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Abstract

Recent work has argued that large language
models (LLMs) are not “abstract reasoners”,
citing their poor zero-shot performance on a
variety of challenging tasks as evidence. We
revisit these experiments in order to add nu-
ance to the claim. First, we show that while
LLMs indeed perform poorly in a zero-shot
setting, even tuning a small subset of parame-
ters for input encoding can enable near-perfect
performance. However, we also show that this
finetuning does not necessarily transfer across
datasets. We take this collection of empirical re-
sults as an invitation to (re-)open the discussion
of what it means to be an “abstract reasoner”,
and why it matters whether LLMs fit the bill.!

1 Introduction

The question of whether large language models
(LLMs) are “abstract reasoners” has been the fre-
quent subject of recent work, both directly (Hu
et al., 2023; Webb et al., 2023; Gendron et al.,
2024; Musker et al., 2024) and indirectly (Chol-
let, 2019; Mitchell et al., 2023; Moskvicheyv et al.,
2023). The answer to this question feels weighty.
LLMs currently dominate modern approaches to
Al, and abstract reasoning is arguably the linchpin
of general and flexible intelligence (Gentner et al.,
2001; Han et al., 2024; Mitchell, 2021). If LLMs
are not abstract reasoners, it follows that fundamen-
tal changes are needed in how Al is developed.
The challenge with this question is that there is
little consensus on what it means to be an “abstract
reasoner”, and what evidence would convincingly
demonstrate that an LLLM, or any model, is or is
not one. Most recently, it has been argued that
LLMs are not abstract reasoners on the basis of
their poor performance when tested out-of-the-box
on adapted visual, analogical, and quantitative rea-
soning tasks (Figure B.1 for examples) that require
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models to infer and generalize patterns from a lim-
ited number of observations (Gendron et al., 2024,
Mitchell et al., 2023; Stevenson et al., 2024). In
this work, we revisit this experimental setup. We
replicate the results of earlier studies, but add addi-
tional experiments which demonstrate the need for
more nuance before drawing strong conclusions.

Specifically, we follow the experimental design
from Gendron et al. (2024), and replicate their
finding that off-the-shelf pretrained LLMs perform
badly across a range of challenging reasoning tasks
(§4). However, we find that optimizing just the em-
bedding layer for the task (leaving the transformer
blocks frozen) all but eliminates the problem, allow-
ing the model to perform comparably to finetuning
the entire model, and sometimes even solve the task
perfectly (§5). This result extends beyond simple
embeddings and, in fact, a frozen pre-trained LLM
can perform well on visual reasoning tasks as long
as the visual encoder is fine-tuned on in-domain
task data (§6).

Together, these results paint a more subtle pic-
ture of LLMs: much of their representations and
inferential capabilities appear to be transferable
across very diverse tasks, but non-trivial effort is
required on the input side for each new task in or-
der to harness these capabilities. In light of this, we
(re-)open the larger discussion which is simultane-
ously empirical and philosophical (§7): What does
it mean to be an abstract reasoner, and why do we
care whether LLMs fit the bill?

2 Related Work

2.1 Analogical Reasoning

Prior work has studied the question of abstract rea-
soning of LLMs via analogical reasoning, such as
matrix reasoning (Webb et al., 2023), letter-string
analogies (Mitchell, 2021; Hofstadter et al., 1995)
and pointer-value retrieval (Zhang et al., 2021Db).
These analogical reasoning benchmarks require a
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Figure 1: Illustration of our experimental settings. In Setting (a), we freeze the whole LLM and run evaluations.
This is treated as language baseline when image captions are inputs on abstract visual reasoning tasks. In Settings
(b) and (c), we freeze the pretrained transformer blocks and finetune only the input layers (i.e., token embedding
layer and visual encoder). In Setting (c), we freeze the token embedding layer to study the impact of tuning the
visual encoder in a controlled setting. Note that the inputs are pure language in Settings (a) and (b), while the inputs
are language prompts with image representations in Setting (c).

model to infer the patterns from a limited number
of observations and apply the discovered patterns
to the new queries.

Despite the impressive performance of LLMs,
there is yet no consensus on whether LLMs are
strong analogical reasoners. Some studies show
evidence suggesting that LLMs can even surpass
the human baseline on analogical reasoning tasks
(Hu et al., 2023; Webb et al., 2023), while the oth-
ers show that LLMs achieve very limited perfor-
mance on a set of analogical reasoning benchmarks
(Gendron et al., 2024) or they are not robust to
counterfactual examples or irrelevant information
(Lewis and Mitchell, 2024; Musker et al., 2024).
We use similar tasks and models as the prior work,
but incorporate additional tasks and a wider range
of finetuning experiments in order to situate the
results within a larger discussion about abstract
reasoning.

2.2 Visual Analogical Reasoning

Analogical reasoning can go beyond symbols and
words and involve visual input, such as in ARC
(Chollet, 2019), ACRE (Zhang et al., 2021a),
RAVEN (Zhang et al., 2019; Hofstadter et al., 1995)
and MEWL (Jiang et al., 2023). Recent approaches
on visual analogical reasoning can be categorized
into neuro-symbolic methods (Mao et al., 2019;
Hudson and Manning, 2019), or neural networks
with implicit representations (Ding et al., 2021;
Sun et al., 2024; Bhattacharyya et al., 2023). Both
approaches roughly follow the same outline of the
perception stage and the reasoning stage. The per-
ception stage usually relies on task-specific visual
encoders, such as symbolic object encoders (Zhang
et al., 2021a), object detectors (Ding et al., 2021),
or on task-specific training strategies for these vi-

sual encoders (Sun et al., 2024; Bhattacharyya
et al., 2023). The reasoning stage introduces induc-
tive biases by developing task-specific reasoning
modules (Hu et al., 2021b; Benny et al., 2021). In
this work, we investigate if the transformer blocks
of a pretrained LLM can be used as a reasoner for
different visual analogical reasoning tasks.

2.3 Multimodal Large Language Models

Prior work shows that transformer blocks pre-
trained on natural language can be transferred to
non-language sequence modeling problems by op-
timizing new input and output layers (Lu et al.,
2022). With the rise of LLMs, recent work freezes
pretrained vision models and pretrained LLMs, and
only learns a mapping to project visual representa-
tions to language latent space in order to perform
on multimodal tasks (Merullo et al., 2023; Liu et al.,
2023; Li et al., 2023; Liu et al., 2024). Tong et al.
(2025) investigates the impact of vision-only mod-
els in multimodal LLMs and reaches impressive
performance on downstream tasks. Our work is
similar to these models, but connects it to a larger,
more philosophical debate about the meaning of
“abstract reasoning”.

3 Datasets

3.1 Reasoning Tasks from Gendron et al.

We follow the evaluation benchmark used by Gen-
dron et al. (2024) to quantitatively measure the so-
called “abstract reasoning” capabilities of language
models. This benchmark contains seven tasks, each
of which evaluates the ability of a model to infer
patterns from a limited number of examples. These
seven tasks can be divided into two categories:
open question answering (OPQA) and multiple-



context

(a) Textual reasoning task

“unknown”

Input: there is a brown cube. Light: on.
Input: there is a yellow sphere. Light: off.

Input: there is a blue cylinder. Light: unknown.

You are a helpful assistant that determines whether the light will be activated by the objects. Some objects can activate
the light. The other objects cannot activate the light. There are three possible light states: on, off, and unknown.

Input: there is a brown cube and a blue cylinder. Light: on.

(b)  Visual reasoning task

You are a helpful assistant that determines whether the light will be activated by the objects. Some objects can activate
the light. The other objects cannot activate the light. There are three possible light states: on, off, and unknown.

Input: [context image 1 representation]Light: on.

Input: [context image 2 representation]Light: off.

Input: [context image 3 representation]Light: on.

Input: [query image 1 representation] Light: unknown.

Figure 2: Illustration of the use of language models for text-based and image-based versions of ACRE. Each data
example will be formulated into a prompt for an LLM to make a prediction for the query. In textual reasoning task,
each context frame is represented by a frame caption. In visual reasoning tasks, each context frame is represented

by an encoded frame representation.

choice question answering (MCQA). OPQA tasks
require a model to generate the correct answer,
while MPQA tasks require a model to select the cor-
rect answer from the given set of answer candidates.
OPQA tasks include Abstract Reasoning Chal-
lenge (ARC) (Chollet, 2019), BIG-Bench dataset
(BBF) (Rule, 2020; Srivastava et al., 2022), Evals-P
(Achiam et al., 2023), and Pointer-Value Retrieval
(PVR) (Zhang et al., 2021b). MCQA tasks include
ACRET (Zhang et al., 2021a), RAVENT %(Zhang
etal., 2019), and Evals-P (Achiam et al., 2023). For
ACRE” and RAVENT', we also consider ACRE” -
Symb and RAVEN”-Symb, where the panel de-
scriptions are converted into symbols (e.g., using
integers to represent different objects).

3.2 Additional (Visual) Reasoning Tasks

In addition to the models and tasks considered by
Gendron et al. (2024), we additionally consider

2ACRE” and RAVENT are text-based version of the origi-
nal tasks.

how well LLM representations transfer fo the mul-
timodal language model framework (MLLM). To
support these experiments, we consider two visual
reasoning tasks: ACRE (Zhang et al., 2021a) and
MEWL (Jiang et al., 2023). In ACRE, given the 5
context frames and 1 query frame, a model needs
to predict the activation status of Blicket detector in
the query frame, which can be on, off, or unknown.
In MEWL, given 6 context frames and 1 query
frame, a model needs to understand the meaning
of the novel words and select the correct utterance
out of 5 options for the query frame.

4 Frozen Pretrained LLMs

We first seek to replicate Gendron et al. (2024)’s
finding that frozen pretrained LLMs achieve low
performance across a large suite of reasoning tasks.
We reproduce these evaluations on LLaMA?2 with
7 billion parameters (Touvron et al., 2023). Table
1 shows the results on OPQA and MCQA tasks.
We observe that even though there are small gaps



| OPQA | MCQA

| ARC BBF Evals-S PVR RAVEN” RAVEN?-Symb | ACRET-Text ACRET-Symb Evals-P RAVENT RAVENT-Symb
Random - - - - - - 333 333 50.0 12.5 12.5
LLaMA2-7b-chat (NZ) | 0.5 108 0.0 0.0 0.0 0.1 1.4 0.3 50.0 2.6 14.9
LLaMA2-7b-chat (Ours) | 1.0 264 00 218 0.0 1.0 26.4 38.1 52.0 12.9 11.4

Table 1: Performance of frozen pretrained LLMs on open question answering (OPQA) and multiple-choice question
answering (MCQA) benchmarks. We show the results LLaMA2-7b-chat (NZ) reported in Gendron et al. (2024) and
our reproduced results (Ours) following the evaluation from Gendron et al. (2024).
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Figure 3: Performance of finetuned LLMs on OPQA (ARC and PVR) and MCQA (ACRE” and RAVENT)
benchmarks. LLMs with finetuned embedding layer perform significantly better than their pretrained counterparts,
and perform on par with or even surpass the fully finetuned LLMs with LORA. Note that ACRE” and RAVEN” are
text-based version of original datasets, which may make the tasks easier to solve.

between the original results and the reproduced
results, the performance of the pretrained LLMs
are still low. Even when the answer candidates
are provided in MCQA tasks, the models mostly
perform as poor as random baselines (e.g., 33.3%
on ACRE and 12.5% on RAVEN). We observe
significant gaps between original results and ours
on BBF and PVR, and attribute them to the choice
of parser used to process the model’s predictions.

Overall, our results are, if anything, stronger
than what has been previously reported in this eval-
uation setting. But even so, it is hard to argue that
these numbers represent “strong” performance. We
thus agree with Gendron et al. (2024) that these
results indicate poor transfer ability. What requires
additional investigation, however, is whether this
poor transfer is interpretable as a lack of abstract
reasoning ability.

5 Finetuned Embedding Layers

Given that pretrained LLMs perform poorly off-
the-shelf, it is natural to ask whether they can be
adapted to these task, and if so, just how much
adaptation is necessary. We explore two ways to
finetune the LLMs: (1) finetuning all layers with
low-rank adaptation (LoRA) (Hu et al., 2021a);

(2) finetunning only the embedding layer of the
LLMs. LoRA finetuning has become a standard
way of adapting a model to a task and represents
an upper bound on how well the model could be
made to perform the task under the most permissive
conditions. In contrast, finetuning just the embed-
ding layer represents a conceptually different type
of transfer with respect to the question of this pa-
per. Namely, finetuning just the embeddings is
analogous to changing just the input to the system—
e.g., ensuring the input is in the format the system
expects—but leaving the system itself unchanged
(see additional discussion and qualifications about
this analogy in §7).

We finetune the embedding layer for 50 epochs
using AdamW optimizer (Loshchilov and Hutter,
2019) with early stopping based on the validation
set. Following Gendron et al. (2024), we conduct
experiments on 2 OPQA tasks (ARC, PVR) and 2
MCQA tasks (ACRE”, RAVEN" -mcqa?.).

Figure 3 shows the results of finetuned LLaMA?2.
We observe that LoRA-finetuned models perform
significantly better than their pretrained counter-

3We are aware of the defects of RAVEN, and we use the
original RAVEN since it was previously used by Gendron et al.
(2024)
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Figure 4: Data efficiency analyses on LLaMA2-7b with token embedding layer finetuned on center-single or
center-single-shuffled and further finetuned on 2x2 and in-center tasks in RAVEN with limited amount of
data. Y-axis (#Training Examples) represents the absolute number of examples used for finetuning. From-scratch
means the token embedding of a pretrained LLaMA2-7b is directly finetuned on 2x2 and in-center tasks. Given
that there are 8000 training examples in total, we observe that after finetuning on center-single, the model
becomes significantly more data efficient. By comparing center-single and center-single-shuffled lines, we
observe that data efficiency of the model mainly comes from the occurrences of task-relevant tokens, rather than the

reasoning logic of the tasks.

parts, and can even solve ACRE” and RAVENT
perfectly. Moreover, LLaMA2 with a finetuned em-
bedding layer can perform on par with the LoRA-
finetuned LLaMA2?,

Generalizability and Data Efficiency. We con-
duct experiments on RAVENT to further look into
two properties of the finetuned input layers: gen-
eralizability and data efficiency. An ideal abstract
reasoner is expected to generalize to novel tasks
with limited amount of observations.

We take LLaMA2-7b’s token embedding layer
finetuned on one task variant (namely, the
center-single task) and further finetune this
layer with varying amount of training examples
for 500 steps on two different task variants (2x2
and in-center), both of which require reason-
ing over more attributes (e.g., different object
alignments). Figure B.5 shows examples of
these tasks. We consider three settings: (1)
“center-single”, where the token embedding has
been finetuned on the original center-single
task; (2) “center-single-shuffled”, where
the token embedding has been finetuned on
center-single task with randomly shuffled la-
bels. This setting preserves the visual features,
but breaks the logical “reasoning” structure of
the task, and thus serves as a test of how much
of the positive transfer is due to low-level visual

*We attribute the low performance of ARC to its com-
plexity and the length of each data sequence (excluding the
expected answer), where 75% of data has >2000 tokens.

cues vs. higher-level more abstract features; (3)
“from-scratch”, where the token embedding of
a pretrained LLaMAZ2-7b is directly finetuned on
2x2 and in-center tasks. We use this to study the
impact of finetuning on center-single task.

Figure 4 shows the results. LLaMA2-7b with to-
ken embeddings finetuned just on 80 examples can
perform competitively aganist LLaMA2-7b directly
finetuned on full dataset (8k examples) of the tasks.
The fairly small gap between the center-single
and center-single-shuffled lines suggests that
the positive transfer is primarily explained by the
lower-level visual features rather than the reasoning
logic of the tasks.

6 Visual Encoder Trained from Scratch

Prior work has shown that transformer blocks pre-
trained on natural language can be tranferred to
non-language sequence modeling tasks, such as
image recognition and protein fold prediction (Lu
et al., 2022). Given the surprising effectiveness of
finetuning just the embedding layer of LLaMA?2 on
text-only abstract reasoning tasks, we hypothesize
that the frozen transformer blocks of a pretrained
LLM will perform well on abstract visual reason-
ing tasks if the visual encoder is tuned for the task.
That is, we follow the multimodal LLM framework
(MLLM) which consists of a visual backbone, a
language backbone, and a linear projection layer
which maps visual representations to language la-
tent space. We keep the transformer blocks and



Method LLD. Compositional Systematic

Language | LLaMA2-7b 26.4 26.1 29.9

Baseline GPT-4 66.4 66.4 64.0

GPT-4-Turbo 69.7 69.9 67.4

NS-OPT 66.3 69.0 67.4

ALOE - 91.8 93.9

Existing | IV-CL 93.0 93.2 92.6

Approaches | LRR - 98.2 99.2

LLaVA-NeXT-Mistral-7B | 38.4 36.9 36.9

GPT-40 62.6 61.5 61.7

Ours LLaMA2-7b-Object ‘ 95.5 97.5 86.5

(a) ACRE
‘ Method ‘ shape color material object composite relation bootstrap number pragmatic ‘ Avg.
Language | LLaMA2-7b 49.7 61.2 52.5 73.8 35.2 19.2 29.5 21.8 222 40.6
baselines | BERT* 94.8 98.8 97.5 19.5 97.8 22.2 62.2 21.8 99.8 68.3
GPT-3.5 96.8 82.3 87.0 98.2 88.3 20.0 45.8 22.7 26.7 63.1
Existing ALOE 342 332 31.0 19.5 30.5 21.5 27.5 233 20.8 26.8
Approaches | Flamingo-1.1B 49.3 353 48.5 19.2 38.2 18.8 57.3 84.2 18.0 41.0
Ours | LLaMA2-7b-Object | 59.3  100.0 98.8 96.8 50.4 17.3 87.0 99.5 192 | 698
(b) MEWL

Table 2: Results of LLaMA2-7b with train-from-scratch visual encoders on sub-tasks in ACRE and MEWL. Bolded
results are the best results, and underlined ones are the second best. All language baselines are frozen, except BERT
which is finetuned on MEWL tasks. The results show that frozen LLaMA?2 with learned visual encoder perform
significantly better than its language counterpart and even outperform the existing approaches.

the token embedding layer of language backbone
frozen, and only train the visual encoder and the
projection layer. If this MLLM with a trained vi-
sual encoder can perform better than its language
backbone with oracle visual perception, then it pro-
vides further evidence for the above interpretation
of the frozen LLM as a highly transferable system.

6.1 Variants of Image Inputs

In order to run these experiments, we consider three
variants of image inputs. Figure B.3 shows the
examples of each variant.

Symbol. A frame is represented by a set of multi-
hot object representations, where each object repre-
sentation is the concatenation of its one-hot vectors
for object attributes (i.e., color, material, and shape)
and a vector of object location information. This
mimics the experiments in §5 by assuming oracle
visual perception, and allows us to directly contrast
language and visual inputs.

Object. A frame is represented by object repre-
sentations, where each object is an object crop from
the frame. This variant assumes ground truth object
detection exists in order to control the factors of
reasoning performance.

Image. A frame is represented by its RGB im-
age. This variant simplifies the inputs the most,
but requires the visual encoder to encode object
properties and spatial relationships between objects
directly from the frames.

6.2 Language Baseline

For our language baseline, we provide a frozen
LLM directly with language descriptions of the
abstract visual reasoning problem. Frame cap-
tions can be considered as oracle visual perception,
where each frame is represented by its caption (e.g.,
“There is a blue cylinder and a brown cube.”).

6.3 Implementation Details

On ACRE, we use the training set with 6K samples,
where each sample contains 6 context frames and
4 query frames. Thus, the training set has 24K
sequences. On MEWL, we use the training sets
of the 9 sub-tasks, each of which involves 600
samples. Thus, the training set has 5400 sequences.

For the language backbone, we use LLaMA2
with 7 billion parameters (Touvron et al., 2023).
For the visual backbone, to encode image inputs,
we use a 2-layer ViT (Dosovitskiy, 2020) with 4
attention heads and 768-hidden dimensional space;
to encode symbolic representations of images, we
use a symbolic encoder which encodes object at-



\ ACRE \

MEWL

‘IAI,DA Comp.  Sys.

Ang‘shape color material object composite relation bootstrap number pragmatic Avg.

LLaMA2-7b-Image 758 777 717 75.1 | 350 99.8
LLaMA2-7b-Object 955 975 865 932 | 593 100.0
LLaMA2-7b-Symbol (Linear) | 91.0 949 86.8 90.9 | 100.0 99.8
LLaMA2-7b-Symbol (MLP) 983 995 846 94.1 | 100.0 100.0

100.0
100.0

26.2 32.7 19.8 31.8 45.2 21.3 41.1
96.8 50.4 17.3 87.0 99.5 19.2 69.8
98.0 42.5 18.0 35.0 78.2 18.3 65.5
98.8 71.3 16.2 91.3 99.7 223 71.1

Table 3: Analysis on the presence of object-centric information. -Symbol rows can be considered as upper bound,
since the inputs are symbolic representations of images. The performance gap between -Image and -Object reflects
the importance of object-centric inductive bias in abstract visual reasoning tasks.

tributes with embedding layers and encodes objects’
location information® with a linear layer.

During finetuning, we freeze the language back-
bone and finetune the visual encoder and the linear
projection. We use the AdamW optimizer with a
learning rate of 3 x 10~°. We finetune the visual
backbone for 20 epochs on ACRE, and 40 epochs
on MEWL. The batch size is set to 64.

6.4 Results

Table 2 shows the results of LLaMA2-7b with
learned visual encoders on ACRE and MEWL. On
ACRE, we observe that LLaMA?2 with train-from-
scratch visual encoders can perform significantly
better than their language-only counterpart. These
models can even outperform majority of the multi-
modal state-of-the-art, including IV-CL (Sun et al.,
2024) and LRR (Bhattacharyya et al., 2023), which
are pretrained with video data. On MEWL, we ob-
serve the same pattern that LLaMA?2 with learned
visual encoders can outperform prior state-of-the-
art and also the language baselines which assume
perfect visual perception.

In Table 3, we further investigate different ways
to represent an image. The large performance gap
between LLaMA2-7b-Image and -Object (e.g., av-
erage of 41.1% versus 69.8% on MEWL), indicat-
ing that object-centric information is important for
the pretrained transformer blocks to better solve
abstract visual reasoning tasks. In all, these results
demonstrate that with a frozen language backbone,
learning just the visual encoder from scratch can
already improve the model’s performance on ab-
stract visual reasoning tasks significantly. However,
task-specific design choices, such as object-centric
representations, would be needed.

7 Discussion

The question of whether LLMs are “abstract rea-
soners” has consequences for how we understand

SEach  object location is
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and thus how we develop increasingly advanced
artificial intelligence. The challenge is that there
is no consensus for what it means to be an “ab-
stract reasoner”. In their recent work, Gendron
et al. (2024) operationalize abstract reasoning as
the ability to transfer zero-shot to a range of com-
plex reasoning tasks. They find that LLMs perform
poorly on this evaluation, and thus conclude that
they are not abstract reasoners.

In this work, we reproduce Gendron et al.
(2024)’s findings, but push back against their in-
terpretation. In particular, we provide new experi-
ments which show that tuning just the embedding
layer is remarkably effective. Indeed, across a
variety of textual and multimodal tasks, frozen
pretrained LLMs can achieve high levels of per-
formance as long as the input representations are
adapted sufficiently for each task ©.

It seems too stringent a criteria to require that
that abstract reasoners perform arbitrary tasks on ar-
bitrary inputs without adaptation. By way of coun-
terargument, consider the good old fashioned Al
(GOFALI) systems of the 1990s, which typically in-
cluded symbolic systems internally, e.g., databases
implemented in SQL or rules for logical inference
implemented in PROLOG. By most intuitive defi-
nitions, these databases and rules would be consid-
ered “abstract” and the tasks the systems performed
over them would be “reasoning”. But we would
not expect these systems to operate well over a
database implemented in MongoDB, or to apply
rules defined by Python. Rather, the need to op-
erate on representations of a particular format is a
consequence of, not an exception to, the system’s
abstraction.

®While we argue that input-level finetuning can enable
pretrained models to perform well on a range of tasks, we
acknowledge that this does not necessarily imply the models
have acquired generalized abstract reasoning in a cognitive
sense. Rather, it may reflect the alignment of input representa-
tions with the pretrained model’s existing capabilities. A more
robust theoretical framework would be needed to precisely
distinguish between mere representational alignment and true
abstraction across domains and tasks.



Of course, we don’t claim that the internal pro-
cessing of an LLM is exactly analogous to that of a
GOFAI system. Of course, in an LLM, tuning the
input embedding layer might do more than simply
“rerepresent”, but rather might encode some task-
specific processing as well. But interpreted loosely,
the analogy is useful for highlighting how the ques-
tion of adaptability and transferability relates to the
question of abstraction and reasoning.

Indeed, this relationship has been considered in
depth by philosophers of Al, long before LLMs.
For example, Dennett (1997) appeals to transfer-
ability in his attempt to describe the difference
between human cognition’ and simpler computa-
tional systems:

Consider the lowly thermostat...we might
agree to grant it the capacity for about
half a dozen different beliefs...it can
believe the room is too cold or too
hot, that the boiler is on or off...and so
forth...suppose we de-interpret its beliefs
and desires, it can believe the A is too
F or G...and so forth....by attaching the
thermostatic control mechanism to dif-
ferent input and output devices, it could
be made to regulate the amount of wa-
ter in a tank, or the speed of a train for
instance...But as systems become percep-
tually richer and behaviorally more ver-
satile, it becomes harder and harder to
make substitutions in the actual links of
the system to the world without chang-
ing the organization of the system it-
self. ... There comes to be a two-way con-
straint of growing specificity between the
device and the environment. Fix the de-
vice in any one state and it demands a
very specific environment in which to op-
erate properly (you can no longer switch
it easily from regulating temperature to
regulating speed or anything else); but
at the same time, if you do not fix the
state it is in, but just plunk it down in a
changed environment, its sensory attach-
ments will be sensitive and discrimina-
tive enough to respond appropriately to
the change...

Although Dennett is not discussing the notion of

"Dennet’s essay is not about reasoning, but rather about
intentional systems, or systems that have true “beliefs” about
the world and act according to them.

“abstract reasoners” per se, he observes that intel-
ligent systems do not transfer well unless they are
allowed to adapt®. Indeed, Dennett argues that this
is a defining property, one that differentiates human-
like intelligence from simpler (albeit perhaps more
abstract) systems such as thermostats.

Dennett’s argument is relevant here not because
LLMs are human-like or even human-level in their
reasoning abilities (they are far from it!). Rather,
Dennett articulates a position that is implicit in
contemporary discussions about LLMs and “ab-
stract reasoning”. That is, that we care about how
well a system adapts to new environments because
adapting well to new environments is a hallmark
of intelligence. Indeed, this is often cited explicitly
as the motivation for studies of this nature (e.g.,
“the question of whether or not LLMs can perform
human-like reasoning remains open...” (Gendron
et al., 2024)). But if evaluating human-likeness or
human-levelness is the motivation for studying ab-
stract reasoning, then arguments such as Dennett’s
provide a compelling case against using zero-shot
transfer ability as a relevant metric.

Of course, there is another, more practical, argu-
ment for why we might care about whether LLMs
are abstract reasoners, which is simply that we want
LLMs to transfer well zero-shot to many tasks in or-
der to facilitate easier, cheaper, and more efficient
development of systems. Indeed, the thermostat’s
highly abstract design is a feature, not a bug. This
type of hardware abstraction is what allows similar
components and control mechanisms to be readily
repurposed to support many types of use cases. A
“human like” thermostat might be very undesirable.

Thus, before seeking to answer the question
of whether LLMs are “abstract reasoners”, we
must first determine, as a community, why we
care. Do we care because we want to understand
how human-like they are, or do we care because
we want to facilitate more efficient technological
progress? Almost certainly, we care about both, but
we should not expect the same experiments to bear
on both lines of inquiry. Finding clarity around
these questions—what is an abstract reasoner and
why do we care about building one?—is the essen-
tial next step if we are to make progress toward
either, or both, goals.

$While our experiments adapt the input layer (e.g., token
embedding) of a model, adaptation does not have to be lim-
ited to the input layers. Indeed, adaptation throughout the
model would be consistent with Dennett’s argument. A full

exploration of this is beyond the scope of this paper, but is an
interesting direction for future work.



8 Conclusion

In this paper, we have (re-)opened the discussion of
what it means to be an “abstract reasoner”’, and why
it matters whether LLMs are “abstract reasoners”.
We have offered empirical results showing that oft-
the-shelf pretrained LLMs indeed perform poorly
on reasoning benchmarks in a zero-shot setting.
However, on a variety of textual and multimodal
reasoning tasks, frozen pretrained LLMs can reach
high levels of performance when the input embed-
dings are tuned. With this collection of empirical
results, we argue that there is a need to determine
why we care about whether LLMs are “abstract
reasoners” before answering this question.
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A Limitations

Since the experiments are compute-intensive, our
experiments mainly focus on LLaMA2-7b, but
there are many other LLLMs trained with differ-
ent number of parameters, data, or inductive biases.
We also only consider one prompt template for each
reasoning task, and acknowledge that experiment-
ing with more prompts can provide a more com-
prehensive evaluation of pretrained LLMs. Last,
we use parsers to parse the predictions of models
in order to compare with the labels. One alterna-
tive approach is the use of other LLMs to com-
pare the predictions with the labels. Some of the
above concerns are common challenges for exist-
ing evaluation of LLMs. Future research could run
evaluations on more LLMs and explore whether
the tuning other layers (e.g., output layer, middle
layers of transformer blocks) can lead to perfor-
mance improvement, further proving that LLMs
need some amount of task adaptations.

B Additional Figures

We show additional figures to illustrate the rea-
soning tasks we considered and variants of image
inputs.



Pattern Context Query
BIG-Bench (BBF) L, 0, 9,7, 4,2, 5 3, 6, 8 - 1[9, 0, 1, 4]

(3, 8 4,6, 1,5, 7, 0] - 1[4, 8, 3, 4] 9, 2,1, 3, 4, 7, 6, 8,
Reverse of the first three elements and
append a “4” at the end. (5, 4,7, 2,9, 3, 8 1] - [7, 4, 5, 4] 5, 0] - [1, 2, 9, 4]

) (3, 9, 2,0, 6,8, 5 1, 7] - (2,9, 3, 4]

Evals-P £, (o, 2z, a, n, g, ¢, j, £, i, ¢, 1, u, b] - foo
If the first character of the input is in 1, (v, v, £, b, m, vy, 3, h, n, ¢, d, a, p] — bar u, [d, a, x, i, h, v, e,
the list, then return “foo™; Otherwise, p, [c, e, s, h, q, o, a, t, k, d, n, 1, z] - bar z, ¥, ¢, n, y, ol —bar
return “bar”. p, [c, h, m, 2z, d, v, k, 1, j, e, X, p, n] - foo
Evals-S 13, 17, 1, 6 - Brown,White,Purple,Blue 5.9, 2, 11
Identify the correspondence between 1, 9, 6, 11 - Purple,Brown,Blue,White v d

Blue,Brown, Purple,White

each digit and word. 13, 2, 17, 10 - Brown,Purple,White,Blue
Pointer-Value Retrieval (PVR) (5, 7, 4, 1, 8, 9, 8, 1, 9, 8, 4] - 8
The first element indicates the index of | (4, 0, 0, 7, 0, 1, 0, 5, 3, 0, 0] - 1 (3, 4, 9, 7, 1, 8, 7, 1,
the expected output in the remaining 0, 2, 8, 2, 5,9, 4, 3, 8 5, 4] - 2 0, 3, 51 -1
list (i.e., ignore the first element). (3, 3, 2, 6, 5, 7, 4, 6, 7, 4, 8] = 5
A cyan cylinder in rubber is visible. The light is on.
ACRE A gray cubg in r\?\bber is v::Lsib]..e? The light is off: . o . . A red sphere in metal is
. . A cyan cylinder in rubber is visible. A gray cube in rubber is visible. The light is on. L. . .
Determine whether the query object . X L . . visible. The light is
il activate the light, A blue cube in metal is visible. The light is off. det ined
will activate the fight. A gray cylinder in rubber is visible. A gray cube in metal is visible. The light is off. ardeserned.
A red sphere in metal is visible. A yellow cube in rubber is visible. The light is on.
1. On an image, a large lime square rotated at 180 degrees.
2. On an image, a medium lime square rotated at 180 degrees.
. . The pattern that
3. On an image, a huge lime square rotated at 180 degrees. . .
RAVEN . . logically follows is: 9.
N . 4. On an image, a huge yellow circle rotated at 0 degrees. .
Find and infer the last pattern from the . . On an image, a large
. 5. On an image, a large yellow circle rotated at 0 degrees. .
given context. . : . white hexagon rotated
6. On an image, a medium yellow circle rotated at 0 degrees. £-90 degr
7. On an image, a medium white hexagon rotated at-90 degrees. = egrees.
8. On an image, a huge white hexagon rotated at-90 degrees.
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Figure B.1: Data examples of abstract reasoning tasks.
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Figure B.2: Data examples of abstract visual reasoning tasks.
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Figure B.3: Examples of variants of image inputs. (a) An image is directly fed into a ViT and obtain an image
representation. (b) Each object crop is fed into a ViT and obtain an object representation. (c) Each object is parsed
into a multi-hot vector, and a linear layer will output a corresponding object representation.
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Figure B.4: Example of ARC dataset. There are 4 context examples and 1 query, where each example has an input
grid (top) and an output grid (bottom). Each grid is represented as an integer array, where each integer refers to a
color. In this example, the task is to generate the symmetry of the input grid and stack the symmetry on top of the

original input.
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On an image, a large white hexagon
rotated at 0 degrees.

On an image, a large pink circle
rotated at 0 degrees in the top
left, a large pink circle rotated
at 0 degrees in the top right, a
large pink circle rotated at 0
degrees in the bottom left.

in-center
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On an image, a second figure is
displayed inside a first one.
Outside: a huge white triangle
rotated at -45 degrees. Inside:
small red circle rotated at 0
degrees.

a

Figure B.5: Examples of RAVENT tasks used in generalizability and data efficiency analysis. Top shows the data
example, and bottom shows the language description of the first frame in each example. The task is to fill in the
ninth pattern (highlighted in orange) given the eight context frames. We focus on three tasks: center-single, 2x2
and in-center. center-single is the simplest task, since there is always only one object in each frame. 2x2 and
in-center consider more than one objects in the frames and also involve different object alignments.
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