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Abstract

Recent work has argued that large language001
models (LLMs) are not “abstract reasoners”,002
citing their poor zero-shot performance on a003
variety of challenging tasks as evidence. We004
revisit these experiments in order to add nu-005
ance to the claim. First, we show that while006
LLMs indeed perform poorly in a zero-shot007
setting, even tuning a small subset of parame-008
ters for input encoding can enable near-perfect009
performance. However, we also show that this010
finetuning does not necessarily transfer across011
datasets. We take this collection of empirical re-012
sults as an invitation to (re-)open the discussion013
of what it means to be an “abstract reasoner”,014
and why it matters whether LLMs fit the bill.015

1 Introduction016

The question of whether large language models017

(LLMs) are “abstract reasoners” has been the fre-018

quent subject of recent work, both directly (Hu019

et al., 2023; Webb et al., 2023; Gendron et al.,020

2024; Musker et al., 2024) and indirectly (Chol-021

let, 2019; Mitchell et al., 2023; Moskvichev et al.,022

2023). The answer to this question feels weighty.023

LLMs currently dominate modern approaches to024

AI, and abstract reasoning is arguably the linchpin025

of general and flexible intelligence (Gentner et al.,026

2001; Han et al., 2024; Mitchell, 2021). If LLMs027

are not abstract reasoners, it follows that fundamen-028

tal changes are needed in how AI is developed.029

The challenge with this question is that there is030

little consensus on what it means to be an “abstract031

reasoner”, and what evidence would convincingly032

demonstrate that an LLM, or any model, is or is033

not one. Most recently, it has been argued that034

LLMs are not abstract reasoners on the basis of035

their poor performance when tested out-of-the-box036

on adapted visual, analogical, and quantitative rea-037

soning tasks (Figure B.1 for examples) that require038

models to infer and generalize patterns from a lim-039

ited number of observations (Gendron et al., 2024;040

Mitchell et al., 2023; Stevenson et al., 2024). In 041

this work, we revisit this experimental setup. We 042

replicate the results of earlier studies, but add addi- 043

tional experiments which demonstrate the need for 044

more nuance before drawing strong conclusions. 045

Specifically, we follow the experimental design 046

from Gendron et al. (2024), and replicate their 047

finding that off-the-shelf pretrained LLMs perform 048

badly across a range of challenging reasoning tasks 049

(§4). However, we find that optimizing just the em- 050

bedding layer for the task (leaving the transformer 051

blocks frozen) all but eliminates the problem, allow- 052

ing the model to perform comparably to finetuning 053

the entire model, and sometimes even solve the task 054

perfectly (§5). This result extends beyond simple 055

embeddings and, in fact, a frozen pre-trained LLM 056

can perform well on visual reasoning tasks as long 057

as the visual encoder is fine-tuned on in-domain 058

task data (§6). 059

Together, these results paint a more subtle pic- 060

ture of LLMs: much of their representations and 061

inferential capabilities appear to be transferable 062

across very diverse tasks, but non-trivial effort is 063

required on the input side for each new task in or- 064

der to harness these capabilities. In light of this, we 065

(re-)open the larger discussion which is simultane- 066

ously empirical and philosophical (§7): What does 067

it mean to be an abstract reasoner, and why do we 068

care whether LLMs fit the bill? 069

2 Related Work 070

2.1 Analogical Reasoning 071

Prior work has studied the question of abstract rea- 072

soning of LLMs via analogical reasoning, such as 073

matrix reasoning (Webb et al., 2023), letter-string 074

analogies (Mitchell, 2021; Hofstadter et al., 1995) 075

and pointer-value retrieval (Zhang et al., 2021b). 076

These analogical reasoning benchmarks require a 077

model to infer the patterns from a limited number 078

of observations and apply the discovered patterns 079
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Figure 1: Illustration of our experimental settings. In Setting (a), we freeze the whole LLM and run evaluations.
This is treated as language baseline when image captions are inputs on abstract visual reasoning tasks. In Settings
(b) and (c), we freeze the pretrained transformer blocks and finetune only the input layers (i.e., token embedding
layer and visual encoder). In Setting (c), we freeze the token embedding layer to study the impact of tuning the
visual encoder in a controlled setting. Note that the inputs are pure language in Settings (a) and (b), while the inputs
are language prompts with image representations in Setting (c).

to the new queries.080

Despite the impressive performance of LLMs,081

there is yet no consensus on whether LLMs are082

strong analogical reasoners. Some studies show083

evidence suggesting that LLMs can even surpass084

the human baseline on analogical reasoning tasks085

(Hu et al., 2023; Webb et al., 2023), while the oth-086

ers show that LLMs achieve very limited perfor-087

mance on a set of analogical reasoning benchmarks088

(Gendron et al., 2024) or they are not robust to089

counterfactual examples or irrelevant information090

(Lewis and Mitchell, 2024; Musker et al., 2024).091

We use similar tasks and models as the prior work,092

but incorporate additional tasks and a wider range093

of finetuning experiments in order to situate the094

results within a larger discussion about abstract095

reasoning.096

2.2 Visual Analogical Reasoning097

Analogical reasoning can go beyond symbols and098

words and involve visual input, such as in ARC099

(Chollet, 2019), ACRE (Zhang et al., 2021a),100

RAVEN (Zhang et al., 2019; Hofstadter et al., 1995)101

and MEWL (Jiang et al., 2023). Recent approaches102

on visual analogical reasoning can be categorized103

into neuro-symbolic methods (Mao et al., 2019;104

Hudson and Manning, 2019), or neural networks105

with implicit representations (Ding et al., 2021;106

Sun et al., 2024; Bhattacharyya et al., 2023). Both107

approaches roughly follow the same outline of the108

perception stage and the reasoning stage. The per-109

ception stage usually relies on task-specific visual110

encoders, such as symbolic object encoders (Zhang111

et al., 2021a), object detectors (Ding et al., 2021),112

or on task-specific training strategies for these vi-113

sual encoders (Sun et al., 2024; Bhattacharyya114

et al., 2023). The reasoning stage introduces induc-115

tive biases by developing task-specific reasoning 116

modules (Hu et al., 2021b; Benny et al., 2021). In 117

this work, we investigate if the transformer blocks 118

of a pretrained LLM can be used as a reasoner for 119

different visual analogical reasoning tasks. 120

2.3 Multimodal Large Language Models 121

Prior work shows that transformer blocks pre- 122

trained on natural language can be transferred to 123

non-language sequence modeling problems by op- 124

timizing new input and output layers (Lu et al., 125

2022). With the rise of LLMs, recent work freezes 126

pretrained vision models and pretrained LLMs, and 127

only learns a mapping to project visual representa- 128

tions to language latent space in order to perform 129

on multimodal tasks (Merullo et al., 2023; Liu et al., 130

2023; Li et al., 2023; Liu et al., 2024). Tong et al. 131

(2025) investigates the impact of vision-only mod- 132

els in multimodal LLMs and reaches impressive 133

performance on downstream tasks. Our work is 134

similar to these models, but connects it to a larger, 135

more philosophical debate about the meaning of 136

“abstract reasoning”. 137

3 Datasets 138

3.1 Reasoning Tasks from Gendron et al. 139

We follow the evaluation benchmark used by Gen- 140

dron et al. (2024) to quantitatively measure the so- 141

called “abstract reasoning” capabilities of language 142

models. This benchmark contains seven tasks, each 143

of which evaluates the ability of a model to infer 144

patterns from a limited number of examples. These 145

seven tasks can be divided into two categories: 146

open question answering (OPQA) and multiple- 147

choice question answering (MCQA). OPQA tasks 148

require a model to generate the correct answer, 149
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“on” “off” “on”

context query

(a) Textual reasoning task

You are a helpful assistant that determines whether the light will be activated by the objects. Some objects can activate 
the light. The other objects cannot activate the light. There are three possible light states: on, off, and unknown.
Input: there is a brown cube.  Light: on.
Input: there is a yellow sphere.  Light: off.
Input: there is a brown cube and a blue cylinder.  Light: on.
Input: there is a blue cylinder.  Light: unknown.

You are a helpful assistant that determines whether the light will be activated by the objects. Some objects can activate 
the light. The other objects cannot activate the light. There are three possible light states: on, off, and unknown.
Input: [context_image_1_representation]  Light: on.
Input: [context_image_2_representation]  Light: off.
Input: [context_image_3_representation]  Light: on.
Input: [query_image_1_representation]  Light: unknown.

(b) Visual reasoning task

“unknown”

Figure 2: Illustration of the use of language models for text-based and image-based versions of ACRE. Each data
example will be formulated into a prompt for an LLM to make a prediction for the query. In textual reasoning task,
each context frame is represented by a frame caption. In visual reasoning tasks, each context frame is represented
by an encoded frame representation.

while MPQA tasks require a model to select the cor-150

rect answer from the given set of answer candidates.151

OPQA tasks include Abstract Reasoning Chal-152

lenge (ARC) (Chollet, 2019), BIG-Bench dataset153

(BBF) (Rule, 2020; Srivastava et al., 2022), Evals-P154

(Achiam et al., 2023), and Pointer-Value Retrieval155

(PVR) (Zhang et al., 2021b). MCQA tasks include156

ACRET (Zhang et al., 2021a), RAVENT 1(Zhang157

et al., 2019), and Evals-P (Achiam et al., 2023).158

3.2 Additional (Visual) Reasoning Tasks159

In addition to the models and tasks considered by160

Gendron et al. (2024), we additionally consider161

how well LLM representations transfer fo the mul-162

timodal language model framework (MLLM). To163

support these experiments, we consider two visual164

reasoning tasks: ACRE (Zhang et al., 2021a) and165

MEWL (Jiang et al., 2023). In ACRE, given the 5166

context frames and 1 query frame, a model needs167

1ACRET and RAVENT are text-based version of the origi-
nal tasks.

to predict the activation status of Blicket detector in 168

the query frame, which can be on, off, or unknown. 169

In MEWL, given 6 context frames and 1 query 170

frame, a model needs to understand the meaning 171

of the novel words and select the correct utterance 172

out of 5 options for the query frame. 173

4 Frozen Pretrained LLMs 174

We first seek to replicate (Gendron et al., 2024)’s 175

finding that frozen pretrained LLMs acheive low 176

performance across a large suite of reasoning tasks. 177

We reproduce these evaluations on LLaMA2 with 178

7 billion parameters (Touvron et al., 2023). Table 179

1 shows the results on OPQA and MCQA tasks. 180

We observe that even though there are small gaps 181

between the original results and the reproduced 182

results, the performance of the pretrained LLMs 183

are still low. Even when the answer candidates 184

are provided in MCQA tasks, the models mostly 185

perform as poor as random baselines (e.g., 33.3% 186

on ACRE and 12.5% on RAVEN). We observe 187
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OPQA MCQA

ARC BBF Evals-S PVR RAVENT RAVENT -Symb ACRET -Text ACRET -Symb Evals-P RAVENT RAVENT -Symb

Random - - - - - - 33.3 33.3 50.0 12.5 12.5
LLaMA2-7b-chat (NZ) 0.5 10.8 0.0 0.0 0.0 0.1 1.4 0.3 50.0 2.6 14.9
LLaMA2-7b-chat (Ours) 1.0 26.4 0.0 21.8 0.0 1.0 26.4 38.1 52.0 12.9 11.4

Table 1: Performance of frozen pretrained LLMs on open question answering (OPQA) and multiple-choice question
answering (MCQA) benchmarks.

ARC ACRET-Text ACRET Symb PVR RAVENT-Text RAVENT-Symb
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Figure 3: Performance of finetuned LLMs on OPQA (ARC and PVR) and MCQA (ACRET and RAVENT )
benchmarks. LLMs with finetuned embedding layer perform significantly better than their pretrained counterparts,
and perform on par with or even surpass the fully finetuned LLMs with LORA. Note that ACRET and RAVENT are
text-based version of original datasets, which may make the tasks easier to solve.

significant gaps between original results and ours188

on BBF and PVR, and attribute them to the choice189

of parser used to process the model’s predictions.190

Overall, our results are, if anything, stronger191

than what has been previously reported in this eval-192

uation setting. But even so, it is hard to argue that193

these numbers represent “strong” performance. We194

thus agree with (Gendron et al., 2024) that these195

results indicate poor transfer ability. What requires196

additional investigation, however, is whether this197

poor transfer is interpretable as a lack of abstract198

reasoning ability.199

5 Finetuned Embedding Layers200

Given that pretrained LLMs perform poorly off-201

the-shelf, it is natural to ask whether they can be202

adapted to these task, and if so, just how much203

adaptation is necessary. We explore two ways to204

finetune the LLMs: (1) finetuning all layers with205

low-rank adaptation (LoRA) (Hu et al., 2021a);206

(2) finetunning only the embedding layer of the207

LLMs. LoRA finetuning has become a standard208

way of adapting a model to a task and represents209

an upper bound on how well the model could be210

made to perform the task under the most permissive211

conditions. In contrast, finetuning just the embed-212

ding layer represents a conceptually different type213

of transfer with respect to the question of this pa- 214

per. Namely, finetuning just the embeddings is 215

analogous to changing just the input to the system– 216

e.g., ensuring the input is in the format the system 217

expects–but leaving the system itself unchanged 218

(see additional discussion and qualifications about 219

this analogy in §7). 220

We finetune the embedding layer for 50 epochs 221

using AdamW optimizer (Loshchilov and Hutter, 222

2019) with early stopping based on the validation 223

set. Following Gendron et al. (2024), we conduct 224

experiments on 2 OPQA tasks (ARC, PVR) and 2 225

MCQA tasks (ACRET , RAVENT -mcqa2.). 226

Figure 3 shows the results of finetuned LLaMA2. 227

We observe that LoRA-finetuned models perform 228

significantly better than their pretrained counter- 229

parts, and can even solve ACRET and RAVENT 230

perfectly. Moreover, LLaMA2 with a finetuned em- 231

bedding layer can perform on par with the LoRA- 232

finetuned LLaMA23. 233

2We are aware of the defects of RAVEN, and we use the
original RAVEN since it was previously used by Gendron et al.
(2024)

3We attribute the low performance of ARC to its com-
plexity and the length of each data sequence (excluding the
expected answer), where 75% of data has >2000 tokens.
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Figure 4: Data efficiency analyses on LLaMA2-7b with token embedding layer finetuned on center-single or
center-single-shuffled and further finetuned on 2x2 and in-center tasks in RAVEN with limited amount
of data. From-scratch means the token embedding of a pretrained LLaMA2-7b is directly finetuned on 2x2
and in-center tasks. Given that there are 8000 training examples in total, we observe that after finetuning
on center-single, the model becomes significantly more data efficient. By comparing center-single and
center-single-shuffled lines, we observe that data efficiency of the model mainly comes from the occurrences
of task-relevant tokens, rather than the reasoning logic of the tasks.

Generalizability and Data Efficiency. We con-234

duct experiments on RAVENT to further look into235

two properties of the finetuned input layers: gen-236

eralizability and data efficiency. An ideal abstract237

reasoner is expected to generalize to novel tasks238

with limited amount of observations.239

We take LLaMA2-7b’s token embedding layer240

finetuned on one task variant (namely, the241

center-single task) and further finetune this242

layer with varying amount of training examples243

for 500 steps on two different task variants (2x2244

and in-center), both of which require reason-245

ing over more attributes (e.g., different object246

alignments). Figure B.5 shows examples of247

these tasks. We consider three settings: (1)248

“center-single”, where the token embedding has249

been finetuned on the original center-single250

task; (2) “center-single-shuffled”, where251

the token embedding has been finetuned on252

center-single task with randomly shuffled la-253

bels. This setting preserves the visual features,254

but breaks the logical “reasoning” structure of255

the task, and thus serves as a test of how much256

of the positive transfer is due to low-level visual257

cues vs. higher-level more abstract features; (3)258

“from-scratch”, where the token embedding of259

a pretrained LLaMA2-7b is directly finetuned on260

2x2 and in-center tasks. We use this to study the261

impact of finetuning on center-single task.262

Figure 4 shows the results. LLaMA2-7b with to-263

ken embeddings finetuned just on 80 examples can264

perform competitively aganist LLaMA2-7b directly265

finetuned on full dataset (8k examples) of the tasks. 266

The fairly small gap between the center-single 267

and center-single-shuffled lines suggests that 268

the positive transfer is primarily explained by the 269

lower-level visual features rather than the reasoning 270

logic of the tasks. 271

6 Visual Encoder Trained from Scratch 272

Prior work has shown that transformer blocks pre- 273

trained on natural language can be tranferred to 274

non-language sequence modeling tasks, such as 275

image recognition and protein fold prediction (Lu 276

et al., 2022). Given the surprising effectiveness of 277

finetuning just the embedding layer of LLaMA2 on 278

text-only abstract reasoning tasks, we hypothesize 279

that the frozen transformer blocks of a pretrained 280

LLM will perform well on abstract visual reason- 281

ing tasks if the visual encoder is tuned for the task. 282

That is, we follow the multimodal LLM framework 283

(MLLM) which consists of a visual backbone, a 284

language backbone, and a linear projection layer 285

which maps visual representations to language la- 286

tent space. We keep the transformer blocks and 287

the token embedding layer of language backbone 288

frozen, and only train the visual encoder and the 289

projection layer. If this MLLM with a trained vi- 290

sual encoder can perform better than its language 291

backbone with oracle visual perception, then it pro- 292

vides further evidence for the above interpretation 293

of the frozen LLM as a highly transferable system. 294
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Method I.I.D. Compositional Systematic

Language LLaMA2-7b 26.4 26.1 29.9
Baseline GPT-4 66.4 66.4 64.0

GPT-4-Turbo 69.7 69.9 67.4

NS-OPT 66.3 69.0 67.4
ALOE - 91.8 93.9

Existing IV-CL 93.0 93.2 92.6
Approaches LRR - 98.2 99.2

LLaVA-NeXT-Mistral-7B 38.4 36.9 36.9
GPT-4o 62.6 61.5 61.7

Ours LLaMA2-7b-Object 95.5 97.5 86.5

(a) ACRE

Method shape color material object composite relation bootstrap number pragmatic Avg.

Language LLaMA2-7b 49.7 61.2 52.5 73.8 35.2 19.2 29.5 21.8 22.2 40.6
baselines BERT∗ 94.8 98.8 97.5 19.5 97.8 22.2 62.2 21.8 99.8 68.3

GPT-3.5 96.8 82.3 87.0 98.2 88.3 20.0 45.8 22.7 26.7 63.1

Existing ALOE 34.2 33.2 31.0 19.5 30.5 21.5 27.5 23.3 20.8 26.8
Approaches Flamingo-1.1B 49.3 35.3 48.5 19.2 38.2 18.8 57.3 84.2 18.0 41.0

Ours LLaMA2-7b-Object 59.3 100.0 98.8 96.8 50.4 17.3 87.0 99.5 19.2 69.8

(b) MEWL

Table 2: Results of LLaMA2-7b with train-from-scratch visual encoders on ACRE and MEWL. All language
baselines are frozen, except BERT which is finetuned on MEWL tasks. The results show that frozen LLaMA2 with
learned visual encoder perform significantly better than its language counterpart and even outperform the existing
approaches.

6.1 Variants of Image Inputs295

In order to run these experiments, we consider three296

variants of image inputs. Figure B.3 shows the297

examples of each variant.298

Symbol. A frame is represented by a set of multi-299

hot object representations, where each object repre-300

sentation is the concatenation of its one-hot vectors301

for object attributes (i.e., color, material, and shape)302

and a vector of object location information. This303

mimics the experiments in §5 by assuming oracle304

visual perception, and allows us to directly contrast305

language and visual inputs.306

Object. A frame is represented by object repre-307

sentations, where each object is an object crop from308

the frame. This variant assumes ground truth object309

detection exists in order to control the factors of310

reasoning performance.311

Image. A frame is represented by its RGB im-312

age. This variant simplifies the inputs the most,313

but requires the visual encoder to encode object314

properties and spatial relationships between objects315

directly from the frames.316

6.2 Language Baseline317

For our language baseline, we provide a frozen318

LLM directly with language descriptions of the319

abstract visual reasoning problem. Frame cap- 320

tions can be considered as oracle visual perception, 321

where each frame is represented by its caption (e.g., 322

“There is a blue cylinder and a brown cube.”). 323

6.3 Implementation Details 324

On ACRE, we use the training set with 6K samples, 325

where each sample contains 6 context frames and 326

4 query frames. Thus, the training set has 24K 327

sequences. On MEWL, we use the training sets 328

of the 9 sub-tasks, each of which involves 600 329

samples. Thus, the training set has 5400 sequences. 330

For the language backbone, we use LLaMA2 331

with 7 billion parameters (Touvron et al., 2023). 332

For the visual backbone, to encode image inputs, 333

we use a 2-layer ViT (Dosovitskiy, 2020) with 4 334

attention heads and 768-hidden dimensional space; 335

to encode symbolic representations of images, we 336

use a symbolic encoder which encodes object at- 337

tributes with embedding layers and encodes objects’ 338

location information4 with a linear layer. 339

During finetuning, we freeze the language back- 340

bone and finetune the visual encoder and the linear 341

projection. We use the AdamW optimizer with a 342

learning rate of 3× 10−5. We finetune the visual 343

backbone for 20 epochs on ACRE, and 40 epochs 344

4Each object location is represented as
[x1, y1, x2, y2, w, h, w × h]
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ACRE MEWL

I.I.D. Comp. Sys. Avg. shape color material object composite relation bootstrap number pragmatic Avg.

LLaMA2-7b-Image 75.8 77.7 71.7 75.1 35.0 99.8 57.7 26.2 32.7 19.8 31.8 45.2 21.3 41.1
LLaMA2-7b-Object 95.5 97.5 86.5 93.2 59.3 100.0 98.8 96.8 50.4 17.3 87.0 99.5 19.2 69.8
LLaMA2-7b-Symbol (Linear) 91.0 94.9 86.8 90.9 100.0 99.8 100.0 98.0 42.5 18.0 35.0 78.2 18.3 65.5
LLaMA2-7b-Symbol (MLP) 98.3 99.5 84.6 94.1 100.0 100.0 100.0 98.8 71.3 16.2 91.3 99.7 22.3 77.7

Table 3: Analysis on the presence of object-centric information. -Symbol rows can be considered as upper bound,
since the inputs are symbolic representations of images. The performance gap between -Image and -Object reflects
the importance of object-centric inductive bias in abstract visual reasoning tasks.

on MEWL. The batch size is set to 64.345

6.4 Results346

Table 2 shows the results of LLaMA2-7b with347

learned visual encoders on ACRE and MEWL. On348

ACRE, we observe that LLaMA2 with train-from-349

scratch visual encoders can perform significantly350

better than their language-only counterpart. These351

models can even outperform majority of the multi-352

modal state-of-the-art, including IV-CL (Sun et al.,353

2024) and LRR (Bhattacharyya et al., 2023), which354

are pretrained with video data. On MEWL, we ob-355

serve the same pattern that LLaMA2 with learned356

visual encoders can outperform prior state-of-the-357

art and also the language baselines which assume358

perfect visual perception.359

In Table 3, we further investigate different ways360

to represent an image. The large performance gap361

between LLaMA2-7b-Image and -Object (e.g., av-362

erage of 41.1% versus 69.8% on MEWL), indicat-363

ing that object-centric information is important for364

the pretrained transformer blocks to better solve365

abstract visual reasoning tasks. In all, these results366

demonstrate that with a frozen language backbone,367

learning just the visual encoder from scratch can368

already improve the model’s performance on ab-369

stract visual reasoning tasks significantly. However,370

task-specific design choices, such as object-centric371

representations, would be needed.372

7 Discussion373

The question of whether LLMs are “abstract rea-374

soners” has consequences for how we understand375

and thus how we develop increasingly advanced376

artificial intelligence. The challenge is that there377

is no consensus for what it means to be an “ab-378

stract reasoner”. In their recent work, Gendron379

et al. (2024) operationalize abstract reasoning as380

the ability to transfer zero-shot to a range of com-381

plex reasoning tasks. They find that LLMs perform382

poorly on this evaluation, and thus conclude that383

they are not abstract reasoners.384

In this work, we reproduce Gendron et al. 385

(2024)’s findings, but push back against their in- 386

terpretation. In particular, we provide new experi- 387

ments which show that tuning just the embedding 388

layer is remarkably effective. Indeed, across a 389

variety of textual and multimodal tasks, frozen 390

pretrained LLMs can achieve high levels of per- 391

formance as long as the input representations are 392

adapted sufficiently for each task. 393

It seems too stringent a criteria to require that 394

that abstract reasoners perform arbitrary tasks on ar- 395

bitrary inputs without adaptation. By way of coun- 396

terargument, consider the good old fashioned AI 397

(GOFAI) systems of the 1990s, which typically in- 398

cluded symbolic systems internally, e.g., databases 399

implemented in SQL or rules for logical inference 400

implemented in PROLOG. By most intuitive defi- 401

nitions, these databases and rules would be consid- 402

ered “abstract” and the tasks the systems performed 403

over them would be “reasoning”. But we would 404

not expect these systems to operate well over a 405

database implemented in MongoDB, or to apply 406

rules defined by Python. Rather, the need to op- 407

erate on representations of a particular format is a 408

consequence of, not an exception to, the system’s 409

abstraction. 410

Of course, we don’t claim that the internal pro- 411

cessing of an LLM is exactly analogous to that of a 412

GOFAI system. Of course, in an LLM, tuning the 413

input embedding layer might do more than simply 414

“rerepresent”, but rather might encode some task- 415

specific processing as well. But interpreted loosely, 416

the analogy is useful for highlighting how the ques- 417

tion of adaptability and transferability relates to the 418

question of abstraction and reasoning. 419

Indeed, this relationship has been considered in 420

depth by philosophers of AI, long before LLMs. 421

For example, Dennett (1997) appeals to transfer- 422

ability in his attempt to describe the difference 423

between human cognition5 and simpler computa- 424

5Dennet’s essay is not about reasoning, but rather about
intentional systems, or systems that have true “beliefs” about
the world and act according to them.
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tional systems:425

Consider the lowly thermostat...we might426

agree to grant it the capacity for about427

half a dozen different beliefs...it can428

believe the room is too cold or too429

hot, that the boiler is on or off...and so430

forth...suppose we de-interpret its beliefs431

and desires, it can believe the A is too432

F or G...and so forth....by attaching the433

thermostatic control mechanism to dif-434

ferent input and output devices, it could435

be made to regulate the amount of wa-436

ter in a tank, or the speed of a train for437

instance...But as systems become percep-438

tually richer and behaviorally more ver-439

satile, it becomes harder and harder to440

make substitutions in the actual links of441

the system to the world without chang-442

ing the organization of the system it-443

self. ...There comes to be a two-way con-444

straint of growing specificity between the445

device and the environment. Fix the de-446

vice in any one state and it demands a447

very specific environment in which to op-448

erate properly (you can no longer switch449

it easily from regulating temperature to450

regulating speed or anything else); but451

at the same time, if you do not fix the452

state it is in, but just plunk it down in a453

changed environment, its sensory attach-454

ments will be sensitive and discrimina-455

tive enough to respond appropriately to456

the change...457

Although Dennett is not discussing the notion of458

“abstract reasoners” per se, he observes that intel-459

ligent systems do not transfer well unless they are460

allowed to adapt6. Indeed, Dennett argues that this461

is a defining property, one that differentiates human-462

like intelligence from simpler (albeit perhaps more463

abstract) systems such as thermostats.464

Dennett’s argument is relevant here not because465

LLMs are human-like or even human-level in their466

reasoning abilities (they are far from it!). Rather,467

Dennett articulates a position that is implicit in468

contemporary discussions about LLMs and “ab-469

stract reasoning”. That is, that we care about how470

6While our experiments adapt the input layer (e.g., token
embedding) of a model, adaptation does not have to be lim-
ited to the input layers. Indeed, adaptation throughout the
model would be consistent with Dennett’s argument. A full
exploration of this is beyond the scope of this paper, but is an
interesting direction for future work.

well a system adapts to new environments because 471

adapting well to new environments is a hallmark 472

of intelligence. Indeed, this is often cited explicitly 473

as the motivation for studies of this nature (e.g., 474

“the question of whether or not LLMs can perform 475

human-like reasoning remains open...” (Gendron 476

et al., 2024)). But if evaluating human-likeness or 477

human-levelness is the motivation for studying ab- 478

stract reasoning, then arguments such as Dennett’s 479

provide a compelling case against using zero-shot 480

transfer ability as a relevant metric. 481

Of course, there is another, more practical, argu- 482

ment for why we might care about whether LLMs 483

are abstract reasoners, which is simply that we want 484

LLMs to transfer well zero-shot to many tasks in or- 485

der to facilitate easier, cheaper, and more efficient 486

development of systems. Indeed, the thermostat’s 487

highly abstract design is a feature, not a bug. This 488

type of hardware abstraction is what allows similar 489

components and control mechanisms to be readily 490

repurposed to support many types of use cases. A 491

“human like” thermostat might be very undesirable. 492

Thus, before seeking to answer the question 493

of whether LLMs are “abstract reasoners”, we 494

must first determine, as a community, why we 495

care. Do we care because we want to understand 496

how human-like they are, or do we care because 497

we want to facilitate more efficient technological 498

progress? Almost certainly, we care about both, but 499

we should not expect the same experiments to bear 500

on both lines of inquiry. Finding clarity around 501

these questions–what is an abstract reasoner and 502

why do we care about building one?–is the essen- 503

tial next step if we are to make progress toward 504

either, or both, goals. 505

8 Conclusion 506

In this paper, we have (re-)opened the discussion of 507

what it means to be an “abstract reasoner”, and why 508

it matters whether LLMs are “abstract reasoners”. 509

We have offered empirical results showing that off- 510

the-shelf pretrained LLMs indeed perform poorly 511

on reasoning benchmarks in a zero-shot setting. 512

However, on a variety of textual and multimodal 513

reasoning tasks, frozen pretrained LLMs can reach 514

high levels of performance when the input embed- 515

dings are tuned. With this collection of empirical 516

results, we argue that there is a need to determine 517

why we care about whether LLMs are “abstract 518

reasoners” before answering this question. 519
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