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Abstract

An ideal detection system for machine gen-001
erated content is supposed to work well on002
any generator as many more advanced LLMs003
come into existence day by day. Existing sys-004
tems often struggle with accurately identifying005
AI-generated content over shorter texts. Fur-006
ther, not all texts might be entirely authored007
by a human or LLM, hence we focused more008
over partial cases i.e human-LLM co-authored009
texts. Our paper introduces a set of models010
built for the task of token classification which011
are trained on an extensive collection of human-012
machine co-authored texts, which performed013
well over texts of unseen domains, unseen gen-014
erators, texts by non-native speakers and those015
with adversarial inputs. We also introduce a016
new dataset of over 2.4M such texts mostly co-017
authored by several popular proprietary LLMs018
over 23 languages. We also present findings019
of our models’ performance over each texts of020
each domain and generator. Additional findings021
include comparison of performance against022
each adversarial method, length of input texts023
and characteristics of generated texts compared024
to the original human authored texts.025

1 Introduction026

Recent advancements in large language models027

(LLMs) have significantly narrowed the gap be-028

tween machine-generated and human-authored text.029

As LLMs continue to improve in fluency and co-030

herence, the challenge of reliably detecting AI-031

generated content could become increasingly criti-032

cal. This issue is particularly pressing in domains033

such as education and online media, where the au-034

thenticity of textual material is paramount. While035

early efforts such as the GLTR (Gehrmann et al.,036

2019a) provided valuable insights by leveraging037

statistical methods to differentiate between human038

and machine text, these methods often lag behind 039

the rapid pace of LLM evolution. Likewise, initia- 040

tives aimed at mitigating neural fake news (Zellers 041

et al., 2019a) have made significant strides in ad- 042

dressing the societal implications of AI-generated 043

misinformation. However, as LLMs become more 044

sophisticated, existing detection systems must be 045

re-evaluated and enhanced to maintain their effec- 046

tiveness. Further, Each domain comes with its ver- 047

sion of the issue of detecting machine generated 048

texts. For instance, proprietary LLMs with internet 049

access and better knowledge cutoffs are more likely 050

to be used in domains like academia. Similarly, 051

bad actors might use an open source generators for 052

the task of creating misinformation and deception 053

through machine generated online content as such 054

models can be hosted locally to not leave a trail 055

and are more flexible in terms of not denying user 056

requests. Hence, tailoring models and approaches 057

for each specific domain/scenario might be bet- 058

ter applicable for practical scenarios. We chose 059

a token-classification approach to train a model 060

for the task of distinguish writing styles within a 061

text if more than one were found. This approach 062

helped us achieve better performance over texts of 063

unseen features (i.e domain, generator, adversarial 064

inputs, non-native speakers’ texts) as our models 065

were trained to distinguish different styles within 066

a text rather than classifying an input text as one 067

of the two classes it was trained on. Further, we 068

explored the findings and results upon testing our 069

models over other benchmarks which consist of 070

texts from unseen domain and generators. We also 071

tested our models over benchmarks which consist 072

of texts with various adversarial inputs and those 073

written by non-native speakers. We feel our find- 074

ings and datasets can aid in further research into 075

mitigating the harms of AI generated texts. 076
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2 Related Works077

A major portion of current research in detecting078

machine-generated content focuses on longer-form079

writing through binary classification. However, AI-080

generated misinformation is more likely to cause081

harm than its use in academia, making the distinc-082

tion between AI and human-generated texts on so-083

cial media platforms a critical challenge. Existing084

methods often struggle with accurately identify-085

ing AI-generated content over shorter texts. More-086

over, binary classification approaches, which cate-087

gorize texts as either human or AI-generated (Wang088

et al., 2024a), (Wang et al., 2024b), (Bhattachar-089

jee et al., 2023), (Zellers et al., 2019b), (Macko090

et al., 2023), (Ghosal et al., 2023), (Dugan et al.,091

2024) are less practical in settings where texts092

could be co-authored by both humans and LLMs.093

In contrast, binary classification may be more ef-094

fective for shorter texts commonly found on re-095

views and social media platforms (Macko et al.,096

2024a), (Ignat et al., 2024), where content typi-097

cally consists of one or two sentences. Addition-098

ally, some detection works rely on detecting wa-099

termarks from AI-generated texts, (Chang et al.,100

2024), (Dathathri et al., 2024), (Sadasivan et al.,101

2024), (Zhao et al., 2023) but not all generators102

utilize watermarking limiting the applicability of103

such approaches. Few other approaches utilize sta-104

tistical methods (Mitchell et al., 2023), (Kumarage105

et al., 2023), (Gehrmann et al., 2019b), (Hans et al.,106

2024), (Bao et al., 2023), but they can be prone to107

mis-classification against adversarial methods like108

rephrasing and humanizing. (Abassy et al., 2024)109

introduced a 4-way classification as entirely hu-110

man authored, entirely llm authored, human-edited111

and llm-authored or llm-edited human-authored.112

An ideal detection system should be capable of113

identifying AI-generated content from any genera-114

tor without depending on watermarking, especially115

since watermarking techniques may not be effective116

for shorter texts. Further an ideal detector should117

be robust against adversarial methods. To properly118

deal with co-authored text cases, a token classifi-119

cation approach to detect boundaries (Dugan et al.,120

2022), (Macko et al., 2024b) between machine au-121

thored and human authored portions might be more122

appropriate. Further in cases of AI usage in sce-123

narios like academic cases, users are likely to use124

a proprietary LLM with better knowledge cutoffs125

than an open source LLM. Similarly, for AI mis-126

use over social platforms, users are more likely to127

use a open-sourced model due to better flexibility 128

and privacy. Hence, building models and bench- 129

marks with a appropriate set of LLMs might be 130

more applicable for practical scenarios. Many pro- 131

prietary systems struggle at the task of fine-grained 132

detection, further a large enough dataset to cover 133

all POS-tag bi-grams of the text boundaries is re- 134

quired for such fine-grained detectors to work well 135

(Kadiyala, 2024). Previous works in the similar 136

direction include (Lee et al., 2022), (Zhang et al., 137

2024), (Dugan et al., 2023), (Macko et al., 2024b), 138

(Liang et al., 2024) which utilize a dataset of lim- 139

ited size and limited number of generators or those 140

less likely to be used, which might not be enough 141

for a detector to work well on unseen domains and 142

generators’ texts. 143

3 Dataset 144

Our dataset consists of around 2.45M samples We 145

used 12 different LLMs out of which 9 are popu- 146

lar proprietary LLMs : GPT-o1 (OpenAI, 2024), 147

GPT-4o (etal., 2024), Gemini-1.5-Pro (DeepMind, 148

2024), Gemini-1.5-Flash, Claude-3.5-Sonnet (An- 149

thropic, 2023), Claude-3.5-Haiku, Perplexity- 150

Sonar-Large (Perplexity, 2023), Amazon-Nova- 151

Pro (Intelligence, 2024), Amazon-Nova-Lite. We 152

also included 3 open-source LLMs i.e Aya-23 153

(Aryabumi et al., 2024), Command-R-Plus (Co- 154

here For AI, 2024), Mistral-large-2411 (Mistral AI, 155

2024) which produced outputs that are relatively 156

difficult to distinguish from human written texts 157

compared to other similar models in other bench- 158

marks1 as well as our own datasets. The samples 159

range from 30 to 25K words in length with an aver- 160

age length of around 600 words. 161

3.1 Dataset Distribution 162

The language distribution of the dataset and LLMs 163

used can be seen in Figure 1. Each language-LLM 164

pair has roughly 10000 samples. Among each set 165

of the 10000 samples; training, development and 166

test sets constitute 40%, 10%, 50% respectively. 167

Additionally, among each set of 10000 samples, 168

10% were Completely human written, another 10% 169

completely machine generated, and the other 80% 170

were human-LLM co-authored i.e few portions of 171

the text are machine generated and the rest are 172

human written. 173

1https://raid-bench.xyz/
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Figure 1: Dataset distribution per each generator and language in our dataset

3.2 Dataset Creation174

GPT-4o was used through a Azure OpenAI end-175

point2. command-r-plus and aya-23 were used176

through cohere’s API platform3. Rest of the models177

were used through open router’s4 API. The Rewrit-178

ten samples were created by providing the gen-179

erator LLM with the original text and a random180

prompt among writing an alternate version, a later181

update of what happened or a rephrased version182

of the same text. The samples which returned the183

2https://azure.microsoft.com/en-us/products/
ai-services/openai-service/

3https://dashboard.cohere.com/
4https://openrouter.ai/models

exact text or a very similar text were once again 184

regenerated. The partially machine generated texts 185

were created by splitting the text at random loca- 186

tions and the generator was asked to finish the text. 187

The split locations were chosen randomly starting 188

from the 30th word to end of text. This was done 189

to provide the LLM with enough context to better 190

work towards text completion. 191

3.3 Original Data Source and Filtering 192

With a goal of training on one domain and testing 193

on every other, we chose to train on old newspa- 194

pers (HC-Corpora) as it has sufficient number of 195

samples i.e 17.2M for 67 languages of the same 196

3

https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://azure.microsoft.com/en-us/products/ai-services/openai-service/
https://dashboard.cohere.com/
https://openrouter.ai/models


domain. We then removed samples which origi-197

nated after release of gpt-3 to avoid mislabelling of198

samples in our dataset. Further we sampled texts199

which were at least 3 sentences or 50 words long.200

For Chinese and Japanese, we sampled texts which201

were at least 100 characters long.202

4 Our System203

We have experimented with various multilingual204

transformer models (He et al., 2023), (Conneau,205

2019), (Beltagy et al., 2020) with/without ad-206

ditional LSTM (Hochreiter, 1997) or CRF lay-207

ers (Zheng et al., 2015) through a binary token-208

classification approach. We found that using addi-209

tional CRF layer produced better results compared210

to other setups with the same model. All of the211

transformer models tested have produced nearly212

identical results over our test set. However, xlm-213

longformer gave better results over unseen domains214

and generators’ texts, and was used in the end given215

the longer default context length of 16384. The216

token level predictions by the models were then217

mapped into word-level predictions. We use the218

model’s predictions to separate text portions based219

on perceived authorship.220

5 Evaluation and Results221

We evaluate the models at 3 levels of granularity222

: word level, sentence level and overall. For Chi-223

nese and Japanese, we performed evaluation at a224

character level instead of word-level. Each domain225

and user might have a different preference towards226

metrics and evaluation, hence we report 3 metrics227

at each level of granularity : accuracy, recall and228

precision. For word level mapping of predictions,229

in cases where part of a word i.e a few tokens are230

classified differently than others, we assigned the231

same label to the word as its first token. While232

mapping word level predictions to a sentence we233

used majority voting, and in cases where consensus234

is not obtained, we assigned the same label as the235

first word. For evaluation over other benchmarks236

requiring binary classification of texts as human or237

machine written, we assign a human written label238

to the text if at least two thirds of the words get239

classified as human written. We also report several240

metrics, some of which can be seen in the below241

tables, rest can be found in Appendix D.242

5.1 Seen Domains & Seen Generators 243

The results of our models over our dataset’s test set 244

can be seen in Table 1. The samples from both the 245

data splits are of the same domain and originate 246

from the same set of generators. 247

5.2 Unseen Domains & Unseen Generators 248

The models were tested twice over (Wang et al., 249

2024a): once by training on just 10000 samples of 250

a single generator (Aya-23) and again later by train- 251

ing over our complete training data. The bench- 252

mark consists of 11,123 samples of peer reviews 253

and student essays (Koike et al., 2024), the gen- 254

erators used were various versions of llama-2 and 255

chat-gpt (earlier version of gpt-4). the samples 256

would hence be from completely unseen domains 257

and generators to our models. The results of both 258

models can be seen in Table 2. 259

5.3 Unseen Domains & Unseen Generators & 260

Non-Native Speakers 261

The models were tested by training on just 10k 262

samples each from Aya-23 for English and Arabic 263

Separately. The benchmark’s samples for Arabic 264

were from (Alfaifi, 2013) and (Zaghouani et al., 265

2024). The samples for English consist of ETS 266

and IELTS student essays sampled from non-native 267

speakers (Chowdhury et al., 2025). Our models 268

were used for inference directly over these texts 269

and the strings of predicted tokens were then used 270

to for binary classification based on how frequently 271

the perceived authorship changed from human to 272

LLM and vice-versa i.e the number of changes 273

and whether the longest string consists of ones or 274

zeroes. The metrics obtained for each language can 275

be seen in Table 3. 276

5.4 Unseen Domains & Partially Seen 277

Generators & Adversarial Inputs 278

We have also tested over raid-bench (Dugan et al., 279

2025) which consists of texts from 11 generators 280

and 8 domains. among them roughly 10% would 281

be from a seen domain (news articles) while the 282

rest are unseen by our models. The dataset’s texts 283

were also created using various sampling strategies 284

(greedy, random, etc.). The texts were also modi- 285

fied to have adversarial methods including homo- 286

glyphs, mis-spellings, alternative spellings, article 287

deletion etc.. Among the 11 generators used, Gpt- 288

4 is one which is similar to the generator whose 289

outputs our model has been trained on (Gpt-4o). 290
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Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 97.16 90.69 97.55 96.44

Chinese* 93.13 76.28 91.40 86.58
Czech 96.23 79.63 93.84 94.98
Dutch 96.83 77.60 94.13 95.31

English 97.32 90.23 97.68 96.02
French 96.89 74.46 96.52 94.91
German 96.64 76.54 95.92 95.28
Greek 96.25 82.21 92.08 94.37

Hebrew 96.52 80.56 95.34 95.70
Hindi 97.08 92.60 97.24 96.34

Indonesian 97.20 84.92 97.19 96.64
Italian 96.44 80.69 96.84 95.38

Japanese* 92.74 83.80 92.81 86.13
Korean 97.29 84.13 94.74 95.77
Persian 96.60 88.61 96.19 94.36
Polish 96.63 88.52 92.75 95.94

Portuguese 96.46 88.51 90.29 94.89
Romanian 97.59 78.06 95.15 96.10
Russian 96.64 79.98 95.58 94.02
Spanish 96.38 71.60 96.69 94.47
Turkish 95.74 83.00 94.48 93.62

Ukrainian 95.74 74.03 96.57 93.53
Vietnamese 94.41 77.99 96.65 89.67

Average 96.26 81.94 95.11 94.19

Table 1: Word-Level Accuracy (.2f) of the models on the test dataset for each case

* Character level evaluations were done instead for Japanese and Chinese

Metrics → Accuracy Precision Recall F1
Initial Model 86.51 91.61 87.46 89.49

Final Model 86.00 87.16 92.25 89.63

Table 2: Word level Metrics over Mgtd-bench (.2f)

Metrics → Accuracy Precision Recall F1
Arabic 95.9 96.1 94.5 95.2

English 99.1 98.7 99.3 99.0

Table 3: Overall Metrics over ETS essays (.1f)

However, both of them have different linguistic and291

stylistic features, similar to how Gpt-4 is different292

from Gpt-3. We have tested our model’s perfor-293

mance once again upon being trained on our own294

full training data. Additionally, we have also per-295

formed an error analysis to find out what domains,296

models, attack strategies and decoding strategies ef-297

fected the model’s performance and to what extent.298

This can be seen in Figure 2, Figure 3, Figure 4299

and Figure 5. The texts were classified as machine 300

generated if at least one third of the tokens within 301

the model’s context length were classified as ma- 302

chine generated. The F1 score obtained with the 303

initial model trained on a single generator was 0.63 304

and the F1 score grew to 0.79 upon being trained 305

on our full dataset. Evaluation was done directly 306

without performing any preprocessing of the texts 307

and neither were our models trained on texts with 308

any of thse adversarial methods. 309

6 Other Observations 310

The sentences inside which text authorship 311

switches from human to LLM or vice versa were 312

found to be relatively shorter that the original text 313

portions which they replaced. LLMs may be likely 314

to finish the current sentence earlier than usual to 315

move on to the next sentence in text completion 316

scenarios. The mean length of the original portion 317

and the replaced portions of those sentences for 318

each language and generator can be seen in Table 4 319
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Figure 2: F1 scores VS text sampling method used

and Table 5 respectively. This observation was con-320

sistent across all languages and generators with a321

20-30% reduction and a larger reduction in Hindi.322

For Chinese and Japanese too, we did observe a 20-323

30% reduction in character count when comparing324

the original and replaced portions of the sentence325

after the text boundary. Although there is a good326

variation in this feature across languages, the mean327

and medians observed for each language were sim-328

ilar for all the LLMs. This is further elaborated in329

Appendix A.330

331

7 Conclusion332

Despite not being trained on the domains or gener-333

ators, the models built through our approach per-334

formed well over several benchmarks as seen in335

subsection 5.3 and subsection 5.4 over inputs which336

were from non-native speakers and consist of ad-337

versarial methods. Further, one case where many338

proprietary systems struggle is when the inputs339

were too short, which our models were able to over-340

come as seen in Figure 6, which demonstrates our341

models’ accuracy over our test set compared to342

input text’s sentence count. Table 6 displays our343

model’s performance over English subset of our344

dataset for each generator. A similar trend from345

subsection 5.4 was observed with models which346

are likely less instruction-tuned / not instruction-347

tuned tend to produce texts which are harder to348

distinguish than their alternatives.349

7.1 Scalability and scope for extension350

The original dataset used to train our current mod-351

els as mentioned in section 3 consists of samples352

Language Length of Length of
Original part generated part

Arabic 17 13
Czech 11 8
Dutch 12 10

English 15 11
French 14 11
German 12 9
Greek 15 12

Hebrew 11 9
Hindi 26 12

Indonesian 11 8
Italian 15 14
Korean 9 7
Persian 17 15
Polish 10 7

Portuguese 15 11
Romanian 14 11
Russian 11 9
Spanish 15 12
Turkish 10 8

Ukrainian 11 8
Vietnamese 18 14

Average 13.8 10.4

Table 4: Median length (words) of original & newly
generated parts of the sentences : Language wise

Generator Length of Length of
original part generated part

Amazon-Nova-Pro 14 10
Amazon-Nova-Lite 12 10

Aya-23-35B 11 10
Claude-3.5-Haiku 18 10
Claude-3.5-Sonnet 16 10
Command-R-Plus 16 10

GPT-4o 12 10
GPT-o1 11 9

Gemini-1.5-Pro 15 10
Gemini-1.5-Flash 9 10

Mistral-Large-2411 11 10
Perplexity-Sonar-large 15 11

Average 13.3 10

Table 5: Median length (words) of original & newly
generated parts of the sentences : Generator wise

over 60 languages which would cover 70% of the 353

world population’s primary language, and all of the 354

languages are supported by existing multilingual 355

transformer models making the process of scaling 356
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Figure 3: F1 scores VS the generator’s texts

Figure 4: F1 scores VS each domain’s texts

Figure 5: F1 scores VS adversarial method used in the input texts
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Figure 6: Accuracy VS length of input texts (sentence count)

Generator Accuracy
Amazon-Nova-Pro 94.90
Amazon-Nova-Lite 95.26

Aya-23-35B 91.75
Claude-3.5-Haiku 96.07
Claude-3.5-Sonnet 95.97
Command-R-Plus 93.92

GPT-4o 91.78
GPT-o1 96.61

Gemini-1.5-Flash 92.34
Gemini-1.5-pro 93.38

Mistral-Large-2411 93.47
Perplexity-Sonar-large 94.91

Average 94.31

Table 6: Word level accuracy (.2f) of our models over
our dataset (English)

* excluding Chinese and Japanese

the work to more languages easier. Despite not357

being trained on the generators or domains’ texts,358

our models were able to perform well on several359

benchmarks. Even reaching a F1 score of 0.79360

against adversarial inputs while they were neither361

trained over them nor pre-processed. Similarly,362

creation and usage of such large datasets of other363

domains along with ours might result in robust and364

better models. We couldn’t explore the relation be-365

tween instruction tuning sample size of LLMs and366

detectability of their texts due to the proprietary367

nature of most of the generators we used, but a sim-368

ilar study using open-data models could uncover369

more insights.370

7.2 Scope for Improvement 371

As seen in Figure 5, almost none of the adversarial 372

methods affected the models built through our ap- 373

proach other than paraphrasing and homo-glyphs. 374

However homo-glyphs can be pre-processed by 375

mapping them to the actual character they were 376

imitating in the text. This would require a large 377

collection of homo-glyph to character mapping set 378

to use for pre-processing. Further, paraphrased 379

samples of various number of iterations being in- 380

cluded in the training dataset might lead to further 381

improvements. It is also worth exploring how de- 382

tectable are texts in cases where multiple generators 383

contribute a portion each in a human authored text. 384

Other missing adversarial methods that are likely 385

to be used in practical scenarios include usage of 386

proprietary systems that ’humanize’ a given text in 387

an attempt to evade detection. 388

7.3 Ideal Usage 389

The models were built primarily for a human-in- 390

the-loop use cases where the model would try to 391

flag most of the likely machine-generated portions 392

while the flagged content can be validated either 393

through an ensemble of models or a human and 394

hence a tilt towards higher recall can be observed 395

in the metrics as seen in Table 12. 396

Limitations 397

Just like any other detector or classifier, no detector 398

can guarantee a 100% accuracy and hence the mod- 399

els are not meant to be used directly for decision 400

making but are meant to be used in a human-in- 401

the-loop scenarios. Furthermore, the experiments 402

carried out did not include cases of multiple LLMs 403

co-authoring a portion each of the same text. 404

8



References405

Mervat Abassy, Kareem Elozeiri, Alexander Aziz,406
Minh Ngoc Ta, Raj Vardhan Tomar, Bimarsha407
Adhikari, Saad El Dine Ahmed, Yuxia Wang,408
Osama Mohammed Afzal, Zhuohan Xie, Jonibek409
Mansurov, Ekaterina Artemova, Vladislav Mikhailov,410
Rui Xing, Jiahui Geng, Hasan Iqbal, Zain Muham-411
mad Mujahid, Tarek Mahmoud, Akim Tsvigun, Al-412
ham Fikri Aji, Artem Shelmanov, Nizar Habash,413
Iryna Gurevych, and Preslav Nakov. 2024. Llm-414
detectaive: a tool for fine-grained machine-generated415
text detection.416

AYG Alfaifi. 2013. Arabic learner corpus v1: A new417
resource for arabic language research. In Second418
Workshop on Arabic Corpus Linguistics.419

Anthropic. 2023. Model card: Claude 3. Technical420
report, Anthropic. Accessed: 2024-04-27.421

Viraat Aryabumi, John Dang, Dwarak Talupuru,422
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat423
Venkitesh, Madeline Smith, Jon Ander Campos,424
Yi Chern Tan, Kelly Marchisio, Max Bartolo, Se-425
bastian Ruder, Acyr Locatelli, Julia Kreutzer, Nick426
Frosst, Aidan Gomez, Phil Blunsom, Marzieh Fadaee,427
Ahmet Üstün, and Sara Hooker. 2024. Aya 23: Open428
weight releases to further multilingual progress.429

Guangsheng Bao, Yanbin Zhao, Zhiyang Teng, Linyi430
Yang, and Yue Zhang. 2023. Fast-detectgpt: Effi-431
cient zero-shot detection of machine-generated text432
via conditional probability curvature. arXiv preprint433
arXiv:2310.05130.434

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.435
Longformer: The long-document transformer. arXiv436
preprint arXiv:2004.05150.437

Amrita Bhattacharjee, Tharindu Kumarage, Raha438
Moraffah, and Huan Liu. 2023. Conda: Contrastive439
domain adaptation for ai-generated text detection.440

Yapei Chang, Kalpesh Krishna, Amir Houmansadr,441
John Wieting, and Mohit Iyyer. 2024. Postmark: A442
robust blackbox watermark for large language mod-443
els. arXiv preprint arXiv:2406.14517.444

Yutian Chen, Hao Kang, Vivian Zhai, Liangze Li, Rita445
Singh, and Bhiksha Raj. 2023. Gpt-sentinel: Distin-446
guishing human and chatgpt generated content. arXiv447
preprint arXiv:2305.07969.448

Shammur Absar Chowdhury, Hind Almerekhi, Muc-449
ahid Kutlu, Kaan Efe Keleş, Fatema Ahmad, Tas-450
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A Pre- and Post- Boundary Comparisons649

The mean and median word counts of the text por-650

tions in a sentence after the text authorship shifts651

from human to LLM can be seen in Table 10 and652

Table 11 in comparison to the texts they replace.653

B Dataset Creation654

The max_new_tokens value specified to the genera-655

tor during creation of partial cases was randomized656

between 80% to 200% of the length of the portion657

that is being replaced. The prompts used for cre-658

ation of the partial samples and rewritten samples659

can be seen in Table 7 and Table 8 respectively.

continue this text in Language directly :

complete this text in Language, respond directly :

Table 7: Prompts used in dataset creation : Partial cases

660

C Reproducibility661

We used multilingual longformer 5 with an addi-662

tional CRF layer. The hyper-parameters used for663

training the models can be seen in Table 9. We built664

5https://huggingface.co/hyperonym/
xlm-roberta-longformer-base-16384

Rewrite this in Language a different way :

Generate an alternative version of this in Language :

Generate a later update to this in Language :

Generate a previous version of this in Language ;

Table 8: Prompts used in dataset creation : Rewritten
cases

Hyperparameter Value
Seed (Training) 1024
Seed (Shuffling) 1024

Number of Epochs 5
Per Device Batch Size (Train) 12
Per Device Batch Size (Eval) 30

Context Length 16384
Learning Rate 5e-5
Weight Decay 0

Dropout (CRF Layer) 0.075

Table 9: Training Hyper-parameters used

a separate model for each language, the training 665

was done over A100 SXM over 10h each. 666

D Other Metrics 667

The metrics over each type of text for each lan- 668

guage and LLM separately can be seen in Table 13, 669

Table 14, Table 15, Table 16, Table 17, Table 18, 670

Table 19, Table 20, Table 21, Table 22, Table 23, 671

Table 24. 672

E License 673

The xlm-longformer model we used was available 674

with an mit license, we are releasing the models and 675

datasets through CC BY-NC 4.06 which permits 676

usage for research purposes. 677

6https://creativecommons.org/licenses/by-nc/4.
0/deed.en
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Language ↓ Mean length of Mean length of Median length of Median length of
old text portion new text portion Old text portion New text portion

Arabic 18.73 16.25 17 13
Czech 12.02 9.52 11 8
Dutch 13.73 13.39 12 10

English 16.04 14.59 15 11
French 15.50 13.16 14 11
German 13.03 10.89 12 9
Greek 16.74 14.87 15 12

Hebrew 12.64 10.65 11 9
Hindi 40.56 15.42 26 12

Indonesian 12.44 9.56 11 8
Italian 17.54 16.39 15 14
Korean 9.85 8.08 9 7
Persian 18.83 19.88 17 15
Polish 11.42 8.84 10 7

Portuguese 16.52 13.29 15 11
Romanian 16.30 13.50 14 11
Russian 12.27 10.63 11 9
Spanish 17.18 14.81 15 12
Turkish 11.81 9.74 10 8

Ukrainian 12.04 10.39 11 8
Vietnamese 20.06 18.01 18 14

Average 16.19 12.95 13.76 10.43

Table 10: Comparison of replaced and generated text portion lengths (word count) : Language wise

Generator↓ Mean length of Mean length of Median length of Median length of
old text portion new text portion Old text portion New text portion

Amazon-Nova-Pro 16.02 13.27 12 10
Amazon-Nova-Lite 18.12 12.87 14 10

Aya-23-35B 13.70 12.87 11 10
Claude-3.5-Haiku 20.19 13.13 18 10
Claude-3.5-Sonnet 17.32 12.98 16 10
Command-R-Plus 16.92 13.28 16 10

GPT-4o 13.49 12.84 12 10
GPT-o1 14.83 12.36 11 9

Gemini-1.5-Flash 19.68 13.44 15 10
Gemini-1.5-pro 12.50 13.48 9 10

Mistral-Large-2411 12.85 12.85 11 10
Perplexity-Sonar-large 17.13 13.45 15 11

Average 16.06 13.07 13.33 10

Table 11: Comparison of replaced and generated text portion lengths (word count) : Generator wise
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Language ↓ Accuracy Precision Recall F1-score
Arabic 96.44 92.50 97.17 94.78

Chinese* 86.58 87.03 86.46 86.75
Czech 94.98 94.57 97.96 96.23
Dutch 95.31 93.34 97.97 95.60

English 96.02 92.34 98.44 95.29
French 94.91 93.64 98.42 95.97
German 95.28 94.87 98.38 96.59
Greek 94.37 93.69 96.51 95.08

Hebrew 95.70 95.32 97.94 96.61
Hindi 96.34 89.72 96.66 93.06

Indonesian 96.64 95.61 98.29 96.93
Italian 95.38 95.04 97.58 96.29

Japanese* 86.13 85.64 94.17 89.70
Korean 95.77 95.29 97.69 96.48
Persian 94.36 84.45 96.88 90.24
Polish 95.94 96.76 97.19 96.97

Portuguese 94.89 91.92 96.07 93.95
Romanian 96.10 95.81 98.53 97.15
Russian 94.02 86.67 97.29 91.67
Spanish 94.47 90.02 98.14 93.90
Turkish 93.62 88.56 97.17 92.66

Ukrainian 93.53 86.58 97.93 91.90
Vietnamese 89.67 77.23 97.44 86.17

Average 94.19 91.16 96.97 93.91

Table 12: Word-level Metrics of our models over each language : our test set

* Character level evaluations were done instead for Japanese and Chinese

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 97.56 88.10 98.09 97.17

Chinese* 93.70 75.35 91.60 87.00
Czech 96.63 80.10 94.36 95.20
Dutch 95.21 78.00 92.10 95.23

English 97.77 89.61 98.87 96.60
French 97.34 72.85 97.14 95.28
German 96.92 75.73 95.29 95.58
Greek 95.65 81.80 82.85 92.96

Hebrew 97.35 70.89 96.26 95.73
Hindi 96.65 92.82 96.67 96.59

Indonesian 97.27 85.73 95.76 96.60
Italian 96.88 80.88 94.70 95.65

Japanese* 97.48 88.57 93.94 96.85
Korean 97.68 84.15 93.73 95.39
Persian 96.91 89.45 93.22 94.05
Polish 96.96 87.52 92.32 95.98

Portuguese 95.28 94.15 96.32 95.28
Romanian 96.53 76.55 96.64 96.23
Russian 96.46 79.10 94.45 94.03
Spanish 96.92 71.75 96.97 94.97
Turkish 95.55 82.68 98.17 92.65

Ukrainian 95.39 73.81 95.48 93.90
Vietnamese 94.46 76.17 97.14 88.74

Table 13: Case wise accuracies over all languages for each generator : amazon-nova-pro
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Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 96.56 90.93 95.62 95.88

Chinese* 93.20 76.99 93.57 87.77
Czech 97.81 79.40 94.58 96.43
Dutch 97.07 78.10 92.85 95.19

English 98.11 89.25 98.73 96.80
French 97.59 76.28 97.79 96.07
German 98.01 76.34 95.52 96.76
Greek 96.00 79.78 88.01 93.66

Hebrew 98.05 83.84 94.35 96.78
Hindi 96.49 91.59 95.30 95.38

Indonesian 97.99 85.03 97.18 97.06
Italian 96.95 80.81 95.45 95.54

Japanese* 98.07 76.50 93.02 92.78
Korean 98.20 82.49 95.42 95.68
Persian 97.40 88.48 94.92 95.31
Polish 97.55 89.32 93.83 96.63

Portuguese 92.67 87.92 95.09 94.35
Romanian 97.97 76.44 93.76 96.20
Russian 97.22 81.47 96.30 95.10
Spanish 97.49 71.55 97.15 94.98
Turkish 96.63 83.99 90.84 93.87

Ukrainian 96.74 74.80 99.91 94.24
Vietnamese 95.28 78.87 97.03 89.76

Table 14: Case wise accuracies over all languages for each generator : amazon-nova-lite

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 95.14 92.22 97.76 96.05

Chinese* 85.65 75.66 89.10 82.40
Czech 89.75 79.02 87.94 89.24
Dutch 92.45 79.97 92.99 93.12

English 93.01 90.49 96.96 93.52
French 93.28 73.12 95.14 92.72
German 89.89 77.28 92.53 90.06
Greek 92.04 80.69 91.83 91.75

Hebrew 96.71 82.75 91.54 95.32
Hindi 94.18 93.62 92.96 94.88

Indonesian 90.91 83.55 95.28 92.85
Italian 89.21 75.43 88.87 88.87

Japanese* 75.56 78.10 91.21 75.64
Korean 95.04 85.46 92.92 94.14
Persian 93.81 87.28 95.29 92.98
Polish 90.40 86.41 89.15 90.81

Portuguese 92.69 91.17 90.96 92.69
Romanian 93.65 78.15 95.16 93.17
Russian 93.00 79.77 92.12 92.20
Spanish 91.30 72.87 93.17 91.88
Turkish 90.19 82.59 98.19 90.77

Ukrainian 87.77 73.69 97.57 90.69
Vietnamese 87.70 76.08 96.83 88.54

Table 15: Case wise accuracies over all languages for each generator : Aya-23
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Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 98.82 91.63 95.75 97.18

Chinese* 86.51 75.93 86.18 87.75
Czech 99.80 80.78 91.56 97.55
Dutch 99.49 77.57 86.16 96.41

English 99.37 90.98 98.32 97.76
French 99.63 74.86 90.15 96.30
German 99.79 77.23 94.62 97.37
Greek 99.90 87.33 82.84 97.46

Hebrew 98.94 83.48 82.61 96.27
Hindi 98.72 92.35 95.48 97.23

Indonesian 99.55 88.19 94.11 98.05
Italian 99.97 81.43 93.49 97.48

Japanese* 98.33 87.97 91.08 97.02
Korean 99.40 84.22 94.45 96.93
Persian 97.99 89.54 90.00 94.54
Polish 99.60 88.75 85.69 97.62

Portuguese 99.17 90.82 82.19 96.52
Romanian 99.93 78.70 92.11 97.11
Russian 99.26 80.44 92.17 95.36
Spanish 99.31 71.65 93.24 95.91
Turkish 98.60 81.65 92.86 94.62

Ukrainian 99.27 73.52 91.46 93.99
Vietnamese 98.42 77.05 92.41 91.85

Table 16: Case wise accuracies over all languages for each generator : Claude-3.5-Haiku

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 98.63 91.82 100.00 96.58

Chinese* 92.64 78.36 95.14 88.43
Czech 99.30 77.22 99.88 97.62
Dutch 99.30 77.53 99.52 97.30

English 99.35 90.02 99.76 98.03
French 99.53 73.66 99.97 97.06
German 99.52 76.06 99.69 97.33
Greek 99.00 80.60 99.62 95.83

Hebrew 97.68 82.69 99.88 96.46
Hindi 99.12 92.51 99.88 97.63

Indonesian 99.66 84.55 100.00 98.43
Italian 99.69 81.13 99.99 98.13

Japanese* 98.59 87.36 99.64 98.04
Korean 98.77 83.49 99.87 97.15
Persian 98.35 87.92 99.97 96.01
Polish 99.00 90.30 99.26 98.20

Portuguese 98.74 89.65 83.74 96.38
Romanian 99.18 80.36 99.71 97.46
Russian 99.33 80.55 99.93 94.55
Spanish 99.06 71.68 99.92 96.65
Turkish 98.45 83.13 99.96 95.32

Ukrainian 99.06 74.14 99.87 95.62
Vietnamese 98.10 77.40 99.92 88.87

Table 17: Case wise accuracies over all languages for each generator : Claude-3.5-Sonnet

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 87.12 85.34 86 82

Chinese* 88.90 86.45 89 84
English 92.45 90.12 91 88
French 89.78 87.21 90 85
German 90.23 88.05 89 86
Italian 89.12 87.00 89 86

Japanese* 87.77 85.88 88 83
Korean 88.56 86.34 87 85

Portuguese 90.12 88.34 89 87
Spanish 90.45 88.12 89 87

Table 18: Case wise accuracies over all languages for each generator : Command-R-Plus
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Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 95.74 91.26 96.31 95.01

Chinese* 92.63 77.87 92.51 86.36
Czech 93.30 80.96 91.67 91.87
Dutch 94.14 74.85 90.84 92.58

English 94.94 90.02 92.84 94.01
French 92.87 75.18 93.90 90.89
German 93.67 75.82 93.99 91.97
Greek 94.22 81.18 95.67 92.11

Hebrew 92.60 82.51 95.10 91.85
Hindi 96.56 92.44 96.95 96.16

Indonesian 95.08 84.88 95.88 94.70
Italian 93.35 79.95 92.72 92.72

Japanese* 93.98 88.44 94.19 93.84
Korean 94.44 84.84 93.09 93.61
Persian 94.83 88.32 94.68 93.34
Polish 94.53 89.51 89.36 93.73

Portuguese 95.50 88.58 85.07 93.93
Romanian 94.59 77.44 92.73 93.26
Russian 92.90 80.17 97.34 92.61
Spanish 93.54 69.64 91.87 92.13
Turkish 92.83 83.80 88.09 91.37

Ukrainian 91.69 74.93 96.81 90.33
Vietnamese 92.10 77.39 93.32 88.25

Table 19: Case wise accuracies over all languages for each generator : GPT-4o

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 99.10 90.46 97.08 97.92

Chinese* 95.08 76.01 86.18 87.30
Czech 98.84 80.76 86.30 97.05
Dutch 98.80 77.47 89.03 97.12

English 99.07 88.92 94.25 96.91
French 98.77 76.17 91.74 96.53
German 98.92 76.66 89.69 97.12
Greek 98.87 81.60 85.68 97.05

Hebrew 98.97 83.94 97.33 98.10
Hindi 99.10 92.12 97.42 97.33

Indonesian 98.96 84.98 99.00 98.45
Italian 97.04 80.93 99.10 96.16

Japanese* 90.78 73.63 85.24 78.08
Korean 99.16 83.18 83.13 97.09
Persian 98.72 87.01 94.43 95.50
Polish 99.04 90.29 86.92 97.86

Portuguese 98.65 88.47 83.50 95.18
Romanian 98.77 76.50 98.37 97.57
Russian 98.98 78.13 87.02 95.23
Spanish 98.80 71.70 92.79 96.12
Turkish 98.94 82.37 87.33 96.55

Ukrainian 99.05 75.07 93.34 96.45
Vietnamese 98.29 78.87 91.75 92.24

Table 20: Case wise accuracies over all languages for each generator : GPT-o1
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Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 93.90 88.40 98.59 94.86

Chinese* 89.29 75.98 94.92 85.09
Czech 91.43 78.82 97.15 92.04
Dutch 95.08 78.10 91.91 94.86

English 96.57 91.03 97.34 94.64
French 95.92 76.69 98.72 94.04
German 96.22 78.67 98.80 95.15
Greek 92.04 84.32 98.56 93.52

Hebrew 91.90 69.05 98.50 92.51
Hindi 95.55 93.52 98.72 95.66

Indonesian 96.84 83.45 98.55 95.92
Italian 94.70 76.47 97.03 94.89

Japanese* 84.59 87.53 96.26 87.86
Korean 94.54 85.07 99.41 94.66
Persian 95.68 89.47 96.54 94.66
Polish 93.51 88.07 97.34 94.60

Portuguese 95.22 88.75 94.90 94.28
Romanian 97.31 75.73 97.53 96.30
Russian 94.96 78.53 99.40 92.82
Spanish 95.30 74.56 99.47 94.09
Turkish 94.82 82.44 96.67 92.51

Ukrainian 89.37 73.96 98.39 91.68
Vietnamese 91.06 80.25 99.45 87.71

Table 21: Case wise accuracies over all languages for each generator : Gemini-1.5-Pro

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 98.55 89.55 98.00 95.88

Chinese* 89.94 75.81 94.03 87.75
Czech 98.45 80.42 99.78 96.67
Dutch 98.22 78.00 99.39 95.86

English 97.92 90.02 99.39 95.26
French 98.10 73.66 99.94 95.59
German 98.71 74.75 99.58 96.74
Greek 98.96 85.16 98.90 98.09

Hebrew 97.64 82.90 99.71 96.82
Hindi 98.17 93.06 99.62 97.32

Indonesian 99.11 85.64 99.72 97.65
Italian 98.25 83.62 99.89 98.28

Japanese* 95.71 88.47 97.35 95.88
Korean 98.36 84.40 99.36 97.10
Persian 96.67 88.45 95.52 93.87
Polish 99.01 87.67 99.27 97.84

Portuguese 96.72 88.12 90.12 95.52
Romanian 99.84 77.30 99.75 98.49
Russian 97.62 81.30 99.07 94.29
Spanish 97.50 68.98 99.91 94.37
Turkish 97.69 84.99 99.36 95.47

Ukrainian 97.46 75.89 99.67 93.70
Vietnamese 96.29 79.35 99.81 91.12

Table 22: Case wise accuracies over all languages for each generator : Gemini-1.5-Flash
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Language ↓ Partial cases Unchanged cases Rewritten cases Overall
Arabic 96.53 92.00 99.40 95.68

Chinese* 95.05 76.30 97.63 88.07
Czech 96.99 78.78 94.73 94.98
Dutch 94.46 78.10 91.01 94.46

English 96.74 90.32 99.80 95.91
French 97.06 74.65 97.22 94.35
German 96.69 76.14 98.43 94.77
Greek 95.78 79.75 96.39 92.69

Hebrew 95.40 83.36 97.30 93.86
Hindi 96.25 92.00 99.35 95.29

Indonesian 96.67 83.15 96.32 95.55
Italian 97.34 82.59 99.30 96.01

Japanese* 97.05 87.46 94.90 96.12
Korean 96.65 82.64 97.39 95.02
Persian 94.75 89.34 98.55 92.34
Polish 96.69 87.13 93.69 95.36

Portuguese 96.37 88.20 93.68 94.69
Romanian 97.22 77.49 97.42 95.45
Russian 96.64 80.58 97.90 93.09
Spanish 95.54 69.92 98.82 92.76
Turkish 91.99 80.61 98.47 91.99

Ukrainian 96.21 74.58 97.16 93.20
Vietnamese 92.42 78.44 98.60 88.25

Table 23: Case wise accuracies over all languages for each generator : Mistral-Large-2411

Language ↓ Partial cases Unchanged cases Rewritten cases Overall
English 97.10 91.08 99.71 96.64
French 95.53 72.58 99.49 93.94
German 94.98 77.21 99.50 94.29

Portuguese 92.66 89.06 98.17 94.03
Spanish 94.79 72.31 99.80 93.99

Table 24: Case wise accuracies over all languages for each generator : Perplexity-Sonar-Large
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