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Abstract

Pediatric heart transplantation represents the standard of care for children con-
fronting end-stage heart failure. One of the most common postoperative compli-
cations, heart transplant rejection, has been monitored via surveillance endomy-
ocardial biopsies and manual assessment by cardiac pathology experts. However,
manual annotations with interobserver and intraobserver variability among car-
diovascular pathology experts lead to significant disagreements about the severity
of rejection. Artificial intelligence (AI)-enabled computational pathology usually
requires large-scale manual annotations of gigapixel whole-slide images (WSIs) for
effective model training. To address these challenges, we develop an AI-enabled
rare disease detection framework for automating heart transplant rejection detection
from WSIs of pediatric patients. Specifically, we conduct dataset cartography with
data maps and training dynamics to map and diagnose the augmented samples,
exploring the model behavior on individual instances during model training. Exten-
sive experiments on internal and external patient cohorts have demonstrated the
feasibility of both tile-level and biopsy-level detection with augmented samples.
The proposed data-efficient learning framework may support seamless scalability to
real-world rare disease detection without the burden of iterative expert annotations.

1 Introduction

EndoMyocardial Biopsy (EMB) screening is the standard care in detecting heart rejections follow-
ing transplantation [10]. However, the manual interpretation of EMBs is subject to interobserver
and intraobserver variability [14], leading to inconsistency in diagnosis and prognosis. Artificial
Intelligence (AI)-enabled clinical decision support systems have advanced the objective and auto-
mated assessment of EMBs for improving procedure reproducibility and patient operative outcomes
[10, 8, 9, 3, 18]. Recent investigations [8, 4] have highlighted the potential of AI models to assist
human experts across a wide range of diagnostic tasks, including heart rejection detection. However,
prior endeavors [4, 11] have encountered a primary challenge of small datasets with limited manual
annotation of gigapixel Whole-Slide Images (WSIs), leading to poor domain adaptation. In addition,
with major disagreements about the severity of rejection, learning from noisy labels is a challenge
in computer-aided image analysis for complex WSI applications. In this study, we propose a rare
disease detection framework to automate heart transplant rejection detection from WSIs for pediatric
patients (Figure 1). We implement data augmentation via different generative models to facilitate
data-efficient learning. Specifically, we leverage training dynamics via data map to map and diagnose
both original and synthetically augmented training instances, exploring the behavior of the tile-level
classification model on individual instances during the training process.
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Figure 1: Overview of the proposed framework for pediatric heart transplant rejection detection.
Our proposed method first segments tissue regions in the WSI, patching them into smaller tiles.
Considering the rare condition of heart transplant rejection, we employ advanced image generation
approaches to augment rejection tiles for tile-level classification. Subsequently, the probabilities of
tile-level rejection are used to train a biopsy-level rejection classifier.

2 Related Works

Advances in digital pathology have enabled potential adoptions of AI-enabled clinical decision
support systems in analyzing gigapixel WSIs for objective diagnosis, prognosis, and therapeutic-
response prediction [18, 8, 9, 4, 10, 11]. Seraphin et al. [18] demonstrated the feasibility and
effectiveness of leveraging attention-based deep learning in predicting the degree of cellular rejection
from pathology slides, with the degree of rejection defined by the International Society for Heart
and Lung Transplantation grading system. With a total of 1,079 histopathology slides collected
from 325 patients in three German transplant centers, researchers achieved an Area Under the
Receiver Operating Characteristic (AUROC) range of 0.716 to 0.734 within external validation
cohorts. In addition, they employed an explainable AI approach, GradCAM [17], to identify the
spatial distribution of the attention layer for identifying potential pitfalls. The model interpretation
outcomes suggested that deep learning models might primarily focus on lymphocytes and could
potentially be misled by the occurrence of a quilty lesion. Similarly, Lipkova [8] presented a deep
learning-enabled automated assessment of gigapixel WSIs obtained from EMBs for rejection and
Quilty B lesions detection. They achieved accurate and robust assessment results with an AUROC
ranging from 0.839 to 0.852 on external validation sets. In histopathology studies for other diseases,
Lu et al. [9] advanced a deep-learning framework based on weak supervision to facilitate the automatic
detection of subregions with high diagnostic values for WSI-level classification. Applications on
the subtyping of renal cell carcinoma and non-small-cell lung cancer, as well as the detection of
lymph node metastasis, demonstrated the effectiveness of data-efficient learning in the localization of
morphological features on WSIs.

Given the rare conditions of heart transplant rejection, particularly in pediatric patients, existing
studies usually suffer from limited sample sizes for model training and optimization. For example,
Giuste et al. [4] endeavored to develop a deep learning model to automate the quantification of
rejection risk using digitized images of biopsied tissues. Due to the small number of samples with
expert annotations, researchers augmented training samples of around 1,100 tiles from 24 pediatric
patients with GANs-generated images. Similarly, Mirzazadeh et al. [11] conducted inspirational
image generation with rejection reference images to expand the pool of training samples, thereby
facilitating the development of data-efficient models. Existing studies [4, 11] have demonstrated
the effectiveness of leveraging generative models to augment limited training samples and improve
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prediction accuracy in pediatric heart transplant rejection detection. However, these findings remain
preliminary based on a retrospective assessment in a small pediatric patient cohort with potential
pitfalls. Firstly, given synthetic images from the same distribution as the original, existing models
[4, 11] may suffer from generalization, especially without external validations. Secondly, there is
a lack of effective evaluation of augmented samples. Considering existing evaluation metrics of
generated images focusing more on efficiency, similarity, or diversity [20], it is insufficient to examine
the role of generated samples in boosting data-efficient learning model performance. Thirdly, given
the rare conditions and complicated patterns, annotation quality issues exist in the pixel-level manual
annotation of gigapixel WSIs [10].

3 Methodology

Given the rarity of heart transplant rejection, we employ two different generative pipelines: (1) a
combination of Progressive GAN (PGAN) [7] and Inspirational GAN (IGAN) [16], and (2) diffusion
model [6], to augment the rejection samples in the training set. These augmented training samples
fine-tune a pre-trained tile-level classifier to distinguish between rejection and non-rejection cases.
Specifically, we leverage data cartography with training dynamics to minitor the optimization process
with augmented images. We then train a separate biopsy-level classifier to estimate the rejection
grade with tile-level probabilities as input to detect heart transplant rejection at the biopsy level.

PGAN and IGAN We combine two variations of GANs for high-quality tile generation. Initially,
we leverage a PGAN [7] to first generate low-resolution images and progressively increase the size
of the output image. Following PGAN training on all rejection and non-rejection training tiles via
unconditional training, we then implement the IGAN [16] to generate synthetic rejection-specific tiles.
IGAN enables the creation of a synthetic image closely aligned with a chosen image by identifying
optimal parameters within the latent space. This is achieved by computing the distance between the
features of the selected image and those of the GAN output using a pre-trained VGG-19 model as a
feature extractor. Formally, a typical GAN usually contains a Generator G and a Discriminator D,
along with a random sample vector by z. For the optimization of generative models, we employ the
gradient-free Discrete One Plus One (DOPO) [1] optimizer for high-quality image generation. We
then optimize the generation process by the Wasserstein GAN with Gradient Penalty (WGAN-GP)
loss [5]. Given an input real image x, the WGAN-GP objective function is defined as:

L = min
G

max
D

E[D(x)]− E[D(G(z))] + λE[(||∇D(x̃)||2 − 1)2], (1)

where x̃ = x · t + (1 − t) · G(z) denotes a combination of both a real and synthetic image, with
t ∈ [0, 1] representing the proportion of each in the combination. In the scenario of GANs, the
Discriminator D often proves easier to train than the Generator G, leading to an imbalance that can
result in vanishing gradients. The Gradient Penalty term is included in the objective function to
alleviate this vanishing and exploding gradient problem.

Diffusion Models We generate synthetic rejection tiles utilizing the state-of-the-art diffusion
models. Inspired by non-equilibrium thermodynamics, diffusion models establish a Markov chain of
diffusion steps to progressively introduce random noise into the data [6]. The model then learns to
reverse this diffusion process, thereby generating desired data samples from the noise:

q(x1, ..., xT |X0) =

T∏
t=1

q(xt|xt−1) (2)

with
q(xt|xt−1) = N(xt;

√
1− βtxt−1, βtI) (3)

where q denotes the data distribution, xt denotes the latent space, and βt ∈ (0, 1) represents the
variance of the noising process. With the exact reverse distribution q(xt−1|xt), we can then generate
synthetic image by sampling xT ∼ N(0, I) and perform the reverse denoising process. Specifically,
we employ a conditional image generation approach using guided diffusion. This process incorporates
a classifier to enable conditional training, focusing solely on generating rejection tiles.
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Data Cartography Formally, consider a training dataset of size N,D = {(x, y∗)i}
N
i=1

, where
the ith instance consists of the observation xi and its corresponding ground truth label y∗i . When
minimizing empirical risk, we assume the model defines a probability distribution over labels given
an observation. For a stochastic gradient-based optimization, the model involves random ordering
of the training instances across E epochs during each epoch. We then define the training dynamics
of instance i across the E epochs. Initially, we capture the confidence of the model in assigning the
true label to an observation xi based on its probability distribution. We define the model confidence
µ̂i as the average probability of the true label y∗i across E epochs: µ̂i =

1
E

∑E
e=1 pθ(ϵ) (y∗i | xi) ,

where pθ(e) denotes the probability of the model and θ(e) represents the model parameters at the
end of the eth epoch. Secondly, as a more intuitive statistic, we define correctness ϕ̂i as the fraction
of times the model correctly labels instance xi across epochs E: ϕ̂i =

1
E

∑E
i=1 1 (ŷi = y∗i | xi) .

Note that correctness can only have 1 + E discrete values. Lastly, we further consider variability σ̂i

quantifying the spread of pθ(e) (y∗i | xi) across E epochs using the standard deviation of confidence:

σ̂i =

√∑E
e=1(pθ(e)(y∗

i |xi)−µ̂i)
2

E . We then leverage confidence, variation, and correctness to visualize
training dynamics using data map [19]. A given training sample that receives a consistent label
assignment from the model, irrespective of accuracy, represents low variability. Conversely, if
the model struggles with labeling (i.e., prediction) throughout the training process, this instance
represents high variability. Training dynamics can be evaluated at varying steps and epochs with
metrics obtained above as the coordinates in the data map.

4 Experiment and Discussion

(a) Original

(b) PGAN and IGAN

(c) Diffusion

Figure 2: Examples of (a) original tiles and gener-
ated tiles using (b) GANs and (c) diffusion model.

In the experiments, we first performed quantita-
tive and qualitative analysis to evaluate genera-
tion quality. Compared to the original images,
we observed very similar patterns in synthetic
images from both GANs and diffusion. Specif-
ically, synthetic images from diffusion models
cover more diverse patterns. For qualitative eval-
uation, we presented examples of synthetic im-
ages generated by GANs and diffusion models
in Figure 2. The quantative results indicate that
diffusion could generate more diverse synthetic
tiles while remaining closer to the distribution
of real images, with a higher Inception Score
of 3.67, a lower sFID score of 97.6, a higher
precision score of 0.61, and a higher recall of
0.69.

Extensive experiments on internal and external
patient cohorts demonstrate the feasibility of
both tile-level and biopsy-level detection with augmented samples (Appendix B), with the best
AUROC of 0.9984 and 0.7681, respectively. Experimental results suggest that augmenting training
samples could boost model performance by increasing sample size or solving dataset imbalance in
biopsy-level classifications. For tile-level classification, our experiments reveal a distinct pattern
under different experimental settings. Although data augmentation enhances model performance on
the internal set, as evidenced in previous studies [4, 11], its effect on the external set is less promising.
This might be attributed to generative model collapse, distribution shift, or overfitting issues. For
biopsy-level model interpretation, Figure 3 represents the rejection probabilities, with red indicating
a higher risk for rejection signs. The interpretation results for tile-level models can be found in
Appendix C.

In the generation of data maps, we incorporated all epochs into the calculation of training dynamics,
beginning with the initial epoch. Figure 4b and 4a provide examples of data maps for the augmented
training set based on a ResNet152 classifier by diffusion and GANs, respectively. According to
the measurements, the top-left corner of the data map, characterized by low variability and high
confidence, populates the easy-to-learn examples, which form the majority of the original dataset.
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WSI H&E Annotated Regions No Augmentation GAN Diffusion

Figure 3: Comparisons among annotated important regions containing signs of cellular rejection and
predicted heatmaps with and without augmentations.
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(a) GANs-Augmented
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(b) Diffusion-Augmented

Figure 4: Data map for augmented training set based on a ResNet152 classifier. The x-axis shows
variability, the y-axis shows confidence, and the colors indicate correctness. The top-left corner of the
data map (low variability, high confidence) corresponds to easy-to-learn examples, the bottom-left
corner (low variability, low confidence) corresponds to hard-to-learn examples, and examples on the
right (with high variability) are ambiguous. Density plots for the three measures based on training
dynamics are shown towards the bottom.

The examples with high variability, located on the right side of the map, are inherently ambiguous
and represent complex patterns present in some tile-level instances. Conversely, the hard-to-learn
examples can be found in the bottom-left corner, defined by low variability and low confidence. As
suggested by Figure 4, these hard-to-learn samples are scarce, indicating the relatively high quality
of generated samples. Interestingly, more "ambiguous" data points are observed in the diffusion-
based map compared to the one using GANs. This suggests a more diverse sample distribution that
could potentially enhance model performance. Training dynamics of different augmentations could
potentially be utilized to evaluate and select augmented data samples. Furthermore, we investigated
the feasibility of creating data maps at various epochs to understand the evolution of training dynamics
over time (Appendix D). Data maps facilitate us to intuitively identify the contribution of individual
samples when monitoring the optimization process and evaluating augmented samples.

5 Conclusion

In this study, we developed and validated AI-enabled clinical decision support to automate heart
transplant rejection detection for pediatric patients based on data augmentation of limited patient
samples. With dataset cartography using data maps and training dynamics, we qualitatively mapped
and diagnosed the contribution of augmented samples, exploring the behavior of the model on
individual instances during model optimization for limited samples in rare diseases. Extensive
experiments on internal and external patient cohorts demonstrated the feasibility and effectiveness of
both tile-level and biopsy-level detection. Explainable AI results improved model interpretability
via high-resolution heatmaps, enabling human intervention and clinical validation. The proposed
data-efficient learning framework mau facilitate seamless scalability in detecting rare diseases without
imposing the burden of iterative expert annotations, thereby increasing effectiveness and efficiency.
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A Data Description

In this study, pediatric heart biopsies were gathered from two institutions: (1) the multi-center prospec-
tive blinded study, DNA-Based Transplant Rejection Test (DTRT) [15], and (2) Children’s Healthcare
of Atlanta (CHOA). All experiments were conducted in compliance with relevant guidelines and
regulations, with informed consent obtained from all participants. Biopsy-level annotations were
acquired directly from clinicians at the source institutions. For tile-level annotations, the ground truth
of Acute Cellular Rejection (ACR) regions in WSIs was obtained from clinical experts using His-
tomicsTK1. Following multi-instance learning formulation, training tiles were labeled as ’rejection’
if they overlapped more than 60% with an annotated region. An example of biopsy- and tile-level
images can be seen in Figure 5. For both tile- and biopsy-level model development, a train and test
split was performed at the patient level, with the detailed distributions documented in Table 1. The
training and validation sets were drawn from DTRT, while the external testing set was obtained from
CHOA. This setup ensures a robust evaluation across varied datasets.

For data pre-processing and quality control, the raw materials were WSIs sourced from DTRT and
CHOA. Given the large and variable sizes of WSIs, we performed a two-stage pre-processing before
feeding them into a computer-aided image analysis system. Initially, we segmented the WSIs to
separate the tissue from the background. This segmentation was achieved using Otsu’s thresholding
method on a downscaled version of the WSI, where the resolution was reduced by a factor of
10. Following this, we generated non-overlapping tiles from the segmented WSI, each measuring
256 × 256 pixels at 40X magnification. This 40X magnification was chosen because it allowed
multiple muscle cells and white blood cells to be included within each tile, which is crucial for
detecting signs of ACR. We retained only tiles that overlapped with more than 80% of the previously
identified tissue for quality control.

Expert-annotated Rejection Tiles

Non-Rejection Tiles

Figure 5: Illustration of biopsy- and tile-level images annotated by clinical experts for the identi-
fication of regions exhibiting cellular rejection indicators. Local regions characterized by signs of
cellular rejection are extracted for automating rejection detection.

1HistomicsTK: https://github.com/DigitalSlideArchive/HistomicsTK
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Table 1: Summary of tile-level and biopsy-level patient data: training and validation sets derived
from DTRT, and external testing set sourced from CHOA.

Tile-Level Training (DTRT) Testing (CHOA)
Rejection 2330 105
Non-Rejection 3256 12167

Biopsy-Level Training (DTRT) Testing (CHOA)
Rejection 65 16
Non-Rejection 35 27

B Tile- and Biopsy-Level Classification Results

B.1 Tile-level Classification

Tables 2 reports the AUROC scores on both external and internal testing sets for heart transplant
rejection classification. The performance of four different convolutional neural network models
(VGG19, ResNet50, ResNet152, and DenseNet161) was evaluated, each using two distinct types
of data augmentations: GAN-based and Diffusion-based. In the case of internal validation, the
GAN-based data augmentation method achieved the highest AUROC scores across the VGG-19
(0.9884), ResNet152 (0.9806), and DenseNet161 (0.9984) models. This demonstrates that the
GAN augmentation technique provided superior performance for these models when applied to the
internal testing dataset. Conversely, when considering the external testing set (CHOA), the baseline
models without any data augmentation surprisingly outperformed both the GANs and diffusion-based
augmentations for the VGG-19, ResNet50, and ResNet152 models, with competitive AUROC scores
of 0.9508, 0.9854, and 0.9863, respectively.

Table 2: Tile-level classification results (AUROC) on the external testing set (CHOA) and internal
testing set (DTRT) for heart rejection classification.

Augment VGG19 ResNet50 ResNet152 DenseNet161
External Testing Set (CHOA)

Baseline 0.9508 0.9854 0.9863 0.8661
GAN 0.6748 0.9640 0.9849 0.9717
Diffusion 0.6133 0.9094 0.9421 0.8437

Internal Testing Set (DTRT)
Baseline 0.9384 0.9422 0.9622 0.9950
GAN 0.9884 0.8963 0.9806 0.9984
Diffusion 0.9760 0.9479 0.9436 0.9895

B.2 Biopsy-level Classification

Tables 3 presents the biopsy-level classification results for heart transplant rejection on external and
internal testing sets, respectively. For the internal testing set, the diffusion augmentation method
consistently outperformed the others across all evaluated models, registering AUROC scores of
0.7297 for VGG-19, 0.7615 for ResNet50, 0.7451 for ResNet152, and 0.7681 for DenseNet161. On
the external testing set (CHOA), the diffusion augmentation method once again delivered the highest
AUROC scores for both the VGG-19 and ResNet50 models. However, for the ResNet152 model, the
GAN augmentation method emerged as the most effective, achieving an AUROC score of 0.6551.
These results highlight a significant discrepancy between internal and external validations at the biopsy
level, thereby highlighting the importance of external validation in assessing the generalizability of
models.
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Table 3: Biopsy-level classification results on the external testing set (CHOA) and internal testing set
(DTRT) for heart transplant rejection classification.

Augment VGG19 ResNet50 ResNet152 DenseNet161
External Testing Set (CHOA)

Baseline 0.4954 0.5150 0.4410 0.4988
GAN 0.4514 0.3519 0.6551 0.4676
Diffusion 0.6481 0.5428 0.5405 0.4606

Internal Testing Set (DTRT)
Baseline 0.7077 0.7571 0.7132 0.7187
GAN 0.7198 0.7297 0.7330 0.7143
Diffusion 0.7297 0.7615 0.7451 0.7681

C Model Interpretation

For tile-level model interpretation, Figure 6 presents visual representations of model interpretation
(i.e., heatmaps) using multiple explainable AI methods, including GradCAM++ [2], EigenCAM [12],
ScoreCAM [21], and AblationCAM [13]. Model interpretation outcomes highlight important regions
(red) in heatmaps, such as white blood cell infiltration and interstitial edema, for potential evidence of
rejection region prediction. Similarity among annotated and important regions in both augmented and
baseline heatmaps demonstrates that our proposed model could make predictions based on consistent
evidence from clinical experts.

D Training Dynamics Details

We investigated the feasibility of creating data maps at various epochs before model convergence to
understand the evolution of training dynamics over time (see Figure 7). From data map over epochs,
we can notice the trend of instances moving from right to top-left, perfectly modeling the model
training process. At convergence, model could correctly predict the majority of training instances
with consistently high confidence.
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Figure 6: Model interpretation outcomes with important regions highlighted using Grad-Cam++,
Eigen-CAM, Score-CAM, and Ablation-CAM for clinical validation and potentially novel biomarker
identification.
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(a) E=5
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Figure 7: Data map for original DTRT training set over 20 epochs with the same axes as Figure 4.
Density plots for the three different measures based on training dynamics are shown towards the
bottom.
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Figure 7: Data map for original DTRT training set over 20 epochs with the same axes as Figure 4.
Density plots for the three different measures based on training dynamics are shown towards the
bottom. (Continued)
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