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ABSTRACT

Large reasoning models (LRMs) excel on complex problems but face a critical
barrier to efficiency: reinforcement learning (RL) training requires long rollouts
for outcome-based rewards, where autoregressive decoding dominates time and
memory usage. While sliding-window cache strategies can bound memory, they
disrupt long-context reasoning and degrade performance. We introduce Progressive
Thought Encoding, a parameter-efficient fine-tuning method that enables LRMs
to reason effectively under fixed-size caches. By progressively encoding inter-
mediate reasoning into fixed-size vector representations, our approach eliminates
the need to backpropagate through full-cache rollouts, thereby reducing memory
usage, while maintaining constant memory during inference. Experiments on three
models, including Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, and
DeepSeek-R1-Distill-Llama-8B, on six widely used challenging mathe-
matical benchmarks show consistent gains: our method achieves +19.3% improve-
ment over LoRA-based fine-tuning and +29.9% over LRMs without fine-tuning on
average, with up to +23.4 accuracy improvement on AIME2024/2025 under the
same tight cache budgets. These results demonstrate that Progressive Thought En-
coding not only improves reasoning accuracy but also makes RL training of LRMs
substantially more efficient and scalable under real-world memory constraints.

1 INTRODUCTION

Large reasoning models (LRMs) (Plaat et al., 2024; Li et al., 2025b; Huang and Chang, 2022) are
emerging as a new paradigm that extends large language models (LLMs) with enhanced capacity for
multi-step reasoning (Fu et al., 2023), symbolic manipulation (Dave et al., 2024), and problem solving
in real-world scenarios (Xu et al., 2024). Unlike conventional LLMs that rely primarily on scale and
corpus size for improved performance, LRMs explicitly emphasize reasoning-oriented training signals
and architectural design, making them particularly well suited for domains such as mathematics (Shao
et al., 2024), science (Schmidgall et al., 2025), and programming (Wang et al., 2024). As these
models continue to achieve impressive results on increasingly complex benchmarks (Phan et al.,
2025; Wang et al., 2023), the focus of research has gradually shifted from pursuing raw capabilities
to improving efficiency in training and deployment (Wu et al., 2025; Feng et al., 2025).

Reinforcement learning (RL) (Kaelbling et al., 1996) has become the standard approach for align-
ing and improving large reasoning models (LRMs) during post-training, with methods such as
PPO (Schulman et al., 2017), GRPO (Guo et al., 2025), and related algorithms (Zheng et al., 2025a;
Yu et al., 2025; Li et al., 2025a) providing fine-grained control over reasoning behavior. However,
RL suffers from a fundamental efficiency bottleneck: outcome-based rewards are sparse and only
available after completing long sequences of actions (Yang et al., 2025), during which autoregressive
decoding dominates memory and compute resources. The length of these trajectories, or chain-of-
thought (CoT) reasoning, scales with task complexity, yielding longer rollouts for more challenging
problems. Such extended CoT sequences significantly increase post-training and inference costs.

A natural strategy to address this challenge is to bound memory through sliding-window caches (Du-
anmu et al., 2024; Alizadeh et al., 2024) or dynamic pruning of past tokens (Zhang et al., 2023; Fu
et al., 2024). However, these approaches often degrade reasoning quality, as discarding intermediate
thoughts weakens the model’s ability to integrate long-range context (Cai et al., 2024). This degrada-
tion not only impacts reasoning accuracy at inference time but also reduces sample quality during the
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rollout stage, thereby hindering the effectiveness of training. This tension raises a critical question:
can LRMs be trained efficiently under strict memory budgets without sacrificing reasoning accuracy?

In this work, we introduce Progressive Thought Encoding, a parameter-efficient fine-tuning method
designed to address this bottleneck. Rather than discarding evicted tokens, our approach encodes their
information into fixed-size vector representations that preserve long-context understanding under
limited caches. We dynamically embed this contextual information into lightweight LoRA adapters,
allowing the model to retain key reasoning signals without increasing cache size. By integrating this
online adaptation into reinforcement learning, our method reduces peak memory usage during post-
training. The learned adapters further enable the model to maintain strong reasoning performance
under constrained computational budgets during inference.

We evaluated our method on three representative models: Qwen2.5-4B-Instruct,
Qwen2.5-7B-Instruct, and DeepSeek-R1-Distill-Llama-8B, across six challenging
mathematical reasoning benchmarks. Our approach consistently outperforms vanilla RL training,
achieving up to a 23.4% improvement in reasoning accuracy on AIME while reducing GPU memory
usage by nearly 50%. These results demonstrate that cache-aware reinforcement learning not only
makes training large reasoning models more efficient but also improves their reasoning capabilities.

Our contributions can be summarized as follows:

• We identify the fundamental inefficiency of RL training for LRMs under long rollouts and
formalize it as a cache-constrained optimization problem.

• We propose Progressive Thought Encoding, a parameter-efficient fine-tuning technique that
learns from evicted tokens to preserve reasoning capacity under bounded memory.

• Through extensive experiments on open-weight models and math benchmarks, we show that
our method substantially improves both training efficiency and inference robustness, setting
a new standard for scalable reasoning model training.

2 RELATED WORK

Test-time Learning of LLMs. Test-time learning (TTL) explores how LLMs can adapt to new
tasks or distributions without offline retraining (Hu et al., 2025). The most basic form is in-context
learning (Dong et al., 2022), where demonstrations embedded within the prompt elicit task-specific
behavior, while retrieval-augmented generation (RAG) extends this idea by providing task-relevant
documents at inference (Gao et al., 2023; Han et al., 2024; Cheng et al., 2025). More advanced
methods allocate additional computation for reasoning during inference, including tree-of-thought
search (Yao et al., 2023), self-consistency across multiple reasoning paths (Wang et al., 2022), and
iterative refinement (Madaan et al., 2023). Another line of work investigates gradient-based updates
at test time, such as test-time training (Zuo et al., 2025) and entropy minimization techniques (Zhang
et al., 2025b; Agarwal et al., 2025), while recent theory establishes connections between instruction
tuning–based TTL and low-rank parameter updates in LLMs (Dherin et al., 2025).

Parameter-efficient Fine-tuning of LLMs. Since the introduction of Low-rank Adaptation
(LoRA) (Hu et al., 2022), numerous parameter-efficient fine-tuning (PEFT) methods have been
developed to improve the efficiency of adapting large language models (LLMs) to downstream tasks,
including QLoRA (Dettmers et al., 2023), LiSA (Pan et al., 2024), and prefix-tuning (Li and Liang,
2021). While these approaches primarily focus on offline task adaptation, recent work has extended
low-rank techniques to enable dynamic test-time learning, such as generative adapters (Chen et al.,
2024) and stream adapters (Muhtar et al., 2024), which allow LLMs to adapt on-the-fly to new inputs
or distributional shifts, thus enhancing robustness and flexibility.

3 METHODOLOGY

3.1 NOTATION AND PRELIMINARIES

Attention and the KV cache as memory. In the prefilling stage, given a sequence (x1, . . . , xt), each
token xi is mapped to a hidden state hi, which is then projected into query, key, and value vectors,
i.e., qi = WQhi, ki = WKhi, vi = WV hi, where WQ, WK , and WV are learnable weight matrices.
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Let Kt = [k1, . . . , kt] and Vt = [v1, . . . , vt] denote the cache of keys and values up to step t. The
attention output for token xt is given by

ot = softmax
(

qtK
⊤
t√
d

)
Vt.

During the decoding stage, for the next token xt+1, we first compute its query qt+1, and then let it
attend over the extended KV cache:

ot+1 = softmax
(

qt+1[Kt, kt+1]
⊤

√
d

)
[Vt, vt+1].

Thus, the KV cache grows incrementally with each new token, serving as the memory that avoids
redundant computation during autoregressive decoding and improves long-context understanding.

GRPO for Reinforcement Learning in LLMs. Grouped Reinforcement Policy Optimization
(GRPO) is a policy gradient method designed to fine-tune large language models. Unlike classical
RLHF approaches, GRPO discards the need for a critic model and instead samples multiple candidate
completions per prompt, groups them, and assigns rewards at the group level.

Given a prompt p, the model generates n completions {y1, . . . , yn} at the rollout stage. Then, each
completion yi is assigned a raw score si by a reward model, which is then normalized within the
group to produce variance-reduced rewards:

ri =
si − 1

n

∑n
j=1 sj√

1
n

∑n
j=1(sj − s̄)2 + ϵ

, s̄ = 1
n

n∑
j=1

sj .

The policy is updated to maximize the expected reward while staying close to a reference policy πref :

LGRPO(π) = Ey∼π(·|p)

[
r(y)− βKL

(
π(·|p) ∥πref(·|p)

)]
, (1)

where r(y) is the group-normalized reward and β controls the KL regularization strength. Using
relative rewards within each group, GRPO provides stable training signals without a critic and aligns
naturally with autoregressive generation in LLMs.

3.2 CHALLENGES FOR EFFICIENT RL TRAINING

Difficult tasks often require long reasoning trajectories (Yang et al., 2025), i.e., generating more
tokens to obtain high-quality solutions for reward computation. The effectiveness of passive test-time
scaling (Muennighoff et al., 2025) further underscores the importance of extended reasoning in solving
difficult problems. However, this demand for longer generations directly amplifies the inefficiency of
the rollout stage, which has been identified as the primary bottleneck to RL training (Zheng et al.,
2025b; Han et al., 2025; Zhang et al.; 2025a). Despite the use of KV caching to avoid redundant
computation, rollouts still dominate both time and memory costs due to continuous autoregressive
decoding, making efficient training particularly challenging under outcome-based reward settings.

A natural approach to mitigating memory consumption is to adopt a dynamic sliding window strategy
for the KV cache (Zhang et al., 2023), thus keeping memory usage approximately constant even
as the roll-out sequences grow longer. However, aggressive token drop can significantly impair
long-sequence understanding and generation (Jin et al., 2024; Cai et al., 2024), which in turn weakens
the model’s reasoning ability during rollouts and ultimately reduces training effectiveness. As
illustrated in table 1, applying a sliding-window cache to RL training of Qwen models leads to a clear
performance drop compared to training with the full cache of all tokens. This naturally raises a critical
question: can we maintain a constant-capacity cache window while still enabling the reasoning
model to effectively “see” all previous tokens for efficient reasoning?

To formalize this challenge, we modify the standard GRPO formulation by redefining the rollout
distribution. In the original objective, a trajectory y is sampled under the full-cache policy πθ(· | p).
In our setting, the trajectory is instead generated under a cache policy D, which prunes the KV cache
online during decoding. At each step t, D selects a pruned context CDt = CachePruneD(p, y<t),
and the token distribution becomes

πD
θ (y | p) =

T∏
t=1

πθ

(
yt | CDt

)
. (2)
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Figure 1: Overview of our method. During the rollout process, the model continuously learns the
dropped tokens to achieve a balance between generation efficiency and long-term memory.

Accordingly, the cache-aware GRPO objective is

LD
GRPO(θg; θref) = Ey∼πD

θg
(·|p)

[
r(y) − βKL

(
πD
θg (· | p)

∥∥πθref (· | p)
)]
, (3)

where θg denotes the parameters of the generating model under partial-cache rollouts, and θref is a
reference model that operate with the full cache. Given a task prompt after the model training, we
expect πθ∗

g
(y | p) ≈ πθ∗(y | p), where θ∗g and θ∗ are optimized from eq. (3) and eq. (1) respectively.

3.3 OUR APPROACH: LEARNING THINK TOKENS PRIOR TO EVICTION

Motivated by prior work on dynamically adapting models to novel inputs at test time (Chen et al.,
2024; Muhtar et al., 2024), we take a different approach from simply discarding the evicted thinking
tokens. Instead, we first learn from these tokens to update a small set of parameters θg , enabling the
test-time policy πDθg(y | p) to approximate the full-cache policy πθ(y | p) under a given eviction
strategy D.

Specifically, for a given question x, during the rollout stage, we continuously decode next thinking
tokens {y1, . . . , yl} based on the policy πD

θ (y | p) until the KV cache is full. Based on the token
eviction strategy D, earlier tokens {ye1 , . . . , yem} will be evicted from the cache. Rather than
discarding these tokens, we use them to update a compact latent representation with the help of global
query vector qg , which serves as a learnable summary of all evicted context encountered so far. The
update to the LoRA weights is computed as

△ W = A
(((

W a
Qqg

)
(W a

KKe)
T
)
(W a

KVe)
)︸ ︷︷ ︸

Se

B,
(4)

where we denote qg as global latent query that aggregates information from evicted tokens,
W a

Q,W
a
Q and W a

V as the weight matrices to map the global query tokens qg, evicted key Ke

and value tokens Ve into the compressed latent space, A and B as the weight matrices to

Figure 2: The computation of context state S.

map the evicted context state Se computed by
the evicted tokens to the model weights.

The model then continues decoding {yl+1, . . . }
under the updated policy πD

θ′ (y | p), where
θ′ = θ+ △ W . Each time the cache fills, we
compute a new evicted context state S′

e and up-
date Se ← Normalize(Se +S′

e), and recompute
△ W accordingly.

To bootstrap adaptation, before processing
any evicted tokens we initialize the context
state with learnable global tokens as Se =(
W a

Qqg (W
a
Kkg)

⊤)W a
V vg , where we define hg

as the global tokens and qg = WQhg, kg =

4
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WKhg , and vg = WV hg . This initialization makes qg an explicit carrier of evicted-context informa-
tion, enabling streaming adaptation while keeping memory usage constant. The full computation is
illustrated in fig. 2.

The selection of D during training. In our training setup, all question tokens are permanently
retained in the cache, while a simple sliding-window eviction strategy is applied only to the thinking
tokens. This straightforward design supports efficient batch operations across samples, whereas
more sophisticated importance-based eviction would incur additional computational overhead. The
decision to always keep question tokens is directly motivated by the sink-token mechanism in (Zhang
et al., 2023), as both serve to anchor and preserve the prompt context, ensuring that the model
maintains stable grounding even when the chain-of-thought becomes very long.

4 EVALUATIONS

Table 1: Comparison of methods across different models on benchmark datasets. The best average
performance per model is highlighted in bold. Note: Benchmark improvements are reported relative
to Baseline, while FLOPs/Memory reductions are reported relative to LoRA.

Studied Models Methods
Maximum
TFLOPs of
Attention

Peak GPU
Mem. (%)

Mean GPU
Mem. (%)

Math500
pass@1

Olympiad
pass@1

Minerva
Math

pass@1

AMC
pass@1

AIME2024
pass@16

AIME2025
pass@16 Avg.

Qwen2.5-3B-Instruct

Baseline – – – 50.8 27.2 16.1 34.3 20.0 13.3 26.9
LoRA 4.2 82.8 63.5 53.2+2.4 27.8+0.6 15.9-0.2 35.9+1.6 20.00.0 16.7+3.4 28.2+1.3
LoRAc 2.6-1.6 38.0-44.8 31.0-32.5 50.0-0.8 27.7+0.5 16.10.0 33.1-1.2 16.7-3.3 10.0-3.3 25.6-1.3
Ours 2.7-1.5 45.3-37.5 32.6-30.9 54.0+3.2 29.0+1.8 16.2+0.1 45.0+10.7 20.00.0 16.7+3.4 30.1+3.2

Qwen2.5-7B-Instruct

Baseline – – – 56.8 34.7 18.5 48.4 23.3 16.6 33.1
LoRA 5.7 85.8 59.3 59.4+2.6 38.7+4.0 23.4+4.9 50.6+2.2 30.0+6.7 26.7+10.1 38.1+5.0
LoRAc 3.5-2.2 63.1-22.7 45.4-13.9 61.2+4.4 35.9+1.2 23.7+5.2 52.5+4.1 20.0-3.3 26.7+10.1 36.7+3.6
Ours 3.6-2.1 67.2-18.6 48.6-10.7 61.2+4.4 38.7+4.0 25.3+6.8 52.5+4.1 30.0+6.7 30.0+13.4 39.6+6.5

DeepSeek-R1-
Distill-Llama-8B

Baseline – – – 53.6 28.7 15.6 42.5 20.0 20.0 30.1
LoRA 7.4 88.7 53.5 57.4+3.8 35.3+6.6 18.3+2.7 55.0+12.5 23.3+3.3 20.00.0 34.9+4.8
LoRAc 4.6-2.8 59.1-29.6 47.1-6.4 54.2+0.6 31.9+3.2 16.0+0.4 45.0+2.5 36.7+16.7 26.7+6.7 35.1+5.0
Ours 4.6-2.8 59.8-28.9 46.8-6.7 57.6+4.0 39.7+11.0 16.5+0.9 60.0+17.5 56.7+36.7 43.3+23.3 45.6+15.5

4.1 EXPERIMENTAL SETUP

Models. We evaluate our method on three representative open-weight instruction-tuned models of
varying scales and architectures: (1) Qwen2.5-3B-Instruct (Team, 2024), a 4.1B-parameter
transformer with 32 decoder layers, a hidden dimension of 4,096, 32 attention heads (128 dimensions
per head), and rotary positional encodings; (2) Qwen2.5-7B-Instruct (Team, 2024), a mid-
scale 7.2B-parameter model with 32 decoder layers, hidden size of 5,120, and 40 attention heads. Its
architecture follows the same design principles as the 4B variant but with larger hidden width and
attention capacity; (3) DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025; Vavekanand and
Sam, 2024), an 8.0B-parameter model distilled from DeepSeek-R1 into LLaMA-3.1-8B. It comprises
32 transformer layers with hidden dimension 4,096, 32 attention heads, SwiGLU activation, and
rotary embeddings. Compared with the original LLaMA-3.1-8B model, it has better capacity on
long-sequence generation.

Benchmarks and Metrics. We conduct evaluations on six math reasoning benchmarks covering
diverse difficulty levels and reasoning depth: (1) Math500 (Hendrycks et al., 2021), a curated set
of 500 challenging word problems requiring symbolic and multi-step reasoning; (2) Olympiad-
Bench (He et al., 2024), 674 olympiad-style problems designed to test deep mathematical reasoning;
(3) Minerva Math (Lewkowycz et al., 2022), 672 problems sampled from arXiv and textbooks,
emphasizing symbolic manipulation; (4) AMC (American Mathematics Competitions, 2023), 40
middle- to high-school competition problems focused on combinatorics, number theory, and algebra;
(5) AIME2024 and AIME2025 (Codeforces), recent American Invitational Mathematics Examina-
tion sets, each containing 30 highly challenging problems. Due to their extreme difficulty, AIME
datasets are evaluated using the pass@16 metric. For all other datasets, we report pass@1, averaged
over 5 independent runs, to ensure fair and robust comparisons.

Compared Methods. We compare four approaches: (1) Baseline, the original model prior to RL
training; (2) LoRA, RL-trained models with low-rank adaptation applied; (3) LoRAc, RL-trained
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(a) Evaluation of Qwen2.5-7B-Instruct models.
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(b) Evaluation of DeepSeek-R1-Distill-Llama-8B models.

Figure 3: Evaluation of Qwen-7B-Instruct and DeepSeek-R1-Distill-Llama-8B mod-
els trained by different methods on four benchmarks. We set the same maximum number of tokens for
generation as 3072, and vary the KV cache window length from 768 to 3072. Each value corresponds
to the mean pass@1 score over five independent runs.

models with LoRA and a sliding-window cache for token eviction; (4) Ours, RL-trained models
using our proposed method, where evicted tokens are explicitly learned before being discarded.

Implementation Details. Unless otherwise specified, the maximum sequence length during rollout
is set to 3072, with a global batch size of 512. We use the DAPO-Math-17K dataset (Yu et al., 2025)
as our training dataset. We use the Adam optimizer with a learning rate of 1× 10−5 and a maximum
gradient norm of 1.0. The rank of LoRA and our method is fixed at 32. For LoRAc and our method,
the sliding-window cache size is set to the maximum question length in the current micro-batch, with
25% of tokens evicted upon cache saturation to improve efficiency during training and inference.
Our method additionally employs 32 global tokens. All models are trained until convergence, and
experiments are conducted on 8 NVIDIA A100 GPUs (40 GB each).

4.2 EVALUATION ON MATH REASONING TASKS

We first evaluate the training efficiency and task performance of the trained models using different
methods. Training efficiency is quantified using three metrics: (i) maximum TFLOPs required by
attention, (ii) peak GPU memory utilization, and (iii) mean GPU memory utilization across training.
These jointly reflect the computational and memory efficiency of the different cache strategies. Table 1
reports the results.

Qwen2.5-3B-Instruct. Full-cache LoRA attains 28.2% average accuracy but requires 4.2
TFLOPs and nearly 83% peak memory usage. LoRAc reduces peak memory to 38% but accuracy
drops to 25.6%. In contrast, the proposed method achieves 30.1%, the highest across all methods,
while requiring only 2.7 TFLOPs and 45% peak memory. This demonstrates that naive eviction
severely harms reasoning performance, but eviction-aware training not only recovers but improves
accuracy relative to full-cache LoRA.

Qwen2.5-7B-Instruct. The trade-off between accuracy and efficiency becomes more evident
at larger scale. LoRA achieves 38.1% accuracy but incurs high memory cost (85.8% peak). LoRAc

lowers memory to 63.1% but reduces accuracy to 36.7%. The proposed method achieves the best
average accuracy (39.6%), while cutting FLOPs almost in half compared to LoRA (3.6 vs. 5.7). This
suggests that eviction-aware training is particularly beneficial as model size increases.
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Table 2: AIME2024 and AIME2025 pass@16 results (%). Maximum generation length is 6,144
tokens. KV cache window sizes range from 768 to 1,536. Note: Improvements are reported relative
to Baseline.

Models Qwen2.5-4B-Instruct Qwen2.5-7B-Instruct
DeepSeek-R1-

Distill-Llama-8B
Dataset Method 768 1024 1536 Avg. 768 1024 1536 Avg. 768 1024 1536 Avg.

AIME2024

Baseline 10.0 16.6 20.0 15.53 23.3 13.3 23.3 19.97 3.3 3.3 20.0 8.87
LoRA 10.00.0 13.3-3.3 20.00.0 14.43-1.1 10.0-13.3 23.3+10.0 30.0+6.7 21.10+1.1 3.30.0 3.30.0 23.3+3.3 9.97+1.1

LoRAc 13.3+3.3 13.3-3.3 16.7-3.3 14.43-1.1 16.6-6.7 20.0+6.7 20.0-3.3 18.87-1.1 6.7+3.4 16.7+13.4 36.7+16.7 10.03+1.2

Ours 16.7+6.7 20.0+3.4 20.00.0 18.90+3.4 26.6+3.3 26.6+13.3 30.0+6.7 27.73+7.8 26.7+23.4 30.0+26.7 56.7+36.7 37.80+28.9

AIME2025

Baseline 6.7 13.3 13.3 11.10 10.0 16.7 16.6 14.43 6.7 10.0 20.0 12.23
LoRA 6.70.0 6.7-6.6 16.7+3.4 10.03-1.1 6.7-3.3 23.3+6.6 26.7+10.1 18.90+4.5 6.70.0 10.00.0 20.00.0 12.230.0

LoRAc 6.70.0 10.0-3.3 10.0-3.3 8.90-2.2 20.0+10.0 26.7+10.0 26.7+10.1 24.47+10.0 6.70.0 20.0+10.0 26.7+6.7 17.79+5.6

Ours 10.0+3.3 16.7+3.4 16.7+3.4 14.47+3.4 23.3+13.3 26.7+10.0 26.7+10.1 25.60+11.2 26.7+20.0 30.0+20.0 43.3+23.3 33.34+21.1

DeepSeek-R1-Distill-Llama-8B. For the largest model, efficiency constraints dominate.
Full-cache LoRA requires 7.4 TFLOPs and 89% peak memory. LoRAc reduces resource usage
but sacrifices accuracy. By contrast, our method yields a marked performance gain, achieving
45.6% average accuracy, a +10.7 improvement over LoRA, while consuming only 4.6 TFLOPs and
59.8% peak memory. The improvements are especially notable on challenging benchmarks such as
AIME2024 (+33.4) and AIME2025 (+23.3).

4.3 EVALUATION UNDER DIFFERENT COMPUTATIONAL BUDGETS

To assess the robustness of different methods under constrained memory, we evaluate performance
across progressively reduced KV cache sizes. In practice, such reductions correspond to tighter
computational budgets during inference, where only a fraction of the activations can be stored.

Figure 3 summarizes results across multiple reasoning benchmarks, including Olympiad, Miner-
vaMath, AMC, and Math500, where we set the maximum response length as 3,072. Each curve
reports accuracy as the available cache decreases from full capacity to highly constrained settings. As
expected, the Baseline and LoRA methods degrade rapidly with shrinking cache size, reflecting their
reliance on complete historical context. LoRAc alleviates this issue to some extent by incorporating
sliding-window adaptation learning from the training process, but its effectiveness remains limited
when the window becomes narrow. In contrast, our method consistently sustains higher accuracy
across all computational budgets, demonstrating resilience to cache truncation. Quantitatively, aver-
aged across all datasets and cache settings, our approach achieves an accuracy of 39.37, compared to
32.99 for LoRA and 30.31 for the Baseline. This corresponds to relative improvements of +19.3%
over LoRA and +29.9% over the Baseline. Importantly, these gains are achieved without requiring
additional inference-time memory, as our method maintains constant cache usage regardless of the
budget.

We further validate these findings on harder benchmarks, AIME2024 and AIME2025, which re-
quire longer chains of reasoning. Here, we allow up to 6,072 tokens for generation (exceed-
ing the training setting) and set the maximum cache size to 1,536 tokens to accelerate decod-
ing. We then report pass@16 scores across cache sizes {768, 1024, 1536} in table 2. Across
both years and all backbones, our method achieves the highest average performance. Rela-
tive to LoRA, the average gains are +6.63 / +6.70 on Qwen2.5-7B-Instruct, and +27.83 /
+21.11 on DeepSeek-R1-Distill-Llama-8B. Improvements over the sliding-window Cache,
i.e., LoRAc, are likewise substantial (e.g., +8.86 on Qwen2.5-7B AIME2024 and +27.77 on
DeepSeek-R1- Distill-Llama-8B AIME2024), underscoring the limitations of naïve con-
text truncation. More results on Qwen-2.5-4B-Instruct are provided in appendix B.

In summary, while our approach reduces training cost, particularly by lowering peak memory usage,
without sacrificing task performance, these results further show that it also reduces inference cost by
sustaining accuracy under tight cache budgets.
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Table 3: Training efficiency com-
parison across different maximum
generation lengths during rollout.

Method Vanilla With ours
Generation Length 3K 6K 3K 4K 5K 6K

Peak GPU mem (%) 88.7 95.6 59.8 60.2 60.1 60.4
Mean GPU mem (%) 53.5 64.3 46.8 46.9 46.7 47.6
MATH-500 (pass@1) 53.2 55.4 57.6 58.2 59.4 60.2
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Figure 4: Ablation study on (a) global token usage and (b)
token dropping strategies.

4.4 ABLATION STUDY AND DISCUSSION

Progressive Thought Encoding Enables Scalable CoT RL Training. We employ the proposed
progressive encoding method to efficiently reduce memory consumption, particularly peak usage
during training. By lowering memory requirements, we enable longer and more complex reasoning
processes during the rollout stage. In this section, we present experiments demonstrating how
the saved memory allows us to train DeepSeek-R1-Distill-Llama with larger maximum
generation lengths, ranging from 4K to 6K tokens per rollout sample.

As shown in table 3, increasing the maximum generation length during rollout con-
sistently improves reasoning performance on MATH-500. Meanwhile, progressive en-
coding keeps both peak and mean memory usage stable and significantly lower than
vanilla RL training. Encouraging the model to generate longer outputs not only
supports more extended reasoning but also leads to consistent gains on MATH-500.

3K 6K 12K 24K 48K 64K
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Figure 5: Performance on MATH-500 under a fixed
1K context window as the maximum generation
length increases from 3K to 64K.

These results demonstrate that we can achieve
longer reasoning with limited memory over-
head, yielding better overall performance.

Generation of long sequences for reasoning.
To assess the scalability of our method under
extended reasoning trajectories, we evaluate
the RL-trained DeepSeek-R1-Distill-Llama-
8B model on MATH-500 using substantially
longer generation lengths. During inference,
we fix the context window to 1K tokens to
impose a strict memory constraint, while vary-
ing the maximum generation length from 3K
up to 64K tokens. This setup allows us to
examine how well different approaches lever-
age increasingly long reasoning chains when
the available KV cache remains limited The
results are provided in fig. 5, showing that all methods benefit from longer reasoning sequences.

Across the entire length range, our method demonstrates the strongest scaling behavior. The original
model, LoRA, and LoRAc show moderate improvements that gradually plateau as the sequence grows
longer, whereas our approach continues to yield steady gains even at 64K tokens. This indicates that
progressive thought encoding not only preserves reasoning information under tight cache budgets,
but also scales favorably as reasoning trajectories extend far beyond the training rollout length.

The use of global context tokens. In our proposed method, we introduce global tokens to improve
training efficiency. To evaluate their impact on model performance, we compare against several base-
lines: (1) Baseline, the original Qwen-2.5-Instruct model; (2) Global-Only, our method
with the update of context state Se from evicted tokens disabled; (3) #Global-0, initializing se with
zero, effectively removing global token initialization; and (4) #Global-16/32/48/64, our method with
the number of global tokens varied from 16 to 64. We conduct experiments on the MATH-500 dataset
under different cache sizes {756, 1K, 1536, 2K, 3K}. The results are presented in fig. 3c.

It can be observed that disabling global tokens (#Global-0) yields only marginal improvements over
the baseline. In contrast, integrating global tokens with the evicted token update of Se consistently
enhances performance across different KV cache lengths, outperforming the Global-Only variant
by a clear margin of 1.2% at just 768 cached tokens. However, adding more global tokens does not

8
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always lead to better results: for example, #Global-64 underperforms compared with #Global-32 and
#Global-16 at the most constrained cache length of 768 tokens.

Integration with inference-time token dropping strategy. In our work, we adopt the
sliding window strategy for token eviction, which does not account for token impor-
tance. To address this limitation, we integrate several advanced token dropping strate-
gies during generation and evaluate their performance on the MATH-500 dataset, including
H2O (Zhang et al., 2023), PyramidKV (Cai et al., 2024), and HeadKV (Fu et al., 2024).
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Figure 6: The statistics on the generation length.

As shown in fig. 3d, compared to the sliding
window eviction strategy, these advanced to-
ken dropping methods consistently improve rea-
soning performance, particularly under limited
cache capacity. For example, with a cache win-
dow length of 768, the baseline model achieves a
success rate of 34.4%. Using a sliding window
cache increases performance to 48.4%, while
HeadKV achieves the accuracy at 50.7%, nar-
rowing the gap to full cache accuracy by 3.3%.
These results demonstrate that token selection
matters for reasoning efficiency.

However, these advanced strategies incur non-
trivial cost. Integrating HeadKV during the roll-
out stage (batch size 512) increases iteration time from 19 to 26 minutes (+37% runtime) for a
+2.3% accuracy gain.

Consequently, we retain the sliding-window approach for training and leave efficient integration of
advanced token-dropping methods into RL rollouts as future work.

On the length of generated response. We also analyze the distribution of generated response lengths
across different methods on the MATH-500 dataset. We set the maximum number of generation
tokens to 3096, the cache window size to 768, and the number of sink tokens to 512, i.e., 256 tokens
stored within the sliding window.

As shown in fig. 6, although LoRAc outperforms vanilla LoRA under a limited cache size (approxi-
mately 10% ↑, see fig. 3), most of these gains come from short responses, and only a few problems
are solved with long responses. In contrast, our proposed method not only achieves the best overall
reasoning performance under this setting but also maintains strong capability on long-form reasoning.
These results support our claim that dynamically encoding evicted tokens into model weights enables
the model to consistently “remember” them throughout the generation process.

Why Progressive encoding can achieve better results? Our method achieves higher accuracy because
the progressive encoding of evicted tokens provides a continuous mechanism for preserving long-
range reasoning information that would otherwise be lost under sliding-window truncation. Instead
of discarding early thought tokens, their compressed contextual representations are folded into the
LoRA weights, enabling the model to retain global reasoning signals even when only a small portion
of the KV cache is visible. This acts as a form of denoising and incremental distillation, strengthening
the model’s ability to maintain coherent multi-step reasoning trajectories. Empirically, this leads
to longer and more stable chains of thought during problem solving (see fig. 6), and substantially
improves performance across constrained-cache settings. Together, these effects allow the model
to approximate a full-context reasoner while operating under tight memory budgets, explaining the
consistent gains over LoRA and sliding-window baselines.

5 CONCLUSION

We introduced Progressive Thought Encoding, a parameter-efficient fine-tuning approach that allows
large reasoning models to train and infer effectively under limited computing resources. Rather than
discarding evicted tokens, our method encodes their information into model weights, preserving
long-context reasoning ability while substantially reducing memory and compute costs. Through
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experiments on three open-weight models and six challenging math reasoning benchmarks, we
demonstrate consistent gains over LoRA and sliding-window cache baselines, achieving up to +23.4
absolute accuracy improvements on AIME2024/2025 while cutting peak memory nearly in half.
Beyond boosting efficiency, our results show that cache-aware training enhances reasoning robustness
under constrained computational budgets, enabling longer and more effective rollouts during RL
training. We believe this work is a step toward scalable RL training for reasoning models and opens
promising directions for adaptive eviction strategies, multimodal reasoning tasks, and integration
with inference-time optimization techniques to further advance the efficiency–accuracy frontier.
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Figure A1: Evaluation of Qwen2.5-4B-Instruct models.

A THE USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policies on the use of Large Language Models (LLMs), we
disclose that we used an LLM (OpenAI’s ChatGPT) solely for writing assistance. Specifically, the
model was employed to polish the language of the manuscript, including improving grammar, clarity,
and readability.

No part of the model’s output was used to generate research ideas, derive results, conduct experiments,
or analyze data. All scientific contributions, including the design of experiments, implementation of
methods, data analysis, and interpretation of results, are entirely the work of the listed authors, who
take full responsibility for the content of this paper.

B RESULTS ON QWEN-2.5-4B-INSTRUCT

Following the settings in Section 4.3, we evaluate Qwen-2.5-4B-Instruct under different
KV-cache budgets, with results shown in Figure A1. Across all four benchmarks (math500, olympiad,
minervanth, and amc), our method (red curve) consistently outperforms the Baseline, LoRA, and
LoRA variants. The gains are most pronounced at shorter window lengths (e.g., 768 and 1 K), where
baseline models experience substantial accuracy degradation. For instance, on math500, our approach
improves by more than 12 points over the baseline at 768 tokens, and it maintains its advantage even
as the window length grows to 3 K. Similar trends appear on olympiad and amc, where our curve
remains flat and robust while the baselines fluctuate or decline.

The rightmost panel shows the averaged results across all tasks, where our method consistently
achieves the highest performance across the entire range of window lengths. Notably, our curve peaks
around 1.5 K and remains stable thereafter, suggesting that our approach is not only more resilient to
cache constraints but also scales gracefully with longer contexts. This demonstrates that training with
cache-aware eviction leads to robust generalization and mitigates the performance drop observed in
other fine-tuning strategies.

C IMPACT OF CACHE-EVICTION STRATEGY ON THE UPDATE OF qg

Table A1: Effect of eviction ratios on
MATH-500.

Ratio 25% 20% 15% 10% 5%

Score 50.8 51.4 51.9 50.7 49.6

To analyze how the cache-eviction strategy influences
the update of the global latent vector qg, we evaluate
Qwen-2.5-3B-Instruct under different eviction ra-
tios. The training setup matches that used in the main
experiments, where a 25% ratio is applied during training.
At inference time, however, we vary the ratio from 25%
to 5% while keeping the context window fixed at 1024
tokens. The results are reported in Table A1.

We observe that decreasing the eviction ratio initially improves performance: reducing the ratio to
15% yields the highest accuracy, suggesting that more frequent but smaller update steps enable qg to
capture more fine-grained information from evicted tokens. However, when the ratio becomes too
small (e.g., 5%), performance degrades noticeably. This indicates that overly fine-grained eviction
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leads to noisier update signals with insufficient contextual content per step, resulting in unstable
LoRA adaptation.

Overall, these results show that the eviction strategy plays a critical role in shaping the quality of
the update signal for qg. Moderate eviction ratios provide a more reliable balance between update
frequency and information richness.
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