are welcome to describe the particular way they provide for reproducibility.
587 In the case of closed-source models, it may be that access to the model is limited in
588 some way (e.g., to registered users), but it should be possible for other researchers
589 to have some path to reproducing or verifying the results.

590 5. Open access to data and code

591 Question: Does the paper provide open access to the data and code, with sufficient instruc-
592 tions to faithfully reproduce the main experimental results, as described in supplemental
593 material?

594 Answer: **[No]**

595 Justification: The benchmark is already open-sourced, but we do not currently submit code
596 and data when submitting.

597 Guidelines:

- 598 • The answer NA means that paper does not include experiments requiring code.
- 599 • Please see the NeurIPS code and data submission guidelines ([https://nips.cc/
600 public/guides/CodeSubmissionPolicy](https://nips.cc/public/guides/CodeSubmissionPolicy)) for more details.
- 601 • While we encourage the release of code and data, we understand that this might not be
602 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
603 including code, unless this is central to the contribution (e.g., for a new open-source
604 benchmark).
- 605 • The instructions should contain the exact command and environment needed to run to
606 reproduce the results. See the NeurIPS code and data submission guidelines ([https://nips.cc/
607 public/guides/CodeSubmissionPolicy](https://nips.cc/public/guides/CodeSubmissionPolicy)) for more details.
- 608 • The authors should provide instructions on data access and preparation, including how
609 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 610 • The authors should provide scripts to reproduce all experimental results for the new
611 proposed method and baselines. If only a subset of experiments are reproducible, they
612 should state which ones are omitted from the script and why.
- 613 • At submission time, to preserve anonymity, the authors should release anonymized
614 versions (if applicable).

- 615 • Providing as much information as possible in supplemental material (appended to the
616 paper) is recommended, but including URLs to data and code is permitted.

617 **6. Experimental setting/details**

618 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
619 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
620 results?

621 Answer: [\[Yes\]](#)

622 Justification: : We provide the details in Appendix A.

623 Guidelines:

- 624 • The answer NA means that the paper does not include experiments.
625 • The experimental setting should be presented in the core of the paper to a level of detail
626 that is necessary to appreciate the results and make sense of them.
627 • The full details can be provided either with the code, in appendix, or as supplemental
628 material.

629 **7. Experiment statistical significance**

630 Question: Does the paper report error bars suitably and correctly defined or other appropriate
631 information about the statistical significance of the experiments?

632 Answer: [\[Yes\]](#)

633 Justification: All experiments are conducted with multiple seeds.

634 Guidelines:

- 635 • The answer NA means that the paper does not include experiments.
636 • The authors should answer "Yes" if the results are accompanied by error bars, confi-
637 dence intervals, or statistical significance tests, at least for the experiments that support
638 the main claims of the paper.
639 • The factors of variability that the error bars are capturing should be clearly stated (for
640 example, train/test split, initialization, random drawing of some parameter, or overall
641 run with given experimental conditions).
642 • The method for calculating the error bars should be explained (closed form formula,
643 call to a library function, bootstrap, etc.)
644 • The assumptions made should be given (e.g., Normally distributed errors).
645 • It should be clear whether the error bar is the standard deviation or the standard error
646 of the mean.
647 • It is OK to report 1-sigma error bars, but one should state it. The authors should
648 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
649 of Normality of errors is not verified.
650 • For asymmetric distributions, the authors should be careful not to show in tables or
651 figures symmetric error bars that would yield results that are out of range (e.g. negative
652 error rates).
653 • If error bars are reported in tables or plots, The authors should explain in the text how
654 they were calculated and reference the corresponding figures or tables in the text.

655 **8. Experiments compute resources**

656 Question: For each experiment, does the paper provide sufficient information on the com-
657 puter resources (type of compute workers, memory, time of execution) needed to reproduce
658 the experiments?

659 Answer: [\[Yes\]](#)

660 Justification: We provide compute resources we used in Appendix A.

661 Guidelines:

- 662 • The answer NA means that the paper does not include experiments.
663 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
664 or cloud provider, including relevant memory and storage.

- 665 • The paper should provide the amount of compute required for each of the individual
666 experimental runs as well as estimate the total compute.
667 • The paper should disclose whether the full research project required more compute
668 than the experiments reported in the paper (e.g., preliminary or failed experiments that
669 didn't make it into the paper).

670 **9. Code of ethics**

671 Question: Does the research conducted in the paper conform, in every respect, with the
672 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

673 Answer: **[Yes]**

674 Justification: We do not have any ethical concerns.

675 Guidelines:

- 676 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
677 • If the authors answer No, they should explain the special circumstances that require a
678 deviation from the Code of Ethics.
679 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
680 eration due to laws or regulations in their jurisdiction).

681 **10. Broader impacts**

682 Question: Does the paper discuss both potential positive societal impacts and negative
683 societal impacts of the work performed?

684 Answer: **[NA]**

685 Justification: Our work has no societal impact of the work performed.

686 Guidelines:

- 687 • The answer NA means that there is no societal impact of the work performed.
688 • If the authors answer NA or No, they should explain why their work has no societal
689 impact or why the paper does not address societal impact.
690 • Examples of negative societal impacts include potential malicious or unintended uses
691 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
692 (e.g., deployment of technologies that could make decisions that unfairly impact specific
693 groups), privacy considerations, and security considerations.
694 • The conference expects that many papers will be foundational research and not tied
695 to particular applications, let alone deployments. However, if there is a direct path to
696 any negative applications, the authors should point it out. For example, it is legitimate
697 to point out that an improvement in the quality of generative models could be used to
698 generate deepfakes for disinformation. On the other hand, it is not needed to point out
699 that a generic algorithm for optimizing neural networks could enable people to train
700 models that generate Deepfakes faster.
701 • The authors should consider possible harms that could arise when the technology is
702 being used as intended and functioning correctly, harms that could arise when the
703 technology is being used as intended but gives incorrect results, and harms following
704 from (intentional or unintentional) misuse of the technology.
705 • If there are negative societal impacts, the authors could also discuss possible mitigation
706 strategies (e.g., gated release of models, providing defenses in addition to attacks,
707 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
708 feedback over time, improving the efficiency and accessibility of ML).

709 **11. Safeguards**

710 Question: Does the paper describe safeguards that have been put in place for responsible
711 release of data or models that have a high risk for misuse (e.g., pretrained language models,
712 image generators, or scraped datasets)?

713 Answer: **[NA]**

714 Justification: Our framework does not introduce risks.

715 Guidelines:

- 716 • The answer NA means that the paper poses no such risks.

- 717 • Released models that have a high risk for misuse or dual-use should be released with
718 necessary safeguards to allow for controlled use of the model, for example by requiring
719 that users adhere to usage guidelines or restrictions to access the model or implementing
720 safety filters.
721 • Datasets that have been scraped from the Internet could pose safety risks. The authors
722 should describe how they avoided releasing unsafe images.
723 • We recognize that providing effective safeguards is challenging, and many papers do
724 not require this, but we encourage authors to take this into account and make a best
725 faith effort.

726 12. Licenses for existing assets

727 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
728 the paper, properly credited and are the license and terms of use explicitly mentioned and
729 properly respected?

730 Answer: [Yes]

731 Justification: We have cited all papers and datasets in Reference.

732 Guidelines:

- 733 • The answer NA means that the paper does not use existing assets.
734 • The authors should cite the original paper that produced the code package or dataset.
735 • The authors should state which version of the asset is used and, if possible, include a
736 URL.
737 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
738 • For scraped data from a particular source (e.g., website), the copyright and terms of
739 service of that source should be provided.
740 • If assets are released, the license, copyright information, and terms of use in the
741 package should be provided. For popular datasets, paperswithcode.com/datasets
742 has curated licenses for some datasets. Their licensing guide can help determine the
743 license of a dataset.
744 • For existing datasets that are re-packaged, both the original license and the license of
745 the derived asset (if it has changed) should be provided.
746 • If this information is not available online, the authors are encouraged to reach out to
747 the asset's creators.

748 13. New assets

749 Question: Are new assets introduced in the paper well documented and is the documentation
750 provided alongside the assets?

751 Answer: [NA]

752 Justification: We do not release new assets.

753 Guidelines:

- 754 • The answer NA means that the paper does not release new assets.
755 • Researchers should communicate the details of the dataset/code/model as part of their
756 submissions via structured templates. This includes details about training, license,
757 limitations, etc.
758 • The paper should discuss whether and how consent was obtained from people whose
759 asset is used.
760 • At submission time, remember to anonymize your assets (if applicable). You can either
761 create an anonymized URL or include an anonymized zip file.

762 14. Crowdsourcing and research with human subjects

763 Question: For crowdsourcing experiments and research with human subjects, does the paper
764 include the full text of instructions given to participants and screenshots, if applicable, as
765 well as details about compensation (if any)?

766 Answer: [No]

767 Justification: We do not involve crowdsourcing nor research with human subjects.

768 Guidelines:

- 769 • The answer NA means that the paper does not involve crowdsourcing nor research with
770 human subjects.
- 771 • Including this information in the supplemental material is fine, but if the main contribu-
772 tion of the paper involves human subjects, then as much detail as possible should be
773 included in the main paper.
- 774 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
775 or other labor should be paid at least the minimum wage in the country of the data
776 collector.

777 **15. Institutional review board (IRB) approvals or equivalent for research with human
778 subjects**

779 Question: Does the paper describe potential risks incurred by study participants, whether
780 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
781 approvals (or an equivalent approval/review based on the requirements of your country or
782 institution) were obtained?

783 Answer: **[No]**

784 Justification: We do not have human subject.

785 Guidelines:

- 786 • The answer NA means that the paper does not involve crowdsourcing nor research with
787 human subjects.
- 788 • Depending on the country in which research is conducted, IRB approval (or equivalent)
789 may be required for any human subjects research. If you obtained IRB approval, you
790 should clearly state this in the paper.
- 791 • We recognize that the procedures for this may vary significantly between institutions
792 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
793 guidelines for their institution.
- 794 • For initial submissions, do not include any information that would break anonymity (if
795 applicable), such as the institution conducting the review.

796 **16. Declaration of LLM usage**

797 Question: Does the paper describe the usage of LLMs if it is an important, original, or
798 non-standard component of the core methods in this research? Note that if the LLM is used
799 only for writing, editing, or formatting purposes and does not impact the core methodology,
800 scientific rigorousness, or originality of the research, declaration is not required.

801 Answer: **[NA]**

802 Justification: The core method development does not involve LLMs as any important,
803 original, or non-standard components.

804 Guidelines:

- 805 • The answer NA means that the core method development in this research does not
806 involve LLMs as any important, original, or non-standard components.
- 807 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
808 for what should or should not be described.