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ABSTRACT

Non-contrastive self-supervised learning (SSL) is a popular paradigm for learning
representations by explicitly aligning positive pairs. However, due to specialized
implementation details, the underlying working mechanism of non-contrastive
SSL remains somewhat mysterious. In this paper, we investigate the implicit bias
of non-contrastive learning with a concise framework, namely SimXIR. SimXIR
optimizes the online network by alternatively taking the online network of the last
round as the target network, without requiring asymmetric tricks and momentum
updates. Notably, the expectation minimization inherent to SimXIR can be re-
formulated as the neighbor-averaging dynamics, in which each representation is
iteratively replaced with the average representation of its neighbors. Moreover, we
introduce the concept of neighbor-connected groups that organize samples through
the neighboring paths on data, and assume the input sample space is composed
of multiple disjoint neighbor-connected groups. We theoretically prove that the
concise dynamics of SimXIR exhibit two intriguing properties: contraction of
neighbor-connected groups and alienation between disjoint groups, which resem-
ble intra-class compactness and inter-class separability in classification and help
explain why non-contrastive SSL can prevent collapsed solutions. Inspired by the
theoretical results, we propose a novel step for self-supervised pre-training—self-
supervised fine-tuning, and leverage SimXIR to further enhance representations of
off-the-shelf SSL models. Experimental results demonstrate the effectiveness of
SimXIR in improving self-supervised representations, ultimately achieving better
performance on downstream classification tasks.

1 INTRODUCTION

Learning high-quality representations plays a critical role in various computer vision tasks. Traditional
supervised learning heavily relies on extensive labeled data, which can be expensive or unattainable
in practical scenarios (Deng et al., 2009a). In recent years, self-supervised representation learning has
emerged as a potent alternative, delivering competitive or even superior performance in downstream
tasks compared to supervised methods, while without relying on human annotations (Bardes et al.,
2022; Tomasev et al., 2022; Xie et al., 2022; Assran et al., 2023; Oquab et al., 2023).

One prevalent paradigm in self-supervised learning (SSL) within computer vision involves generating
multiple views of the same image through diverse hand-crafted data augmentations. These views are
then optimized to agree under different conditions. Contrastive learning, a popular line of SSL, aims
to bring the representations of different views of the same sample (positive pairs) closer together
while pushing apart the representations of views from different samples (negative pairs) (Ye et al.,
2019; Chen et al., 2020; He et al., 2020; Tao et al., 2022). Contrasting negative pairs serves the
crucial role of preventing trivial solutions for contrastive learning, where all data representations
collapse into a single vector. Another branch of SSL takes a non-contrastive approach, which focuses
solely on aligning positive pairs to capture the invariance of transformations or distortions (Grill et al.,
2020; Chen and He, 2021; Caron et al., 2021; Zbontar et al., 2021). To avoid collapsed solutions,
state-of-the-art non-contrastive SSL methods rely on specialized network architectures, including
asymmetric structures between online and target networks (using projection and prediction heads)
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Figure 1: Illustrations of SimXIR and self-supervised fine-tuning. (a) SimXIR architecture. Two
augmented views of one sample are processed by the online network fΘ and the target network fΘt−1

frozen (i.e., not be updated) as the online network from the last round. The model minimizes ℓ2
loss between both sides. It uses neither negative pairs nor additional MLP layers as projector and
predictor. (b) New pre-training paradigm. It includes the standard self-supervised representation
learning and the proposed SimXIR for self-supervised fine-tuning to achieve boosted representations.

(Grill et al., 2020; Caron et al., 2021), momentum updates for the target network (Tarvainen and
Valpola, 2017; He et al., 2020), and Siamese network architectures (Chen and He, 2021).

While non-contrastive SSL achieves remarkable performance without negative pairs, the underlying
mechanics remains somewhat mysterious. Several studies in the literature have attempted to provide
theoretical investigations on non-contrastive SSL using simplified models (Tian et al., 2021; Wang
et al., 2021; Wei et al., 2021; Wen and Li, 2022; Zhang et al., 2022; Zhuo et al., 2023; Xue et al.,
2023). For instance, Tian et al. (2021) utilized a two-layer linear model to explain why BYOL (Grill
et al., 2020) and SimSiam Chen and He (2021) representations do not collapse to zero. Wang et al.
(2021) demonstrated that non-contrastive SSL in linear networks can reduce sample complexity on
downstream tasks. Zhuo et al. (2023) hypothesize that asymmetric modules behave as low-pass online
spectral filters which create a rank difference in features to alleviate either complete or dimensional
feature collapse. Nevertheless, these investigations have primarily focused on the asymmetric designs
in non-contrastive SSL and have not delved into the fundamental principles behind the paradigm of
only aligning positive pairs. Consequently, a pertinent question arises:

Is there an implicit bias that allows non-contrastive SSL to avoid collapsed solutions
even in the absence of asymmetric designs?

In this paper, we make the first attempt by introducing a Simple and eXplainable framework for
understanding and Improving self-supervised Representations without any asymmetric designs,
namely SimXIR. As illustrated in Fig. 1(a), SimXIR optimizes the online network (which only
contains the encoder) by alternatively taking the online network of the last round as the target
network, without asymmetric designs between two branches. This streamlined framework offers
more mathematical opportunities to understand the inherent properties of non-contrastive SSL.
We show that SimXIR can be reformulated as the neighbor-averaging dynamics which involves
a neighborhood-based message interaction like label propagation (Zhu et al., 2003), that is, each
representation is iteratively replaced with the average representation in the neighborhood.

One of the key contributions of this paper is the revelation of the implicit bias inherent in SimXIR,
specifically the identification of contraction and alienation properties in non-contrastive SSL. Al-
though SimXIR may seem simplistic at first glance due to the lack of sophisticated mechanisms to
prevent collapsed solutions, our analysis surprisingly reveals that it carries an implicit bias against
representation collapsing when viewed through the lens of neighbor-averaging dynamics. In this
context, we introduce the concept of neighbor-connected groups in the data, a perspective of grouping
samples based on their connectedness through neighboring paths. Notably, these neighbor-connected
groups are defined by intrinsic data properties rather than semantic labels, broadening our perspective
beyond traditional notions like "class" and enhancing the theoretical analysis of SSL. Furthermore,
we introduce the separation assumption, asserting that the input sample space comprises disjoint
neighbor-connected groups, which extends the classical instance-based separability concept to a
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novel form: group-based separability. Building on this definition and assumption, we theoretically
establish that the concise dynamics of SimXIR embody two compelling properties:

(i) Contraction of neighbor-connected groups, indicating a reduction in the maximal distance
between representations within a group, thereby facilitating the alignment of positive pairs.

(ii) Alienation between disjoint groups, signifying an increase in the minimal distance between two
disjoint groups. This property helps prevent all representations from collapsing into a constant value.

In analogy with the concepts of intra-class compactness and inter-class separability in classification
tasks, these two properties theoretically support SimXIR’s ability to learn discriminative representa-
tions. This discovery unveils a novel implicit bias in non-contrastive SSL: SimXIR implicitly brings
representations of samples in the same neighbor-connected group closer together while simultane-
ously pushing those of disjoint groups further apart, effectively preventing collapsed solutions.

To validate the effectiveness of SimXIR, we introduce a novel step in self-supervised pre-training,
namely self-supervised fine-tuning, instead of relying on SimXIR as a standalone framework for
training a model from random initialization. To the best of our knowledge, this approach has not
been explored in the existing literature. As empirically demonstrated in Section 5, self-supervised
fine-tuning in combination with SimXIR exhibits the potential to further enhance representations
compared to various off-the-shelf SSL models.

Our main contributions are highlighted as follows:

– We introduce SimXIR, a simple yet theoretically sound framework for understanding and enhancing
non-contrastive SSL. This innovative framework dispenses with the need for additional MLP layers,
maintaining a concise form through neighbor-averaging dynamics. Additionally, it serves as a
valuable self-supervised fine-tuning module to enhance representations across various SSL models.

– We introduce the concept of neighbor-connected groups and conduct a thorough theoretical ex-
amination of the role played by SimXIR-induced neighbor-averaging dynamics. Furthermore, we
identify two critical properties associated with our framework: the contraction of neighbor-connected
groups and the alienation between disjoint groups. This discovery sheds light on a new implicit bias
of non-contrastive SSL and aids in understanding why it avoids collapsing to constant solutions.

– We offer comprehensive experiments involving the fine-tuning of off-the-shelf SSL models with
SimXIR. The results, which encompass downstream linear classification and kNN classification,
demonstrate the effectiveness of SimXIR in elevating self-supervised representations.

2 NEIGHBOR-AVERAGING DYNAMICS

Figure 2: Illustration of some con-
cepts B(x), N (x), N (2)(x), and a
neighboring path between x and y,
where x1 ∈ N (2)(x).

Notation. First of all, we offer definitions of some notations
to facilitate the subsequent formulation. We denote X as
the input space that can be implicitly partitioned into a few
groups, and denote A as the set of transformations composed
of various data augmentations. As illustrated in Fig. 2, we
define B(x) = {x′ : ∃a ∈ A such that ∥x′ − a(x)∥2 ≤ r} as
the points within distance r from certain data augmentations
of a sample x drawn from X ; define the neighborhood of x as
N (x), which consists of the set of points whose transformation
sets overlap with that of x:

N (x) = {x′ : B(x′) ∩ B(x) ̸= ∅}. (2.1)

We can further define the n-th (n ≥ 2) order neighborhood of
x recursively:

N (n)(x) = {x′ : N (x′) ∩N (n−1)(x) ̸= ∅}, (2.2)

where the 1-st order neighborhood N (1)(x) = N (x). Obviously, it can be derived that x ∈ B(x) ⊆
N (1)(x) ⊆ · · · ⊆ N (n−1)(x) ⊆ N (n)(x).

Non-contrastive Self-supervised Learning. Different from contrastive approaches (Chen et al.,
2020; He et al., 2020) that encourage closer representations of positive pairs than negative pairs,
non-contrastive SSL works by enlarging agreement between positive pairs only. Representative
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non-contrastive SSL schemes include BYOL (Grill et al., 2020) and SimSiam (Chen and He, 2021),
for which a unified SSL objective can be formulated as

Ex∈XEx1,x2∈A(x)L(fΘ(x1), gΘ′(x2)) ≈ Ex∈XEx′∈N (x)L (fΘ(x), gΘ′(x′)) , (2.3)

where L represents the loss function (usually using the ℓ2 loss), fΘ and gΘ′ denote the online and
target networks, respectively. In non-contrastive SSL, the goal is to optimize parameters Θ of the
online network by minimizing the loss above with the target network gΘ′ being frozen with the
stop-gradient operation. To prevent collapsed solutions, theoretical and empirical results show that it
is necessary to design fΘ and gΘ′ with asymmetric structures (Tian et al., 2021).

As shown in Eq. (2.3), for each x ∈ X , we optimize Θ by minimizing Ex′∈N (x)∥fΘ(x)− gΘ′(x′)∥22.
By further deriving this expression, we can obtain an equivalent formulation, which involves min-
imizing ∥fΘ(x) − Ex′∈N (x)gΘ′(x′)∥22 to optimize Θ. It is worth noting that, (Grill et al., 2020;
Chen and He, 2021) have demonstrated that the conditional risk minimizer can be easily derived
as fΘ∗(x) = Ex′∈N (x)gΘ′(x′). It indicates that fΘ∗(x) can be represented as the average of target
representations in the neighborhood N (x).

Neighbor-Averaging Dynamics. Although the above form is concise and aesthetically pleasing,
some of its underlying properties remain not well understood. This is primarily due to the intractability
of neural networks, including the asymmetric structures of the online and target networks (Grill et al.,
2020; Caron et al., 2021), the momentum updates of the target network (Tarvainen and Valpola, 2017;
He et al., 2020; Chen et al., 2021), and Siamese network (Bromley et al., 1993; Chen and He, 2021).
The limitations of the existing non-contrastive SSL motivate us to pursue an even more succinct
and explainable framework. To this end, we introduce a simple, explainable and theoretically sound
framework (a.k.a, SimXIR) to understand and improve self-supervised representations. The main idea
is to substitute the target network gΘ′ with the online network of the last round, thus the conditional
risk minimizer is reformulated as a series of iterations involving the replacement of representations
with their neighborhood-based average:

fΘt
(x) = Ex′∈N (x)fΘt−1

(x′). (2.4)

It is worth noting that throughout this paper, for brevity we continue to denote the online network as
fΘ. However, unlike BYOL, SimSiam and Hua et al. (2021), fΘ only contains the encoder, without
additional MLP layers as the projector and predictor. Despite its apparent simplicity, this replacement
plays a crucial role in eliminating asymmetric tricks and providing more mathematical opportunities
to comprehend the intrinsic properties of non-contrastive SSL. In the subsequent sections, we will
offer a detailed introduction to the proposed framework and its theoretical insights.
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Figure 3: Clustering accuracy of per-
forming neighbor-averaging dynamics
(where N (x) = {x′ : ∥x′−x∥ ≤ 0.4})
after clustering on Iris (Fisher, 1936).

Remark. Beyond the realm of self-supervised learning, the
neighbor-averaging dynamics in Eq. (2.4) can be seen as a
neighborhood-based message interaction, akin to affinity prop-
agation (Frey and Dueck, 2007) in clustering and label prop-
agation (Zhu et al., 2003) in semi-supervised learning. For
instance, when the representation function f is reduced to the
label function, the neighbor-averaging dynamics encompass
the iterative process of label propagation. In this context, it can
be expressed as ft(x) =

∑
x′ p(x′|x)ft−1(x

′), where p(x′|x)
that denotes the probability of x′ being in the neighborhood
of x can be regarded as the edge weight between two vertices
x′ and x. As shown in Fig. 3, this scheme further boosts the
clustering performance, such as k-Means from 89% to 96%.

3 METHODOLOGY

In this section, we elaborate the proposed method that coincides closely with the dynamics in
Eq. (2.4). Our method not only offers a streamlined framework to provide mathematical insights
for non-contrastive SSL, but also can serve as a useful self-supervised fine-tuning module under the
paradigm of self-supervised pre-training.

The architecture of the proposed SimXIR is illustrated in Fig. 1(a). Two randomly augmented views
a(x) and a′(x) from a sample x are taken as input, which are subsequently encoded by the online
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network fΘ and the target network fΘt−1
(the frozen online network from the last round) to generate

two representations z and z′, respectively. The produced two embedding vectors are used to optimize
the online network fΘ by minimizing the ℓ2 loss: ℓ2(z, z′) = ∥z − z′∥22, where ∥ · ∥2 denotes the
ℓ2-norm. The parameter Θ is optimized by minimizing the following expected risk:

R =Ex∈XEa,a′∼A∥fΘ(a(x))− fΘt−1(a
′(x))∥22. (3.1)

Self-supervised Fine-tuning. Compared with BYOL (Grill et al., 2020), SimSiam (Chen and He,
2021), and the framework L(Θ) = Ex∈XEa,a′∼T ∥fΘ(a(x))− fΘ(a

′(x))∥22 proposed in (Hua et al.,
2021), SimXIR distinguishes itself by utilizing fΘt−1

, the frozen online network from the previous
round, as the target network for updating the current online network. Notably, it does not necessitate
additional MLP layers or surrogate objective functions. As depicted in Fig. 1(b), SimXIR introduces
a novel step in self-supervised pre-training, namely self-supervised fine-tuning. Instead of functioning
as a standalone framework for training a model from random initialization, SimXIR complements the
existing SSL process, leading to enhanced representations, as demonstrated by experimental results
in Section 5. The operational flow of SimXIR is detailed in Algorithm 1 in the Appendix.

A Variant of SimXIR. By reformulating the expected risk in Eq. (3.1) with respect to the sample x
and its neighbors, we can obtain the following expression:

R ≈ Ex∈XEx′∈N (x)|fΘ(x)− fΘt−1
(x′)|22 = R′, (3.2)

which indicates that the risk is approximately equal to the expectation of the conditional riskRc(x) =
Ex′∈N (x)|fΘ(x)− fΘt−1

(x′)|22, i.e.,R′ = Ex∈X [Rc(x)]. This formula also gives rise to a variant of
SimXIR, which is used for self-supervised fine-tuning and leveragesR′ as the objective function to
optimize the online network. The empirical version ofR′ can be easily implemented by feeding the
original sample into the online network and one of its neighbors into the target networks. Specifically,
Step 7 in Algorithm 1 can be replaced with ℓi ← |fΘ(xi)−fΘt−1

(a′(xi))|22. This suggests a potential
attempt at non-contrastive SSL, as it reduces the requirement of two positive augments to only one.

Furthermore, we can derive that the global minimizer ofRc implies the dynamics in Eq. (2.4), where
the representation function fΘ(x) is iteratively replaced by the mean representation of its neighbors.
This result highlights the implicit relationship established by SimXIR between the sample x and its
neighborhood N (x), which will be thoroughly explored and dissected in the subsequent section.

4 THEORETICAL UNDERSTANDING OF NEIGHBOR-AVERAGING DYNAMICS

This section focuses on the theoretical investigation of the implicit bias of neighbor-averaging
dynamics on self-supervised representations. We begin by defining the concept of neighbor-connected
groups and assuming that the input space comprises disjoint neighbor-connected groups. We then
prove that the concise dynamics in Eq. (2.4) exhibit a bias towards the contraction of neighbor-
connected groups and the alienation between disjoint groups, which helps prevent collapsed solutions.
This is the first work to identify these properties of non-contrastive SSL. Given the common use of ℓ2
normalization in the field, we also analogously investigate the behavior of SimXIR in the spherical
constrained case where representations are ℓ2-normalized. All proofs can be found in Appendix B.

4.1 NEIGHBOR-CONNECTED GROUP

The fundamental data property we leverage is the neighboring connection of data within the same
group (which includes but is not limited to “class" or “cluster"). The main intuition is that, while a
random pair of samples from the same group may be far apart, they would be connected by sequences
of samples (including raw samples and their augmentations) that are referred to as neighbors within
the same group (see Fig. 2). Formally, we define the concept of neighbor-connected group as follows:
Definition 4.1 (Neighbor-Connected Group). We call an implicit group G neighbor-connected, if any
two points in G can be connected with a neighboring path, i.e., ∀x, y ∈ G, ∃m ∈ N, ∃x1, ..., xm ∈ G,
such that x1 ∈ N (x), x2 ∈ N (x1), ..., xm ∈ N (xm−1), and y ∈ N (xm).

The structural property of neighbor-connected groups, namely the neighboring path, can be attributed
to the rich augmentation techniques in SSL, including Gaussian blur, image solarization, color
distortion, and random cropping, etc (Chen et al., 2020; Chen and He, 2021). These augmentations
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Figure 4: Illustration of the behavior of the representation function (a-d, f-i) and group means (e,j)
following Eq. (2.4) (a-e) and Eq. (4.2) (f-j). We divide the input space to four neighbor-connected
groups, where each group’s samples are randomly generated and their representations are initialized
as random points (ensuring separated group means). In plots (e) and (j), the black boxes represent
the zoomed-in views. For both unconstrained and spherical constrained cases, the representations
within each group gradually contract, tending to collapse into a single point (as shown in Theorem
4.3 and 4.6). Meanwhile, the distance between groups increases (as per Theorem 4.4 and 4.7) while
the movement of group means remains essentially unchanged (as hypothesized in Conjecture 4.5).

significantly enrich the diversity of samples from the initially sparse input space, making it possible
to connect and organize samples into cohesive groups. For brevity, we can define the input space X as
the set of original samples and their neighbors, with the majority of these neighbors being augmented
views. Coincidentally, prior works have proposed the similar concepts, such as expansion property
(Wei et al., 2021) and augmentation graph (HaoChen et al., 2021). These concepts depend on the
assumption of data continuity and serve to elucidate the interconnectedness of augmented samples.

Accordingly, we provide the separation assumption, which states that the input space is separable:

Assumption 4.2 (Separation). We assume that the input space X is composed of disjoint neighbor-
connected groups, i.e., X = ∪ki=1Gi, where Gi is neighbor-connected, and Gi ∩ Gj = ∅, ∀i ̸= j.

Assumption 4.2 extends the traditional instance-based separability to the new group-based separability,
and thus provides a broader perspective for the subsequent theoretical analysis. Due to the absence of
human annotations, the formation of neighbor-connected groups is attributed to data characteristics
rather than the semantic concept of class, and the number of such groups may far exceed class number.
In the following, we will theoretically investigate some intriguing properties of SimXIR.

4.2 PROPERTIES OF SIMXIR

In this subsection, we theoretically prove that the neighbor-averaging dynamics of SimXIR in Eq. (2.4)
exhibit two intriguing properties: contraction and alienation, which also hold in commonly-used
spherical constrained cases. Additionally, we conjecture that the average representation of each
group is nearly-invariant during SimXIR’s iterations. These properties shed light on the underlying
properties of non-contrastive SSL and have the potential to contribute to boosted representations.

4.2.1 CONTRACTION OF NEIGHBOR-CONNECTED GROUPS

Non-contrastive SSL that only aligns positive pairs reduces the distance between a sample and its
neighbors to capture the underlying invariance to transformations or distortions (Von Kügelgen
et al., 2021; Huang et al., 2022; He et al., 2022; Tomasev et al., 2022; Kong and Zhang, 2023).
Intuitively, the reduction in distance between the representations in a neighborhood N (x) will
expand to N (2)(x), N (3)(x),..., and eventually contracting the whole group G, i.e., resulting to a
contraction of the representation space {fΘ(x) : x ∈ G}. Specifically, we formalize the contraction
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Table 1: Top-1 accuracy (%) under k-nearest neighbors classification (where cosine / Euclidean
distances are used as metric) on benchmark datasets SVHN and CIFAR-10/-100. Red and blue
numbers denote positive gain and negative loss after self-supervised fine- tuning by SimXIR.

Method Number of Neighbors k Number of Neighbors k Number of Neighbors k
5 11 21 5 11 21 5 11 21

Dataset SVHN CIFAR-10 Results on CIFAR-100

MoCo 88.675 / 87.827 89.467 / 88.833 89.813 / 89.451 85.36 / 83.28 85.65 / 84.08 85.63 / 83.97 51.33 / 48.48 51.94 / 50.60 52.89 / 51.18
MoCo∗ 91.714 / 91.253 92.114 / 92.048 92.356 / 92.333 85.85 / 84.08 86.00 / 84.70 85.82 / 85.09 51.62 / 49.26 53.33 / 51.75 53.13 / 51.86

+3.039 / +3.426 +2.647 / +3.215 +2.543 / +2.882 +0.49 / +0.80 +0.35 / +0.62 +0.19 / +1.12 +0.29 / +0.78 +1.39 / +1.15 +0.24 / +0.68

SimCLR 90.377 / 90.201 90.934 / 90.927 91.103 / 91.230 85.24 / 84.39 85.92 / 85.16 85.91 / 85.00 51.48 / 49.11 52.62 / 52.19 53.13 / 52.35
SimCLR∗ 92.221 / 91.968 92.694 / 92.659 92.878 / 92.832 85.38 / 84.87 86.01 / 85.34 85.95 / 85.30 51.58 / 49.58 53.13 / 51.56 53.29 / 52.54

+1.844 / +1.767 +1.760 / +1.732 +1.775 / +1.602 +0.14 / +0.48 +0.09 / +0.18 +0.04 / +0.30 +0.10 / +0.47 +0.51 / -0.63 +0.16 / +0.19

BYOL 91.134 / 90.927 91.372 / 91.426 91.537 / 91.737 86.84 / 84.88 87.15 / 85.73 86.99 / 86.17 51.86 / 50.16 53.45 / 52.16 53.64 / 52.30
BYOL∗ 92.986 / 92.840 93.212 / 93.339 93.201 / 93.397 87.18 / 85.49 87.43 / 86.52 87.12 / 86.51 53.21 / 51.00 54.48 / 53.16 54.70 / 53.70

+1.852 / +1.913 +1.840 / +1.913 +1.664 / +1.660 +0.34 / +0.61 +0.28 / +0.79 +0.13 / +0.34 +1.35 / +0.84 +1.03 / +1.00 +1.06 / +1.40

SimSiam 86.056 / 85.871 86.832 / 86.782 87.197 / 86.962 85.34 / 84.08 85.48 / 84.92 85.47 / 85.15 46.71 / 45.18 47.81 / 47.14 48.09 / 47.39
SimSiam∗ 89.344 / 89.252 90.035 / 89.828 90.208 / 90.147 85.35 / 84.35 85.69 / 85.22 85.65 / 85.42 46.73 / 45.33 48.45 / 47.91 48.80 / 48.41

+3.288 / +3.381 +3.203 / +3.046 +3.011 / +3.185 +0.01 / +0.27 +0.21 / +0.30 +0.18 / +0.27 +0.02 / +0.15 +0.64 / +0.77 +0.71 / +1.02

phenomenon as a decrease in the diameter supx,y∈G ∥fΘ(x)− fΘ(y)∥2. We theoretically prove that
the representations extracted by fΘ(·) on any neighbor-connected group will be contracted during
iterations of neighbor-averaging representation replacement.

Theorem 4.3 (Contraction of Neighbor-Connected Groups). For any neighbor-connected group
G ⊆ Rd1 and any bounded representation function fΘ0

: Rd1 → Rd2 , considering the dynamics
in Eq. (2.4), we have supx,y∈G ∥fΘt

(x) − fΘt
(y)∥2 < supx,y∈G ∥fΘt−1

(x) − fΘt−1
(y)∥2 unless

supx,y∈G ∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

Theorem 4.3 shows that if each sample in a group has its representation replaced by the mean
representation of its neighboring samples, then the representations within this group will contract
or even converge to a single point. This contraction property provides valuable insights into the
understanding of the gathering of representations within groups and also has important implications
for improving downstream classification tasks in which compact representations are often desirable
(Wang and Isola, 2020; Papyan et al., 2020; HaoChen et al., 2021; Zhou et al., 2022). As empirically
proven in Figure 4(a-e), the representations of each group eventually contract into a smaller region
and are more discriminative from other groups with an obvious margin.

4.2.2 ALIENATION BETWEEN DISJOINT GROUPS

As aforementioned, the contraction of neighbor-connected groups is somewhat analogous to the de-
sired property of intra-class compactness in classification. In this regard, we propose a notion similar
to maximizing inter-class separability, i.e., the alienation of any two disjoint neighbor-connected
groups, which is formulated as the increase in the minimal distance infx1∈G1,x2∈G2

∥fΘ(x1) −
fΘ(x2)∥2 between any two disjoint groups G1 and G2. The formal description is as follows:

Theorem 4.4 (Alienation Between Disjoint Groups). For any two different neighbor-connected
groups G1,G2 ⊆ Rd1 and any bounded representation function fΘ0

: Rd1 → Rd2 , con-
sidering the dynamics in Eq. (2.4), if infx1∈G1,x2∈G2

∥fΘ0
(x1) − fΘ0

(x2)∥2 > 0, then we
have infx1∈G1,x2∈G2

∥fΘt
(x1) − fΘt

(x2)∥2 > infx1∈G1,x2∈G2
∥fΘt−1

(x1) − fΘt−1
(x2)∥2 unless

supx,y∈G1
∥fΘt−1

(x)− fΘt−1
(y)∥2 = supx,y∈G2

∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

In Theorem 4.4, the condition infx1∈G1,x2∈G2
∥fΘ0

(x1)−fΘ0
(x2)∥2 > 0 meaning that the initialized

representations of G1 and G2 are disjoint. It seems to be strict, but makes sense in conjunction
with Theorem 4.3, because there may exist a t′ ∈ N+ that satisfies infx1∈G1,x2∈G2 ∥fΘt′ (x1) −
fΘt′ (x2)∥2 > 0 while Theorem 4.3 ensures that the representations within each group are always
contracting. The alienation between disjoint groups intuitively plays a vital role in the separability
between groups and also partly prevents all representations from collapsing to the same vector.

4.2.3 NEAR INVARIANCE OF GROUP MEANS

According to the dynamics in Eq. (2.4), we can informally state that, for any neighbor-connected
group Gi, its mean representation Ex∈GfΘ(x) would be nearly-invariant:

7
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Conjecture 4.5 (Near Invariance of Group Means). For any bounded representation function fΘ0
:

Rd1 → Rd2 , considering the dynamics ∀x ∈ X , fΘt
(x) = Ex′∈N (x)fΘt−1

(x′) for t ∈ N+, we have

µt
i = Ex∈GifΘt(x) = Ex∈GiEx′∈N (x)fΘt−1(x

′) ≈ Ex∈GifΘt−1(x) = µt−1
i . (4.1)

The above conjecture suggests that these group means could serve as anchors for their contraction. As
illustrated in Fig. 4(e), despite the fact that the mean representations of each group are dynamic, their
movement is nearly unchanged. This has significant practical implications for model initialization to
avoids collapsed solutions: models with random weight initialization may make group means close to
each other, and as a result, SimXIR could not learn useful representations from a randomly initialized
model. Accordingly, we do not learn SimXIR from scratch, but use it to fine-tune off-the-shelf SSL
models, which is also referred to as self-supervised fine-tuning.

4.3 PROPERTIES IN SPHERICAL CONSTRAINED CASES

In SSL, a commonly-used operation is to perform ℓ2-normalization to constrain representations on
the unit sphere, i.e., fΘ(x) = hΘ(x)

∥hΘ(x)∥2
(where hΘ(·) denotes the original representation model),

and the objective of ℓ2 loss becomes maximizing the cosine similarity between online and target
representations. The dynamics of SimXIR in spherical constrained cases can be formulated as

fΘt
(x) = Ex′∈N (x)fΘt−1

(x′)/∥Ex′∈N (x)fΘt−1
(x′)∥2, (4.2)

Table 2: Top-1/-5 accuracy (%) under lin-
ear evaluation on SVHN and CIFAR-10/-100,
where ∗ and † denote SimXIR (see Eq. (3.1))
and its variant (see Eq. (3.2)), respectively. Red
and blue numbers denote positive gain and neg-
ative loss after self-supervised fine-tuning by
SimXIR and its variant, respectively.

Methods Datasets
SVHN CIFAR-10 CIFAR-100

MoCo 92.094 / 99.024 86.82 / 99.54 54.77 / 83.90
MoCo∗ 92.179 / 99.082 86.83 / 99.58 55.51 / 84.07

+0.085 / +0.058 +0.01 / +0.04 +0.74 / +0.17

MoCo† 94.004 / 99.282 87.01 / 99.57 56.37 / 84.74
+1.910 / +0.258 +0.19 / +0.03 +1.60 / +0.84

SimCLR 92.340 / 99.101 86.96 / 99.54 54.49 / 83.19
SimCLR∗ 92.494 / 99.163 87.13 / 99.52 54.68 / 83.60

+0.154 / +0.062 +0.17 / -0.02 +0.19 / +0.41

SimCLR† 94.007 / 99.362 87.04 / 99.61 55.47 / 84.05
+1.667 / +0.261 +0.08 / +0.07 +0.98 / +0.86

BYOL 90.681 / 98.644 86.79 / 99.38 51.85 / 79.58
BYOL∗ 91.679 / 98.794 87.20 / 99.43 53.00 / 80.37

+0.998 / +0.150 +0.41 / +0.05 +1.15 / +0.79

BYOL† 93.135 / 99.070 87.34 / 99.46 53.83 / 81.15
+2.454 / +0.418 +0.54 / +0.08 +2.04 / +1.60

SimSiam 87.243 / 98.402 85.58 / 99.45 44.29 / 75.64
SimSiam∗ 88.530 / 98.767 85.95 / 99.53 45.74 / 76.16

+1.287 / +0.365 +0.37 / +0.08 +1.45 / +0.52

SimSiam† 91.380 / 99.059 86.39 / 99.56 46.50 / 77.33
+4.137 / +0.657 +0.81 / +0.11 +2.21 / +1.69

which is elaborated in supplementary materials. As
shown in Figure 4(g-l), each group on the circle
obviously exhibits the properties of contraction and
alienation. We proceed to prove these two proper-
ties in spherical constrained cases:
Theorem 4.6 (Contraction in Spherical Constrained
Cases). For any neighbor-connected Group G ⊆
Rd1 and any bounded function fΘ0 : Rd1 →
Sd2−1, considering the dynamics in Eq. (4.2) if
the angle ∠(fΘt−1(x), fΘt−1(y)) < 180◦ for any
x, y ∈ G, then we have supx,x′∈G ∥fΘt

(x) −
fΘt(x

′)∥2 < supx,x′∈G ∥fΘt−1(x) − fΘt−1(x
′)∥2

unless supx,y∈G ∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

As can be seen, Theorem 4.6 requires the angle
∠(fΘt−1(x), fΘt−1(y)) < 180◦ for any x, y ∈ G.
We can achieve this requirement by incorporating
a ReLU layer (Nair and Hinton, 2010) before ap-
plying the ℓ2 normalization to guarantee the con-
traction of neighbor-connected groups. In fact, this
is the commonly used setting in ResNet (He et al.,
2016). The alienation property in spherical con-
strained cases can also be proved:
Theorem 4.7 (Alienation in Spherical Constrained
Cases). For any two disjoint neighbor-connected
groups G1,G2 ⊂ Rd1 and any bounded representation function fΘ0

: Rd1 → Rd2 , con-
sidering the dynamics in Eq. (4.2), if infx1∈G1,x2∈G2

∥fΘ0
(x1) − fΘ0

(x2)∥2 > 0, then we
have infx1∈G1,x2∈G2

∥fΘt
(x1) − fΘt

(x2)∥2 > infx1∈G1,x2∈G2
∥fΘt−1

(x1) − fΘt−1
(x2)∥2 unless

supx,y∈G1
∥fΘt−1

(x)− fΘt−1
(y)∥2 = supx,y∈G2

∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

5 EXPERIMENTS

In this section, we provide extensive experiments on downstream linear classification and k-nearest
neighbors classification tasks to verify the effectiveness of SimXIR for fine-tuning self-supervised
models pretrained on the small datasets SVHN (Netzer et al., 2011) and CIFAR-10/-100 (Krizhevsky,
2009), and a large-scale dataset ImageNet ILSVRC-2012 dataset (Deng et al., 2009b). More
experimental results and details can be found in Appendix C.
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Table 3: Top-1/-5 accuracy (%) under linear
evaluation on ImageNet, where ∗ denotes the
fine-tuned models by SimXIR. Red numbers
denote positive gain after by SimXIR.

Methods Top-1/-5 linear probe

Relative Location 34.618 / 59.140
Relative Location∗ 40.096 / 64.706
(Doersch et al., 2015) +5.478 / +5.566

Rotation prediction 37.898 / 63.236
Rotation prediction∗ 41.416 / 66.218
(Komodakis and Gidaris, 2018) +3.518 / +2.982

ODC 57.048 / 80.630
ODC∗ 57.574 / 80.964
(Zhan et al., 2020) +0.526 / +0.334

NPID 57.908 / 80.870
NPID∗ 58.296 / 81.194
(Wu et al., 2018) +0.388 / +0.324

SimCLR 62.560 / 84.878
SimCLR∗ 62.676 / 84.958
(Chen et al., 2020) +0.116 / +0.080

MoCo 67.592 / 88.128
MoCo∗ 67.630 / 88.176
(He et al., 2020) +0.038 / +0.048

SimSiam 69.844 / 89.372
SimSiam∗ 69.954 / 89.408
(Chen and He, 2021) +0.110 / +0.036

BarlowTwins 71.060 / 89.838
BarlowTwins∗ 71.314 / 89.998
(Zbontar et al., 2021) +0.254 / +0.160

BYOL 71.706 / 90.490
BYOL∗ 71.816 / 90.502
(Grill et al., 2020) +0.110 / +0.012

Implementation details. For image augmentations, we
use the same setting as SimSiam (Chen and He, 2021).
For model architecture, we use a convolution residual net-
work (He et al., 2016) with 18 layers (replacing the default
7 × 7 convolutional preprocessing layer with 3 × 3 con-
volutions) and 50 layers as our base parametric models
for small datasets and ImageNet, respectively. For self-
supervised models on small datasets, we reproduce MoCo
(He et al., 2020), SimCLR (Chen et al., 2020), BYOL (Grill
et al., 2020), and SimSiam (Chen and He, 2021) by train-
ing ResNet-18 with a cosine decay learning rate schedule
(Loshchilov and Hutter, 2017) over 800 epochs. For Ima-
geNet, we directly use off-the-shelf SSL models available
at GitHub 1. We then fine-tune these self-supervised mod-
els via SimXIR in only one round with 20 epochs, i.e.,
T = 1, K = 20N/B, where N is the number of samples.
Inspired by Dong et al. (Dong et al., 2022), we adopt a
quite small learning rate for fine-tuning, where the learning
rates are 5e−4 and 5e−5 on small datasets and ImageNet,
respectively. The weight decay is set to 1e− 6 across all
datasets. We fine-tune self-supervised models on small
datasets using a batch size of 512 with a GPU, and on
ImageNet using a batch size of 256 split over 8 GPUs.

Linear evaluation. To assess the linear separability of
the representations generated by SimXIR, we train a linear
classifier on top of the frozen representations, following
the procedure described in SimSiam (Chen and He, 2021)

where we use the LARS optimizer (You et al., 2017). We report top-1 and top-5 accuracy of off-
the-shelf SSL models without and with the proposed self-supervised fine-turning in Tables 2 and 3,
where SimXIR (see Eq. (3.1)) and its variant (see Eq. (3.2)) are tested. The results demonstrate that
self-supervised fine-tuning by SimXIR can boost visual representations over famous SSL models in
most cases across both small and large datasets (except the case of fine-tuning SimCLR on CIFAR-10).
Notably, the variant of SimXIR delivers significant improvements on SVHN and CIFAR-100.

k-nearest neighbors (kNN) evaluation. To further evaluate the effectiveness of SimXIR, we
employ a kNN classifier on top of the frozen representation network, using the cosine distance
dcos(x, y) = 2 − 2⟨x,y⟩

∥x∥2∥y∥2
and the Euclidean distance dEuc(x, y) = ∥x − y∥2. Table 1 shows the

top-1 accuracy (cosine/Euclidean) obtained with kNN classifiers on SVHN and CIFAR-10/-100. The
results demonstrate that self-supervised fine-tuning by SimXIR can consistently improve the visual
representations initialized by famous SSL models in terms of kNN accuracy with cosine distance
metric, regardless of the number of neighbors. Similar results are achieved in terms of kNN accuracy
with Euclidean distance metric in most cases except the case of fine-tuning SimCLR on CIFAR-100.

6 CONCLUSION

In this paper, we investigate the implicit bias of non-contrastive learning with a concise framework—
SimXIR. Based on SimXIR, we for the first time reveals that explicitly aligning positive pairs involves
a underlying mechanism to prevent collapsed solutions, which we describe as contraction of neighbor-
connected groups and alienation between disjoint groups. These two properties resemble intra-class
compactness and inter-class separability in classification, and help explain why non-contrastive
learning can prevent collapsed solutions. We also show that SimXIR can practically serve as self-
supervised fine-tuning module that is a novel step for self-supervised pretraining. Empirical results
demonstrate the effectiveness of SimXIR.

1https://github.com/open-mmlab/mmselfsup/tree/master
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Appendix for “Towards Understanding Contraction and
Alienation in Non-Contrastive Learning with Mean

Representation Replacement”

Algorithm 1 SimXIR: Self-supervised fine-tuning algorithm.
Input: set of samples X , pretrained representation encoder fΘ0

, optimizer optimizer that
updates parameters Θ, learning rate η, distribution of transformations A, total number of rounds
T , the number of optimization steps K, and batch size B.

1: for t = 1 to T do
2: Θ← Θt−1 ▷ Initialize Θ with previous parameters
3: for k = 1 to K do
4: S ← {xi ∼ X} ▷ randomly sample a batch of B examples
5: for xi ∈ S do
6: a, a′ ∼ A′ ▷ randomly sample two transformations
7: ℓi ← ∥fΘ(a(xi))− fΘt−1

(a′(xi))∥22 ▷ compute loss for each xi

8: end for
9: δΘ← 1

B

∑B
i=1 ∂Θℓi ▷ compute the gradient

10: Θ← optimizer(Θ, δΘ, η) ▷ use specific optimizer to update the online parameters
11: end for
12: Θt ← Θ ▷ update parameters for current round
13: end for

Output: encoder fΘT

A CLARIFICATION

In this section, we aim to clarify certain concepts provided in the main body.

A.1 NEIGHBOR-AVERAGING DYNAMICS.

For the neighbor-averaging dynamics in Eq. 2.4, it can be viewed as a neighborhood-based message
passing, like affinity propagation (Frey and Dueck, 2007) in clustering and label propagation (Zhu
et al., 2003) in semi-supervised learning. For instance, when the representation function f is reduced
to the label function, these neighbor-averaging dynamics encompass the iterative process of label
propagation. In this context, it can be expressed as ft(x) =

∑
x′ p(x′|x)ft−1(x

′), where p(x′|x) that
denotes the probability of x′ belonging to the neighborhood of x can be regarded as the edge weight
between two vertices x′ and x.

A.2 ABOUT SIMXIR IN SPHERICAL CONSTRAINED CASES

We provide the dynamics of SimXIR in spherical constrained cases where the representations are
performed with a ℓ2 normalization, i.e., fΘ(x) = hΘ(x)

∥hΘ(x)∥2
(where hΘ(·) denotes the encoder in

existing SSL models). Therefore, the objective of ℓ2 loss becomes maximizing the cosine sim-
ilarity between online and target representations. The global minimizer of the conditional risk
Ex′∈N (x)∥ hΘ(x)

∥hΘ(x)∥2
− fΘt−1

(x′)∥22 is derived as

fΘt(x) = argmin
fΘ

Ex′∈N (x)

∥∥∥∥ hΘ(x)

∥hΘ(x)∥2
− fΘt−1(x

′)

∥∥∥∥2
2

= argmin
fΘ

∥∥∥∥ hΘ(x)

∥hΘ(x)∥2
− Ex′∈N (x)fΘt−1(x

′)

∥∥∥∥2
2

=
Ex′∈N (x)fΘt−1

(x′)

∥Ex′∈N (x)fΘt−1(x
′)∥2

.

(A.1)
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In the case of spherical constraints, it is common to implement an ℓ2 normalization layer on top of
the encoder network or perform ℓ2 normalization before calculating the loss. This approach has been
widely adopted in many works (Chen et al., 2020; He et al., 2020; Grill et al., 2020; Chen and He,
2021).

A.3 ABOUT NEAR INVARIANCE OF GROUP MEANS

Conjecture 4.5 [Near Invariance of Group Means] For any bounded representation function fΘ0 :
Rd1 → Rd2 , considering the dynamics ∀x ∈ X , fΘt(x) = Ex′∈N (x)fΘt−1(x

′) for t ∈ N+, we have

µt
i = Ex∈Gi

fΘt
(x) = Ex∈Gi

Ex′∈N (x)fΘt−1
(x′) ≈ Ex∈Gi

fΘt−1
(x) = µt−1

i . (A.2)

The conjecture above provides implications that group means are likely to be anchored in a small
region, causing the representations in each group to contract around these anchors. Additionally, if
these group means are discriminative with a large margin, the representations will eventually exhibit
good separation.

For the spherical constrained cases, we also conjecture that

µt
i =

Ex∈Gi
fΘt

(x)

∥Ex∈Gi
fΘt

(x)∥2
=

1

∥Ex∈Gi
fΘt

(x)∥2
Ex∈Gi

Ex′∈N (x)fΘt−1(x
′)

∥Ex′∈N (x)fΘt−1
(x′)∥2

≈
Ex∈Gi

fΘt−1
(x)

∥Ex∈Gi
fΘt−1

(x)∥2
= µt−1

i .

(A.3)
As demonstrated empirically in Figure 4(j), the mean representations of each group are dynamic, yet
their movements remain relatively unchanged.

B PROOFS OF THEOREMS

B.1 PROOF OF THEOREM 4.3

Theorem 4.3 [Contraction of Neighbor-Connected Groups] For any neighbor-connected group
G ⊆ Rd1 and any bounded representation function fΘ0

: Rd1 → Rd2 , considering the dynamics
∀x ∈ X , fΘt

(x) = Ex′∈N (x)fΘt−1
(x′) for t ∈ N+, we have supx,y∈G ∥fΘt

(x) − fΘt
(y)∥2 <

supx,y∈G ∥fΘt−1
(x)− fΘt−1

(y)∥2 unless supx,y∈G ∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

Proof. First, we obviously have the fact that if there exists a t ∈ N+ that satisfies supx,y∈G ∥fΘt
(x)−

fΘt
(y)∥2 = 0, then supx,y∈G ∥fΘt′ (x)− fΘt′ (y)∥2 = 0 for all t′ ≥ t.

In addition, according to the Cauchy-Schwarz inequality, we can easily derive that

∥fΘt
(x)− fΘt

(y)∥2
=∥Ex′∈N (x)fΘt−1(x

′)− Ey′∈N (y)fΘt−1(y
′)∥2

≤Ex′∈N (x)Ey′∈N (y)∥fΘt−1
(x′)− fΘt−1

(y′)∥2
≤ sup

x,y∈D
∥fΘt−1

(x)− fΘt−1
(y)∥2,

(B.1)

where the inequality holds if and only if fΘt−1(x
′) = fΘt−1(x) for all x′ ∈ N (x), fΘt−1(y

′) =
fΘt−1(y) for all y′ ∈ N (y), and the pair (x, y) also achieves the supremum supx′′,y′′∈G ∥fΘt−1(x

′′)−
fΘt−1

(y′′)∥2, i.e., the representations for N (x) and N (y) collapse to the two ends of the diameter.

As can be seen, the diameter supx,y∈G ∥fΘ(x)−fΘ(y)∥2 of the representation space {fΘ(x) : x ∈ G}
is monotonically decreasing when adopting the update strategy fΘt(x) = Ex′∈N (x)fΘt−1(x

′). In the
following, we will prove that the diameter must be reduced unless it becomes 0.

According to Eq. (B.1), for any two points x∗ and y∗ that satisfy ∥fΘt
(x∗) − fΘt

(y∗)∥2 =
supx,y∈G ∥fΘt

(x)− fΘt
(y)∥2 = supx,y∈G ∥fΘt−1

(x)− fΘt−1
(y)∥2 > 0, we obtain

fΘt−1(x) = fΘt−1(x
∗) for all x ∈ N (x∗),

fΘt−1(y) = fΘt−1(y
∗) for all x ∈ N (y∗),

(B.2)

and (x∗, y∗) also is the diameter of {fΘt−1(x) : x ∈ G}.
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The above condition indicates that ∀x′ ∈ N (x∗),∀y′ ∈ N (y∗), x′ and y′ also form a diameter, i.e.,
∥fΘt

(x′)− fΘt
(y′)∥2 = supx,y∈G ∥fΘt

(x)− fΘt
(y)∥2 = supx,y∈G ∥fΘt−1

(x)− fΘt−1
(y)∥2. And

again, we will have ∀x′′ ∈ N (x′), fΘt−1(x
′′) = fΘt−1(x

′) = fΘt−1(x
∗). Thus, the points in the 2rd

order neighborhood N (2)(x∗) of x∗ have the same representation. By analogy, we know that the
points in any order neighborhood of x∗ also share the same representation fΘt−1

(x∗). Then we have
supx,y∈G ∥fΘt−1

(x)− fΘt−1
(y)∥2 = 0 since G is neighbor-connected.

In summary, we have proven that supx,y∈G ∥fΘt
(x)−fΘt

(y)∥2 = supx,y∈G ∥fΘt−1
(x)−fΘt−1

(y)∥2
holds if and only if supx,y∈G ∥fΘt−1

(x)− fΘt−1
(y)∥2 = 0.

B.2 PROOF OF THEOREM 4.4

Theorem 4.4 [Alienation Between Disjoint Groups] For any two disjoint neighbor-connected groups
G1,G2 ⊆ Rd1 and any bounded representation function fΘ0 : Rd1 → Rd2 , considering the dynamics
∀x ∈ X , fΘt(x) = Ex′∈N (x)fΘt−1(x

′) for t ∈ N+, if infx1∈G1,x2∈G2 ∥fΘ0(x1) − fΘ0(x2)∥2 > 0,
then we have infx1∈G1,x2∈G2

∥fΘt
(x1) − fΘt

(x2)∥2 > infx1∈G1,x2∈G2
∥fΘt−1

(x1) − fΘt−1
(x2)∥2

unless supx,y∈G1
∥fΘt−1

(x)− fΘt−1
(y)∥2 = supx,y∈G2

∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

Proof. The proof of this theorem is similar to that of Theorem 3. We have the fact that if there exists a
t ∈ N+ that satisfies supx,y∈G1

∥fΘt−1
(x)−fΘt−1

(y)∥2 = supx,y∈G2
∥fΘt−1

(x)−fΘt−1
(y)∥2 = 0,

then infx1∈G1,x2∈G2
∥fΘt′ (x1)− fΘt′ (x2)∥2 = infx1∈G1,x2∈G2

∥fΘt′−1
(x1)− fΘt′−1

(x2)∥2 for all
t′ ≥ t.

In addition, we have the following inequality

∥fΘt
(x1)− fΘt

(x2)∥2
=∥Ex′

1∈N (x1)fΘt−1
(x′

1)− Ex′
2∈N (x2)fΘt−1

(x′
2)∥2

≥ inf
x′
1∈N (x1),x′

2∈N (x2)
∥fΘt−1(x

′
1)− fΘt−1(x

′
2)∥2

≥ inf
x′
1∈G1,x′

2∈G2

∥fΘt−1(x
′
1)− fΘt−1

(x′
2)∥2,

(B.3)

where the inequality holds if and only if fΘt−1(x
′
1) = fΘt−1(x1) for all x′

1 ∈ N (x1), fΘt−1(x
′
2) =

fΘt−1(x2) for all x′
2 ∈ N (x2), and (x1, x2) achieve the infimum infx′

1∈G1,x′
2∈G2

∥fΘt−1(x
′
1) −

fΘt−1(x
′
2)∥2.

As can be seen, the minimal distance between the representation space of G1 and G2 will not be
reduced when adopting the update strategy fΘt

= Ex′∈N (x)fΘt−1
(x′). Actually, we can prove that

the minimal distance must increase, unless they both have diameter 0.

According to Eq. (B.3), for any two points x∗
1 ∈ G1 and x∗

2 ∈ G2 that satisfy ∥fΘt
(x∗

1)−fΘt
(x∗

2)∥2 =
infx1∈G1,x2∈G2

∥fΘt
(x1)− fΘt

(x2)∥2 = infx1∈G1,x2∈G2
∥fΘt−1

(x1)− fΘt−1
(x2)∥2, we have

fΘt−1(x1) = fΘt−1(x
∗
1) for all x1 ∈ N (x∗

1),

fΘt−1(x2) = fΘt−1(x
∗
2) for all x2 ∈ N (x∗

2),
(B.4)

and (x∗
1, x

∗
2) achieve the infimum distance between {fΘt−1(x1) : x1 ∈ G1} and {fΘt−1(x2) : x2 ∈

G2}.
The above condition indicates that ∀x1 ∈ N (x∗

1), ∀x2 ∈ N (x∗
2), x1 and x2 also achieve

the infimum distance, i.e., ∥fΘt
(x1) − fΘt

(x2)∥2 = infx′
1∈G1,x′

2∈G2
∥fΘt

(x′
1) − fΘt

(x′
2)∥2 =

infx′
1∈G1,x′

2∈G2
∥fΘt−1

(x′
1) − fΘt−1

(x′
2)∥2. And again, we will have ∀x′

1 ∈ N (x1), fΘt−1
(x′

1) =
fΘt−1

(x1) = fΘt−1
(x∗

1), and ∀x′
2 ∈ N (x2), fΘt−1(x

′
2) = fΘt−1(x2) = fΘt−1(x

∗
2). Thus, the

points in the 2rd order neighborhoods of x∗
1 and x∗

2 have the same representation fΘt−1(x∗
1)

and
fΘt−1(x∗

2)
, respectively. By analogy, we know that the points in any order neighborhood of x∗

1

share the same representation, and so does x∗
2. Then we have supx,y∈G1

∥fΘt−1(x)− fΘt−1(y)∥2 =
supx,y∈G2

∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0 since G1 and G2 are neighbor-connected groups.

In summary, we have proven that infx1∈G1,x2∈G2
∥fΘt

(x1) − fΘt
(x2)∥2 =

infx1∈G1,x2∈G2
∥fΘt−1

(x1)−fΘt−1
(x2)∥2 holds if and only if supx,y∈G1

∥fΘt−1
(x)−fΘt−1

(y)∥2 =
supx,y∈G2

∥fΘt−1(x)− fΘt−1(y)∥2 = 0.
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B.3 PROOF OF THEOREM 4.6

Theorem 4.6 [Contraction of Neighbor-Connected Groups in Spherical Constrained Cases] For any
neighbor-connected Group G ⊆ Rd1 and any bounded function fΘ0

: Rd1 → Sd2−1, considering

the dynamics ∀x ∈ X , fΘt
(x) =

Ex′∈N(x)fΘt−1
(x′)

∥Ex′∈N(x)fΘt−1
(x′)∥2

(where t ∈ N+ and Ex′∈N (x)fΘt−1
(x′) ̸= 0),

if the angle ∠(fΘt−1(x), fΘt−1(y)) < π for any x, y ∈ G, then we have supx,x′∈G ∥fΘt(x) −
fΘt

(x′)∥2 < supx,x′∈G ∥fΘt−1
(x)− fΘt−1

(x′)∥2 unless supx,y∈G ∥fΘt−1
(x)− fΘt−1

(y)∥2 = 0.

Proof. Considering two points x∗ and y∗ such that ∥fΘt
(x∗)− fΘt

(y∗)∥2 = supx,y∈G ∥fΘt
(x)−

fΘt(y)∥2, we have
sup
x,y∈G

∥fΘt
(x)− fΘt

(y)∥2

=∥fΘt
(x∗)− fΘt

(y∗)∥22
=2− 2 cos sim(fΘt(x

∗), fΘt(y
∗))

=2− 2 cos sim
(
Ex∈N (x∗)fΘt−1

(x),Ex∈N (y∗)fΘt−1
(y)

)
≤2− 2 inf

x∈N (x∗),y∈N (y∗)
cos sim(fΘt−1

(x), fΘt−1
(y))

≤2− 2 inf
x,y∈G

cos sim(fΘt−1
(x), fΘt−1

(y))

= sup
x,y∈G

∥fΘt−1(x)− fΘt−1(y)∥2,

(B.5)

where cos sim(x, y) denotes the cosine similarity between x and y, and the first inequality is based
on the fact that the angle ∠(fΘt−1

(x), fΘt−1
(y)) < π for any x, y ∈ G. The equality holds if and

only if fΘt−1
(x) = fΘt−1

(x∗) for all x ∈ N (x∗), fΘt−1
(y) = fΘt−1

(y∗) for all y ∈ N (y∗), and the
pair (x, y) also achieves the supremum supx′,y′∈G ∥fΘt−1

(x′)− fΘt−1
(y′)∥2.

Similar to the proof of Theorem 3, if supx,x′∈G ∥fΘt
(x) − fΘt

(x′)∥2 = supx,x′∈G ∥fΘt−1
(x) −

fΘt−1
(x′)∥2, we must have supx,y∈G ∥fΘt−1

(x)− fΘt−1
(y)∥2 = 0.

B.4 PROOF OF THEOREM 4.7

Theorem 4.7 [Alienation between Neighbor-Connected Groups in Spherical Constrained Cases]
For any two different neighbor-connected groups G1,G2 ⊂ Rd1 and any bounded representation

function fΘ0 : Rd1 → Rd2 , considering the dynamics ∀x ∈ X , fΘt(x) =
Ex′∈N(x)fΘt−1

(x′)

∥Ex′∈N(x)fΘt−1
(x′)∥2

(where t ∈ N+ and Ex′∈N (x)fΘt−1(x
′) ̸= 0), if infx1∈G1,x2∈G2 ∥fΘ0(x1) − fΘ0(x2)∥2 > 0, then

we have infx1∈G1,x2∈G2
∥fΘt

(x1)− fΘt
(x2)∥2 > infx1∈G1,x2∈G2

∥fΘt−1
(x1)− fΘt−1

(x2)∥2 unless
supx,y∈G1

∥fΘt−1
(x)− fΘt−1

(y)∥2 = supx,y∈G2
∥fΘt−1

(x)− fΘt−1
(y)∥2 = 0.

Proof. Considering two points x∗ and y∗ such that ∥fΘt
(x∗)−fΘt

(y∗)∥2 = infx∈G1,y∈G2
∥fΘt

(x)−
fΘt

(y)∥2, we have
inf

x∈G1,y∈G2

∥fΘt(x)− fΘt(y)∥2

=∥fΘt(x
∗)− fΘt(y

∗)∥22
=2− 2 cos sim(fΘt

(x∗), fΘt
(y∗))

=2− 2 cos sim
(
Ex∈N (x∗)fΘt−1

(x),Ex∈N (y∗)fΘt−1
(y)

)
≥2− 2 sup

x∈N (x∗),y∈N (y∗)

cos sim(fΘt−1
(x), fΘt−1

(y))

≥2− 2 sup
x,y∈G

cos sim(fΘt−1
(x), fΘt−1

(y))

= inf
x∈G1,y∈G2

∥fΘt−1(x)− fΘt−1(y)∥2,

(B.6)

where cos sim(x, y) denotes the cosine similarity between x and y. The equality holds if and only if
fΘt−1

(x) = fΘt−1
(x∗) for all x ∈ N (x∗), fΘt−1

(y) = fΘt−1
(y∗) for all y ∈ N (y∗), and the pair

(x, y) also achieves the supremum supx′,y′∈G ∥fΘt−1(x
′)− fΘt−1(y

′)∥2.
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Similar to the proof of Theorem 3, if infx∈G1,y∈G2
∥fΘt

(x)−fΘt
(y)∥2 = infx∈G1,y∈G2

∥fΘt−1
(x)−

fΘt−1
(y)∥2, we must have supx,y∈G1

∥fΘt−1
(x) − fΘt−1

(y)∥2 = supx,y∈G2
∥fΘt−1

(x) −
fΘt−1

(y)∥2 = 0.

C EXPERIMENTS

C.1 TOY EXPERIMENTS

To validate Theorems 4.3, 4.4, 4.6 and 4.7, we conduct toy experiments with the following pseu-
docode.

Table 4: Pseudocode of SimXIR and its variant for toy experiments in a PyTorch-like style

# SimXIR
def toy_simxir(inps, reps, eps=0.2, T=500):

for t in range(T):
reps = avg_mean(inps, reps, eps=eps)

return reps

# The variant of SimXIR
def toy_variant_of_simxir(inps, reps, eps=0.2, T=500):

for t in range(T):
reps = cos_mean(inps, reps, eps=eps)

return reps

# dynamics following $f_{\Theta_{t}}(x)=\E_{x’\in\gN(x)}f_{\Theta_{t-1}}(
x’)$

def avg_mean(inps, reps, eps=0.2):
new_reps = zeros_like(reps)
for i in range(reps.shape[0]):

dists = ((inps - inps[i])**2).sum(dim=1).sqrt()
new_reps[i] = reps[dists<eps].mean(dim=0)

return new_reps

# dynamics following Equation 1
def cos_mean(inps, reps, eps=0.2):

new_reps = zeros_like(reps)
for i in range(reps.shape[0]):

dists = sqrt(((inps - inps[i])**2).sum(dim=1))
new_reps[i] = reps[dists<eps].mean(dim=0)
new_reps[i] = new_reps[i] / (new_reps[i]**2).sum().sqrt()

return new_reps

Contraction and Alienation Beyond Assumption 2. To show what happens when the input space is
not separable in Assumption 2, we also conduct toy experiments of illustration of several groups with
intersection points in Figure 5. In both unconstrained and spherical constrained cases, the diameter of
each group may not decrease continuously due to the presence of intersection inputs. However, it is
evident that it is still contracting in a manner that reduces the average pairwise distance within the
group (i.e., Ex,y∈G∥fΘ(x)−fΘ(y)∥22). Similarly, the alienation between groups may obey in the way
that increases the average pairwise distance between groups (i.e., Ex1∈G1,x2∈G2

∥fΘ(x1)−fΘ(x2)∥22).
Meanwhile, the movement of group means remains essentially unchanged (as hypothesized in
Conjecture 4.5).

C.2 ON SMALL DATASETS

For the experiments of improving self-supervised models on SVHN (Netzer et al., 2011), CIFAR-10
and CIFAR-100 (Krizhevsky, 2009), we reproduce MoCo (He et al., 2020), SimCLR (Chen et al.,
2020), BYOL (Grill et al., 2020), and SimSiam (Chen and He, 2021) by training the backbone
ResNet-18 (replacing the default 7× 7 convolutional preprocessing layer with 3× 3 convolutions)
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with a cosine decay learning rate schedule over 800 epochs. We then utilized SimXIR and its variant
to fine-tune these self-supervised models. The details of MoCo, SimCLR, BYOL, and SimSiam are
as follows:

• MoCo. We utilize the momentum update strategy for our target network, incorporating a
moving average decay of 0.999. Additionally, we employ a two-layer MLP as the projector
of MoCo, which is composed of [Linear(512, 128), ReLU, Linear(128, 128)]. To calculate
the contrastive loss, we set the temperature parameter to τ = 0.2 and incorporate a memory
bank with a queue size of 2048.

• SimCLR. We use a two-layer MLP as the projector of SimCLR, which is composed of
[Linear(512, 512), BatchNorm, ReLU, Linear(512, 128), BatchNorm]. To calculate the
contrastive loss, we set the temperature as τ = 0.2.

• BYOL. We use a two-layer MLP as the projector of BYOL that is composed of [Linear(512,
128), ReLU, Linear(128, 128)], and another two-layer MLP as the predictor that is composed
of [Linear(128, 512), BatchNorm, ReLU, Linear(512, 128)].

• SimSiam. We use a three-layer MLP as the projector of BYOL that is composed of [Lin-
ear(512, 512), BatchNorm, ReLU, Linear(512, 512), BatchNorm, ReLU, Linear(512, 128),
BatchNorm], and another two-layer MLP as the predictor that is composed of [Linear(128,
512), BatchNorm, ReLU, Linear(512, 128)].

C.3 ON IMAGENET

For experiments on ImageNet (Deng et al., 2009a), we use off-the-shelf self-supervised models
available at GitHub2. Specifically, we use the pretrained models Relative Location3 (Doersch et al.,
2015), Rotation Location4 (Komodakis and Gidaris, 2018), ODC5 (Zhan et al., 2020), NPID6 (Wu
et al., 2018), SimCLR7 (Chen et al., 2020), MoCo8 (He et al., 2020), SimSiam9 (Chen and He, 2021),
BarlowTwins10 (Zbontar et al., 2021), and BYOL11 (Grill et al., 2020). We then fine-tune these
self-supervised models via SimXIR over 20 epochs, using SGD optimizer with a learning rate of 5e-4
and weight decay of 1e-6.

2https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/model_zoo.md
3https://download.openmmlab.com/mmselfsup/relative_loc
4https://download.openmmlab.com/mmselfsup/rotation_pred
5https://download.openmmlab.com/mmselfsup/odc
6https://download.openmmlab.com/mmselfsup/npid
7https://download.openmmlab.com/mmselfsup/simclr
8https://download.openmmlab.com/mmselfsup/moco
9https://download.openmmlab.com/mmselfsup/simsiam

10https://download.openmmlab.com/mmselfsup/barlowtwins
11https://download.openmmlab.com/mmselfsup/byol
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https://github.com/open-mmlab/mmselfsup/blob/master/docs/en/model_zoo.md
https://download.openmmlab.com/mmselfsup/relative_loc/relative-loc_resnet50_8xb64-steplr-70e_in1k_20220225-84784688.pth
https://download.openmmlab.com/mmselfsup/rotation_pred/rotation-pred_resnet50_8xb16-steplr-70e_in1k_20220225-5b9f06a0.pth
https://download.openmmlab.com/mmselfsup/odc/odc_resnet50_8xb64-steplr-440e_in1k_20220225-a755d9c0.pth
https://download.openmmlab.com/mmselfsup/npid/npid_resnet50_8xb32-steplr-200e_in1k_20220225-5fbbda2a.pth
https://download.openmmlab.com/mmselfsup/simclr/simclr_resnet50_8xb32-coslr-200e_in1k_20220428-46ef6bb9.pth
https://download.openmmlab.com/mmselfsup/moco/mocov2_resnet50_8xb32-coslr-200e_in1k_20220225-89e03af4.pth
https://download.openmmlab.com/mmselfsup/simsiam/simsiam_resnet50_8xb32-coslr-100e_in1k_20220225-68a88ad8.pth
https://download.openmmlab.com/mmselfsup/barlowtwins/barlowtwins_resnet50_8xb256-coslr-300e_in1k_20220419-5ae15f89.pth
https://download.openmmlab.com/mmselfsup/byol/byol_resnet50_8xb32-accum16-coslr-200e_in1k_20220225-5c8b2c2e.pth
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Figure 5: Illustration of the behavior of the representation function (a-e, g-k) and group means (f,

l) following fΘt
(x) = Ex′∈N (x)fΘt−1

(x′) (a-f) and fΘt
(x) =

Ex′∈N(x)fΘt−1
(x′)

∥Ex′∈N(x)fΘt−1
(x′)∥2

(g-l). We divide
the input space to four groups in which intersection exists, where each group’s samples are randomly
generated and their representations are initialized as random points (ensuring separated group means).
In plots (f) and (l), the black boxes represent the zoomed-in views. In both unconstrained and
spherical constrained cases, the diameter of each group may not decrease continuously due to the
presence of intersection inputs. However, it is evident that is still contracting in a manner that reduces
the average pairwise distance within the group (i.e., Ex,y∈G∥fΘ(x) − fΘ(y)∥22). Meanwhile, the
movement of group means remains essentially unchanged (as hypothesized in Conjecture 4.5).
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Table 5: Top-1 accuracies (in %) under k-nearest neighbors classification (where cosine/Euclidean
distances are used as metric) on benchmark datasets SVHN and CIFAR-10/-100 with backbone
ResNet-18 He et al. (2016). Results with better performance are highlighted compared to baselines.
Red and blue numbers denote positive gain and negative loss after self-supervised fine-tuning by
SimXIR, respectively.

Dataset Method Number of Neighbors k
5 7 11 15 17 21

SVHN

MoCo 88.675 / 87.827 89.067 / 88.287 89.467 / 88.833 89.670 / 89.232 89.670 / 89.209 89.813 / 89.451
MoCo∗ 91.714 / 91.253 91.879 / 91.514 92.114 / 92.048 92.267 / 92.152 92.309 / 92.263 92.356 / 92.333

+3.039 / +3.426 +2.812 / +3.227 +2.647 / +3.215 +2.597 / +2.920 +2.639 / +3.054 +2.543 / +2.882

SimCLR 90.377 / 90.201 90.638 / 90.523 90.934 / 90.927 91.007 / 91.126 91.073 / 91.192 91.103 / 91.230
SimCLR∗ 92.221 / 91.968 92.409 / 92.375 92.694 / 92.659 92.859 / 92.682 92.832 / 92.778 92.878 / 92.832

+1.844 / +1.767 +1.771 / +1.852 +1.760 / +1.732 +1.852 / +1.556 +1.759 / +1.586 +1.775 / +1.602

BYOL 91.134 / 90.927 91.380 / 91.165 91.372 / 91.426 91.507 / 91.580 91.457 / 91.591 91.537 / 91.737
BYOL∗ 92.986 / 92.840 93.085 / 93.174 93.212 / 93.339 93.216 / 93.374 93.208 / 93.397 93.201 / 93.397

+1.852 / +1.913 +1.705 / +2.009 +1.840 / +1.913 +1.709 / +1.794 +1.751 / +1.806 +1.664 / +1.660

SimSiam 86.056 / 85.871 86.382 / 86.332 86.832 / 86.782 86.970 / 86.901 87.185 / 86.897 87.197 / 86.962
SimSiam∗ 89.344 / 89.252 89.763 / 89.609 90.035 / 89.828 90.066 / 89.993 90.158 / 89.947 90.208 / 90.147

+3.288 / +3.381 +3.381 / +3.277 +3.203 / +3.046 +3.096 / +3.092 +2.973 / +3.050 +3.011 / +3.185

CIFAR10

MoCo 85.36 / 83.28 85.73 / 83.65 85.65 / 84.08 85.63 / 84.13 85.63 / 84.09 85.63 / 83.97
MoCo∗ 85.85 / 84.08 85.74 / 84.57 86.00 / 84.70 85.84 / 84.67 85.94 / 84.92 85.82 / 85.09

+0.49 / +0.80 +0.01 / +0.92 +0.35 / +0.62 +0.21 / +0.54 +0.31 / +0.83 +0.19 / +1.12

SimCLR 85.24 / 84.39 85.60 / 84.85 85.92 / 85.16 85.74 / 85.29 85.71 / 85.12 85.91 / 85.00
SimCLR∗ 85.38 / 84.87 85.78 / 85.19 86.01 / 85.34 86.05 / 85.32 86.00 / 85.37 85.95 / 85.30

+0.14 / +0.48 +0.18 / +0.34 +0.09 / +0.18 +0.31 / +0.03 +0.29 / +0.25 +0.04 / +0.30

BYOL 86.84 / 84.88 87.05 / 85.19 87.15 / 85.73 87.06 / 85.93 86.94 / 86.03 86.99 / 86.17
BYOL∗ 87.18 / 85.49 87.25 / 86.15 87.43 / 86.52 87.20 / 86.54 87.06 / 86.48 87.12 / 86.51

+0.34 / +0.61 +0.20 / +0.96 +0.28 / +0.79 +0.14 / +0.61 +0.12 / +0.45 +0.13 / +0.34

SimSiam 85.34 / 84.08 85.35 / 84.41 85.48 / 84.92 85.44 / 85.14 85.35 / 85.18 85.47 / 85.15
SimSiam∗ 85.35 / 84.35 85.47 / 84.70 85.69 / 85.22 85.67 / 85.45 85.89 / 85.46 85.65 / 85.42

+0.01 / +0.27 +0.12 / +0.29 +0.21 / +0.30 +0.23 / +0.31 +0.54 / +0.28 +0.18 / +0.27

CIFAR100

MoCo 51.33 / 48.48 51.70 / 49.50 51.94 / 50.60 52.62 / 51.00 52.54 / 51.12 52.89 / 51.18
MoCo∗ 51.62 / 49.26 52.71 / 50.60 53.33 / 51.75 53.21 / 52.05 53.04 / 52.33 53.13 / 51.86

+0.29 / +0.78 +1.01 / +1.10 +1.39 / +1.15 +0.59 / +1.05 +0.50 / +1.21 +0.24 / +0.68

SimCLR 51.48 / 49.11 52.37 / 50.45 52.62 / 52.19 52.89 / 52.33 52.82 / 52.47 53.13 / 52.35
SimCLR∗ 51.58 / 49.58 52.50 / 50.62 53.13 / 51.56 53.11 / 52.31 53.35 / 52.50 53.29 / 52.54

+0.10 / +0.47 +0.13 / +0.17 +0.51 / -0.63 +0.22 / -0.02 +0.53 / +0.03 +0.16 / +0.19

BYOL 51.86 / 50.16 52.97 / 51.27 53.45 / 52.16 53.62 / 52.33 53.83 / 52.20 53.64 / 52.30
BYOL∗ 53.21 / 51.00 53.89 / 52.57 54.48 / 53.16 54.46 / 53.73 54.69 / 53.96 54.70 / 53.70

+1.35 / +0.84 +0.92 / +1.30 +1.03 / +1.00 +0.84 / +1.40 +0.86 / +1.76 +1.06 / +1.40

SimSiam 46.71 / 45.18 47.40 / 46.34 47.81 / 47.14 48.41 / 47.50 48.41 / 47.57 48.09 / 47.39
SimSiam∗ 46.73 / 45.33 47.62 / 46.85 48.45 / 47.91 48.71 / 48.40 48.68 / 48.08 48.80 / 48.41

+0.02 / +0.15 +0.22 / +0.51 +0.64 / +0.77 +0.30 / +0.90 +0.27 / +0.51 +0.71 / +1.02
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