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Abstract
Offline Multi-agent Reinforcement Learning (MARL) is valuable in scenarios1

where online interaction is impractical or risky. While independent learning in2

MARL offers flexibility and scalability, accurately assigning credit to individual3

agents in offline settings poses challenges because interactions with an environment4

are prohibited. In this paper, we propose a new framework, namely Multi-Agent5

Causal Credit Assignment (MACCA), to address credit assignment in the offline6

MARL setting. Our approach, MACCA, characterizing the generative process7

as a Dynamic Bayesian Network, captures relationships between environmental8

variables, states, actions, and rewards. Estimating this model on offline data,9

MACCA can learn each agent’s contribution by analyzing the causal relationship10

of their individual rewards, ensuring accurate and interpretable credit assignment.11

Additionally, the modularity of our approach allows it to integrate with various12

offline MARL methods seamlessly. Theoretically, we proved that under the setting13

of the offline dataset, the underlying causal structure and the function for generating14

the individual rewards of agents are identifiable, which laid the foundation for the15

correctness of our modeling. In our experiments, we demonstrate that MACCA not16

only outperforms state-of-the-art methods but also enhances performance when17

integrated with other backbones.18

1 Introduction19

Offline Reinforcement learning (RL) has gained significant popularity in recent years. It can be20

particularly valuable in situations where online interaction is impractical or infeasible, such as the21

high cost of data collection or the potential danger involved [1]. In the multi-agent setting, offline22

multi-agent reinforcement learning (MARL) has identified and addressed some of the challenges23

inherited from offline single-agent RL, such as distributional shift and partial observability [2]. For24

example, ICQ [3] focuses on the vulnerability of multi-agent systems to extrapolation errors, and25

CQL [4] aims to mitigate overestimation in Q-values, which can lead to suboptimal policy learning.26

The independent learning paradigm in MARL is appealing due to its flexibility and scalability, making27

it a promising approach to solving complex problems in dynamic environments. While independent28

learning in MARL has its merits, it will significantly hinder algorithm efficiency when the offline29

dataset only includes team rewards. This presents a credit assignment problem, aiming to assign30

credit to the individual agents within the partial observability and emergent behavior.31

In offline MARL, addressing the issue of credit assignment is challenging. Agents are reliant on static,32

pre-collected datasets, often spanning a variety of behavior policies and actions across different time33

periods. This diversity in data distributions increases the difficulty of assigning credits, given that the34

nuances of agent contributions are lost in the plethora of policies. Recent credit assignment methods,35

such as SQDDPG [5] and SHAQ [6], are primarily conceived for online scenarios where continuous36

feedback aids in refining credit assignments. However, when restricted to static offline data in offline37

MARL, they miss out on the essential dynamism and agility needed to accurately understand the38
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intricate interplay within the dataset. Moreover, in offline settings, methods like SHAQ, which39

rely on the Shapley value, and SQDDPG, which employs a Shapley-like approach for individual40

Q-value estimation, face inherent challenges. Computing the Shapley value or its approximations41

demands consideration of every potential agent coalition, a process that is computationally intensive.42

In offline MARL, such approximations can lead to imprecise credit assignments due to a loss in43

precision, potential data inconsistencies from the static nature of past interactions, and scalability44

issues, especially when numerous agents operate in intricate environments.45

Figure 1: The graphic representation of the causal
structure within the MACCA framework. The
nodes and edges represent the causal relationships
among various environmental variables, i.e., differ-
ent dimensions of these variables for each agent
within the team reward Multi-agent MDP context.
These dimensions include the different dimensions
of the state si··· ,t, action ai··· ,t, individual reward rit
for agent i, and the team rewardRt. The individual
reward rit (shown with blue filling) is unobservable,
and the aggregation of rit equals Rt.

In this paper, we propose a new framework,46

namely Multi-Agent Causal Credit Assignment47

(MACCA), to address credit assignment in an48

offline MARL setting. MACCA equates the im-49

portance of the credit assignment and how the50

agent makes the contribution by causal mod-51

eling. MACCA first models the generation of52

individual rewards and team reward from the53

causal perspective, and construct a graphical54

representation, as shown in Figure 1, over the in-55

volved environment variables, including all the56

dimensions of states and actions of all agents,57

the individual rewards and the team rewards.58

Our method treats team reward as the causal ef-59

fect of all the individual rewards and provides a60

way to recover the underlying parametric model,61

supported by the theoretical evidence of identi-62

fiability. In this way, MACCA offers the ability63

to distinguish the credit of each agent and gain64

insights into how their states and actions con-65

tribute to the individual rewards and further to66

the team reward. This is achieved through a67

learned parameterized generative model that de-68

composes the team reward into individual rewards. The causal structure within the generative process69

further enhances our understanding by providing insights into the specific contributions of each70

agent. With the support of theoretical identifiability, we identify the unknown causal structure and71

individual reward function in such a causal generative process. Additionally, our method offers a72

clear explanation for actions and states leading to individual rewards, promoting policy optimization73

and invariance. This clarity enhances agent behavior comprehension and aids in refining policies. The74

inherent modularity of MACCA ensures its compatibility with a range of policy learning methods,75

positioning it as a versatile and promising MARL solution for various real-world contexts.76

We summarize the main contributions of this paper as follows. First, we reformulate team reward77

decomposition by introducing a Dynamic Bayesian Network (DBN) to describe the causal relationship78

among states, actions, individual rewards, and team reward. We provide theoretical evidence of79

identifiability to learn the causal structure and function within the generation of individual rewards80

and team rewards. Second, our proposed method can recover the parameterized underlying generative81

process. Lastly, the empirical results on both discrete and continuous action settings, all three82

environments, demonstrate that MACCA outperforms current state-of-the-art methods in solving the83

credit assignment problem caused by team rewards.84

2 Preliminaries85

In this section, we review the widely-used MARL training framework, the Decentralized Partially86

Observable Markov Decision Process, and briefly introduce Offline MARL. Due to space limitations,87

a comprehensive review of related work is provided in the Appendix.A.88

Decentralized Partially Observable Markov Decision Process (Dec-POMDP) [7] is defined by a89

tupleM = ⟨N,S,A,P,R,O, γ⟩. In this tuple, N represents the number of agents, S is the state90

space, and A is the shared action spaces and ai ∈ A is the action for agent i. The state transition91

function P(s′|s,a) specifies the probability of transitioning to a new state given the current state s92

and joint actions a = (a1, . . . , aN ). The Rt = R(s,a) is the team reward given by the team reward93

function and oi = O(s, i) is the local observation for agent i at global state s. Each agent use a policy94
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Figure 2: The illustration of the MACCA method. The offline data generation process begins
on the left side, where data is recorded from the environment. MACCA then constructs a causal
model consisting of a DBN represented in grey and an individual reward predictor depicted in blue.
The DBN is used to sample scales from each agent, denoted as ci,·→·

t and highlighted in green.
Meanwhile, the individual reward predictor takes the joint state, action, and these masks as input to
generate the individual reward estimate r̂it. During the policy learning phase, each agent utilizes their
observation and individual reward estimate as inputs, which are then passed through their respective
policy network to generate the next-state actions.

πθ(a
i|oi) parameterized by θ to produce an action ai from the local observation oi, and optimize the95

discounted accumulated team reward Jπ = E[
∑∞
t=0 γ

tR(st,at)], where at = (a1t , . . . , a
N
t ) is the96

joint action at time step t, and γ represents the discount factor.97

Offline MARL. Under offline setting, we consider a MARL scenario where agents sample from98

a fixed dataset D = {sit, oit, ait, Rt, sit
′
, oit

′}. This dataset is generated from the behavior policy πb99

without any interaction with the environments, meaning that the dataset is pre-collected offline. Here,100

sit, o
i
t and ait represent the state, observation and action of agent i at time t, while Rt is the team101

reward received at time t, and sit
′, oit

′ represents the next state and observation of agent i.102

3 Offline MARL with Causal Credit Assignment103

Credit assignment plays a crucial role in facilitating the effective learning of policies in offline104

cooperative scenarios. In this section, we begin with presenting the underlying generative process105

within the offline MARL scenario, which serves as the foundation of our methods. Then, we show106

how to recover the underlying generative process and perform policy learning with the assigned107

individual rewards. In our method as shown in Figure 2, there are two main components, including108

causal model ψm and policy model ψπ. The overall objective contains two parts, Lm for model109

estimation and Jπ for offline policy learning. Therefore, we minimize the following loss term:110

LMACCA = Lm + Jπ, (1)

where Jπ depends on the applied offline RL algorithms (JCQR
π , JOMAR

π or J ICQ
π in this paper.)111

3.1 Underlying Generative Process in MARL112

As a foundation of our method, we introduce a Dynamic Bayesian Network (DBN) [8] to characterize113

the underlying generative process. DBN is a special type of graphical model that captures the temporal114

dependencies between variables, corresponding to state transitions across time steps in sequential115

decision making. By leveraging the DBN structure, we can naturally account for the graph structure116

over state, action, and reward variables, as well as their temporal dependencies, leading to a natural117

interpretation of the explicit contribution of each dimension of state and action towards the individual118

rewards.119

We denote the G as the DBN to represent the causal structure between the states, actions, individual120

rewards, and team reward as shown in Figure 1, which is constructed over a finite number of random121

variables as (si1,t, · · · , sidis,t, a
i
1,t, · · · , aidia,t, r

i
t, Rt)

N,T
i,t=1, where the dis and dia correspond to the122

dimensions of the state and action of agent i respectively. Rt is the observed team reward at time123

step t. rit is the unobserved individual reward at time step t. T is the maximum episode length of the124

environment. Then, the underlying generative process is denoted as:125 {
rit = f(ci,s→r ⊙ st, c

i,a→r ⊙ at, i, ϵi,t)

Rt =
∑

(r1t , · · · rNt )
(2)
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Table 1: Average Normalized Score of MPE task with Team Reward
I-CQL OMAR MA-ICQ MACCA-CQL MACCA-OMAR MACCA-ICQ

Exp(CN) 33.6 ± 22.9 44.7 ± 46.6 45.0 ± 23.1 85.4 ± 8.1 111.7 ± 4.3 90.4 ± 5.1
Exp(PP) 63.4 ± 38.6 99.9 ± 14.2 87.0 ± 12.3 94.9 ± 27.9 111.0 ± 21.5 114.4 ± 25.1
Exp(WORLD) 54.4 ± 17.3 98.7 ± 18.7 43.2 ± 15.7 89.3 ± 14.8 107.4 ± 11.0 93.2 ± 12.0
Med(CN) 19.7 ± 8.7 49.6 ± 14.9 30.8 ± 7.3 45.0 ± 8.8 67.9 ± 16.9 70.3± 10.4
Med(PP) 50.0 ± 15.6 57.4 ± 13.9 59.4 ± 11.1 61.1 ± 27.1 87.1 ± 12.2 77.4 ± 10.5
Med(WORLD) 25.7 ± 21.3 33.4 ± 12.8 35.6 ± 6.0 54.7 ± 11.0 63.6 ± 8.7 55.1 ± 3.5
Med-R(CN) 10.8 ± 7.7 26.8 ± 15.2 22.4 ± 9.3 15.9 ± 11.2 33.2 ± 12.6 28.6 ± 5.6
Med-R(PP) 18.3 ± 9.5 56.3 ± 16.6 44.2 ± 4.5 32.5 ± 15.1 69.0 ± 19.3 64.3 ± 7.8
Med-R(WORLD) 4.5 ± 10.1 28.9 ± 17.2 10.7 ± 2.8 34.8 ± 16.7 50.9 ± 14.2 39.9 ± 13.4
Rand(CN) 12.4 ± 9.1 22.9 ± 10.4 6.0 ± 3.1 22.2 ± 4.6 32.8 ± 9.5 28.13 ± 4.6
Rand(PP) 5.5 ± 2.8 12.0 ± 5.2 15.6 ± 3.4 14.7 ± 6.7 20.9 ± 8.3 30.3 ± 5.4
Rand(WORLD) 0.1 ± 4.5 6.2 ± 6.7 0.6 ± 2.4 8.7 ± 3.3 15.8 ± 6.1 10.1 ± 6.6

where, the st = {s11,t, ..., s1d1s,t, ..., s
N
1,t...., s

N
dNs ,t
} and at = {a11,t, ..., a1d1a,t, ..., a

N
1,t...., a

N
dNa ,t
} is the126

joint state and action of all agents at time step t. Define Ds and Da as the numbers of dimensions of127

joint state and joint action, where Ds =
∑N
i=1 d

i
s and Da =

∑N
i=1 d

i
a. The ⊙ is the element-wise128

product, the f is the unknown non-linear individual reward function, and the ϵr,i,t is the i.i.d noise.129

The masks ci,s→r ∈ {0, 1}Ds and ci,a→r ∈ {0, 1}Da are vectors and can be dynamic or static130

depending on the specific requirements from learning phase, in which control if a specific dimension131

of the state s and action a impact the individual reward rit, separately. Define cj,s→r(k) as the k-th132

element in the vector cj,s→r. For instance, if there is an edge from the k-th dimension of s to the133

agent j’s individual reward rjt in G, then the cj,s→r(k) is 1.134

Proposition 3.1 (Identifiability of Causal Structure and Individual Reward Function). Suppose the135

joint state st, joint action at, team reward Rt are observable while the individual rit for each agent136

are unobserved, and they are from the Dec-POMDP, as described in Eq 2. Then under the Markov137

condition and faithfulness assumption (refer to Appendix E), given the current time step’s team138

reward Rt, all the masks ci,s→r, ci,a→r, as well as the function f are identifiable.139

The proposition 3.1 demonstrates that we can identify causal representations from the joint action140

and state, which serve as the causal parents of the individual reward function we want to fit. This141

allows us to determine which agent should be responsible for which dimension and thus generate the142

corresponding individual reward function for each agent. The objective for each agent changes to143

maximize the sum of individual rewards over an infinite horizon. The proof is in Appendix F.144

3.2 Causal Model Learning145

In this section, we delve into identifying the unknown causal structure and reward function within the146

graph G. This is achieved using the causal structure predictor ψg , and the individual reward predictor147

ψr. The set ψg = {ψs→r
g , ψa→r

g } is to learn the causal structure. Specifically, ψs→r
g and ψa→r

g are148

employed to predict the presence of edges in the masks described by Eq 2. We have149

ĉi,s→r
t = ψs→r

g (st,at, i), ĉ
i,a→r
t = ψa→r

g (st,at, i), (3)

where, ĉi,s→r
t and ĉi,a→r

t are the predicted masks for agent i at timestep t. Note that these causal150

masks are time-invariant and can change with state and action. We generate masks at each time step151

since we consider the inherent complexity of the multi-agent scenario, which has high dimensionality152

and the dynamic nature of the causal relationships that can evolve over time. Thus, we adopt ψs→r
g153

and ψa→r
g to generate mask estimation at each time step t, within the joint state and joint action and154

agent id as the input. This dynamic mask adaptation facilitates more accurate causal modelling. To155

further validate this estimation, we have conducted ablation experiments at Section I.6.156

The ψr is used for approximating the function f , and is constructed by stacked fully-connection157

layers. To recover the underlying generative process, i.e., to optimize ψr, we minimize the following158

objective:159

Lm = ED[Rt −
N∑
i=1

ψr(ĉ
i,s→r
t , ĉi,a→r

t , st,at, i)]
2 + Lreg. (4)

The Lreg serves as an L1 regularization, akin to the purpose delineated in [9]. Its primary objective is160

to clear redundant features during training, reduce the number of features that a given depends on,161

and use the coefficients of other features completely set to zero, which fosters model interpretability162
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Table 2: Averaged win rate of MACCA-based algorithms and baselines in StarCraft II tasks
Map Dataset I-CQL OMAR MA-ICQ MACCA-CQL MACCA-OMAR MACCA-ICQ

2s3z
(Easy)

Expert 0.70±0.09 0.86±0.08 0.80±0.01 0.88±0.07 0.99±0.05 0.95±0.01
Medium 0.20±0.03 0.17±0.01 0.16±0.07 0.27±0.02 0.55±0.03 0.51±0.03

Medium-Replay 0.11±0.07 0.35±0.08 0.31±0.04 0.25±0.03 0.53±0.01 0.59±0.04

5m_vs_6m
(Hard)

Expert 0.02±0.02 0.44±0.04 0.38±0.05 0.63±0.02 0.73±0.04 0.88±0.01
Medium 0.01±0.00 0.14±0.02 0.11±0.04 0.19±0.01 0.20±0.04 0.15±0.02

Medium-Replay 0.12±0.01 0.09±0.04 0.18±0.04 0.15±0.02 0.14±0.01 0.28±0.01

6h_vs_8z
(Super Hard)

Expert 0.00±0.00 0.18±0.08 0.04±0.01 0.59±0.01 0.75±0.07 0.60±0.03
Medium 0.01±0.01 0.12±0.06 0.01±0.01 0.17±0.00 0.20±0.02 0.22±0.04

Medium-Replay 0.03±0.02 0.01±0.01 0.07±0.04 0.14±0.02 0.22±0.01 0.25±0.05
MMM2

(Super Hard)
Expert 0.08±0.03 0.10±0.01 0.11±0.01 0.60±0.01 0.69±0.01 0.71±0.03

Medium 0.02±0.01 0.12±0.02 0.08±0.04 0.25±0.07 0.50±0.06 0.59±0.04

and mitigates the risk of overfitting. And it defines as:163

Lreg = λ1
∑N
i=1 ∥ĉ

i,s→r
t ∥1 + λ2

∑N
i=1 ∥ĉ

i,a→r
t ∥1, (5)

where λ(·) are hyper-parameters. For more details, please refer to Appendix H.164

3.3 Policy Learning with Assigned Individual Rewards.165

For policy learning, we use the redistributed individual rewards r̃it to replace the observed team166

reward Rt. Then, we carry out the policy optimizing over the offline dataset D.167

Individual Rewards Assignment. We first assign individual rewards for each agent’s state-action-168

id tuple ⟨st,at, i⟩ in the samples used for policy learning. During such an inference phase of169

individual rewards predictor, we first utilize a hyperparameter, h, as an element-wise threshold to170

determine the existence of the inference phase. Elements within the mask ĉi,s→r
t and ĉi,a→r

t will be171

set to 0 if their absolute value is less than h, and 1 otherwise. Then, we assign an individual reward172

for each agent as,173

r̂it = ψr(st,at, ĉ
i,s→r
t , ĉi,a→r

t , i). (6)

Offline Policy Learning. The process of individual reward assignment is flexible and is able174

to be inserted into any policy training algorithm. We now describe three practical offline MARL175

methods, MACCA-CQL, MACCA-OMAR and MACCA-ICQ. In all those methods, they use Q-176

Value to guide policy learning, for each agent who estimates the Qi(oi, ai) = Eπ[
∑∞
t=0 γ

tRt] with177

the Bellman backup operator, we then replace the team reward by learned individual reward r̂it as178

Q̂i(oi, ai) = Eπ[
∑∞
t=0 γ

tr̂it], then in the policy improvement step, MACCA-CQL trains actors by179

minimizing:180

JCQL
π = ED[(Q̂

i(oi, ai)− yi)2] + αED[log
∑
ai

exp(Q̂i(oi, ai))− Eai∼π̂i
β
[Q̂i(oi, ai)]], (7)

where, yi = r̂it + γmink=1,2 Q̄
i,k(oi

′
, π̄i(oi

′
)) from Fujimoto et al. [10] to minimize the temporal181

difference error, Q̄i represents the target Q̂ for the agent i, α is the regularization coefficient, π̂βi is182

the empirical behavior policy of agent i in the dataset. Similarly, MACCA-OMAR updates actors by183

minimizing:184

JOMAR
π = −ED[(1− τ)Q̂i(oi, πi(oi))− τ(πi(oi)− âi)2], (8)

where âi is the action provided by the zeroth-order optimizer and τ ∈ [0, 1] denotes the coefficient.185

For the MACCA-ICQ, it updates actors by minimizing:186

J ICQ
π = ED[L

τ
2(r̂(s, a) + γQ̄i(oi

′
, ai

′
)− Q̂i(oi, ai))], (9)

where Lτ2 is the squared loss based on expectile regression and the γ is the discount factor, which187

determines the present value of future rewards. As MACCA uses individual reward to replace188

the team reward, we do not directly decompose value function, unlike the prior offline MARL189

methods [11, 5, 6], thus we do not require fitting an additional advantage value or Q-value estimator,190

simplifying our method.191

4 Experiments192

Based on the above, our methods include MACCA-OMAR, MACCA-CQL and MACCA-ICQ.193

For baselines, we compare with both CTDE and independent learning paradigm methods, including194
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I-CQL [4]: conservative Q-learning in independent paradigm, OMAR [12]: based on I-CQL, but195

learning better coordination actions among agents using zeroth-order optimization, MA-ICQ [3]:196

Implicit constraint Q-learning within CTDE paradigm, SHAQ [6] and SQDDPG [5]: variants of197

credit assignment method using Shapley value, which are the SOTA on the online multi-agent RL,198

SHAQ-CQL: In pursuit of a more fair comparison, we integrated CQL with SHAQ, which adopts199

the architectural framework of SHAQ while using CQL in the estimations of agents’ Q-values and200

the target Q-values, QMIX-CQL: conservative Q-learning within CTDE paradigm, following QMIX201

structure to calculate the Qtot using a mixing layer, which is similar to the MA-ICQ framework. We202

evaluate those performance in two environments: Multi-agent Particle Environments (MPE) [13] and203

StarCraft Micromanagement Challenges (SMAC) [14]. Through these comparative evaluations, we204

want to highlight the relative effectiveness and superiority of the MACCA approach. Furthermore, we205

conduct three ablations to investigate the interpretability and efficiency of our method. For detailed206

information about the environments, please refer to Appendix G.207

Offline Dataset. Following the approach outlined in Justin et al. [15] and Pan et al. [12], we classify208

the offline datasets in all environments into four types: Random, generated by random initialization.209

Medium-Reply, collected from the replay buffer until the policy reaches medium performance.210

Medium and Expert, collected from partially trained to moderately performing policies and fully211

trained policies, respectively. The difference between our setup and Pan et al. [12] is that we hide212

individual rewards during training and store the sum of these individual rewards in the dataset as213

the team reward. By creating these different datasets, we aim to explore how different data qualities214

affect algorithms. For MPE, we adopt the normalized score as a metric to assess performance.215

The normalized score is calculated by 100× (S − Srandom)/(Sexpert − Srandom) following by Justin216

et al. [15], where the S, Srandom, Sexpert are the evaluation return from the current policy, random set217

behaviour policy, expert set behaviour policy respectively.218

4.1 Main Results219

Multi-agent Particle Environment (MPE). We evaluate our method in three distinct environments:220

Cooperative Navigation (CN), Prey-and-Predator (PP), and Simple-World (WORLD). In the CN221

environment, three agents aim to reach targets. Observations include position, velocity, and displace-222

ments to targets and other agents. Actions are continuous in x and y. Rewards are based on distance223

to targets, with collision penalties. In the PP environment, three predators chase a random prey.224

Their state includes position, velocity, and relative displacements. Rewards are based on distance225

to the prey, with bonuses for captures. The WORLD environment has four allies chasing two faster226

adversaries. As depicted in Table 1, It can be seen that the algorithms based on MACCA perform227

better than their respective backbones.228

StarCraft Micromanagement Challenges (SMAC). In order to show the performance in the scale229

scene, we specially selected maps with a large number of agents. To illustrate, the map 2s3z needs to230

control 5 agents, including 2 Stalkers and 3 Zealots, the map 6h_vs_8z needs to control 6 Hydralisks231

against 8 Zealots, and map MMM2 have 1 Medivac, 2 Marauders and 7 Marines. All experiments will232

run 3 random seeds and the win rate was recorded, and the corresponding standard was calculated.233

Table 2 shows the result. For most of the tasks, the MACCA-based method shows state-of-the-art234

performance compared to their baseline algorithms.235

To further evaluate the effectiveness of our approach, we conducted numerous additional experiments,236

including ablation studies. For detailed experimental setups and results, please refer to the Appendix.I.237

5 Conclusion238

In conclusion, MACCA emerges as a valuable solution to the credit assignment problem in offline239

Multi-agent Reinforcement Learning (MARL), providing an interpretable and modular framework240

for capturing the intricate interactions within multi-agent systems. By leveraging the inherent causal241

structure of the system, MACCA allows us to disentangle and identify the specific credits of individual242

agents to team rewards. This enables us to accurately assign credit and update policies accordingly,243

leading to enhanced performance compared to different baseline methods. The MACCA framework244

empowers researchers and practitioners to gain deeper insights into the dynamics of multi-agent245

systems, facilitating the understanding of the causal factors that drive cooperative behavior and246

ultimately advancing the capabilities of MARL in a variety of real-world applications.247
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A Related Work381

Offline MARL. Recent research [12, 16, 17] efforts have delved into offline MARL, identified and382

addressed some of the issues inherited from offline single-agent RL [18–21]. For instance, ICQ [3]383

focuses on the vulnerability of multi-agent systems to extrapolation errors, while MABCQ [17]384

examines the problem of mismatched transition distributions in fully decentralized offline MARL.385

However, these studies all assume using a global state and evaluate the action of the agents relying386

on the team rewards. Other approaches [22] have a long term progress in online fine-tuning for387

offline MARL training but have not taken into account the learning slowdown caused by credits388

of agents to the entire team. For the learning framework, the two most popular recent paradigms389

are Centralized Training with Decentralized Execution (CTDE) and Independent Learning (IL).390

Recent research [23, 24] shows the benefits of decentralized paradigms, which lead to more robust391

performance compared to a centralized value function.392

Multi-agent Credit Assignment. Multi-agent Credit Assignment is the study to decompose the393

team reward to each individual agent in the cooperative multi-agent environments [25–27]. Recent394

works [28, 11, 5, 29, 30] focus on value function decompose under online MARL manner. For395

instance, COMA [11] is a representative method that uses a centralized critic to estimate the coun-396

terfactual advantage of an agent action, which is an on-policy algorithm. This means it requires the397

corresponding data distribution and samples consistent with the current policy for updates. How-398

ever, in an offline setting, agents are limited to previously collected data and can’t interact with the399

environment. This data, often from varying behavioral policies, might not align with the current400

policy. Therefore, COMA cannot be directly extended to the offline setting without changing its401

on-policy features [1]. In online off-policy settings, state-of-the-art credit assignment algorithms such402

as SHAQ [6] and SQDDPG [5] utilize an agent’s approximate Shapley value for credit assignment.403

In the experiment section, we conduct a comparative analysis with these methods, and the results404

for MACCA demonstrate superior performance. Note that we focus on explicitly decomposing the405

team reward into individual rewards in an offline setting under the casual structure we learned, and406

these decomposed rewards will be used to reconstruct the offline dataset first and further the policy407

learning phase.408

Causal Reinforcement Learning. Plenty of work explores solving diverse RL problems with causal409

structure. Most conduct research on the transfer ability of RL agents. For instance, Huang et al. [31]410

learn factored representation and an individual change factor for different domains, and Feng et al.411

[32] extend it to cope with non-stationary changes. More recently, Wang et al. [33] and Pitis et al.412

[34] remove unnecessary dependencies between states and actions variables in the causal dynamics413

model to improve the generalizing capability in the unseen state, Hu et al. [35] use causal structure414

to discover the dependencies between actions and terms of the reward function in order to exploit415

these dependencies in a policy learning procedure that reduces gradient variance, Zhang et al. [36]416

using the causal structure to solve the single agent temporal credit assignment problem. Also, causal417

modeling is introduced to multi-agent task [37, 38], model-based RL [39], imitation learning [40]418

and so on. However, most of the previous work does not consider the offline setting and check out419

the contribution of which dimension of joint state and reward to the individual reward. Compared420

with the previous work, we investigate the causes for the generation of individual rewards from team421

rewards in order to help the decentralized policy learning.422

B Broader Impact Statements423

The work aims to advance the field of offline multi-agent reinforcement learning. First, we provide a424

general method to solve the multi-agent credit assignment problem in offline scenarios, which can425

provide performance improvements by using the existing algorithms as the backbones. Second, our426

algorithm improves algorithm credibility and explainability through identifiable causal structures,427

which can promote reliable and responsible decision-making in various fields.428

C Reproducibility Statements429

To promote transparent and accountable research practices, we have prioritized the reproducibility430

of our method. All experiments conducted in this study adhere to controlled conditions and well-431

known environments and datasets, with detailed descriptions of the experimental settings available432

in Section 4 and Appendix G. The implementation specifics for all the baseline methods and our433

proposed MACCA are thoroughly outlined in Section 3 and Appendix H.434
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D Limitation and Future Work435

One limitation of the current work is that the experiments focused on simulated environments rather436

than real-world scenarios. While the MPE and SMAC environments provide controlled testbeds to437

evaluate the approach, the performance of MACCA in practical multi-agent applications remains to438

be investigated. Future work could explore integrating the method with real robot systems or testing439

it on datasets collected from real-world multi-agent interactions to further validate its practicality and440

robustness.441

E Markov and Faithfulness Assumptions442

A directed acyclic graph (DAG), G = (V ,E), can be deployed to represent a graphical criterion443

carrying out a set of conditions on the paths, where V and E denote the set of nodes and the set of444

directed edges, separately.445

Definition E.1. (d-separation [41]). A set of nodes Z ⊆ V blocks the path p if and only if (1)446

p contains a chain i → m → j or a fork i ← m → j such that the middle node m is in Z, or447

(2) p contains a collider i → m ← j such that the middle node m is not in Z and such that no448

descendant of m is in Z. Let X , Y and Z be disjunct sets of nodes. If and only if the set Z blocks449

all paths from one node in X to one node in Y , Z is considered to d-separate X from Y , denoting450

as (X ⊥d Y | Z).451

Definition E.2. (Global Markov Condition [42, 41]). If, for any partition (X,Y ,Z), X is d-452

separated from Y given Z, i.e. X ⊥d Y | Z. Then the distribution P over V satisfies the global453

Markov condition on graph G, and can be factorizes as, P (X,Y | Z) = P (X | Z)P (Y | Z). That454

is, X is conditionally independent of Y given Z, writing as X ⊥⊥ Y | Z.455

Definition E.3. (Faithfulness Assumption [42, 41]). The variables, which are not entailed by the456

Markov Condition, are not independent of each other.457

Under the above assumptions, we can apply d-separation as a criterion to understand the conditional458

independencies from a given DAG G. That is, for any disjoint subset of nodes X,Y ,Z ⊆ V ,459

(X ⊥⊥ Y | Z) and X ⊥d Y | Z are the necessary and sufficient condition of each other.460

F Proof of Identifiability461

Proposition F.1 (Individual Reward Function Identifiability). Suppose the joint state st, joint action462

at, team reward Rt are observable while the individual rit for each agent are unobserved, and they463

are from the Dec-POMDP, as described in Eq 2. Then, under the Markov condition and faithfulness464

assumption, given the current time step’s team reward Rt, all the masks cs→r,i, ca→r,i, as well as465

the function f are identifiable.466

Assumption We assume that, ϵi,t in Eq 2 are i.i.d additive noise. From the weight-space view of467

Gaussian Process [43] and equation.6, equivalently, the causal models for rit can be represented as468

follows,469

rit = f(ci,s→r
t ⊙ st, c

i,a→r
t ⊙ at, i) + ϵr,t =Wf

Tϕr(st,at, i) + ϵi,t (10)

where ∀i ∈ [1, N ], and ϕr denote basis function sets.470

As st = {s11,t, ..., s1d1s,t, ..., s
N
1,t...., s

N
dNs ,t
} and at = {a11,t, ..., a1d1a,t, ..., a

N
1,t...., a

N
dNa ,t
}. We denote471

the variable set in the system by V = {V0, ...,VT }, where Vt = st ∪ at ∪ Rt, and the variables472

form a Bayesian network G. Following AdaRL [31], there are possible edges only from sik,t ∈ st473

to rit, and from aij,t ∈ at to rit in G, where k, j are dimension index in [1, ..., dNs ] and [1, ..., dNa ]474

respectively. In particular, the rit are unobserved, while Rt =
∑N
i=1 r

i
t is observed. Thus, there are475

deterministic edges from each rit to Rt.476

Proof of the Proposition B.1 We aim to prove that, given the team reward Rt, and the ci,s→r,477

ci,a→r and rit are identifiable. Following the above assumption, we can rewrite the Eq 2 to the478

following,479
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Rt =

N∑
i=1

rit

=

N∑
i=1

[
Wf

Tϕr(st,at, i) + ϵi,t
]

=Wf
T

N∑
i=1

ϕr(st,at, i) +

N∑
i=1

ϵi,t.

(11)

For simplicity, we replace the components in Eq 11 by,480

Φr,t =
N∑
i=1

ϕr(st,at, i),

Er,t =
N∑
i=1

ϵi,t.

(12)

Consequently, we derive the following equation,481

Rt =Wf
TΦr,t(Xt) + Er,t, (13)

where Xt := [st,at, i]
N
i=1 representing the concatenation of the covariates st , at and i, from i = 1482

to N .483

Then we can obtain a closed-form solution of Wf
T in Eq 13 by modelling the dependencies between484

the covariates Xt and response variables Rt. One classical approach to finding such a solution485

involves minimizing the quadratic cost and incorporating a weight-decay regularizer to prevent486

overfitting. Specifically, we define the cost function as,487

C(Wf ) =
1

2

∑
Xt,Rt∼D

(Rt −Wf
TΦr,t(Xt))

2 +
1

2
λ∥Wf∥2. (14)

where Xt and long-term returns Rt, which are sampled from the offline dataset D. λ is the weight-488

decay regularization parameter. To find the closed-form solution, we differentiate the cost function489

with respect to Wf and set the derivative to zero:490

∂C(Wf )

∂Wf
→ 0. (15)

Solving Eq 15 will yield the closed-form solution for Wf , as491

Wf = (λId +Φr,tΦr,t
T )−1Φr,tRt = Φr,t(Φr,t

TΦr,t + λIn)
−1Rt. (16)

Therefore, Wf , which indicates the causal structure and strength of the edge, can be identified492

from the observed data. In summary, given team reward Rt, the binary masks, ci,s→r, ci,a→r and493

individual rit are identifiable.494

Considering the Markov condition and faithfulness assumption, we can conclude that for any pair495

of variables Vk, Vj ∈ V , Vk and Vj are not adjacent in the causal graph G if and only if they are496

conditionally independent given some subset of {Vl | l ̸= k, l ̸= j}. Additionally, since there are no497

instantaneous causal relationships and the direction of causality can be determined if an edge exists,498

the binary structural masks ci,s→r and ci,a→r defined over the set V are identifiable with conditional499

independence relationships [44]. Consequently, the functions f in Equation 2 are also identifiable.500
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G Environments Setting501

We adopt the open-source implementations for the multi-agent particle environment [13]1 and502

SMAC[14]2. The tasks in the multi-agent particle environments are illustrated in Figures 3(a)-(c).503

The Cooperative Navigation (CN) task involves 3 agents and 3 landmarks, requiring agents to504

cooperate in covering the landmarks without collisions. In the Predator-Prey (PP) task, 3 predators505

collaborate to capture prey that is faster than them. Finally, the WORLD task features 4 slower506

cooperating agents attempting to catch 2 faster adversaries, with the adversaries aiming to consume507

food while avoiding capture.508

Agent 1

Agent 3

Agent 2

Landmark 1

Landmark 3

Landmark 2

Predator 1

Predator 3

Predator 2
Landmark 

(a) CN (b) PP (c) WORLD

Landmark 

Adversary 
Forest 

Landmark 

Adversary 1 

Forest 

Landmark 

Adversary 2 

Predator 1 
Predator 2 

Predator 3 Predator 4 

(d) Half-Cheetah

(e) 5m_vs_6m(d) 2s3z

Figure 3: Visualization of different environment in the experiments, (a)-(c): Multi-agent Particle
Environments (MPE), (d)-(e): StarCraft Micromanagement Challenges (SMAC)

Datasets. During training, we utilize the team reward as input, while for evaluation purposes, we509

compare the performance with the ground truth individual reward. As a result, the expert and random510

scores for the Cooperative Navigation, Predator-Prey and World tasks are as follows: Cooperative511

Navigation - expert: 516.526, random: 160.042; Predator-Prey - expert: 90.637, random: -2.569;512

World - expert: 34.661, random: -8.734;513

H Implementations514

H.1 Algorithm515

Algorithm 1 MACCA: Multi-Agent Causal Credit Assignment
1: for training step t = 1 to T do
2: Sample trajectories from D, save in minibatch B
3: for agent i = 1 to N do
4: Update the team reward Rt to r̂it in B (Eq 6)
5: Optimize ψm: ψm ← ψm − α∇ψm

Lm (Eq 4)
6: end for
7: Update policy π with minibatch B (Eq 7, Eq 8 or Eq 9)
8: Reset B ← ∅
9: end for

1https://github.com/openai/multiagent-particle-envs
2https://github.com/oxwhirl/smac
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H.2 Model Structure516

The parametric generative model ψm used in MACCA consists of two parts: ψg and ψr. The517

function of ψg is to predict the causal structure, which determines the relationships between the518

environment variables. The role of ψr is to generate individual rewards based on the joint state and519

action information. This prediction is achieved through a network architecture that includes three520

fully-connected layers with an output size of 256, followed by an output layer with a single output.521

Each hidden layer is activated using the rectified linear unit (ReLU) activation function.522

During the training process, the generative model is optimized to learn the causal structure and523

generate individual rewards that align with the observed team rewards. The model parameters are524

updated using Adam, to minimize the discrepancy between the predicted sum of individual rewards525

and the team rewards. The training process involves iteratively adjusting the parameters to improve526

the accuracy of the predictions.527

For a more detailed overview of the training process, including the specific loss functions and528

optimization algorithms used, please refer to Figure 2. The Figure provides a step-by-step illustration529

of the training pipeline, helping to visualize the flow of information and the interactions between530

different components of the generative model.531

Table 3: The Common Hyperparameters.
hyperparameters value hyperparameters value

steps per update 100 optimizer Adam
batch size 1024 learning rate 3× 10−4

hidden layer dim 64 γ 0.95
evaluation interval 1000 evaluation episodes 10

Table 4: Hyperparameters for OMAR, CQL and MACCA
OMAR τ CQL α MACCA λ1 MACCA λ2 MACCA rlr MACCA h

Expert 0.9 5.0 7e-3 7e-3 5e-2 0.1
Medium 0.7 0.5 5e-3 5e-3 5e-2 0.1

Medium-Replay 0.7 1.0 5e-3 7e-3 5e-2 0.1
Random 0.99 1.0 1e-7 1e-3 5e-2 0.1

H.3 Hyper-parameters532

The common hyperparameters are shown in Table.3. The neural network used in training is initialized533

from scratch and optimized using the Adam optimizer with a learning rate of 3× 10−4. The policy534

learning process involves varying initial learning rates based on the specific algorithm, while the535

hyperparameters for policy learning, including a discount factor of 0.95, are consistent across all536

tasks.537

The training procedure differs across tasks. For MPE, the training duration ranges from 20,000 to538

60,000 iterations, with longer training for behavior policies that perform poorly. The number of steps539

per update is set to 100.540

During each training iteration, trajectories are sampled from the offline data, and the generated541

individual reward is replaced with the team reward for policy updates. The training of ψcau is542

performed concurrently with ψrew. Validation is conducted after each epoch, and the average metrics543

are computed using 5 random seeds for reliable evaluation.544

The hyperparameters specific to training MACCA models can be found in Table 4. All experiments545

were conducted on a high-performance computing (HPC) system featuring 128 Intel Xeon processors546

running at 2.2 GHz, 5 TB of memory, and an Nvidia A100 PCIE-40G GPU. This computational547

setup ensures efficient processing and reliable performance throughout the experiments.548
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I Ablation Studies549

I.1 Online off-policy algorithms in the offline setting550

We considered testing online off-policy algorithms in the offline setting. To this end, we introduced551

several baselines in SMAC for comparison with MACCA, as shown in Table 5. The table below552

shows the results of the added baselines compared to SMAC tasks. It becomes apparent that when553

directly applied to the offline setting, online off-policy credit assignment algorithms consistently yield554

suboptimal performance. Our empirical findings underscore that while SHAQ-CQL indeed exhibits555

advancements QMIX-CQL, our MACCA-CQL clinches the SOTA performance across all tasks.556

Table 5: Compare with online off-policy credit assignment baselines in SMAC
Map Dataset SHAQ SQDDPG SHAQ-CQL QMIX-CQL I-CQL MACCA-CQL

2s3z Expert 0.10±0.03 0.05±0.01 0.79±0.03 0.73±0.02 0.70±0.09 0.88±0.07
Medium 0.05±0.03 0.07±0.01 0.24±0.01 0.22±0.03 0.20±0.03 0.27±0.02

5m_vs_6m Expert 0.02±0.01 0.00±0.00 0.10±0.03 0.03±0.01 0.02±0.02 0.63±0.02
Medium 0.00±0.00 0.00±0.00 0.06±0.01 0.01±0.01 0.01±0.00 0.19±0.01

6h_vs_8z Expert 0.00±0.00 0.00±0.00 0.02±0.01 0.00±0.00 0.00±0.00 0.59±0.01
Medium 0.00±0.00 0.00±0.00 0.04±0.02 0.00±0.00 0.01±0.01 0.17±0.00

I.2 Ablation for λ2557

We have conducted ablation experiments on λ2 and show the results in the Table 6.558

Table 6: The mean and the standard variance of average normalized score, sparsity rate ρar of ĉi,a→r
t

with diverse λ2 at different time step t in MPE-CN.

λ2 / t 1e4 5e4 1e5 2e5
0 17.4 ± 15.2(0.98) 93.1 ± 6.4 (1.0) 105 ± 3.5 (1.0) 107.7 ± 10.2 (1.0)

0.007 19.9 ± 12.4 (0.8 90.2 ± 7.1 (1.0) 108.8 ± 4.0 (1.0) 111.7 ± 4.3(1.0)
0.5 13.3 ± 11.1 (0.68) 100.5 ± 14.0 (0.84) 102.9 ± 16.4 (0.87) 108.4 ± 6.4 (0.98)
5.0 2.3 ± 9.8 (0.0) -1.3 ± 25.4 (0.34) 70.4 ± 18.0 (0.62) 100.1 ± 7.4 (0.75)

I.3 Ablation for h559

The selection of h can influence the sparsity of the causal graph. h can be selected by parameter560

sweeping. For simplicity, we use h = 0.1 for all tasks in the experiments, which leads to strong561

performance. we conduct additional experiments under different h in SMAC 5m_vs_6m Medium562

Dataset with MACCA-OMAR. The results are as follows,563

Table 7: The mean and the standard variance of the average normalized score, sparsity rate ρar of
ĉi,a→r
t with diverse h in SMAC 5m_vs_6m.

h Win Rate ρsr ρar Causal Model Loss
0 0.12 ± 0.02 1.0 ± 0.0 1.0 ± 0.0 0.15 ± 0.05

0.01 0.14 ±0.03 0.96 ± 0.12 0.72 ± 0.12 0.07 ± 0.01
0.05 0.16 ±0.02 0.81 ± 0.07 0.66 ± 0.04 0.09 ± 0.04
0.1 0.20 ± 0.04 0.73 ± 0.04 0.54± 0.08 0.05 ± 0.02
0.5 0.17 ± 0.01 0.52 ± 0.10 0.43 ± 0.07 0.12 ± 0.06

The causal graph become more sparse (fewer edges between nodes) with the increase of h. The564

performance of win rate goes up with the increase of h but decrease after h > 0.1, due to potential565

inclusion of redudance information.566

I.4 The Impact of Learned Causal Structure.567

We varied the value of λ1 in Eq 5 to control the density of the learned causal structure. Table 8568

presents the average cumulative reward and the density of the causal structure during the training569

process in the MPE-CN environment. The density of the causal structure ĉi,s→r
t , is calculated as570

ρsr =
∑N
i=1

1
dis

∑dis
k=1 s

i,s→r
k , where si,s→r

k represent is the value bigger than the threshold h. The571
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Table 8: The mean and the standard variance of average normalized score, density rate ρsr of ĉi,s→r
t

with diverse λ1 at different time step t in MPE-CN.
λ1 / t 1e4 3e4 5e4 1e5 2e5

0 -2.43 ± 8.01(0.98) -14.87± 7.71(0.90) -12.356± 5.83(0.81) 9.842± 18.89(0.77) 69.04 ± 19.69(0.72)
0.007 -7.88±5.36(0.94) 13.26±27.14(0.47) 60.18±26.14(0.28) 99.78± 19.50(0.15) 111.65± 4.28(0.13)
0.05 -3.66±12.14(0.90) 3.93±42.06(0.34) 10.04± 45.97(0.17) 23.61± 44.18(0.11) 75.81± 34.48(0.10)
0.5 -12.20±3.87(0.87) -16.19±5.53(0.24) -8.84± 7.16(0.11) 16.40± 21.04(0.07) 59.23± 35.29(0.01)

results indicate that as λ1 increases from 0 to 0.5, the causal structure becomes more sparse (ρsr572

decreases), resulting in less policy improvement. This can be attributed to the fact that MACCA may573

not have enough states to predict individual rewards, leading to misguided policy learning accurately.574

Conversely, setting a relatively low λ1 may result in a denser structure that incorporates redundant575

dimensions, hindering policy learning. Therefore, achieving a reasonable causal structure for the576

reward function can improve both the convergence speed and the performance of policy training. We577

also provide the ablation for λ2, please refer to Appendix.I.2.578

I.5 Ground Truth Individual Reward.579

Table 9: Average normalized scores for ground
truth individual reward comparison in MPE-CN

OMAR MACCA-OMAR
With GT 114.9 ± 2.4 113.7 ± 2.3
Without GT 43.7 ± 46.6 111.7 ± 4.3

In the MPE CN expert dataset, we investigate580

the influence of ground truth individual rewards581

on agent policy updates. Two scenarios are com-582

pared: agents update policies using ground truth583

individual rewards (GT), and agents primarily584

rely on team rewards (without GT). Notably,585

OMAR with GT directly employs individual re-586

wards for policy updates, while MACCA-OMAR with GT utilizes individual rewards as a supervisory587

signal, replacing team rewards in Eq 4. The results, presented in Table 9, demonstrate that MACCA-588

OMAR with GT achieves similar performance to OMAR with GT. Although MACCA-OMAR with589

GT exhibits slightly slower convergence and performance due to the learning of unbiased causal590

structures and individual reward functions, it overcomes this drawback by incorporating individual591

rewards as supervisory signals, mitigating the bias associated with relying solely on team rewards.592

More Importantly, MACCA-OMAR effectively addresses the challenge of exclusive team reward593

reliance by attaining a more comprehensive understanding of individual credits through the causal594

structure and individual reward function. These findings demonstrate that while MACCA-OMAR’s595

performance is slightly lower than that of OMAR under GT, it offers the advantage of mitigating the596

bias caused by relying solely on team rewards.597

I.6 The Impact of Causal Graph Types.598

Table 10: Average win rate in SMAC 5m_vs_6m map,
expert dataset.

Win Rate
MACCA (Fully Connected Graph) 0.38 ± 0.02
MACCA (Fixed Graph) 0.50 ± 0.01
MACCA (w.o h clipping) 0.66 ± 0.01
MACCA (w. h clipping) 0.73 ± 0.04

To investigate the performance under dif-599

ferent graph types, we consider three set-600

tings. The Fully Connected Graph assumes601

all variables are causally connected, while602

The Fixed Graph learns a static graph that is603

invariant to time by averaging the predicted604

masks ĉi,·→r
t overall time steps during train-605

ing. Our proposed graph setting, as described606

in Equation 3, learns a graph that depends on607

the current state st and action at. Table 10 presents the results of MACCA-OMAR under these608

different graph types. The Fully Connected Graph yields suboptimal performance due to its inability609

to differentiate individual agent contributions. The Fixed Graph shows marginal improvement over610

the Fully Connected Graph but remains limited in capturing the complex dynamic multi-agent causal611

relationships that vary with time. In contrast, our proposed dynamic graph setting achieves the highest612

performance by incorporating time-varying information. Additionally, we compared the performance613

of our method with and without h clipping, where the threshold h filters the causal mask. The results614

demonstrate that our method with h clipping outperforms the variant without it. This aligns with615

established practices in earlier works on DAG structural learning [45, 46], which show the importance616

of clipping to ensure edge weights converge to zero when working with finite datasets. Appendix I.3617

provides additional results of MACCA under different levels of h.618
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Figure 4: The figure visualizes the causal structure, showing the probability of causal edges from
blue (high probability) to yellow (low probability). (a) represents the causal structure ĉi,s→r

t between
the state of all agents (18 dimensions for each agent, 54 dimensions for joint state ) and the individual
reward (1 dimension for each agent). (b) represents the causal structure ĉi,a→r

t between the action of
each agent (2 dimensions for each agent, six dimensions for joint action) and the individual reward (1
dimension for each agent).

I.7 Visualization of Causal Structure.619

In Figure 4, we provide visualizations of two significant causal structures within the CN environment620

of MPE. To observe the causal structure learning process more easily, we initialize the ĉi,s→r
t as621

a normalized random number close to 1 and the ĉi,a→r
t close to 0. Over time, we notice that the622

causal structure ĉi,s→r
t shifts its focus from considering all dimensions of the agent state to primarily623

emphasizing the 4th to 10th dimensions of each agent. In this environment, the agent’s state comprises624

18 dimensions. Specifically, dimensions 0th to 4th us agent’s velocity and position, 5th to 9th capture625

the distance between the agent and three distinct landmarks, 10th to 13th reflect the distances between626

the agent and other agents, and dimensions 14th to 17th are related to communication, although not627

applicable in this experiment and thus considered irrelevant. In other words, the dimensions 4th to 9th628

and 10th to 13th are intuitively linked to individual rewards, aligning with the convergence direction629

of MACCA. With regard to the causal structure ĉi,a→r
t , as each agent’s actions involve continuous630

motion without extraneous variables, it converges to relevant states that contribute to individual631

credits for the team reward. The results support the interpretability of relationships between variables632

through the causal structure.633

I.8 Training paradigms634

Table 11: The win rate and loss of different training
paradigms by using MACCA-OMAR in SMAC
5m_vs_6m, expert dataset

Win Rate Causal Model Loss
TCB 0.62 ± 0.08 0.80 ± 0.02
TCPA 0.73 ± 0.04 0.81 ± 0.01

In MACCA, we train the causal model and pol-635

icy alternately rather than train the causal model636

at the beginning. The benefit of alternated train-637

ing is that the reward model is less accurate at638

the early stage of training, which encourages639

agents to extract diverse behaviours that go be-640

yond the dataset. Similar to [47], they discuss641

the usefulness of random rewards prior. We con-642

ducted experiments as detailed in Table 11. Here, the TCB stands for training the causal model at the643

beginning, and the TCPA is training the causal model and policy alternately. The causal model is644

initially trained with the same training time steps as the alternating setting, which is 10 million steps.645

According to the result, for both paradigms, the reward model loss converged to comparable levels,646

and TCPA showed a clear improvement in the win rate.647
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