
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRAINING LARGE REASONING MODELS EFFICIENTLY
VIA PROGRESSIVE THOUGHT ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) excel on complex problems but face a critical
barrier to efficiency: reinforcement learning (RL) training requires long rollouts
for outcome-based rewards, where autoregressive decoding dominates time and
memory usage. While sliding-window cache strategies can bound memory, they
disrupt long-context reasoning and degrade performance. We introduce Progressive
Thought Encoding, a parameter-efficient fine-tuning method that enables LRMs
to reason effectively under fixed-size caches. By progressively encoding inter-
mediate reasoning into fixed-size vector representations, our approach eliminates
the need to backpropagate through full-cache rollouts, thereby reducing memory
usage, while maintaining constant memory during inference. Experiments on three
models, including Qwen2.5-3B-Instruct, Qwen2.5-7B-Instruct, and
DeepSeek-R1-Distill-Llama-8B, on six widely used challenging mathe-
matical benchmarks show consistent gains: our method achieves +19.3% improve-
ment over LoRA-based fine-tuning and +29.9% over LRMs without fine-tuning on
average, with up to +23.4 accuracy improvement on AIME2024/2025 under the
same tight cache budgets. These results demonstrate that Progressive Thought En-
coding not only improves reasoning accuracy but also makes RL training of LRMs
substantially more efficient and scalable under real-world memory constraints.

1 INTRODUCTION

Large reasoning models (LRMs) (Plaat et al., 2024; Li et al., 2025b; Huang and Chang, 2022) are
emerging as a new paradigm that extends large language models (LLMs) with enhanced capacity for
multi-step reasoning (Fu et al., 2023), symbolic manipulation (Dave et al., 2024), and problem solving
in real-world scenarios (Xu et al., 2024). Unlike conventional LLMs that rely primarily on scale and
corpus size for improved performance, LRMs explicitly emphasize reasoning-oriented training signals
and architectural design, making them particularly well suited for domains such as mathematics (Shao
et al., 2024), science (Schmidgall et al., 2025), and programming (Wang et al., 2024). As these
models continue to achieve impressive results on increasingly complex benchmarks (Phan et al.,
2025; Wang et al., 2023), the focus of research has gradually shifted from pursuing raw capabilities
to improving efficiency in training and deployment (Wu et al., 2025; Feng et al., 2025).

Reinforcement learning (RL) (Kaelbling et al., 1996) has become the standard approach for align-
ing and improving large reasoning models (LRMs) during post-training, with methods such as
PPO (Schulman et al., 2017), GRPO (Guo et al., 2025), and related algorithms (Zheng et al., 2025a;
Yu et al., 2025; Li et al., 2025a) providing fine-grained control over reasoning behavior. However,
RL suffers from a fundamental efficiency bottleneck: outcome-based rewards are sparse and only
available after completing long sequences of actions (Yang et al., 2025), during which autoregressive
decoding dominates memory and compute resources. The length of these trajectories, or chain-of-
thought (CoT) reasoning, scales with task complexity, yielding longer rollouts for more challenging
problems. Such extended CoT sequences significantly increase post-training and inference costs.

A natural strategy to address this challenge is to bound memory through sliding-window caches (Du-
anmu et al., 2024; Alizadeh et al., 2024) or dynamic pruning of past tokens (Zhang et al., 2023; Fu
et al., 2024). However, these approaches often degrade reasoning quality, as discarding intermediate
thoughts weakens the model’s ability to integrate long-range context (Cai et al., 2024). This degrada-
tion not only impacts reasoning accuracy at inference time but also reduces sample quality during the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

rollout stage, thereby hindering the effectiveness of training. This tension raises a critical question:
can LRMs be trained efficiently under strict memory budgets without sacrificing reasoning accuracy?

In this work, we introduce Progressive Thought Encoding, a parameter-efficient fine-tuning method
designed to address this bottleneck. Rather than discarding evicted tokens, our approach encodes their
information into fixed-size vector representations that preserve long-context understanding under
limited caches. We dynamically embed this contextual information into lightweight LoRA adapters,
allowing the model to retain key reasoning signals without increasing cache size. By integrating this
online adaptation into reinforcement learning, our method reduces peak memory usage during post-
training. The learned adapters further enable the model to maintain strong reasoning performance
under constrained computational budgets during inference.

We evaluated our method on three representative models: Qwen2.5-4B-Instruct,
Qwen2.5-7B-Instruct, and DeepSeek-R1-Distill-Llama-8B, across six challenging
mathematical reasoning benchmarks. Our approach consistently outperforms vanilla RL training,
achieving up to a 23.4% improvement in reasoning accuracy on AIME while reducing GPU memory
usage by nearly 50%. These results demonstrate that cache-aware reinforcement learning not only
makes training large reasoning models more efficient but also improves their reasoning capabilities.

Our contributions can be summarized as follows:

• We identify the fundamental inefficiency of RL training for LRMs under long rollouts and
formalize it as a cache-constrained optimization problem.

• We propose Progressive Thought Encoding, a parameter-efficient fine-tuning technique that
learns from evicted tokens to preserve reasoning capacity under bounded memory.

• Through extensive experiments on open-weight models and math benchmarks, we show that
our method substantially improves both training efficiency and inference robustness, setting
a new standard for scalable reasoning model training.

2 RELATED WORK

Test-time Learning of LLMs. Test-time learning (TTL) explores how LLMs can adapt to new
tasks or distributions without offline retraining (Hu et al., 2025). The most basic form is in-context
learning (Dong et al., 2022), where demonstrations embedded within the prompt elicit task-specific
behavior, while retrieval-augmented generation (RAG) extends this idea by providing task-relevant
documents at inference (Gao et al., 2023; Han et al., 2024; Cheng et al., 2025). More advanced
methods allocate additional computation for reasoning during inference, including tree-of-thought
search (Yao et al., 2023), self-consistency across multiple reasoning paths (Wang et al., 2022), and
iterative refinement (Madaan et al., 2023). Another line of work investigates gradient-based updates
at test time, such as test-time training (Zuo et al., 2025) and entropy minimization techniques (Zhang
et al., 2025b; Agarwal et al., 2025), while recent theory establishes connections between instruction
tuning–based TTL and low-rank parameter updates in LLMs (Dherin et al., 2025).

Parameter-efficient Fine-tuning of LLMs. Since the introduction of Low-rank Adaptation
(LoRA) (Hu et al., 2022), numerous parameter-efficient fine-tuning (PEFT) methods have been
developed to improve the efficiency of adapting large language models (LLMs) to downstream tasks,
including QLoRA (Dettmers et al., 2023), LiSA (Pan et al., 2024), and prefix-tuning (Li and Liang,
2021). While these approaches primarily focus on offline task adaptation, recent work has extended
low-rank techniques to enable dynamic test-time learning, such as generative adapters (Chen et al.,
2024) and stream adapters (Muhtar et al., 2024), which allow LLMs to adapt on-the-fly to new inputs
or distributional shifts, thus enhancing robustness and flexibility.

3 METHODOLOGY

3.1 NOTATION AND PRELIMINARIES

Attention and the KV cache as memory. In the prefilling stage, given a sequence (x1, . . . , xt), each
token xi is mapped to a hidden state hi, which is then projected into query, key, and value vectors,
i.e., qi = WQhi, ki = WKhi, vi = WV hi, where WQ, WK , and WV are learnable weight matrices.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Let Kt = [k1, . . . , kt] and Vt = [v1, . . . , vt] denote the cache of keys and values up to step t. The
attention output for token xt is given by

ot = softmax
(

qtK
⊤
t√
d

)
Vt.

During the decoding stage, for the next token xt+1, we first compute its query qt+1, and then let it
attend over the extended KV cache:

ot+1 = softmax
(

qt+1[Kt, kt+1]
⊤

√
d

)
[Vt, vt+1].

Thus, the KV cache grows incrementally with each new token, serving as the memory that avoids
redundant computation during autoregressive decoding and improves long-context understanding.

GRPO for Reinforcement Learning in LLMs. Grouped Reinforcement Policy Optimization
(GRPO) is a policy gradient method designed to fine-tune large language models. Unlike classical
RLHF approaches, GRPO discards the need for a critic model and instead samples multiple candidate
completions per prompt, groups them, and assigns rewards at the group level.

Given a prompt p, the model generates n completions {y1, . . . , yn} at the rollout stage. Then, each
completion yi is assigned a raw score si by a reward model, which is then normalized within the
group to produce variance-reduced rewards:

ri =
si − 1

n

∑n
j=1 sj√

1
n

∑n
j=1(sj − s̄)2 + ϵ

, s̄ = 1
n

n∑
j=1

sj .

The policy is updated to maximize the expected reward while staying close to a reference policy πref :

LGRPO(π) = Ey∼π(·|p)

[
r(y)− βKL

(
π(·|p) ∥πref(·|p)

)]
, (1)

where r(y) is the group-normalized reward and β controls the KL regularization strength. Using
relative rewards within each group, GRPO provides stable training signals without a critic and aligns
naturally with autoregressive generation in LLMs.

3.2 CHALLENGES FOR EFFICIENT RL TRAINING

Difficult tasks often require long reasoning trajectories (Yang et al., 2025), i.e., generating more
tokens to obtain high-quality solutions for reward computation. The effectiveness of passive test-time
scaling (Muennighoff et al., 2025) further underscores the importance of extended reasoning in solving
difficult problems. However, this demand for longer generations directly amplifies the inefficiency of
the rollout stage, which has been identified as the primary bottleneck to RL training (Zheng et al.,
2025b; Han et al., 2025; Zhang et al.; 2025a). Despite the use of KV caching to avoid redundant
computation, rollouts still dominate both time and memory costs due to continuous autoregressive
decoding, making efficient training particularly challenging under outcome-based reward settings.

A natural approach to mitigating memory consumption is to adopt a dynamic sliding window strategy
for the KV cache (Zhang et al., 2023), thus keeping memory usage approximately constant even
as the roll-out sequences grow longer. However, aggressive token drop can significantly impair
long-sequence understanding and generation (Jin et al., 2024; Cai et al., 2024), which in turn weakens
the model’s reasoning ability during rollouts and ultimately reduces training effectiveness. As
illustrated in table 1, applying a sliding-window cache to RL training of Qwen models leads to a clear
performance drop compared to training with the full cache of all tokens. This naturally raises a critical
question: can we maintain a constant-capacity cache window while still enabling the reasoning
model to effectively “see” all previous tokens for efficient reasoning?

To formalize this challenge, we modify the standard GRPO formulation by redefining the rollout
distribution. In the original objective, a trajectory y is sampled under the full-cache policy πθ(· | p).
In our setting, the trajectory is instead generated under a cache policy D, which prunes the KV cache
online during decoding. At each step t, D selects a pruned context CDt = CachePruneD(p, y<t),
and the token distribution becomes

πD
θ (y | p) =

T∏
t=1

πθ

(
yt | CDt

)
. (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Overview of our method. During the rollout process, the model continuously learns the
dropped tokens to achieve a balance between generation efficiency and long-term memory.

Accordingly, the cache-aware GRPO objective is

LD
GRPO(θg; θref) = Ey∼πD

θg
(·|p)

[
r(y) − βKL

(
πD
θg (· | p)

∥∥πθref (· | p)
)]
, (3)

where θg denotes the parameters of the generating model under partial-cache rollouts, and θref is a
reference model that operate with the full cache. Given a task prompt after the model training, we
expect πθ∗

g
(y | p) ≈ πθ∗(y | p), where θ∗g and θ∗ are optimized from eq. (3) and eq. (1) respectively.

3.3 OUR APPROACH: LEARNING THINK TOKENS PRIOR TO EVICTION

Motivated by prior work on dynamically adapting models to novel inputs at test time (Chen et al.,
2024; Muhtar et al., 2024), we take a different approach from simply discarding the evicted thinking
tokens. Instead, we first learn from these tokens to update a small set of parameters θg , enabling the
test-time policy πDθg(y | p) to approximate the full-cache policy πθ(y | p) under a given eviction
strategy D.

Specifically, for a given question x, during the rollout stage, we continuously decode next thinking
tokens {y1, . . . , yl} based on the policy πD

θ (y | p) until the KV cache is full. Based on the token
eviction strategy D, earlier tokens {ye1 , . . . , yem} will be evicted from the cache. Rather than
discarding these tokens, we use them to update a compact latent representation with the help of global
query vector qg , which serves as a learnable summary of all evicted context encountered so far. The
update to the LoRA weights is computed as

△ W = A
(((

W a
Qqg

)
(W a

KKe)
T
)
(W a

KVe)
)︸ ︷︷ ︸

Se

B,
(4)

where we denote qg as global latent query that aggregates information from evicted tokens,
W a

Q,W
a
Q and W a

V as the weight matrices to map the global query tokens qg, evicted key Ke

and value tokens Ve into the compressed latent space, A and B as the weight matrices to

Figure 2: The computation of context state S.

map the evicted context state Se computed by
the evicted tokens to the model weights.

The model then continues decoding {yl+1, . . . }
under the updated policy πD

θ′ (y | p), where
θ′ = θ+ △ W . Each time the cache fills, we
compute a new evicted context state S′

e and up-
date Se ← Normalize(Se +S′

e), and recompute
△ W accordingly.

To bootstrap adaptation, before processing
any evicted tokens we initialize the context
state with learnable global tokens as Se =(
W a

Qqg (W
a
Kkg)

⊤)W a
V vg , where we define hg

as the global tokens and qg = WQhg, kg =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

WKhg , and vg = WV hg . This initialization makes qg an explicit carrier of evicted-context informa-
tion, enabling streaming adaptation while keeping memory usage constant. The full computation is
illustrated in fig. 2.

The selection of D during training. In our training setup, all question tokens are permanently
retained in the cache, while a simple sliding-window eviction strategy is applied only to the thinking
tokens. This straightforward design supports efficient batch operations across samples, whereas
more sophisticated importance-based eviction would incur additional computational overhead. The
decision to always keep question tokens is directly motivated by the sink-token mechanism in (Zhang
et al., 2023), as both serve to anchor and preserve the prompt context, ensuring that the model
maintains stable grounding even when the chain-of-thought becomes very long.

4 EVALUATIONS

Table 1: Comparison of methods across different models on benchmark datasets. The best average
performance per model is highlighted in bold. Note: Benchmark improvements are reported relative
to Baseline, while FLOPs/Memory reductions are reported relative to LoRA.

Studied Models Methods
Maximum
TFLOPs of
Attention

Peak GPU
Mem. (%)

Mean GPU
Mem. (%)

Math500
pass@1

Olympiad
pass@1

Minerva
Math

pass@1

AMC
pass@1

AIME2024
pass@16

AIME2025
pass@16 Avg.

Qwen2.5-3B-Instruct

Baseline – – – 50.8 27.2 16.1 34.3 20.0 13.3 26.9
LoRA 4.2 82.8 63.5 53.2+2.4 27.8+0.6 15.9-0.2 35.9+1.6 20.00.0 16.7+3.4 28.2+1.3
LoRAc 2.6-1.6 38.0-44.8 31.0-32.5 50.0-0.8 27.7+0.5 16.10.0 33.1-1.2 16.7-3.3 10.0-3.3 25.6-1.3
Ours 2.7-1.5 45.3-37.5 32.6-30.9 54.0+3.2 29.0+1.8 16.2+0.1 45.0+10.7 20.00.0 16.7+3.4 30.1+3.2

Qwen2.5-7B-Instruct

Baseline – – – 56.8 34.7 18.5 48.4 23.3 16.6 33.1
LoRA 5.7 85.8 59.3 59.4+2.6 38.7+4.0 23.4+4.9 50.6+2.2 30.0+6.7 26.7+10.1 38.1+5.0
LoRAc 3.5-2.2 63.1-22.7 45.4-13.9 61.2+4.4 35.9+1.2 23.7+5.2 52.5+4.1 20.0-3.3 26.7+10.1 36.7+3.6
Ours 3.6-2.1 67.2-18.6 48.6-10.7 61.2+4.4 38.7+4.0 25.3+6.8 52.5+4.1 30.0+6.7 30.0+13.4 39.6+6.5

DeepSeek-R1-
Distill-Llama-8B

Baseline – – – 53.6 28.7 15.6 42.5 20.0 20.0 30.1
LoRA 7.4 88.7 53.5 57.4+3.8 35.3+6.6 18.3+2.7 55.0+12.5 23.3+3.3 20.00.0 34.9+4.8
LoRAc 4.6-2.8 59.1-29.6 47.1-6.4 54.2+0.6 31.9+3.2 16.0+0.4 45.0+2.5 36.7+16.7 26.7+6.7 35.1+5.0
Ours 4.6-2.8 59.8-28.9 46.8-6.7 57.6+4.0 39.7+11.0 16.5+0.9 60.0+17.5 56.7+36.7 43.3+23.3 45.6+15.5

4.1 EXPERIMENTAL SETUP

Models. We evaluate our method on three representative open-weight instruction-tuned models of
varying scales and architectures: (1) Qwen2.5-3B-Instruct (Team, 2024), a 4.1B-parameter
transformer with 32 decoder layers, a hidden dimension of 4,096, 32 attention heads (128 dimensions
per head), and rotary positional encodings; (2) Qwen2.5-7B-Instruct (Team, 2024), a mid-
scale 7.2B-parameter model with 32 decoder layers, hidden size of 5,120, and 40 attention heads. Its
architecture follows the same design principles as the 4B variant but with larger hidden width and
attention capacity; (3) DeepSeek-R1-Distill-Llama-8B (Guo et al., 2025; Vavekanand and
Sam, 2024), an 8.0B-parameter model distilled from DeepSeek-R1 into LLaMA-3.1-8B. It comprises
32 transformer layers with hidden dimension 4,096, 32 attention heads, SwiGLU activation, and
rotary embeddings. Compared with the original LLaMA-3.1-8B model, it has better capacity on
long-sequence generation.

Benchmarks and Metrics. We conduct evaluations on six math reasoning benchmarks covering
diverse difficulty levels and reasoning depth: (1) Math500 (Hendrycks et al., 2021), a curated set
of 500 challenging word problems requiring symbolic and multi-step reasoning; (2) Olympiad-
Bench (He et al., 2024), 674 olympiad-style problems designed to test deep mathematical reasoning;
(3) Minerva Math (Lewkowycz et al., 2022), 672 problems sampled from arXiv and textbooks,
emphasizing symbolic manipulation; (4) AMC (American Mathematics Competitions, 2023), 40
middle- to high-school competition problems focused on combinatorics, number theory, and algebra;
(5) AIME2024 and AIME2025 (Codeforces), recent American Invitational Mathematics Examina-
tion sets, each containing 30 highly challenging problems. Due to their extreme difficulty, AIME
datasets are evaluated using the pass@16 metric. For all other datasets, we report pass@1, averaged
over 5 independent runs, to ensure fair and robust comparisons.

Compared Methods. We compare four approaches: (1) Baseline, the original model prior to RL
training; (2) LoRA, RL-trained models with low-rank adaptation applied; (3) LoRAc, RL-trained

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

768 1K 1536 2K 3K
Window length

40

45

50

55

60
Sc

or
e

math500

768 1K 1536 2K 3K
Window length

22.5

25.0

27.5

30.0

32.5

35.0

37.5

Sc
or

e

olympiad

768 1K 1536 2K 3K
Window length

16

18

20

22

24

26

Sc
or

e

minervamath

768 1K 1536 2K 3K
Window length

35

40

45

50

55

Sc
or

e

amc

768 1K 1536 2K 3K
Window length

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Sc
or

e

Avg.
Baseline LoRA LoRAc Ours

(a) Evaluation of Qwen2.5-7B-Instruct models.

768 1K 1536 2K 3K
Window length

25

30

35

40

45

50

55

60

Sc
or

e

math500

768 1K 1536 2K 3K
Window length

10

15

20

25

30

35

40

Sc
or

e

olympiad

768 1K 1536 2K 3K
Window length

6

8

10

12

14

16

18

Sc
or

e

minervarmath

768 1K 1536 2K 3K
Window length

10

20

30

40

50

60

Sc
or

e

amc

768 1K 1536 2K 3K
Window length

15

20

25

30

35

40

45

Sc
or

e

Avg.
Baseline LoRA LoRAc Ours

(b) Evaluation of DeepSeek-R1-Distill-Llama-8B models.

Figure 3: Evaluation of Qwen-7B-Instruct and DeepSeek-R1-Distill-Llama-8B mod-
els trained by different methods on four benchmarks. We set the same maximum number of tokens for
generation as 3072, and vary the KV cache window length from 768 to 3072. Each value corresponds
to the mean pass@1 score over five independent runs.

models with LoRA and a sliding-window cache for token eviction; (4) Ours, RL-trained models
using our proposed method, where evicted tokens are explicitly learned before being discarded.

Implementation Details. Unless otherwise specified, the maximum sequence length during rollout
is set to 3072, with a global batch size of 512. We use the DAPO-Math-17K dataset (Yu et al., 2025)
as our training dataset. We use the Adam optimizer with a learning rate of 1× 10−5 and a maximum
gradient norm of 1.0. The rank of LoRA and our method is fixed at 32. For LoRAc and our method,
the sliding-window cache size is set to the maximum question length in the current micro-batch, with
25% of tokens evicted upon cache saturation to improve efficiency during training and inference.
Our method additionally employs 32 global tokens. All models are trained until convergence, and
experiments are conducted on 8 NVIDIA A100 GPUs (40 GB each).

4.2 EVALUATION ON MATH REASONING TASKS

We first evaluate the training efficiency and task performance of the trained models using different
methods. Training efficiency is quantified using three metrics: (i) maximum TFLOPs required by
attention, (ii) peak GPU memory utilization, and (iii) mean GPU memory utilization across training.
These jointly reflect the computational and memory efficiency of the different cache strategies. Table 1
reports the results.

Qwen2.5-3B-Instruct. Full-cache LoRA attains 28.2% average accuracy but requires 4.2
TFLOPs and nearly 83% peak memory usage. LoRAc reduces peak memory to 38% but accuracy
drops to 25.6%. In contrast, the proposed method achieves 30.1%, the highest across all methods,
while requiring only 2.7 TFLOPs and 45% peak memory. This demonstrates that naive eviction
severely harms reasoning performance, but eviction-aware training not only recovers but improves
accuracy relative to full-cache LoRA.

Qwen2.5-7B-Instruct. The trade-off between accuracy and efficiency becomes more evident
at larger scale. LoRA achieves 38.1% accuracy but incurs high memory cost (85.8% peak). LoRAc

lowers memory to 63.1% but reduces accuracy to 36.7%. The proposed method achieves the best
average accuracy (39.6%), while cutting FLOPs almost in half compared to LoRA (3.6 vs. 5.7). This
suggests that eviction-aware training is particularly beneficial as model size increases.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: AIME2024 and AIME2025 pass@16 results (%). Maximum generation length is 6,144
tokens. KV cache window sizes range from 768 to 1,536. Note: Improvements are reported relative
to Baseline.

Models Qwen2.5-4B-Instruct Qwen2.5-7B-Instruct
DeepSeek-R1-

Distill-Llama-8B
Dataset Method 768 1024 1536 Avg. 768 1024 1536 Avg. 768 1024 1536 Avg.

AIME2024

Baseline 10.0 16.6 20.0 15.53 23.3 13.3 23.3 19.97 3.3 3.3 20.0 8.87
LoRA 10.00.0 13.3-3.3 20.00.0 14.43-1.1 10.0-13.3 23.3+10.0 30.0+6.7 21.10+1.1 3.30.0 3.30.0 23.3+3.3 9.97+1.1

LoRAc 13.3+3.3 13.3-3.3 16.7-3.3 14.43-1.1 16.6-6.7 20.0+6.7 20.0-3.3 18.87-1.1 6.7+3.4 16.7+13.4 36.7+16.7 10.03+1.2

Ours 16.7+6.7 20.0+3.4 20.00.0 18.90+3.4 26.6+3.3 26.6+13.3 30.0+6.7 27.73+7.8 26.7+23.4 30.0+26.7 56.7+36.7 37.80+28.9

AIME2025

Baseline 6.7 13.3 13.3 11.10 10.0 16.7 16.6 14.43 6.7 10.0 20.0 12.23
LoRA 6.70.0 6.7-6.6 16.7+3.4 10.03-1.1 6.7-3.3 23.3+6.6 26.7+10.1 18.90+4.5 6.70.0 10.00.0 20.00.0 12.230.0

LoRAc 6.70.0 10.0-3.3 10.0-3.3 8.90-2.2 20.0+10.0 26.7+10.0 26.7+10.1 24.47+10.0 6.70.0 20.0+10.0 26.7+6.7 17.79+5.6

Ours 10.0+3.3 16.7+3.4 16.7+3.4 14.47+3.4 23.3+13.3 26.7+10.0 26.7+10.1 25.60+11.2 26.7+20.0 30.0+20.0 43.3+23.3 33.34+21.1

DeepSeek-R1-Distill-Llama-8B. For the largest model, efficiency constraints dominate.
Full-cache LoRA requires 7.4 TFLOPs and 89% peak memory. LoRAc reduces resource usage
but sacrifices accuracy. By contrast, our method yields a marked performance gain, achieving
45.6% average accuracy, a +10.7 improvement over LoRA, while consuming only 4.6 TFLOPs and
59.8% peak memory. The improvements are especially notable on challenging benchmarks such as
AIME2024 (+33.4) and AIME2025 (+23.3).

4.3 EVALUATION UNDER DIFFERENT COMPUTATIONAL BUDGETS

To assess the robustness of different methods under constrained memory, we evaluate performance
across progressively reduced KV cache sizes. In practice, such reductions correspond to tighter
computational budgets during inference, where only a fraction of the activations can be stored.

Figure 3 summarizes results across multiple reasoning benchmarks, including Olympiad, Miner-
vaMath, AMC, and Math500, where we set the maximum response length as 3,072. Each curve
reports accuracy as the available cache decreases from full capacity to highly constrained settings. As
expected, the Baseline and LoRA methods degrade rapidly with shrinking cache size, reflecting their
reliance on complete historical context. LoRAc alleviates this issue to some extent by incorporating
sliding-window adaptation learning from the training process, but its effectiveness remains limited
when the window becomes narrow. In contrast, our method consistently sustains higher accuracy
across all computational budgets, demonstrating resilience to cache truncation. Quantitatively, aver-
aged across all datasets and cache settings, our approach achieves an accuracy of 39.37, compared to
32.99 for LoRA and 30.31 for the Baseline. This corresponds to relative improvements of +19.3%
over LoRA and +29.9% over the Baseline. Importantly, these gains are achieved without requiring
additional inference-time memory, as our method maintains constant cache usage regardless of the
budget.

We further validate these findings on harder benchmarks, AIME2024 and AIME2025, which re-
quire longer chains of reasoning. Here, we allow up to 6,072 tokens for generation (exceed-
ing the training setting) and set the maximum cache size to 1,536 tokens to accelerate decod-
ing. We then report pass@16 scores across cache sizes {768, 1024, 1536} in table 2. Across
both years and all backbones, our method achieves the highest average performance. Rela-
tive to LoRA, the average gains are +6.63 / +6.70 on Qwen2.5-7B-Instruct, and +27.83 /
+21.11 on DeepSeek-R1-Distill-Llama-8B. Improvements over the sliding-window Cache,
i.e., LoRAc, are likewise substantial (e.g., +8.86 on Qwen2.5-7B AIME2024 and +27.77 on
DeepSeek-R1- Distill-Llama-8B AIME2024), underscoring the limitations of naïve con-
text truncation. More results on Qwen-2.5-4B-Instruct are provided in appendix B.

In summary, while our approach reduces training cost, particularly by lowering peak memory usage,
without sacrificing task performance, these results further show that it also reduces inference cost by
sustaining accuracy under tight cache budgets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Training efficiency com-
parison across different maximum
generation lengths during rollout.

Method Vanilla With ours
Generation Length 3K 6K 3K 4K 5K 6K

Peak GPU mem (%) 88.7 95.6 59.8 60.2 60.1 60.4
Mean GPU mem (%) 53.5 64.3 46.8 46.9 46.7 47.6
MATH-500 (pass@1) 53.2 55.4 57.6 58.2 59.4 60.2

768 1K 1536 2K 3K
Window length

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

Sc
or

e
(%

)

#Global-0
#Global-16
#Global-32

#Global-48
#Global-64

Baseline
Global-Only

(c) Global tokens.

768 1K 1536 2K 3K
Window length

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

Sc
or

e
(%

)

Baseline
Ours (S.W.)

Ours (H2O)
Ours (PyramidKV)

Ours (HeadKV)

(d) Token dropping.

Figure 4: Ablation study on (a) global token usage and (b)
token dropping strategies.

4.4 ABLATION STUDY AND DISCUSSION

Progressive Thought Encoding Enables Scalable CoT RL Training. We employ the proposed
progressive encoding method to efficiently reduce memory consumption, particularly peak usage
during training. By lowering memory requirements, we enable longer and more complex reasoning
processes during the rollout stage. In this section, we present experiments demonstrating how
the saved memory allows us to train DeepSeek-R1-Distill-Llama with larger maximum
generation lengths, ranging from 4K to 6K tokens per rollout sample.

As shown in table 3, increasing the maximum generation length during rollout con-
sistently improves reasoning performance on MATH-500. Meanwhile, progressive en-
coding keeps both peak and mean memory usage stable and significantly lower than
vanilla RL training. Encouraging the model to generate longer outputs not only
supports more extended reasoning but also leads to consistent gains on MATH-500.

3K 6K 12K 24K 48K 64K
Max generation length

35

40

45

50

55

60

65

Sc
or

e
(%

) o
n

M
AT

H-
50

0

Ori.
LoRA

LoRA_c
Ours

Figure 5: Performance on MATH-500 under a fixed
1K context window as the maximum generation
length increases from 3K to 64K.

These results demonstrate that we can achieve
longer reasoning with limited memory over-
head, yielding better overall performance.

Generation of long sequences for reasoning.
To assess the scalability of our method under
extended reasoning trajectories, we evaluate
the RL-trained DeepSeek-R1-Distill-Llama-
8B model on MATH-500 using substantially
longer generation lengths. During inference,
we fix the context window to 1K tokens to
impose a strict memory constraint, while vary-
ing the maximum generation length from 3K
up to 64K tokens. This setup allows us to
examine how well different approaches lever-
age increasingly long reasoning chains when
the available KV cache remains limited The
results are provided in fig. 5, showing that all methods benefit from longer reasoning sequences.

Across the entire length range, our method demonstrates the strongest scaling behavior. The original
model, LoRA, and LoRAc show moderate improvements that gradually plateau as the sequence grows
longer, whereas our approach continues to yield steady gains even at 64K tokens. This indicates that
progressive thought encoding not only preserves reasoning information under tight cache budgets,
but also scales favorably as reasoning trajectories extend far beyond the training rollout length.

The use of global context tokens. In our proposed method, we introduce global tokens to improve
training efficiency. To evaluate their impact on model performance, we compare against several base-
lines: (1) Baseline, the original Qwen-2.5-Instruct model; (2) Global-Only, our method
with the update of context state Se from evicted tokens disabled; (3) #Global-0, initializing se with
zero, effectively removing global token initialization; and (4) #Global-16/32/48/64, our method with
the number of global tokens varied from 16 to 64. We conduct experiments on the MATH-500 dataset
under different cache sizes {756, 1K, 1536, 2K, 3K}. The results are presented in fig. 3c.

It can be observed that disabling global tokens (#Global-0) yields only marginal improvements over
the baseline. In contrast, integrating global tokens with the evicted token update of Se consistently
enhances performance across different KV cache lengths, outperforming the Global-Only variant
by a clear margin of 1.2% at just 768 cached tokens. However, adding more global tokens does not

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

always lead to better results: for example, #Global-64 underperforms compared with #Global-32 and
#Global-16 at the most constrained cache length of 768 tokens.

Integration with inference-time token dropping strategy. In our work, we adopt the
sliding window strategy for token eviction, which does not account for token impor-
tance. To address this limitation, we integrate several advanced token dropping strate-
gies during generation and evaluate their performance on the MATH-500 dataset, including
H2O (Zhang et al., 2023), PyramidKV (Cai et al., 2024), and HeadKV (Fu et al., 2024).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Long: 21 (15.0%)

Baseline
Long: 31 (20.3%)

LoRA

1.0
2.0

2.0
3.0

3.0
4.0

4.0
5.0

5.0
6.0

6.0
7.0

7.0
8.0

8.0

Number of generation tokens (x100)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Long: 26 (16.9%)

LoRAc

1.0
2.0

2.0
3.0

3.0
4.0

4.0
5.0

5.0
6.0

6.0
7.0

7.0
8.0

8.0

Number of generation tokens (x100)

Long: 33 (19.0%)

Ours

Figure 6: The statistics on the generation length.

As shown in fig. 3d, compared to the sliding
window eviction strategy, these advanced to-
ken dropping methods consistently improve rea-
soning performance, particularly under limited
cache capacity. For example, with a cache win-
dow length of 768, the baseline model achieves a
success rate of 34.4%. Using a sliding window
cache increases performance to 48.4%, while
HeadKV achieves the accuracy at 50.7%, nar-
rowing the gap to full cache accuracy by 3.3%.
These results demonstrate that token selection
matters for reasoning efficiency.

However, these advanced strategies incur non-
trivial cost. Integrating HeadKV during the roll-
out stage (batch size 512) increases iteration time from 19 to 26 minutes (+37% runtime) for a
+2.3% accuracy gain.

Consequently, we retain the sliding-window approach for training and leave efficient integration of
advanced token-dropping methods into RL rollouts as future work.

On the length of generated response. We also analyze the distribution of generated response lengths
across different methods on the MATH-500 dataset. We set the maximum number of generation
tokens to 3096, the cache window size to 768, and the number of sink tokens to 512, i.e., 256 tokens
stored within the sliding window.

As shown in fig. 6, although LoRAc outperforms vanilla LoRA under a limited cache size (approxi-
mately 10% ↑, see fig. 3), most of these gains come from short responses, and only a few problems
are solved with long responses. In contrast, our proposed method not only achieves the best overall
reasoning performance under this setting but also maintains strong capability on long-form reasoning.
These results support our claim that dynamically encoding evicted tokens into model weights enables
the model to consistently “remember” them throughout the generation process.

Why Progressive encoding can achieve better results? Our method achieves higher accuracy because
the progressive encoding of evicted tokens provides a continuous mechanism for preserving long-
range reasoning information that would otherwise be lost under sliding-window truncation. Instead
of discarding early thought tokens, their compressed contextual representations are folded into the
LoRA weights, enabling the model to retain global reasoning signals even when only a small portion
of the KV cache is visible. This acts as a form of denoising and incremental distillation, strengthening
the model’s ability to maintain coherent multi-step reasoning trajectories. Empirically, this leads
to longer and more stable chains of thought during problem solving (see fig. 6), and substantially
improves performance across constrained-cache settings. Together, these effects allow the model
to approximate a full-context reasoner while operating under tight memory budgets, explaining the
consistent gains over LoRA and sliding-window baselines.

5 CONCLUSION

We introduced Progressive Thought Encoding, a parameter-efficient fine-tuning approach that allows
large reasoning models to train and infer effectively under limited computing resources. Rather than
discarding evicted tokens, our method encodes their information into model weights, preserving
long-context reasoning ability while substantially reducing memory and compute costs. Through

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

experiments on three open-weight models and six challenging math reasoning benchmarks, we
demonstrate consistent gains over LoRA and sliding-window cache baselines, achieving up to +23.4
absolute accuracy improvements on AIME2024/2025 while cutting peak memory nearly in half.
Beyond boosting efficiency, our results show that cache-aware training enhances reasoning robustness
under constrained computational budgets, enabling longer and more effective rollouts during RL
training. We believe this work is a step toward scalable RL training for reasoning models and opens
promising directions for adaptive eviction strategies, multimodal reasoning tasks, and integration
with inference-time optimization techniques to further advance the efficiency–accuracy frontier.

REFERENCES

Shivam Agarwal, Zimin Zhang, Lifan Yuan, Jiawei Han, and Hao Peng. The unreasonable effective-
ness of entropy minimization in llm reasoning. arXiv preprint arXiv:2505.15134, 2025.

Keivan Alizadeh, Seyed Iman Mirzadeh, Dmitry Belenko, S Khatamifard, Minsik Cho, Carlo C
Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. Llm in a flash: Efficient large
language model inference with limited memory. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pages 12562–12584, 2024.

MAA American Mathematics Competitions. American mathematics competitions, 2023.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Yucheng Li, Tianyu Liu, Keming Lu, Wayne Xiong,
Yue Dong, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. arXiv preprint arXiv:2406.02069, 2024.

Tong Chen, Hao Fang, Patrick Xia, Xiaodong Liu, Benjamin Van Durme, Luke Zettlemoyer, Jianfeng
Gao, and Hao Cheng. Generative adapter: Contextualizing language models in parameters with a
single forward pass. arXiv preprint arXiv:2411.05877, 2024.

Mingyue Cheng, Yucong Luo, Jie Ouyang, Qi Liu, Huijie Liu, Li Li, Shuo Yu, Bohou Zhang, Jiawei
Cao, Jie Ma, et al. A survey on knowledge-oriented retrieval-augmented generation. arXiv preprint
arXiv:2503.10677, 2025.

MAA Codeforces. American invitational mathematics examination-aime 2024, 2024.

Neisarg Dave, Daniel Kifer, C Lee Giles, and Ankur Mali. Investigating symbolic capabilities of
large language models. arXiv preprint arXiv:2405.13209, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Benoit Dherin, Michael Munn, Hanna Mazzawi, Michael Wunder, and Javier Gonzalvo. Learning
without training: The implicit dynamics of in-context learning. arXiv preprint arXiv:2507.16003,
2025.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu,
Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. arXiv preprint arXiv:2301.00234,
2022.

Haojie Duanmu, Zhihang Yuan, Xiuhong Li, Jiangfei Duan, Xingcheng Zhang, and Dahua Lin.
Skvq: Sliding-window key and value cache quantization for large language models. arXiv preprint
arXiv:2405.06219, 2024.

Sicheng Feng, Gongfan Fang, Xinyin Ma, and Xinchao Wang. Efficient reasoning models: A survey.
arXiv preprint arXiv:2504.10903, 2025.

Yao Fu, Hao Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. In International Conference on Machine Learning, pages
10421–10430. PMLR, 2023.

Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads matter:
A head-level kv cache compression method with integrated retrieval and reasoning. arXiv preprint
arXiv:2410.19258, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1), 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Haoyu Han, Yu Wang, Harry Shomer, Kai Guo, Jiayuan Ding, Yongjia Lei, Mahantesh Halappanavar,
Ryan A Rossi, Subhabrata Mukherjee, Xianfeng Tang, et al. Retrieval-augmented generation with
graphs (graphrag). arXiv preprint arXiv:2501.00309, 2024.

Zhenyu Han, Ansheng You, Haibo Wang, Kui Luo, Guang Yang, Wenqi Shi, Menglong Chen,
Sicheng Zhang, Zeshun Lan, Chunshi Deng, et al. Asyncflow: An asynchronous streaming rl
framework for efficient llm post-training. arXiv preprint arXiv:2507.01663, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jinwu Hu, Zhitian Zhang, Guohao Chen, Xutao Wen, Chao Shuai, Wei Luo, Bin Xiao, Yuanqing Li,
and Mingkui Tan. Test-time learning for large language models. arXiv preprint arXiv:2505.20633,
2025.

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Hongye Jin, Xiaotian Han, Jingfeng Yang, Zhimeng Jiang, Zirui Liu, Chia-Yuan Chang, Huiyuan
Chen, and Xia Hu. Llm maybe longlm: Self-extend llm context window without tuning. arXiv
preprint arXiv:2401.01325, 2024.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement learning: A survey.
Journal of artificial intelligence research, 4:237–285, 1996.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in neural information processing systems,
35:3843–3857, 2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xuying Li, Zhuo Li, Yuji Kosuga, and Victor Bian. Optimizing safe and aligned language generation:
A multi-objective grpo approach. arXiv preprint arXiv:2503.21819, 2025a.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint arXiv:2502.17419, 2025b.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dilxat Muhtar, Yelong Shen, Yaming Yang, Xiaodong Liu, Yadong Lu, Jianfeng Liu, Yuefeng Zhan,
Hao Sun, Weiwei Deng, Feng Sun, et al. Streamadapter: Efficient test time adaptation from
contextual streams. arXiv preprint arXiv:2411.09289, 2024.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layerwise
importance sampling for memory-efficient large language model fine-tuning. Advances in Neural
Information Processing Systems, 37:57018–57049, 2024.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back.
Reasoning with large language models, a survey. arXiv preprint arXiv:2407.11511, 2024.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
assistants. arXiv preprint arXiv:2501.04227, 2025.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Raja Vavekanand and Kira Sam. Llama 3.1: An in-depth analysis of the next-generation large
language model. Preprint, July, 2024.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023.

Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents. In Forty-first International Conference on Machine
Learning, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Han Wu, Yuxuan Yao, Shuqi Liu, Zehua Liu, Xiaojin Fu, Xiongwei Han, Xing Li, Hui-Ling Zhen,
Tao Zhong, and Mingxuan Yuan. Unlocking efficient long-to-short llm reasoning with model
merging. arXiv preprint arXiv:2503.20641, 2025.

Jiaming Xu, Kaibin Guo, Wuxuan Gong, and Runyu Shi. Osagent: Copiloting operating system with
llm-based agent. In 2024 International Joint Conference on Neural Networks (IJCNN), pages 1–9.
IEEE, 2024.

Wang Yang, Zirui Liu, Hongye Jin, Qingyu Yin, Vipin Chaudhary, and Xiaotian Han. Longer
context, deeper thinking: Uncovering the role of long-context ability in reasoning. arXiv preprint
arXiv:2505.17315, 2025.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hongzhi Zhang, Jia Fu, Jingyuan Zhang, Kai Fu, Qi Wang, Fuzheng Zhang, and Guorui Zhou. Rlep:
Reinforcement learning with experience replay for llm reasoning. arXiv preprint arXiv:2507.07451,
2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025b.

Yiqi Zhang, Huiqiang Jiang, Xufang Luo, Zhihe Yang, Chengruidong Zhang, Yifei Shen, Dongsheng
Li, Yuqing Yang, Lili Qiu, and Yang You. Sortedrl: Accelerating rl training for llms through online
length-aware scheduling. In ES-FoMo III: 3rd Workshop on Efficient Systems for Foundation
Models.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025a.

Haizhong Zheng, Yang Zhou, Brian R Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao, and
Beidi Chen. Act only when it pays: Efficient reinforcement learning for llm reasoning via selective
rollouts. arXiv preprint arXiv:2506.02177, 2025b.

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

768 1K 1536 2K 3K
Window length

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5
Sc

or
e

math500

768 1K 1536 2K 3K
Window length

16

18

20

22

24

26

28

Sc
or

e

olympiad

768 1K 1536 2K 3K
Window length

12

13

14

15

16

Sc
or

e

minervanth

768 1K 1536 2K 3K
Window length

30

35

40

45

50

Sc
or

e

amc

768 1K 1536 2K 3K
Window length

22

24

26

28

30

32

34

36

Sc
or

e

Avg.
Baseline LoRA LoRAc Ours

Figure A1: Evaluation of Qwen2.5-4B-Instruct models.

A THE USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policies on the use of Large Language Models (LLMs), we
disclose that we used an LLM (OpenAI’s ChatGPT) solely for writing assistance. Specifically, the
model was employed to polish the language of the manuscript, including improving grammar, clarity,
and readability.

No part of the model’s output was used to generate research ideas, derive results, conduct experiments,
or analyze data. All scientific contributions, including the design of experiments, implementation of
methods, data analysis, and interpretation of results, are entirely the work of the listed authors, who
take full responsibility for the content of this paper.

B RESULTS ON QWEN-2.5-4B-INSTRUCT

Following the settings in Section 4.3, we evaluate Qwen-2.5-4B-Instruct under different
KV-cache budgets, with results shown in Figure A1. Across all four benchmarks (math500, olympiad,
minervanth, and amc), our method (red curve) consistently outperforms the Baseline, LoRA, and
LoRA variants. The gains are most pronounced at shorter window lengths (e.g., 768 and 1 K), where
baseline models experience substantial accuracy degradation. For instance, on math500, our approach
improves by more than 12 points over the baseline at 768 tokens, and it maintains its advantage even
as the window length grows to 3 K. Similar trends appear on olympiad and amc, where our curve
remains flat and robust while the baselines fluctuate or decline.

The rightmost panel shows the averaged results across all tasks, where our method consistently
achieves the highest performance across the entire range of window lengths. Notably, our curve peaks
around 1.5 K and remains stable thereafter, suggesting that our approach is not only more resilient to
cache constraints but also scales gracefully with longer contexts. This demonstrates that training with
cache-aware eviction leads to robust generalization and mitigates the performance drop observed in
other fine-tuning strategies.

C IMPACT OF CACHE-EVICTION STRATEGY ON THE UPDATE OF qg

Table A1: Effect of eviction ratios on
MATH-500.

Ratio 25% 20% 15% 10% 5%

Score 50.8 51.4 51.9 50.7 49.6

To analyze how the cache-eviction strategy influences
the update of the global latent vector qg, we evaluate
Qwen-2.5-3B-Instruct under different eviction ra-
tios. The training setup matches that used in the main
experiments, where a 25% ratio is applied during training.
At inference time, however, we vary the ratio from 25%
to 5% while keeping the context window fixed at 1024
tokens. The results are reported in Table A1.

We observe that decreasing the eviction ratio initially improves performance: reducing the ratio to
15% yields the highest accuracy, suggesting that more frequent but smaller update steps enable qg to
capture more fine-grained information from evicted tokens. However, when the ratio becomes too
small (e.g., 5%), performance degrades noticeably. This indicates that overly fine-grained eviction

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

leads to noisier update signals with insufficient contextual content per step, resulting in unstable
LoRA adaptation.

Overall, these results show that the eviction strategy plays a critical role in shaping the quality of
the update signal for qg. Moderate eviction ratios provide a more reliable balance between update
frequency and information richness.

15

	Introduction
	Related Work
	Methodology
	Notation and Preliminaries
	Challenges for Efficient RL Training
	Our Approach: Learning Think Tokens Prior to Eviction

	Evaluations
	Experimental Setup
	Evaluation on Math Reasoning Tasks
	Evaluation under Different Computational Budgets
	Ablation Study and Discussion

	Conclusion
	The use of Large Language Models
	Results on Qwen-2.5-4B-Instruct
	blueImpact of Cache-Eviction Strategy on the Update of qg

