
Under review as a conference paper at ICLR 2022

NOT ALL ATTENTION IS ALL YOU NEED

Anonymous authors
Paper under double-blind review

ABSTRACT

Dropout has shown an effective mediation to alleviate the over-fitting of neural
models by forcedly blocking less helpful connections. However, common dropout
has to be done crudely over all neural structures with the same dropout pattern
once for all to dodge huge search space of tuning every individual structures. Thus
in terms of meta-learning, we propose AttendOut which is capable of performing
smart unit-specific dropout for attention models. The proposed smart dropout is
nearly parameter-free and makes it possible to achieve even stronger performances
with a faster tuning circle even though we evaluate our proposed method on state-
of-the-art pre-trained language models. Eventually, we verify the universality of
our approach on extensive downstream tasks in both pre-training and fine-tuning
stages.

1 INTRODUCTION

Self-attention network (SAN) empowered models like Transformer (Vaswani et al., 2017) have
achieved remarkable achievements in recent natural language processing, which have been broadly
chosen as the basic architecture in a series successful pre-trained language models (PrLMs) such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), ALBERT (Lan et al., 2020), ELECTRA
(Clark et al., 2020), DeBERTa (He et al., 2021) and GPT (Radford et al., 2018).

In this paper, we specialize in the attention dropout module which selectively shuts down unhelpful
units in the attention matrix. This purpose serves the following two motivations. Numbers of existing
studies (Wu et al., 2021; Zhang et al., 2020; Pham & Le, 2021) have shown that attention dropout
can do a great job, including manually masking unimportant positions based on prior knowledge and
searching an optimized pattern through neural architecture search. All these methods are effective
but static that is one dropout pattern for one training. A smart substitute can be a self-adjusting one
over time. On the other hand, PrLMs are always with large sizes, which leads to a huge search space
for parameter sweep. For simplicity, researchers always choose to apply Vanilla Dropout (Srivastava
et al., 2014), in which a dropout probability should be predefined for all hidden layers. However, it
can be disaster if we meticulously tune one for each layer. Indeed, a parameter-free one that can be
end-to-end trained serves the most convenience of reducing our experiment circles.

We propose AttendOut to bring self-attention empowered PrLMs into full play. Our work is based
on Meta-Learning (Finn et al., 2017). The idea of meta-learning is to formulate the learning problem
into two stages, meta-train and meta-test, where accumulating knowledge in the former and learning
to control the training process in the latter. In our work, meta-train simply refers to training the
model on training set. In meta-test, the "smart dropout maker" adjusts its dropout probabilities
based on the feedback from validation set. For the concerned dropout maker, we present a novel
LSTM-based modeling to hit the goal, which is efficiently optimized through a non-differentiable
manner. The smart self-adjusting dropout is nearly parameter-free and makes it possible to achieve
even stronger performances with a faster tuning circle. We verify the universality of our approach
on extensive downstream tasks in both pre-training and fine-tuning stages.

2 RELATED WORK

2.1 DROPOUT

Dropout is a group of algorithms which alleviate over-fitting of deep neural networks by training
with sub-networks (Srivastava et al., 2014; Wan et al., 2013; Klambauer et al., 2017). It is possible to
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learn with Bayesian inference when interpreted as an approximate variational distribution of network
weights (Gal & Ghahramani, 2016; Fan et al., 2021). It is also doable to design automatically (Pham
& Le, 2021) with the help of Neural Architecture Search (Zoph & Le, 2017; Liu et al., 2019a). A
parallel line of our work is to consider dropout as parameters jointly trained with the model (Ba &
Frey, 2013; Boluki et al., 2020; Lee et al., 2020).

With self-attention network continuously stands out, attention-related dropout is being explored,
like randomly skipping self-attention blocks (Fan et al., 2020), randomly removing attention heads
(Michel et al., 2019; Voita et al., 2019; Zhou et al., 2020). Additionally, prior knowledge is shown
highly effective for guiding attention dropout (Zhang et al., 2020; Wu et al., 2021).

2.2 META-LEARNING

While Meta-Learning, or Learning to Learn (Thrun & Pratt, 1998) has a long history with vast
contributed literature, we could only discuss several relevant works here. Ravi & Larochelle (2017)
designs an LSTM-based optimizer which learns the update rule for few shot learning. Finn et al.
(2017) proposes Model-Agnostic Meta-Learning (MAML) to learn an optimized initialization ready
to fast adapt to new tasks within few steps. More than that, the idea of learning at two stages sheds
light to a variety of scenarios. Lee et al. (2020) learns to perturb samples of unseen tasks, Khetan &
Karnin (2020) makes model compression by wiping the insignificant weights off during meta-test,
Lv et al. (2020); Ke et al. (2021) use MAML-inspired pre-training to find a shared representation
of both language modeling and downstream tasks, Kang et al. (2020) designs a mask generator for
masked language model (Devlin et al., 2019).

3 PRELIMINARIES

In this section, we first review the details of self-attention network (SAN) (Vaswani et al., 2017) and
then present the concerned attention dropout.

3.1 SELF-ATTENTION

Generally, a standard SAN block is composed of an attention layer and several feed-forward layers
(actually there are residual connection, layer normalization, etc. as well). The input of it is a
sentence or batch of sentences of length n, which is first embedded through an embedding layer. The
embedded input E may go through three linear projections WQ, WK and WV , and then obtain three
matrices of self-attention, Q, K and V , which refer to query, key and value components respectively.
Subsequently, a dot-product of Q and K is taken and then normalized using the Softmax function
to obtain the attention matrix A. Then another dot-product of A and V follows. The mentioned
calculation can be formalized as follow:

Attention(Q,K, V ) = Softmax

(
Q ·KT

√
dk

)
· V (1)

where
√
dk is a scaling factor. Finally, the attention layer ends up with an output projection WO.

3.2 DROPOUT ON SELF-ATTENTION

Our proposed dropout strategy will be applied to the attention matrix of the concerned attention layer.
We now define two specific dropouts onto Eq. 1, where both implementations are just as simple as
in standard dropout via a mask matrix M .

Weights Dropout Weights dropout is applied to the attention matrix after the Softmax by default,
which is formulated as:

Attention(Q,K, V ) =
1

p

(
Softmax

(
Q ·KT

√
dk

)
⊙M

)
· V (2)

where M is a binary matrix with elements in {0, 1} and ⊙ refers to element-wise multiplication.
Especially for Vanilla Dropout, M is subject to a Bernoulli distribution of probability 1− p.
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Scores Dropout Different from weights dropout, scores dropout is applied before Softmax, which
is formulated as:

Attention(Q,K, V ) = Softmax

(
Q ·KT

√
dk

+M

)
· V (3)

Since the outer Softmax, we conduct an addition instead of multiplication. The elements in M are
set to 0 for kept units and −inf for removed ones. Note that the Softmax takes a similar function
as 1/p, which balances the expectation of the network. In weights dropout, however, the excepted
output can not be the same after scaled by 1/p if the output of Softmax is nonuniform distributed.
In this paper, we apply scores dropout in our study, even if we empirically find similar performances
on downstream tasks under weights and scores dropout.

4 METHODOLOGY

4.1 MODELING

As discussed above, dropout can be quantified as a mask matrix M . For dynamic dropout, where
the distribution of M changes over time, we denote it as Dt. To model Dt, we shall establish the
relationship between dropout and time step t. In this paper, our key idea is to model dropout as the
update of an LSTM cell (Hochreiter & Schmidhuber, 1997):

ct = ft ⊙ ct−1 + it ⊙ c̃t (4)

where ct = Dt, ft and it refer to the forget gate and input gate of each cell state respectively, c̃t
refers to the cell input. Previously, Ravi & Larochelle (2017) utilized LSTM to model the learning
rule. Here, we assume that dropout acts as another connection between two training moments.

Based on the update rule, we need to consider the parametric forms of ft, it and c̃t. We start with
two gates ft and it, which control the state transfer between two time steps. Basically, dropout is
utilized to prevent the situation when the model fits well on training points but behaves worse on
unseen ones. These two can be featured with training and evaluation losses. Hence, we let:

ft = σ(Wf · [ct−1, ft−1, lt−1] + bf )

it = σ(Wi · [ct−1, it−1, lt−1] + bi)
(5)

where [·] is a one-dimensional feature vector and lt−1 refers to the previous training and evaluation
losses. Both input and forget gates are dense layers with Sigmoid activation function σ.

Then we consider the cell input c̃t. Intuitively, it is related to the current attention matrix at, which
has already learned useful features from complex inputs of languages. However, it will be cumber-
some to learn when sequence is long. Remember that at derives from the dot-product of query and
key components, qt and kt. Hence, we factorize c̃t into two matrices:

c̃t = (Wq · qt) · (Wk · kt)/
√
h (6)

where Wq and Wk project the two components into h dimensions respectively.

Additionally, we try non-temporal modeling based on MLP. Please refer to Appendix A.4 for details.

4.2 OPTIMIZATION

The challenging part of learning AttendOut is to find the update rule of cell states. By definition,
however, dropout is only activated during training but is removed during evaluation. In other words,
the feedback signal is supposed to be the evaluation performance instead of the training one. We
denote the model parameters from step 0 to step K as θ0∼K , and additional dropout module as θG.
According to the update rule, we may easily derive the general formula of θK :

θK = θ0 − α∇θ0L (θ0, θG)− · · · − α∇θK−1
L (θK−1, θG)

where α refers to the learning rate and L refers to the loss function. Now we take another gradient
step of θG. The new θG comes to:
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θG − β∇θKL (θK)∇θGθK

Note that it comes to a second-order optimization problem, which requires double back propagation.
However, repetitive back propagation tends to be a memory killer when it comes to PrLM like BERT,
which heavily slows down the training process. By the light of Reinforcement Learning (Williams,
1992), we choose to optimize through a non-differentiable manner.

4.2.1 SINGLE-UNIT CASE

Let us start with the simplest case, in which the attention matrix [at] is in size of 1 × 1. The
corresponding dropout distribution is denoted as dt. Supposing there is a series of dropout actions:

d1:K = {d1, d2, d3, · · · , dK}

where K refers to the number of time steps, we train our model for K steps with d1:K . Then we
evaluate it on validation set and parameterize the evaluation performance as ϵt. We assume that the
difference between two evaluations ϵt − ϵt−K is the accumulated gain R within K steps. Thus, the
optimization objective is to maximize:

J(θG) = EP (a1:K ;θG)[R]

where R can be discounted to each single step
∑K

t=1 rt. Since R is non-differentiable, we apply
Policy Gradient (Sutton et al., 1999):

∇θGJ(θG) =

K∑
t=1

EP (d1:K ;θG)[∇θG logP (dt|d(t−1):1; θG)rt]

The above equation could be approximated as:

1

m

m∑
s=1

K∑
t=1

∇θG logP (dst |ds(t−1):1; θG)rt

where m refers to the number of samples. We omit s for conciseness in the following formulas.

4.2.2 MULTI-UNIT CASE

The question is each attention dropout comes to n× n attention units [aijt ]n×n according to the size
of attention matrix. Generally, n×n leads to a huge space when n is moderately large, which makes
it unaffordable to calculate the joint probability. To facilitate calculation, we assume that each unit
dropout dijt stands for its own probability environment which is independent with each other. Hence,
we are able to obtain the following probability likelihood:

logP (Dt|D(t−1):1; θG) =
1

n2

∑
i,j

logP (dijt |d
ij
(t−1):1; θG)

Thus, the final gradient could be formalized as:

∇θGJ(θG) =
1

m

1

n2

m∑
s=1

K∑
t=1

∑
i,j

∇θG logP (dijt |d
ij
(t−1):1; θG)(rt − b) (7)

where b is a baseline function of moving average (Williams, 1992) to reduce the variance. Note that
we omit the subscript s in dijt , which actually refers to the unit dropout for all in-batch samples.
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4.3 TRAINING

Algorithm 1 summarizes the overall procedure of training models with AttendOut. We first initialize
both two networks θ and θG. In meta-train, model is fed with K batches of samples and is trained
under AttendOut. The dropout action is calculated using the Gumbel-Sigmoid estimator (Maddison
et al., 2014), which is widely used in discrete RL setting (Jang et al., 2017; Lowe et al., 2017; Geng
et al., 2020; Liu et al., 2021). Then in meta-test, model is evaluated without any dropout. Based
on the evaluation scores, AttendOut is rewarded. When the score keeps going high, it is always
rewarded positively. When the score goes down, it will be punished with a negative reward.

Algorithm 1 AttendOut
Input: Meta-train set Dtrain, Meta-test set Dtest, Model θ, AttendOut θG, Meta step K

1: θG ← c0 ▷ Initialize dropout parameters
2: while not converged do
3: Sample K batches from Dtrain

4: for t = 1 to K do
5: Lt ← L (θt, θG) ▷ Get loss of model with dropout
6: θt+1 = θt − α∇θtLt ▷ Update model parameters
7: end for
8: Sample from Dtest

9: R← ϵt − ϵt−K ▷ Get reward of dropout
10: Update θG via Eq. 7 ▷ Update dropout parameters
11: end while

4.3.1 INITIALIZATION

Our preliminary empirical study shows that normal initialization is not an effective choice for At-
tendOut, which destabilizes and hurts the performance with very small values like 0.5, 0.6 at the
beginning of training. For simplicity, we choose the initial probabilities of all attention layers to be
around 0.1 by setting c0 to 0.9 as well as adjusting the input gate bias.

4.3.2 MEMORY USAGE AND META STEP

We notice that training PrLMs with AttendOut may sacrifice GPU memory. The main pressure
comes from the cached states of AttendOut. We demonstrate the detail of memory usage in Ap-
pendix C.2. Generally, it restrains us from using very large K, where the meta-learning framework
concentrates more on long-term benefits. However, small values like 4 or 8 already work well in our
experiments, which merely results in slight memory consumption.

Now we return to an early question. Our approach can be applied to other layers with dropout in
Transformer where the job is to redesign the training objective. However, applying unit-specific
dropout to each layer on a hundred-million model is impossible on most current devices.

5 EXPERIMENTAL SETUP

We demonstrate the universal effectiveness of AttendOut on extensive tasks. Our implementations
are based on PyTorch using transformers1. For further training details, please refer to Appendix B.

5.1 DATASET

Experiment datasets include: (1) natural language understanding: General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al., 2019), a collection of nine natural language under-
standing tasks (we exclude problematic WNLI); (2) document classification: IMDB (Maas et al.,
2011), a long-sentence sentiment analysis dataset; (3) named entity recognition: CoNLL2003
(Sang & Meulder, 2003); (4) part-of-speech tagging: English Penn Treebank (PTB) (Marcus et al.,
1993); (5) multi-choice machine reading comprehension: DREAM (Sun et al., 2019).

1https://github.com/huggingface/transformers/
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Table 1: GLUE test results, where † refers to continual pre-training. Due to space limitation, we
only demonstrate the overall confidence level as in Table 2.

Model CoLA
Mcc

SST-2
Acc

MRPC
F1

QNLI
Acc

MNLI-m/mm
Acc

QQP
Acc

RTE
Acc

STS-B
Spc Avg

BERT 51.5 92.9 87.6 90.2 84.3/83.6 89.0 67.6 84.6 81.3
BERT† 51.1 93.1 87.5 90.2 84.2/83.4 89.0 66.9 84.8 81.1

+ AttendOut† 54.3 93.9 88.3 90.6 84.2/83.5 89.1 66.5 85.6 81.7
+ AttendOut 56.8 93.9 88.1 90.6 84.6/83.7 89.4 70.6 85.8 82.6

RoBERTa 57.0 95.4 90.4 92.9 87.3/86.1 89.4 71.8 89.2 84.4
+ AttendOut 61.3 96.2 91.2 93.2 87.5/86.9 89.4 72.3 89.9 85.3

Table 2: Fine-tuning results of all tasks.

Model GLUE
Avg

IMDB
Acc

CoNLL03
F1

PTB
F1

DREAM
Acc

BERT 81.3±0.3 92.0±0.3 90.0±0.2 95.6±0.1 63.4±1.2

+ AttendOut 82.6±0.2 92.9±0.1 90.6±0.2 96.5±0.1 64.5±1.0

RoBERTa 84.6±0.3 93.4±0.3 90.9±0.1 96.3±0.1 68.8±0.8

+ AttendOut 85.4±0.3 94.1±0.2 91.5±0.2 97.1±0.0 69.3±0.5

5.2 FINE-TUNING

We fine-tune models with AttendOut based on Huggingface (Wolf et al., 2020) checkpoints of BERT
(Devlin et al., 2019) and its stronger variant RoBERTa (Liu et al., 2019b)2. For all downstream tasks,
we average at least three random seeds and report the confidence intervals. That is why our reported
results tend to be lower compared to those on the leaderboard. We also find highly unstable results
on small datasets (CoLA, MRPC, RTE, STS-B, DREAM), so we run six random seeds for them.

5.3 PRE-TRAINING

We also verify the gain of AttendOut on pre-training. Specifically, we train MLM (Devlin et al.,
2019) with AttendOut based on BERT checkpoint for another one epoch on the corpus of English
Wikipedia and directly fine-tune on it without AttendOut on GLUE tasks. For fair enough compari-
son, we train another BERT model based on the same checkpoint in the same manner.

Note that for all reported baseline results, we select the best dropout probability in {0.1, 0.2}.
For training with AttendOut, we substitute it for Vanilla Dropout on all attention layers and utilize
development set for meta-test. Our final results are all evaluated on test sets. Beyond that, we only
adjust the meta steps and keep all other parameters the same for strict fair comparison. For example,
the parameters we use in RoBERTa are identical with what we use in training it with AttendOut.

6 RESULTS

6.1 SIGNIFICANCE ANALYSIS

Pictorially in Table 1, RoBERTa is strong enough as it outperforms BERT by a big margin, while
AttendOut empowered one is much stronger on all tasks. Especially on small datasets, which are
more likely to over-fit, AttendOut helps unfold remarkable performance gain3 (10.3% over BERT
on CoLA, 4.4% over BERT on RTE). However, for larger ones which tend to be more stable, we
still see considerable boost, (1.1% over BERT on SST-2, 0.9% over RoBERTa on MNLI-mm).

2We adopt bert-base-uncased and roberta-base checkpoints in our experiments.
3We calculate the relative growth rates here. Take RTE as an example: (70.6− 67.6)/67.6 = 4.4%.
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(c) STS-B

Figure 1: Dropout patterns with AttendOut, where we show the proportion of the kept units (0 means
completely dropout). For conciseness, we uniformly take four attention layers.
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Figure 2: Total evaluation loss with AttendOut and Vanilla Dropout.

For continue pre-training, AttendOut is not that strong compared to task-specific tuning but still
competitive (5.4% over BERT on CoLA, 0.8% over BERT on MRPC). It is pointed out that dropout
gives no gain in training MLM with Transformer-based models (Lan et al., 2020). However, we show
the effectiveness of attention dropout under a more sophisticated pattern.

Similar results can be seen in Table 2, (0.7% over BERT for NER, 0.9% over BERT for POS
Tagging, 1.7% over BERT for multi-choice MRC), which demonstrates the universal effectiveness
of AttendOut. We also discuss the training variance in Appendix A.1.

6.2 VISUAL ANALYSIS

Dropout Patterns Figure 1 depicts the patterns learned by AttendOut on three kinds of tasks
(sentence classification, inference, semantic similarity). For further analysis, please refer to Ap-
pendix A.2. Intuitively, the learned patterns differ largely, which is fair since AttendOut is sample-
dependent. For the first two tasks, the overall dropout proportions are around 0.1. Interestingly, the
7th layer is the highest one in both cases. The difference is on semantic similarity, however, we
can see very low dropout proportions, actually all 0 since the beginning of training (the four curves
are overlapped). Another interesting fact is that we may see a common linear "warm-up" stage for
dropout, nearly the first 100 training steps. Since then, all the layers tend to be stabilized.

Convergence We also track the evaluation loss during the training process. As in Figure 2, two
curves are struggling at the beginning of training. As training continues, lower evaluation loss can
be seen in AttendOut case on QNLI and STS-B. On CoLA, more fluctuate situation on both sides,
we can still find the advantage in the later stage. The red line is up to rise, while the blue one is not.

7 ABLATION STUDY

We conduct ablation experiments to demonstrate how AttendOut works. All the results here are on
development sets, based on which we utilize early stop on the baseline models for fair comparison.
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Effect of Regularization A specific experiment is made to show the impact of AttendOut as it
supposed to a regularizer. First, we design a dropout scheduler, in which we follow Vanilla Dropout
utilizing Bernoulli distribution to approximate the predicted trends as depicted in Figure 1. Specif-
ically, we record all the instantaneous dropout probabilities learned by AttendOut and schedule
Vanilla Dropout with them. Besides, the weight decay rate is set to 0 to exclude other contributed
regularization factors. Experiments are conducted on the three small GLUE sub-tasks (MRPC, RTE
and STS-B), since they are more vulnerable from over-fitting.

As shown in Table 3, the inspired scheduled Bernoulli dropout acts as an effective regularizer on
BERT without any other regularization, quite closer to AttendOut and even slightly better on RTE,
even if the strategy here is much looser. Indeed, it makes sense since the scheduler pattern, which
turns out to be correct, is inverse-engineered from AttendOut, which provides us with the idea to
carefully schedule the attention dropout pattern. On the other hand, we can see much lower variance
on MRPC and STS-B in AttendOut case. Please refer to Appendix A.1 for details.

Table 3: Effect of regularization. The models are trained without attention dropout and weight decay.

Model MRPC
F1

RTE
Acc

STS-B
Spc

BERT 84.9±1.2 69.3±1.5 88.7±0.5

+ Scheduled Bernoulli 85.4±0.3 70.6±1.8 89.1±0.4

+ AttendOut 86.1±0.4 70.2±0.8 89.7±0.4

Effect of Loss Features In the LSTM cell of AttendOut, the forget and input gates are featured
with both training and evaluation losses with which we assume the expected dropout patterns are
in strong relationship. To validate our design, we make experiments in which we remove the loss
features in LSTM, that is the current cell state is merely related to the previous one. We report
such results in Table 4, where considerable improvement can be seen on CoLA and STS-B when
excluding loss features from AttendOut. However, we may find apparent performance gain when
taking the advantage of training and evaluation loss to control the dynamic dropout.

Table 4: Effect of Loss features in AttendOut.

Model CoLA
Mcc

MNLI-m/mm
Acc

STS-B
Spc

BERT 57.4±1.0 84.4/84.0±0.1 88.7±0.6

+ AttendOut w/o loss 57.8±0.7 84.5/84.2±0.0 89.2±0.3

+ AttendOut 58.3±0.8 84.7/84.6±0.1 89.6±0.3

8 FURTHER STUDY

Comparison with Vanilla Dropout AttendOut introduces a crucial parameter K. Here comes
a potential risk that tuning with K is still costly. To dispel this concern, we conduct parameter
sweeps on three tasks, in which we go through eight kinds of Vanilla Dropout settings as well as
four different meta steps chosen in {4, 8, 12, 15} for AttendOut. For Vanilla Dropout, we first
choose 5 probabilities in {0, 0.1, 0.2, 0.3, 0.4} across all layers. Additionally, we design three more
complicated settings: 0.1 for the first layer and 0 for the rest, 0.2 for the first and 0 for the rest, 0.1
for the first 0.2 for the second and 0 for the rest.

As we can see pictorially in Figure 3, AttendOut (red bars) takes a higher tolerance rate since the
average performances (grey lines) are always higher on all three tasks. Intuitively, different meta
steps result in little differences on SST-2 and SQuAD, while different dropout probabilities make
large differences on CoLA and SQuAD. We can see tuning AttendOut with K serves as a more
efficient way compared to Vanilla Dropout. A nice example is on CoLA where "0.2 first" setting
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Figure 3: Parameter sweeps between AttendOut (red bars) and Vanilla Dropout. The experiment
IDs from 1-5 refer to the dropout probabilities from 0 to 0.4, while the IDs 6, 7, 8 refer to "0.1 first",
"0.2 first", "0.1 first 0.2 second" settings respectively.

largely outperforms other settings. The question is we can only go through a large search space to
pick that out. For AttendOut, only four experiments are what we need.

Comparison with Structured Dropout We further compare AttendOut with LayerDrop (Fan
et al., 2020), which focuses on skipping the entire attention blocks. Similarly, we choose the best
dropout probability in {0.1, 0.2}. The results are shown in Table 5. Intuitively, both regularizers are
effective on RoBERTa, while AttendOut performs stronger and more stable.

Table 5: Comparison of AttendOut and LayerDrop.

Model CoLA
Mcc

MNLI-m/mm
Acc

STS-B
Spc

RoBERTa 60.0±1.2 87.6/86.6±0.1 90.4±0.2

+ LayerDrop 61.8±0.7 87.8/87.1±0.2 90.1±0.3

+ AttendOut 63.0±1.0 87.8/87.4±0.1 90.8±0.3

Combination with Vanilla Dropout We try to combine AttendOut and Vanilla Dropout together.
Specifically, we halve each meta-train stage into two, in which we first apply Vanilla Dropout and
then apply AttendOut. The following reward is made by the difference between two evaluations.
In this sense, AttendOut is learning to compete with Vanilla Dropout, in which it looks like an
ensemble of two regularizers. However, only the same amount of training time is needed. The
results are reported in Appendix A.3 due to space limitation. As shown in Table 6, we can see the
effectiveness when intermittently using two kinds of dropout approaches.

Interestingly, we find very different dropout patterns under this strategy, which we depict in Ap-
pendix A.3 due to space limitation. As depicted in Figure 5, the overall dropout proportion is
unexpectedly low. Especially for CoLA, the 4th layer is even close to be blocked. We notice that
CoLA is a small set with 8500 training samples, on which SAN model is more inclined to suffer
from over-fitting. It seems that intermittently using AttendOut makes it possible for much more
intensive regularization. However, the situation on STS-B remains almost the same.

9 CONCLUSION

This paper presents a self-adjusting attention dropout based on meta-learning onto self-attention em-
powered PrLMs. Extensive experiments on multiple natural language processing and understanding
tasks demonstrate the proposed Attendout is a stronger regularizer for further PrLM enhancement
on both pre-training and fine-tuning stages. We probe into the learned dropout patterns on different
tasks, which empirically guide us for the needed dynamic attention dropout design.
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A COMPLEMENTARY RESULTS

A.1 CONFIDENCE INTERVAL

We depict the confidence intervals on a variety of tasks in Figure 4, where we can see very wide
ranges on small datasets like CoLA, MRPC, RTE and DREAM. However, the overall performance
variance when training with AttendOut looks lower. Especially on RTE, the confidence interval for
AttendOut is 0.6, much lower than that for Vanilla Dropout. In most cases, the dropout proportion
brought by AttendOut is higher. We speculate that a more intensive regularizer might help reduce
the variance.

CoLA MRPC SST-2 MNLI RTE STS-B PTB DREAM0.0
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0.4
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0.8

1.0

1.2

1.4

Figure 4: Confidence intervals between AttendOut (red bars) and Vanilla Dropout on a variety of
tasks. The results here are on development sets.

A.2 DROPOUT PATTERNS

We depict the dropout patterns on other layers in Figure 5, the lowest and highest two layers respec-
tively. Previously, it is found that the 7th layer takes the highest dropout proportion on CoLA and
QNLI (the situation is similar in Figure 8). Now we can see that the dropout proportion of the 11th

layer is always much higher than that of the last layer, while the first two layers take similar dropout
proportions. Note that CoLA is for single-sentence classification while QNLI is for sentence-pair
classification. Interestingly, we find similarities between the two. However, it is different on STS-B,
where all the layers take very low dropout proportions all the time. We assume that there is a specific
pattern for each attention layer, which is probably task-dependent. Further study for this part will be
reserved for future work.
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(c) STS-B

Figure 5: Dropout patterns of both the lowest and highest two layers. The tasks we choose here are
the same with those in Figure 1.
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(c) RTE

Figure 6: Dropout patterns on more tasks. For conciseness, we uniformly take four attention layers.

A.3 COMBINATION WITH ATTENDOUT AND VANILLA DROPOUT

Interestingly, we find very different dropout patterns under this strategy. As depicted in Figure 5, the
overall dropout proportion is unexpectedly low. Especially for CoLA, the 4th layer is even close to
be blocked. We notice that CoLA is a small set with 8500 training samples, on which SAN model
is more inclined to suffer from over-fitting. It seems that intermittently using AttendOut makes it
possible for much more intensive regularization. However, the situation on STS-B remains almost
the same.

Table 6: GLUE development results when intermittently using AttendOut and Vanilla Dropout.

Model CoLA
Mcc

SST-2
Acc

MRPC
F1

QNLI
Acc

MNLI-m/mm
Acc

QQP
Acc

RTE
Acc

STS-B
Spc

BERT 57.3 92.1 84.2 91.3 84.4/84.0 91.2 70.2 88.9
+ Atd.O. w Van. 59.8 92.5 85.2 91.0 84.7/84.7 91.1 72.0 89.7
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Figure 7: Dropout patterns when intermittently using AttendOut and Vanilla Dropout.

A.4 TEMPORAL AND NON-TEMPORAL MODELING

We have tried MLP-based modeling, which also works and achieves competitive results as in Table
7. It turns out that our proposed optimization is general under different modeling manners, while we
see LSTM-base one performs better.

There is another contributed factor of choosing LSTM. We assume that the dropout proportion is
related to the training and evaluation losses, to prevent the situation when model fits well on training
points but behaves worse on unseen ones. For example, the training loss is continually down, while
the evaluation loss is up. LSTM is able to model such trend in a few steps but MLP cannot which
merely cares about the moment.
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Table 7: Comparison of LSTM-based and MLP-based modeling.

Model CoLA
Mcc

SST-2
Acc

MRPC
F1

MNLI-m/mm
Acc

STS-B
Spc

BERT 51.5 92.9 87.6 84.3/83.6 84.6
+ AttendOut-MLP 56.4 93.6 88.0 84.6/83.8 85.2
+ AttendOut-LSTM 56.8 93.9 88.1 84.6/83.7 85.8

B TRAINING DETAILS

Table 8: Hyperparameters for BERT and RoBERTa in all downstream tasks. LR: learning rate; BSZ:
batch size; EP: training epochs; WP: warmup proportion; MSL: maximum sequence length; MLR:
meta learning rate.

GLUE IMDB CoNLL03 PTB DREAM

LR {1e-5, 2e-5, 3e-5} 3e-5 5e-5 5e-5 1e-5
BSZ {16, 32} 32 32 32 8
EP 3 5 5 5 8
WP 0.06 0.1 0.1 0.1 0.06
MSL 128 256 128 128 128
MLR 1e-4 1e-4 1e-4 1e-4 1e-4
K {4, 8, 12, 15} 12 8 8 8

C TRAINING EFFICIENCY

C.1 TIME CONSUMPTION

As shown, the computational cost is 0.2% ∼ 0.7% increased, which is less than two tries of dropout
probability using Vanilla Dropout. However, if we target to tune the probabilities for all attention
layers, twice is not enough.

Table 9: Time consumption using AttendOut on selected tasks compared to using Vanilla Dropout.
We conduct random sampling in the situation of abundant validation data to guarantee the efficiency.

CoLA SST-2 MNLI-m RTE STS-B

Performance up 5.5 1.0 0.3 3.0 0.7
Consumption up x1.4 x1.5 x1.7 x1.2 x1.5

C.2 RESOURCE USAGE
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Figure 8: Memory usage using AttendOut.
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