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ABSTRACT

One-class learning through deep architectures is a particularly challenging task;
in this scenario the crasis of kernel methods and deep networks can represent a
viable strategy to empower already effective methods. In this contribution we
present Conceptron, a probabilistic and deep one-class classification method. The
proposed algorithm is a hybridization of the Nyström version of the Import Vec-
tor Domain Description (IVDD) to deep learning layers rendering the approach
highly scalable (via batch stochastic gradient optimization) and automatically
learning the underlying feature space. Further we modify the cost function to
allow to get a Laplace distribution of the samples probabilities. Experiments on
MNIST, CIFAR-10 and other benchmark datasets show that Conceptron (and/or
variations) performs comparably or better with competing state-of-the-art meth-
ods with the additional capability of providing probabilities (through a logistic
model) and avoiding any degeneracy in the training process.

1 INTRODUCTION

A widely important and studied problem in computational intelligence is one-class learning. The
objective of one-class learning is detecting data samples which are unusual with respect to the ex-
pected behaviour (Chandola et al., 2009) or, in more abstract terms, to understand a concept and to
separate it from the rest of the Universum (Weston et al., 2006). In one-class learning the training
process is performed only on ”normal” samples (the ones respecting the expected behaviour) and
no a priori knowledge is given about the unusual samples (Moya et al., 1993). The main challenge
for this type of methods, and more in general for unsupervised learning techniques, is to learn the
intrinsic structure of the data, in particular the lack of samples belonging to the anomalous class,
makes the training harder as only the data belonging to one class delivers information. Another
crucial aspect in this type of methods is hyper-parameters selection, namely the choice of the best
performing model. While in supervised classification tasks cross-validation strategies can be used
for model selection, here other types of heuristics have to be adopted.
Typical domains where one-class classification methods are used include: network security (Tuor
et al., 2017), fraud detection (Adewumi & Akinyelu, 2017), medical diagnosis (Ronneberger et al.,
2015) and in general the monitoring of correct functioning of facilities/plants/devices (Stojanovic
et al., 2016). Several different algorithms have been proposed and some of the most effective ones
are in the kernel and deep learning realm. One-Class Support Vector Machine (Schölkopf et al.,
2001) (OC-SVM), the Support Vector Domain Description (Tax & Duin, 2004) (SVDD) in its orig-
inal and deep version (Ruff et al., 2018) and the Import Vector Domain Description (Decherchi &
Rocchia, 2016) (IVDD) are examples of effective one-class learning methods. IVDD uses an hy-
persphere as SVDD, but additionally it provides the probability estimation for each sample to be
normal (based on the distance with respect to the hypersphere).
Two main problems arise however when using vanilla kernel-based approaches: they don’t properly
scale (in memory and computing time) to big problems and being shallow they don’t learn features
representations, offloading this task to the design of the input space. To cope with the scaling issue
the Nyström method can represent a valid solution also endowing regularization properties (Erfani
et al., 2016; Rudi et al., 2015). In the one-class case this strategy was applied to IVDD (Decherchi &
Cavalli, 2020) where a fast and memory-efficient version was presented. Despite this improvement,
the effectiveness to cope with high-dimensional datasets is limited as it may require a substantial
feature engineering effort.
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Deep learning approaches, on the other side, directly provide computational models that learn rep-
resentations of data with multiple levels of abstraction (LeCun et al., 2015). Their effectiveness in
disparate supervised and unsupervised learning contexts have been widely confirmed (Shrestha &
Mahmood, 2019) reaching state of the art accuracy. In anomaly detection domain (AD) deep learn-
ing methods are often used to learn a low-dimensional feature representation which is then used in
a disjoint and independent anomaly scoring step (Pang et al., 2021; Chalapathy & Chawla, 2019).
This approach proved to be effective in extracting semantic features and, as expected, superior to
linear dimensionality reduction methods (e.g. Principal Component Analisys (PCA) (Candès et al.,
2011; Schölkopf et al., 1997; Zou et al., 2006) or random projections (Li et al., 2006; Pang et al.,
2018; Pevnỳ, 2016) among others (Bengio et al., 2013)). Other methods couple feature learning
with anomaly scoring. Typical architectures used for this purpose are Autoencoders (AEs) (Hinton
& Salakhutdinov, 2006), which aim to learn a low-dimensional feature representation space from
which the input samples can be properly reconstructed. Clearly, Variational AEs (VAEs) (Kingma &
Welling, 2013) represent a further possibility. Another emergent method belonging to this category
is AnoGAN (Schlegl et al., 2017), which adopts Generative Adversarial Networks (GANs) to learn a
latent space capable to properly describe the normal samples. The idea behind all these approaches
is that, after the training step, they have learned how to reconstruct normal input samples or how
to represent normal samples in the latent feature space, therefore they will fail in reconstructing
anomalous samples or in generating them. In this case, the anomaly score is computed on the re-
construction error. In Ruff et al. (2018) a new method for the one-class classification, dubbed Deep
SVDD, has recently been proposed which obtained state of the art performances. The Deep SVDD
algorithm learns a useful feature representation of the data together with the one-class classification
objective. However, even if the method is very effective compared to the other competing ones, it
have some weaknesses. The training process, as Authors discuss, can degenerate to trivial uninfor-
mative solutions if carried without a proper management. This is a structural problem and hence a
change on the functional form would be desirable. Additionally, it does not provide any anomaly
probability, but only a score can be retrieved.
In this paper we introduce Conceptron (and some variations on the theme), a probabilistic and deep
one-class method. It is a hybridization of the IVDD method (Decherchi & Rocchia, 2016) to deep
learning layers through the Nyström method (Decherchi & Cavalli, 2020). In this way the advan-
tages of deep learning are combined with the advantages of the kernel-based approaches (radial basis
functions locality control) obtaining a scalable and non degenerate one-class method. As the IVDD
method, Conceptron provides the probability estimation for each sample to be normal. Additionally
it utilizes a regularization term employing a Laplace prior that allows to obtain smooth probability
distributions; to avoid overfitting we detail an early stopping strategy.
In the following, in Section 2 we describe the IVDD method, Conceptron and some variations. In
Section 3, we challenge the devised methods with well-known data sets comparing the results with
the directly competing method, namely deep SVDD. Finally, in Sections 4 we present conclusions
and future works.

2 METHODS

The following notation will be used throughout the text.

• X is the n× d matrix of samples, where n is the number of samples and d is the dimension
of the input space.

• φ(·) : Rd → Rd′
is the, possibly nonlinear, transformation mapping the d-dimensional

input space into a d′-dimensional transformed one.

• K is the kernel matrix.

• r is the radius of the sphere, and Γ = r2.

• a is the center of the sphere.

• fi is the decision function, i.e., the function that tells if a sample is inside or outside the
sphere. If fi > 0, the ith pattern is outside the sphere, otherwise is inside.

• pi is the probability of the i-th sample to be inside the sphere.

• C is a inverse regularization coefficient, and Ĉ = C/n, where C ≥ 0.
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• x̂i = g(h(xi;Wh);Wg) is the reconstructed sample in a VAE (or AE) and h and g are
respectively the coder and decoder functions parameterized by their respective weights.

2.1 IMPORT VECTOR DOMAIN DESCRIPTION

Import Vector Domain Description (IVDD) is a one-class classification kernel method (Decherchi
& Rocchia, 2016) inspired by OC-SVM (Schölkopf et al., 2001) and SVDD methods (Tax & Duin,
1999). IVDD not only performs one-class classification using a hypersphere but also additionally
provides a probability estimation. IVDD is solved by the following minimization problem:

min
Γ,a

Γ2 − Ĉ
n∑

i=1

log(pi) (1)

where Γ is the square of the radius of the hypersphere, the constant Ĉ represents the trade-off
between the radius size and the error minimization and pi is the probability defined by a logistic
model:

pi =
1

1 + exp(βfi)
(2)

where fi is the decision function defined as:

fi = ||φ(xi)− a||2 − Γ (3)

and β is a fixed coefficient. If the center a in the cost (Eq. 1) is expressed as a linear combination of
the input patterns:

a =

n∑
i=1

αiφ(xi) (4)

than it is easy to show that the method can be set in the framework of kernel methods as only dot
products involving φ(xi) are needed (Decherchi & Rocchia, 2016). In a reproducing kernel Hilbert
space the dot product φ(xi) · φ(xj) can be implicitly computed by a single function evaluation
k(xi,xj) where k is a positive definite kernel function; hence the knowledge of φ(·) is not required.
Thanks to this property one can expand the distance between the samples and the center as:

d(xi,a) =

∣∣∣∣∣
∣∣∣∣∣φ(xi)−

n∑
k=1

αkφ(xk)

∣∣∣∣∣
∣∣∣∣∣
2

= αααtKααα− 2Ki,(·)ααα+ kii (5)

where K is the kernel matrix of size n × n, Ki,(·) is the i-th row of the kernel matrix K of size
n× n, and kii is the self-similarity of the i-th sample.
In Decherchi & Rocchia (2016) an efficient optimization algorithm is also described that can be as-
cribed to the class of sequential minimal optimization (SMO) methods (Zeng et al., 2008) combined
with features typical of expectation maximization (EM) algorithms (Dempster et al., 1977) as the
sub-minimization problem is solved via self consistent iterations. The method has been shown to
be very effective, however it suffers from the usual limits of kernel methods namely the scalability
problem as the expansion is carried over all the samples n. To improve the scaling, the Nyström
approximation can be used (Decherchi & Cavalli, 2020). In particular, a restricted number of sam-
ples can be selected a-priori from the original samples as landmarks. Then, one can assume that the
decision function lives in the space spanned by these landmarks, instead of the whole set of samples
in the training set. As a consequence, the center a can be expanded in the landmarks subset as:

a =

nl∑
k=1

αkφ(xk) (6)

where nl is the number of landmarks.
The cost to be minimized in this case is therefore the following:

Γ2 − Ĉ
n∑

i=1

log

1 + exp

β
∣∣∣∣∣
∣∣∣∣∣φ(xi)−

nl∑
k=1

αkφ(xk)

∣∣∣∣∣
∣∣∣∣∣
2

− Γ

 (7)
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again kernel properties lead to:

d(xi,a) =

∣∣∣∣∣
∣∣∣∣∣φ(xi)−

nl∑
k=1

αkφ(xk)

∣∣∣∣∣
∣∣∣∣∣
2

= αααtK̂rααα− 2K̂i,(·)ααα+ kii (8)

where K̂r is the kernel matrix of size nl × nl, K̂i,(·) is the i-th row of the kernel matrix K̂ of size
n × nl, and kii is the self-similarity of the i-th sample. This version is much faster, bears a limited
memory footprint, and also shows interesting regularization properties (Decherchi & Cavalli, 2020)
confirming for the unsupervised scenario the findings in (Rudi et al., 2015) for the supervised setting.

2.2 CONCEPTRON

In this contribution we introduce Conceptron (and variants), a cost-modified and deep version of
the IVDD method. Conceptron is obtained starting from the Nyström version of the IVDD method,
which, as already discussed, is rather scalable even for large scale datasets, but that still it is not a
deep paradigm.
The simple, and general, observation is that a kernel method when gets approximated via a limited
set of landmarks can be interpreted as the terminal layer of a neural network, where the kernels
represent the activation function. For instance, it is not difficult to apply this approach to Regularized
Least Squares (Rifkin et al., 2003) and realize that such machine becomes an old-school radial
basis function network where the centers are provided by the landmarks samples.Through a further
approximation one could even avoid the landmarks samples and use random values (Gastaldo et al.,
2016). On the light of this observation we can define this objective function:

min
Γ,a,W

Γ2 − Ĉ
n∑

i=1

log(p̂i) + λL(xi, x̂i) (9)

where the third term is the loss function of an AE or a VAE and λ is a regularization coefficient.
Here we are jointly optimizing a VAE/AE and the IVDD Nyström loss function. This cost function
for λ different from zero is inherently not degenerate as it prevents any collapse of the feature space.
We will refer to this functional as Deep IVDD. Here p̂i is a modification of the original probability
definition; it is still a logistic model but the decision function is now scaled with respect to the
distance of a sample from the center:

f̂i =
||φ(h(xi;W))− a)||2 − Γ

||φ(h(xi;W))− a)||
=
αααtK̂rααα− 2K̂i,(·)ααα+ kii − Γ√

αααtK̂rααα− 2K̂i,(·)ααα+ kii

. (10)

This modification helps in obtaining smoother probability distributions with respect to the IVDD
method; the result is that the probability histogram covers better all the possible probability values
in the range between zero and one. We will call Conceptron a functional similar to this one, where
now instead of controlling the radius directly as in the SVDD approach, we control the adherence
of the probability distribution p to a reference probability distribution q via the Kullback-Leibler
divergence:

min
Γ,a,W

DKL(q||p̂)− Ĉ
n∑

i=1

log(p̂i) + λL(xi, x̂i). (11)

This variation of the cost function allows to obtain a control of the probabilities distribution and
hence indirectly controlling the radius size as a consequence (a schematic representation of Concep-
tron can be found in Appendix A). In this work we set the prior q as a Laplace distribution:

q =
1

2b
exp

(
−|x− µ|

b

)
. (12)

We suggest this distribution to be reasonable for several reasons, beyond empirical evidence. First
we observe that learning a concept is meaningful only if this learning process is robust. In other
words we expect that the majority of normal samples have high probability values, hence the norm-
one induced sharp peak. Second, we prefer this distribution to a Gaussian, for instance, as we expect
that the confidence reduction with respect to the distance from the center is a monotone function and
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there is no reason to have a convexity change in this probability shift process. These cost functions
(and the following variants we will discuss) are always optimized via the Batch Stochastic Gradient
Descent (SGD) and its variants (e.g. Adam (Kingma & Ba, 2014)), whereas for IVDD we used the
original batch algorithm. In particular, when we train by SGD we take advantage of the fact that,
with a proper initialization, and a sufficiently big C (C = 1 proves always to be sufficient) the size
of the hypersphere is monotonically increasing with respect to the epochs. We fix a priori a range
[πlow, πhigh] where we accept the percentage of inner samples and we train the network until for
the first time this range is hit. If learning is too fast and the range is skipped as the hypersphere
is growing too fast, we step back to the previous epoch parameters and decrease the learning rate.
This procedure is similar to what it was done for IVDD where one reaches the prescribed range by
bisection on C (Decherchi & Cavalli, 2020).
The Conceptron training procedure hence overcomes the IVDD sensitivity problem to the C value,
as its value is never changed, and we take advantage of the epochs to reach the desired range; this
strategy proved to be very fast and always hitting the desired range. Here we detail the pseudo-code
where η indicates the learning rate, takestep is a gradient update step and π is the fraction of inner
samples.

Algorithm 1 Conceptron algorithm
Require: X, σ, η
Ensure: ααα,W,Γ
W = W0, η = η0,ααα = 1/nl, π = 0.0
while π 6∈ [πlow, πhigh] do

for epoch do . π is the ratio of inner samples
V, π, α̂̂α̂α, Γ̂ = takestep(X,W, η,Γ,ααα)
if π > πhigh then . step back

V = W
η = η/10.0
α̂̂α̂α = ααα
Γ̂ = Γ

end if
W = V
ααα = α̂̂α̂α
Γ = Γ̂

end for
end while

The range [πlow, πhigh] is an input hyper-parameter and may vary according to the reliability of the
training dataset, playing the same role of ν in OC-SVM. In fact, the lowest πhigh, the smaller is the
radius and the more conservative is the final solution. In general, a conservative approach should be
used when the training dataset contains many heterogeneous and imperfect samples.
For the original IVDD we apply an analogous back-tracking strategy but this time not on the epochs
but on C. This method is needed for IVDD as it is highly sensitive to the C value.

3 RESULTS

The implementation (except the original IVDD Matlab code) was written in Python and all the
experiments can be reproduced using the code available at the following link in the references:
Conceptron-URL. To fully understand the sources of inaccuracies/improvements and the good or
bad behaviour of the probability distributions we tested several combinations and variations over
the original IVDD and the just introduced methods. In detail we will indicate by IVDD the original
shallow IVDD, by IVDD-Nys the Nyström version, by Fixed-VAE when the VAE is pre-trained
only and no joint optimization is performed. Further the suffix -S and -K will indicate respectively
when the scaled decision function and the Kullback-Leibler divergence is used. Together with these
variations we finally also tested what we termed Deep IVDD and Conceptron methods.
We tested the methods on the well-known MINIST (LeCun et al.) and CIFAR-10 (Krizhevsky et al.,
2009) datasets. Both MNIST and CIFAR-10 have ten different classes. MNIST is composed by
60000 images for training (≈ 6000 for each class) and 10000 images for testing (≈ 1000 for each

5



Under review as a conference paper at ICLR 2022

Table 1: Mean results (AUC and BER) over 10 classes on MNIST and CIFAR-10 datasets.

MNIST AUC CIFAR AUC MNIST BER CIFAR BER

Deep
SVDD

95.01
±0.8

60.9
±2.0

12.0
±1.1

45
±1.3

IVDD 76.1
±1.9

57.4
±0.0

33.2
±2.5

44.8
±0.0

IVDD
Nys

89.5
±0.2

57.6
±0.2

19.5
±0.5

45.2
±0.3

Fixed-VAE
IVDD

99.9
±0.0

41.7
±1.0

7.9
±1.2

50.8
±0.4

Fixed-VAE
IVDD-Nys

96.1
±0.1

55.1
±0.2

11.4
±0.4

45.6
±0.7

Fixed-VAE
IVDD-Nys-S

96.1
±0.1

55.1
±0.0

11.1
±0.3

45.5
±0.0

Fixed-VAE
IVDD-Nys-SK

96.1
±0.0

55.1
±0.2

10.9
±0.5

45.9
±0.8

Deep IVDD 96.7
±0.1

56.2
±0.3

10.8
±0.4

46.0
± 0.6

Conceptron 96.2
±0.6

54.2
±0.6

11.0
±1.1

47.4
±0.8

class) each of shape 28x28. On the other hand, CIFAR-10 is composed by 50000 images for training
(5000 for each class) and 10000 for testing (1000 for each class) each with size 32x32. All images
were pre-processed by rescaling to the domain [0, 1] via min-max scaling.
Here, we consider just one class at a time for training and all the test set for testing. In this way, ten
different experiments can be run for each dataset. In addition, to evaluate the generalization ability
of the model, we repeated ten times the experiments with different seeds and results have been aver-
aged accordingly. We evaluate the results quantitatively via the Balanced Error Rate (BER) metric
(the average of the per class error) and the Area Under the Curve (AUC) by using the ground truth
labels in testing.
In both experiments on MNIST and CIFAR-10 we use a VAE as network architecture. Further de-
tails on the network structure can be found in Appendix B. Both the networks for the two datasets are
pre-trained for 100 epochs with a batch size of 256 and the Adam optimizer (all the parameters are as
recommended in the original work (Kingma & Ba, 2014)). After the pre-training step, both the Deep
IVDD and the Conceptron cost functions are optimized using a reference range [πlow, πhigh] and the
previously presented algorithm. In all the run experiments the additional guarding term−min(0,Γ)
in the cost function has been added. We found however that this term is always zero during the min-
imization process. The following parameters have been adopted: batch size = 32, nl = 50, kernel
RBF, σ = maxij(dij)/ log(nl) (where dij is the distance between i and j landmarks samples), and
β = 25. The value of Ĉ is set at the value 1 and never changed. On MNIST experiments, λ = 100
for both Deep IVDD and the Conceptron methods, while on CIFAR-10 λ = 0.1. The λ values were
chosen such that the IVDD and VAE cost components have analogous orders of magnitude and the
IVDD component is always slightly more dominant. The Laplace parameters are set as: µ = 1 and
b = 0.2. Finally, in all the experiments, we used the range [80%, 90%].
For the sake of comparison, the Deep SVDD method (Ruff et al., 2018) as well as the IVDD method
(Decherchi & Rocchia, 2016) are used, which represent the competing state-of-the-art methods. We
run Deep SVDD with the same configuration proposed in: Deep-SVDD-URL. IVDD has been run
with β = 25, σ = maxij(dij)/ log(nl), and Ĉ automatically updated and tuned for including in-
side the sphere the [80% − 90%] of samples. All the other parameters remains unchanged and are
described in Decherchi & Rocchia (2016).
In addition to these experiments, we investigated other variations, which incrementally modify the
original IVDD method until Deep IVDD and Conceptron methods are obtained. The detailed results
of all these experiments are in Table 2 and in Table 3 in Appendix C whereas in Table 1 we present
a summary of the results.
Appendix D shows a t-SNE projection of the feature spaces for the training and test data.
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Mnist

Figure 1: Probability distributions of the training samples (class 0, seed 0) for the MNIST dataset.

As expected, the performances of IVDD are not on par when dealing with high-dimensional datasets.
However, the Fixed-VAE IVDD method interestingly outperforms in most cases the other tested
methods and proves to be significantly superior on average to all the methods. This result confirms
that using deep approaches to learn a derived feature representation in a completely disjoint step is
a valid strategy to address one-class classification problems. Moreover using a kernel method as
terminus of the network with a RBF kernel proves to be very effective overall. The MNIST result
particularly is almost perfect. However, this approach is not scalable with large-scale datasets as,
again, the training and evaluation step are both expensive. Nevertheless, in terms of AUC and BER
only, this is the best approach. Conceptron obtains results close to Deep SVDD and additionally
bears informative probability distributions.
Analysing more in depth the various solutions, particularly the probability distributions of the train-
ing samples (see Figure 1), one can observe that they progressively get better and that the best per-
formances are obtained with Conceptron. These results confirm that using a more robust decision
function (Eq. 10), the benefits gained with the feature space induced by the VAEs and particularly
the new Laplace regularizer, allow to obtain good results in terms of BER and AUC and provide, at
the same time, well distributed probabilities in the entire range between 0 and 1. The testing prob-
ability distributions on MNIST are reported, for completeness, in Appendix E. Training and testing
probability distributions on CIFAR-10 are in Appendix F.
On CIFAR-10 the situation is less clear as all the methods show pretty poor performances. The
BER and the AUC scores are in general modest meaning that, when complex colors images are used
none of the methods is capable to obtain satisfying performances. Results in the Appendix F show
that in CIFAR-10 the Conceptron distribution is not optimal; this is a quite hard task and this may
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deteriorate the probability modeling attempt.
A qualitative check on the most normal and most anomalous samples obtained with Deep SVDD,
Deep IVDD and Conceptron on MNIST and CIFAR-10 points to some interesting features. One can
observe in Figure 2 that the most normal samples found by Deep SVDD, are, by visual inspection
less prototypical than the ones found by the competing methods. In fact, the numbers look more
well rounded, less sloped and more similar to each other. Here both the VAE and the finely tuned
probability model are contributing to this result. For the training anomalous cases, visual inspection
shows that the most anomalous samples detected by Conceptron and variations are similar to the
ones detected by Deep SVDD. For the CIFAR-10 cases, performances are everywhere poor and can
be found in Figure 3.
Eventually, Deep SVDD and Conceptron obtain similar AUC and BER performances but thanks to
a probability model and the VAE, Conceptron extracts better the central concepts.
Additional experiments on some UCI datasets can be found in Appendix G.

Most normal samples - training 
Deep SVDD Deep IVDD Conceptron

Most anomalous samples - training 
Deep SVDD Deep IVDD Conceptron

Figure 2: Analysis of the most normal and anomalous samples obtained with different one-class
classification methods on the standard MNIST dataset.
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Most normal samples - training 
Deep SVDD Deep IVDD Conceptron

Most anomalous samples - training 
Deep SVDD Deep IVDD Conceptron

Figure 3: Analysis of the most normal and anomalous samples obtained with different one-class
classification methods on the standards CIFAR-10 dataset.

4 CONCLUSION AND FUTURE WORKS

In this paper we introduced Conceptron and variations, a set of unsupervised deep one-class classi-
fication methods. The most significant advantage of the presented approach is that it hybridizes the
capability of the Import Vector Domain Description to deliver a probability to deep learning layers.
Using the SGD as optimization method and the Nyström approximation, the solution is scalable.
Additionally, the VAE architecture combined with the benefits of the local control of the RBF kernel
and the Nyström approximation, allows to obtain a stable solution avoiding any degeneracy in the
training procedure.
Even though the AE architecture used in Eq. 9 and Eq. 11 is not mandatory, the Variational Au-
toencoders (VAEs) (Kingma & Welling, 2014; Rezende et al., 2014) approach provides an effective
starting point as the latent space of the VAEs is induced in reproducing a Gaussian distribution,
something that is more akin to be embedded into a sphere. Even though Conceptron obtained results
analogous to the others competing methods, the performances with complex, colorful images can be
still improved. Moreover, despite we defined defaults for many parameters, we would like to under-
stand if a model selection strategy is possible, obviously a genuine unsupervised one. In future, we
will examine in depth the benefits of Conceptron in the life sciences/clinical context where taking
decisions is both crucial and expensive and one cannot avoid to estimate a probability before taking
action. Efforts in these areas are already underway.
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5 REPRODUCIBILITY STATEMENT

The complete source code, the results and some how-to can be found at the link Conceptron-URL
in the references.
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Tomáš Pevnỳ. Loda: Lightweight on-line detector of anomalies. Machine Learning, 102(2):275–
304, 2016.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Eric P. Xing and Tony Jebara (eds.), Pro-
ceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pp. 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR.

Ryan Rifkin, Gene Yeo, Tomaso Poggio, et al. Regularized least-squares classification. Nato Science
Series Sub Series III Computer and Systems Sciences, 190:131–154, 2003.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Alessandro Rudi, Raffaello Camoriano, and Lorenzo Rosasco. Less is more: Nyström computational
regularization. In NIPS, pp. 1657–1665, 2015.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexan-
der Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International
conference on machine learning, pp. 4393–4402. PMLR, 2018.
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A CONCEPTRON: A SCHEMATIC REPRESENTATION

𝒙𝒊 ≈ #𝒙𝒊

𝒙𝒊 "𝒙𝒊𝒉𝑾 𝒈𝑾𝒉(𝒙;𝑾)
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𝝓

𝑭𝒆𝒂𝒕𝒖𝒓𝒆 𝒔𝒑𝒂𝒄𝒆

𝑲𝒆𝒓𝒏𝒆𝒍 𝒔𝒑𝒂𝒄𝒆

𝒂
𝒓𝒂𝒅𝒊𝒖𝒔
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Figure 4: Conceptron and variations schematic representation.
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B VAES ARCHITECTURE ON MNIST AND CIFAR-10 EXPERIMENTS

In this appendix we report the VAEs architectures used for the experiements. The kernel size is 3,
while the stride is 2. Each layer is followed by ReLU activations except for the last layer of the
decoder, which is followed by the sigmoid activation function.

input_1: InputLayer
input:
output:

[(?, 28, 28, 1)]
[(?, 28, 28, 1)]

conv2d: Conv2D
input:
output:

(?, 28, 28, 1)
(?, 14, 14, 32)

conv2d_1: Conv2D
input:
output:

(?, 14, 14, 32)
(?, 7, 7, 64)

flatten: Flatten
input:
output:

(?, 7, 7, 64)
(?, 3136)

dense: Dense
input:
output:

(?, 3136)
(?, 64)

z_mean: Dense
input:
output:

(?, 64)
(?, 32)

z_log_var: Dense
input:
output:

(?, 64)
(?, 32)

sampling: Sampling
input:
output:

[(?, 32), (?, 32)]
(?, 32)

input_2: InputLayer
input:
output:

[(?, 32)]
[(?, 32)]

dense_1: Dense
input:
output:

(?, 32)
(?, 3136)

reshape: Reshape
input:
output:

(?, 3136)
(?, 7, 7, 64)

conv2d_transpose: Conv2DTranspose
input:
output:

(?, 7, 7, 64)
(?, 14, 14, 64)

conv2d_transpose_1: Conv2DTranspose
input:
output:

(?, 14, 14, 64)
(?, 28, 28, 32)

conv2d_transpose_2: Conv2DTranspose
input:
output:

(?, 28, 28, 32)
(?, 28, 28, 1)

Encoder Decoder
MNIST – VAE architecture

Figure 5: VAE architecture for MNIST experiments.

input_1: InputLayer
input:
output:

[(?, 32, 32, 3)]
[(?, 32, 32, 3)]

conv2d: Conv2D
input:
output:

(?, 32, 32, 3)
(?, 16, 16, 64)

conv2d_1: Conv2D
input:
output:

(?, 16, 16, 64)
(?, 8, 8, 128)

conv2d_2: Conv2D
input:
output:

(?, 8, 8, 128)
(?, 4, 4, 256)

flatten: Flatten
input:
output:

(?, 4, 4, 256)
(?, 4096)

dense: Dense
input:
output:

(?, 4096)
(?, 512)

z_mean: Dense
input:
output:

(?, 512)
(?, 256)

z_log_var: Dense
input:
output:

(?, 512)
(?, 256)

sampling: Sampling
input:
output:

[(?, 256), (?, 256)]
(?, 256)

input_2: InputLayer
input:
output:

[(?, 256)]
[(?, 256)]

dense_1: Dense
input:
output:

(?, 256)
(?, 4096)

reshape: Reshape
input:
output:

(?, 4096)
(?, 4, 4, 256)

conv2d_transpose: Conv2DTranspose
input:
output:

(?, 4, 4, 256)
(?, 8, 8, 256)

conv2d_transpose_1: Conv2DTranspose
input:
output:

(?, 8, 8, 256)
(?, 16, 16, 128)

conv2d_transpose_2: Conv2DTranspose
input:
output:

(?, 16, 16, 128)
(?, 32, 32, 64)

conv2d_transpose_3: Conv2DTranspose
input:
output:

(?, 32, 32, 64)
(?, 32, 32, 3)

Encoder Decoder

CIFAR-10 – VAE architecture

Figure 6: VAE architecture for CIFAR-10 experiments.
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C PER CLASS DETAILS ON MNIST AND CIFAR-10 EXPERIMENTS

Table 2: Average AUC (over 10 seeds) on standard MNIST and CIFAR datasets.

MNIST 0 1 2 3 4 5 6 7 8 9

Deep
SVDD

98.2
±0.4

99.5
±0.1

91.3
±1.6

92.5
±1.2

95.1
±0.7

89.2
±0.8

98.3
±0.5

94.6
±0.9

94.4
±1.0

96.9
±0.4

IVDD 71.9
±0.6

99.1
±0.0

65.7
±1.3

78.9
±3.9

75.8
±2.5

57.1
±1.5

73.8
±5.2

83.6
±0.1

77.2
±1.9

78.3
±2.5

IVDD
Nys

98.3
±0.1

99.6
±0.01

82.4
±0.3

88.3
±0.1

89.4
±0.2

80.4
±0.4

91.4
±0.2

93.2
±0.1

81.8
±0.2

90.5
±0.1

Fixed-VAE
IVDD

99.9
±0.0

99.9
±0.0

99.8
±0.0

99.9
±0.2

99.9
±0.0

99.9
±0.0

99.9
±0.0

99.9
±0.0

99.9
±0.0

99.8
±0.0

Fixed-VAE
IVDD-Nys

98.7
±0.0

99.9
±0.0

92.8
±0.1

96.3
±0.1

94.6
±0.1

94.8
±0.1

98.2
±0.0

94.7
±0.1

94.4
±0.1

96.8
±0.1

Fixed-VAE
IVDD-Nys-S

98.7
±0.0

99.9
±0.0

92.8
±0.6

96.3
±0.1

94.6
±0.1

94.7
±0.1

98.2
±0.0

94.7
±0.1

94.3
±0.1

96.8
±0.0

Fixed-VAE
IVDD-Nys-SK

98.7
±0.0

99.9
±0.0

92.8
±0.1

96.3
±0.0

94.6
±0.1

94.7
±0.0

98.2
±0.1

94.7
±0.0

94.3
±0.1

96.8
±0.0

Deep IVDD 99.2
±0.0

99.9
±0.0

94.4
±0.1

96.7
±0.1

95.3
±0.1

95.4
±0.1

98.4
±0.1

95.5
±0.1

95.0
±0.2

97.1
±0.1

Conceptron 99.3
±0.0

99.8
±0.0

92.5
±3.44

96.0
±0.1

94.9
±0.2

93.9
±1.5

98.5
±0.1

95.6
±0.1

94.8
±0.4

97.2
±0.1

CIFAR-10 air auto bird cat deer dog frog horse sheep truck

Deep
SVDD

62.3
±2.2

60.0
±1.7

49.4
±0.8

58.4
±1.6

53.5
±2.2

63.3
±2.0

56.5
±3.5

61.9
±3.2

75.2
±1.4

68.6
±1.2

IVDD 61.7
±0.0

43.3
±0.0

62.1
±0.0

49.5
±0.0

71.2
±0.0

50.0
±0.0

67.7
±0.0

49.7
±0.0

66.0
±0.0

53.8
±0.0

IVDD
Nys

63.3
±0.3

40.4
±0.1

63.5
±0.1

49.0
±0.1

73.3
±0.1

51.3
±0.1

69.0
±0.4

51.1
±0.1

65.5
±0.3

49.2
±0.1

Fixed-VAE
IVDD

46.4
±0.2

37.2
±0.2

41.8
±0.2

42.9
±2.4

42.3
±1.0

40.3
±1.1

39.6
±1.3

38.2
±1.4

44.6
±0.8

43.0
±1.4

Fixed-VAE
IVDD-Nys

60.2
±0.2

37.9
±0.2

64.6
±0.2

49.7
±0.2

73.7
±0.1

49.4
±0.2

65.9
±0.1

48.4
±0.2

64.7
±0.2

37.0
±0.2

Fixed-VAE
IVDD-Nys-S

60.1
±0.0

38.0
±0.0

64.6
±0.0

49.7
±0.0

73.7
±0.0

49.5
±0.0

65.7
±0.0

48.3
±0.0

64.4
±0.0

37.1
±0.0

Fixed-VAE
IVDD-Nys-SK

60.0
±0.2

38.0
±0.2

64.6
±0.1

49.6
±0.2

73.7
±0.2

49.6
±0.2

65.7
±0.3

48.3
±0.3

64.3
±0.3

37.0
±0.4

Deep IVDD 63.8
±1.0

39.0
±0.1

63.9
±0.2

49.3
±0.2

73.4
±0.2

49.7
±0.2

68.0
±0.3

50.3
±0.4

64.7
±0.2

39.8
±0.6

Conceptron 66.0
±0.3

40.5
±0.4

62.5
±0.3

44.6
±0.4

67.5
±1.1

47.6
±0.3

58.0
±1.7

49.0
±0.3

63.7
±0.7

42.3
±0.3
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Table 3: Average BER (over 10 seeds) on standard MNIST and CIFAR datasets.

MNIST 0 1 2 3 4 5 6 7 8 9

Deep
SVDD

7.1
±0.8

5.1
±0.2

18.1
±2.4

16.4
±2.0

10.9
±0.7

20.5
±1.1

7.0
±0.4

12.5
±1.1

13.3
±1.7

8.8
±0.9

IVDD 42.5
±2.3

9.2
±1.0

44.4
±1.4

31.2
±3.5

32.1
±3.0

48.9
±0.9

36.2
±6.5

24.1
±0.6

34.4
±2.4

29.5
±3.3

IVDD
Nys

9.0
±1.7

8.0
±0.3

27.2
±0.5

22.6
±0.4

18.0
±0.4

32.1
±0.4

15.4
±0.3

16.5
±0.3

29.5
±0.3

17.2
±0.3

Fixed-VAE
IVDD

7.9
±1.8

8.4
±1.1

7.3
±0.9

7.2
±0.8

7.8
±1.1

7.2
±1.2

10.8
±0.9

7.8
±1.6

6.8
±1.6

7.3
±1.1

Fixed-VAE
IVDD-Nys

8.1
±1.0

8.5
±0.8

15.9
±0.1

10.1
±0.1

12.8
±0.2

12.6
±0.3

8.7
±0.2

13.5
±0.4

15.4
±0.4

8.5
±0.2

Fixed-VAE
IVDD-Nys-S

9.8
±0.2

6.0
±0.3

15.7
±0.1

10.1
±0.2

12.0
±0.3

12.5
±0.19

9.0
±0.2

13.3
±0.49

12.8
±0.3

9.9
±0.3

Fixed-VAE
IVDD-Nys-SK

8.5
±1.7

6.0
±0.3

16.5
±0.2

10.1
±0.15

12.88
±0.3

12.5
±0.1

7.8
±0.3

13.6
±0.3

12.2
±0.3

9.1
±0.9

Deep IVDD 9.3
±0.4

9.2
±0.3

14.0
±0.2

9.9
±0.3

11.6
±0.6

12.1
±0.3

9.7
±0.8

12.0
±0.2

11.3
±0.8

9.3
±0.5

Conceptron 9.4
±0.7

8.1
±0.8

14.9
±4.7

10.1
±0.2

12.1
±0.5

13.1
±2.3

9.9
±0.47

12.0
±0.3

11.5
±0.8

8.9
±0.3

CIFAR-10 air auto bird cat deer dog frog horse sheep truck

Deep
SVDD

48.7
±1.6

43.0
±1.1

50.9
±0.5

45.7
±0.9

48.8
±0.6

44.4
±1.3

46.3
±1.9

43.0
±1.7

39.4
±1.9

40.0
±1.2

IVDD 46.0
±0.0

51.4
±0.0

44.6
±0.0

48.7
±0.0

36.7
±0.0

47.8
±0.0

37.7
±0.0

48.1
±0.0

41.6
±0.0

45.3
±0.0

IVDD
Nys

46.5
±0.7

52.0
±0.1

46.0
±0.4

50.3
±0.2

36.4
±0.6

47.4
±0.1

38.0
±0.8

47.2
±0.1

41.9
±0.4

46.1
±0.1

Fixed-VAE
IVDD

52.5
±0.2

51.7
±0.2

53.3
±0.2

49.9
±0.6

50.1
±0.4

50.8
±0.4

50.9
±0.5

50.8
±0.4

49.7
±0.3

47.8
±0.6

Fixed-VAE
IVDD-Nys

47.8
±0.8

50.7
±0.5

43.8
±0.7

49.0
±0.4

34.0
±1.4

49.1
±0.3

40.4
±1.1

48.4
±0.3

41.6
±1.1

51.4
±0.5

Fixed-VAE
IVDD-Nys-S

46.6
±0.0

50.7
±0.0

43.8
±0.0

48.8
±0.0

34.7
±0.0

48.9
±0.0

40.1
±0.0

48.5
±0.0

42.0
±0.0

51.4
±0.0

Fixed-VAE
IVDD-Nys-SK

46.9
±1.0

50.7
±0.3

44.6
±1.0

49.3
±0.5

34.8
±1.7

48.8
±0.1

40.7
±1.5

48.6
±0.2

42.9
±1.2

51.5
±0.5

Deep IVDD 45.2
±0.6

50.6
±0.3

45.7
±1.3

49.7
±0.2

37.1
±1.1

49.2
±0.2

42.0
±1.4

47.7
±0.3

42.1
±0.7

50.9
±0.4

Conceptron 42.3
±1.5

51.4
±0.4

45.9
±1.3

52.2
±0.4

41.9
±1.6

50.6
±0.3

48.3
±1.0

48.6
±0.3

44.5
±0.9

48.4
±0.4
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D CONCEPTRON ON MNIST: A SCHEMATIC REPRESENTATION

Figure 7: VAE training feature space projected in 2d via t-SNE. The color of each sample encodes
the probability to be normal.

Figure 8: VAE test feature space projected in 2d via t-SNE. The color of each sample encodes the
probability to be normal.
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E TESTING PROBABILITY DISTRIBUTIONS ON THE MNIST DATASET

In this experiment, the majority of the samples assumes low probability scores, while fewer obtain
high probability scores. This is completely coherent with the unbalanced distribution of the test set,
formed by many anomalous samples and a reduced part of correct samples.

Mnist

Figure 9: Probability distributions of the test samples (class 0, seed 0) for the MNIST dataset.
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F TRAINING AND TESTING PROBABILITY DISTRIBUTIONS ON THE
CIFAR-10 DATASET

Cifar

Figure 10: Probability distributions of the training samples (class airplane, seed 0) for the CIFAR-10
dataset.
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Cifar

Figure 11: Probability distributions of the test samples (class airplane, seed 0) for the CIFAR-10
dataset.
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G ONE-CLASS CLASSIFICATION EXPERIMENTS ON UCI DATASETS

Here we report the results of experiments on few datasets from the well-known UCI repository (Dua
& Graff, 2017). We evaluate the results quantitatively via the Balanced Error Rate (BER) metric and
the Area Under the Curve (AUC) metric by using the ground truth labels in testing. This metrics can
be computed since all the datasets used for the experiments are classification datasets, therefore the
labels are available.
Parameters are identical to MNIST experiments. To evaluate the generalization ability of the model,
we repeated ten times the experiments with different seeds and results have been averaged accord-
ingly. For each of the following experiments the class 1 is used as normal class. The other samples
are considered as anomalous. A schematic representation of the samples distribution is reported in
Table 4.

Table 4: Description of the standard UCI datasets.

Training samples Testing samples Features

Brest cancer 443 240 10
Ionosphere 225 126 34
Musk 207 269 166
O 753 19247 16
Ozone 128 1719 72
Sonar 97 111 60

All the selected datasets are in a low-dimension space hence the deep architecture is not needed/used.
This means that λ = 0 and both the training samples xi and the center a are in the input space. In
this way, it is possible to validate the scaled decision function presented in Eq. 10, combined with
the SGD optimization procedure, in a fully controlled environment. Additionally, we can directly
compare the methods with the IVDD method (Decherchi & Rocchia, 2016). The IVDD has been
run with β = 25, σ = maxij(dij)/ log(n), and C automatically updated and tuned for including
inside the sphere the 80%-90% of samples. All the other parameters remains unchanged and are
described in Decherchi & Rocchia (2016).
Conceptron is run with the following parameter configuration: nl = 50, lr = 0.01 and batch size
= n. Both the Deep IVDD and the Conceptron decision functions are used. The results of all these
experiments are summarized in Table 5 and in Table 6.

Table 5: Average AUC (over 10 seed) on standard UCI datasets.

IVDD Conceptron Conceptron
(Eq. 9) (Eq. 11)
nl = 50 nl = 50

Brest cancer 96.22 97.75 96.75
Ionosphere 99.75 99.60 99.60
Musk 98.16 98.25 98.25
O 99.67 99.66 99.66
Ozone 98.13 98.20 98.20
Sonar 96.50 96.50 96.50

From these experiments one can observe that the Conceptron results are comparable to the IVDD
ones and the performances are not reduced when the Nyström approximation is used. In Figures
from 12 to 23 we provide the probability distribution of the training and the testing samples for all
the UCI experiments (seed 0). Similar results have been obtained for the other seeds values and can
be found in the Conceptron-URL link in the references, together with all the code and output files.
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Table 6: Average BER (over 10 seed) on standard UCI datasets.

Conceptron Conceptron
IVDD (Eq. 9) (Eq. 11)

nl = 50 nl = 50

Brest cancer 13.24 12.13 12.13
Ionosphere 10.37 11.72 11.72
Musk 11.37 11.38 11.39
O 9.65 7.99 7.99
Ozone 13.81 13.91 13.91
Sonar 16.52 18.93 18.93

Breast

Figure 12: Probability distributions of the training samples (seed 0) for the Breast dataset.

Ionosphere

Figure 13: Probability distributions of the training samples (seed 0) for the Ionosphere dataset.

Musk

Figure 14: Probability distributions of the training samples (seed 0) for the Musk dataset.
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O

Figure 15: Probability distributions of the training samples (seed 0) for the O dataset.

Ozone

Figure 16: Probability distributions of the training samples (seed 0) for the Ozone dataset.

Sonar

Figure 17: Probability distributions of the training samples (seed 0) for the Sonar dataset.

Breast

Figure 18: Probability distributions of the test samples (seed 0) for the Breast dataset.
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Ionosphere

Figure 19: Probability distributions of the test samples (seed 0) for the Ionosphere dataset.

Musk

Figure 20: Probability distributions of the test samples (seed 0) for the Musk dataset.

O

Figure 21: Probability distributions of the test samples (seed 0) for the O dataset.

Ozone

Figure 22: Probability distributions of the test samples (seed 0) for the Ozone dataset.
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Sonar

Figure 23: Probability distributions of the test samples (seed 0) for the Sonar dataset.
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