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ABSTRACT

Ensuring the safety and efficiency of AI systems is a central goal of modern
research. Formal verification provides guarantees of neural network robustness,
while early exits improve inference efficiency by enabling intermediate predictions.
Yet verifying networks with early exits introduces new challenges due to their
conditional execution paths. In this work, we define a robustness property tailored
to early exit architectures and show how off-the-shelf solvers can be used to assess
it. We present a baseline algorithm, enhanced with an early stopping strategy and
heuristic optimizations that maintain soundness and completeness. Experiments
on multiple benchmarks validate our framework’s effectiveness and demonstrate
the performance gains of the improved algorithm. Alongside the natural inference
acceleration provided by early exits, we show that they also enhance verifiability,
enabling more queries to be solved in less time compared to standard networks.
Together with a robustness analysis, we show how these metrics can help users
navigate the inherent trade-off between accuracy and efficiency.

1 INTRODUCTION

Deep Neural Networks (DNNs) are increasingly deployed in critical domains such as virtual assis-
tants (1) and medical diagnostics (2), making their reliability essential. Yet, they are vulnerable to
adversarial perturbations: small input modifications that can cause incorrect predictions (3). This
vulnerability has driven extensive research on adversarial attacks and defenses (4), highlighting the
need for robust and trustworthy AI systems.

Formal verification has emerged as an effective approach for ensuring DNN correctness with respect to
specified properties (5; 6; 7; 8). It rigorously analyzes a network’s behavior to guarantee compliance
with critical requirements across all possible inputs within a defined domain (9). By providing
mathematical guarantees for properties like robustness and safety, it offers a valuable tool for building
reliable AI systems and supports adoption in high-stakes domains where reliability is crucial (10; 11).

In addition to robustness and safety issues, another limitation of DNNs lies in their high computational
cost, which makes both training and inference power consuming (12; 13; 14) and limits their use
in low-resource systems (15; 16; 17). Even for relatively simple inputs, the inference process of a
DNN can be unnecessarily complex and time-consuming. A promising avenue for addressing this
computational burden is the use of dynamic inference techniques, such as early exit (EE) (18; 19).
EE mechanisms allow a network to terminate computation prematurely once a sufficiently confident
prediction is reached at an intermediate stage, thereby reducing computational overhead without
compromising accuracy. EE has been adopted in a wide range of domains, including NLP (12),
Vision (13), and speech recognition (14), and is increasingly recognized as a powerful tool for
optimizing DNN performance in resource-constrained environments (15; 20; 21; 22; 23).

Although EE strategies have demonstrated their potential to enhance runtime efficiency, their impli-
cations for formal verification remain largely unexplored. The architectural modification of adding
intermediate exits introduces two key challenges. First, the execution flow can vary, posing tech-
nical difficulties for classical verification techniques that assume a fixed output layer. Second, the
verification of conditional decision logic must be adapted accordingly.

We address this gap by introducing the formal verification of DNNs with EEs. Our focus is on
local robustness, a property that ensures the network’s predictions remain consistent within a small

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

neighborhood around a given input. To this end, we propose an algorithm tailored to verify local
robustness in DNNs with early exits, enhanced with heuristics that effectively reuse partial results
to minimize redundancy and improve scalability. These advances provide a robust framework
for verifying DNNs with EEs, contributing to both their reliability and their practical usability in
real-world applications. We further leverage our algorithm to enable early verification of standard
networks by augmenting them with early exits.

In this work, we contribute to the formal verification of DNNs with EEs by: (i) formalizing
robustness queries for such networks; (ii) proposing a general algorithm along with two improve-
ments – one checks for early stopping within the verification loop, the other applies heuristics to
reduce sub-queries; (iii) leveraging our technique to advance the verification of other models;
(iv) analyze when and why the complexity of our algorithm will be smaller than the complexity of
standard verification queries; (v) conducting extensive experiments demonstrating the method’s
practicality and the role of EEs in improving verifiability, and (vi) analyzing how EE training
affects verification time, including the impact of thresholds and early stopping.

2 PRELIMINARIES

2.1 NOTATIONS

A DNN is represented as a function N : Rn → Rm, where n,m ∈ N are input and output dimensions,
respectively. For an input x ∈ Rn, N (x) outputs a vector y ∈ Rm. We focus on classification
networks, where the predicted class is the index of the highest value in y (the winner); other indices
are runner-ups. An ϵ-ball around x, denoted Bx

ϵ , is the set {x′ ∈ Rn : ∥x′ − x∥ ≤ ϵ}.

2.2 FORMAL VERIFICATION OF DNNS

The formal verification of a DNN N : Rn → Rm can be cast into a constraint satisfiability problem,
where the goal is to determine whether a property P is satisfiable in N . P represents the existence of
an input to N within a specific domain D whose output satisfies a constraint ϕ:

∃x ∈ D such that ϕ(x,N (x)) is satisfied.

If P is satisfiable, N is said to be UNSAFE with respect to ϕ. Typically, ϕ captures undesirable
behavior by encoding the negation of a desired property. If P is not satisfiable for proper inputs, the
desired property holds and N is SAFE.

2.3 DNNS WITH EARLY EXITS

A DNN with early exits is a network augmented with additional decision points, known as exits,
within its architecture. These exits allow the network to terminate inference early if a condition,
typically a confidence threshold, is met, reducing computational cost while maintaining accuracy.
Let Nee : Rn → Rm denote a network with k exits, and let y(j) represent the neuron values of the
j-th exit. Inference at exit j terminates if:

f(y(j)) ≥ Tj ,

where Tj is a predetermined confidence threshold for the j-th exit, and f is a confidence function used
to evaluate whether the exit condition is satisfied. In early works (18), f(y(j)) was computed as the
entropy of the j’th exit logits; and later, alternative gating mechanisms were proposed to improve the
efficiency and accuracy of EE mechanisms. These include using the maximum SoftMax probability
as a confidence measure (24), leveraging confidence accumulation across multiple layers (25), and
dynamically learning the optimal exit conditions (26). Regardless of the specific gating function
f , the final output y is determined by the first exit where the condition f(y(j)) is satisfied. If no
such condition is met, the output is taken from the last exit. In this work, we use a fully connected
layer followed by a SoftMax activation as the confidence function f , producing y(j), and adopt the
straightforward threshold condition: max(y(j)) > Tj . A common threshold value, which we also use
in many of our experiments, is T = 0.9 (21; 15); although we also experimented with other values,
all greater than 0.5. (Setting T to values lower than 0.5 can result in multiple classes exceeding the
threshold, and we ignore such cases). Fig. 7 in App. A depicts a DNN with EEs.
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3 VERIFYING DNNS WITH EARLY EXITS

In the context of DNN verification, networks with EEs present both opportunities and challenges.
On one hand, the inference process in such networks often concludes in earlier layers, potentially
reducing the size of the network that needs to be verified. On the other hand, adding EEs introduces
two major complexities to the traditional formal verification of DNNs:

1. in conventional DNNs, the output property is defined on a single output layer. For networks
with EEs, this definition must be adapted to accommodate multiple output layers.

2. Second, the presence of multiple output layers and the inference logic introduces conditional
branching: If the current exit yields a confident prediction, it returns the result; else,
computation proceeds to the next layer. This conditional behavior must be incorporated into
the verification process to avoid spurious counterexamples where the runner-up wins at exit
e while the winner prevails at an earlier exit e′ < e.

Here, we propose a general framework for verifying DNNs with EEs, addressing the challenges
outlined above. We begin in 3.1 by redefining local robustness to accommodate multiple exits. Then,
in 3.2, we present a basic verification algorithm that mirrors the conditional inference process of EE.
In 3.3, we analyze the complexity of this approach and show that, under certain conditions, its cost
can be significantly reduced. Finally, in 3.4, we suggest an improved algorithm that incorporates two
key optimizations to reduce redundant queries while preserving soundness and completeness.

3.1 REVISED ROBUSTNESS PROPERTY

For a standard DNN N (without EEs), the property to negate the local robustness of N around a
sample x is typically defined as:

P := ∃x′ ∈ Bx
ϵ ,∃i ∈ C such that N (x′)i > N (x′)w

where C is the set of possible output labels {1, . . . ,m}, Bx
ϵ is the ϵ-ball around x (plays the role of D

in the definition), w is the index of the winner class and N (x)j is the j’th value in N (x).

In DNNs with EEs, the inference process enables outputs to be returned from various exits in the
network, corresponding to different neurons. This adds ambiguity to the traditional definition, as it
is unclear which exit represents the output of N (x), with all exits being potential candidates. The
verification process must therefore condition the validity of the specification on the assumption that a
specific exit serves as the actual output layer for the given input.

A counterexample to robustness of a network with EEs is one where (i) a “runner-up output” wins in
an early or output exit e, and (ii) the “true”, desired output does not prevail at any exit preceding e.
These conditions are encapsulated in the following property Pee, which defines the negation of the
revised local robustness property for a DNN with EEs. The indices of the layers with EEs and the
index of the output layer are denoted with ee and last, respectively.

Pee := ∃x′ ∈ Bx
ϵ , i ∈ C \ {w}, e ∈ ee ∪ {last} :

((N (x′)ei > Te ∧ e < last) ∨ (N (x′)i > N (x′)w ∧ e = last)) ∧
∀j ∈ ee ∩ {1, . . . , e− 1} : N (x′)jw < Tj

Here, Pee asserts that (first line) there exists an input x′, a runner-up i, and an exit e such that (second
line) the runner-up wins in the early exit (left side) or in the last layer (right side), and (third line) the
winner does not prevail at any earlier exit. If Pee is satisfiable, the network is UNSAFE to be robust
within an ϵ-ball around x. Otherwise, its negation is valid and the network is SAFE.

3.2 VERIFICATION FRAMEWORK

To verify robustness in DNNs with EEs, we propose Alg. 1. The algorithm operates by iterating
through all exits (outer loop). For each exit, it examines each runner-up class (inner loop) to determine
whether there exists a counterexample where the runner-up wins, and the output is produced at the
current exit. This is accomplished by a verification query (line 5 or 7) that tries to satisfy the following
property: the runner-up wins, and the winner has not already won in any preceding exit. If UNSAFE
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is returned, the resulting example satisfies Pee, thereby providing a counterexample to the robustness
of N . Otherwise, if SAFE is returned, the local robustness of N is verified. Note that the call to
Verify in line 9 launches an underlying verification tool to solve a standard verification query.

Algorithm 1 Verify Local Robustness in DNNs With Early Exits
Input N , x, ϵ Output N is robust in Bx

ϵ , or counterexample
1: w, ee, last = argmax(N (x)), indices of layers with EEs, index of N ’s last layer
2: for k ∈ ee ∪ {last} do
3: for i ∈ C \ {w} do
4: if k ̸= last then
5: P := ∃x′ ∈ Bx

ϵ : (N (x′)ki > Tk) ∧ (∀e ∈ ee ∩ {1, . . . , k − 1} : N (x′)ew < Te)
6: else
7: P := ∃x′ ∈ Bx

ϵ : (N (x′)w < N (x′)i) ∧ (∀e ∈ ee : N (x′)ew < Te)
8: end if
9: res, cex = Verify(N , Bx

ϵ ,P)
10: if res == UNSAFE then
11: return UNSAFE, cex
12: end if
13: end for
14: end for
15: return SAFE

Theorem 1. If the underlying verifier is sound and complete, Alg. 1 is sound and complete.

3.3 FIXED PARAMETER TRACTABLE COMPLEXITY

Algorithm 1 contains two nested loops; while it returns immediately upon finding a counterexample
(UNSAFE), it must exhaust the entire loop before concluding SAFE. This motivates further improve-
ments, as we show that in some cases, local robustness in DNNs with early exits can be determined
more efficiently. For that purpose, we define the trace of an input and its stability as follows.
Definition 3.1. The trace τ(x) of an input x in DNN N with EEs is the set of layers x is propagated
through. Given an ϵ > 0, τ(x) is stable in Bx

ϵ if ∀x′ ∈ Bx
ϵ : τ(x′) = τ(x).

The trace of an input determines which parts of the network must be considered to verify robustness
for that input. Suppose there exist x and ϵ > 0 such that all x′ ∈ Bx

ϵ share the same trace as x. Then,
if Algorithm 1 does not return UNSAFE before reaching the exit layer of x, it will eventually return
SAFE, as no more paths can be checked. Hence, under the trace stability assumption, the complexity
of solving Pee depends on |τ(x)|, the number of layers in τ(x), rather than the total number of
layers in N ; any iterations beyond that point are redundant. In Section 4 (Fig. 3), we show that the
trace stability holds in practice. To analyze the complexity, we remind the reader the definition of a
Fixed Parameter Tractable (FPT) problem, and, focusing in ReLU networks, use it to express the
complexity of the verification.
Definition 3.2 ( (27, Def. 1)). A problem is Fixed-Parameter Tractable (FPT) with respect to a
parameter p, (denoted as FPT(p)), if it can be solved in time f(p) · poly(n), where f is a computable
function of p, and n is the input size.

We use this class to show that there are cases in which only a partial part of the network can be
considered, and not all the network, leading to much better worst case scenario complexity.
Theorem 2. Given a network N with EEs and ReLU activations, layer width bound k, input x, and
ϵ > 0, if τ(x) is stable in Bx

ϵ , then solving Pee with (N , x, ϵ) is FPT(k · |τ(x)|).

In the following subsection, we try to improve Alg. 1 to have FPT(k · |τ(x)|) complexity under the
assumptions above and also to save additional redundant queries.

3.4 ADDITIONAL OPTIMIZATIONS

As noted, proving SAFE with Alg. 1 requires calling Verify (line 9) for every exit and ev-
ery class. As it makes the process time consuming, we discuss two improvements to expedite
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the overall procedure. To maintain readability and conciseness, we denote lines 3-13 in the
algorithm as the function ExistsPrevCEX(N , x, ϵ, k, T, last, ee, w) and, more compactly, as
ExistsPrevCEX(N , x, ϵ, k). These lines rule out adversarial examples in earlier layers.

One potential improvement involves reducing the number of queries for all classes at each exit layer –
thereby avoiding the inner loop on line 3 of Alg. 1, and continuing to the next iteration of the loop on
line 2. Instead of verifying that the confidence of every class is below the threshold, the modified
algorithm initially checks whether the winner’s score is greater than 1− T . This condition ensures
that the score for no other class can exceed T . If this check fails, the algorithm must fall back to
verifying each class individually; but we empirically observed that often this condition is met, and
the inner loop can be skipped. This optimization is implemented in Alg. 2 (orange lines).

Alg. 2 further improves Alg. 1 by adding a mechanism to determine robustness earlier, without
exhaustively exploring all possible runner-up labels in all exits. Specifically, at each exit layer, it
checks (blue lines) whether the winner’s score always exceeds the threshold. If this condition holds
and earlier iterations have confirmed no counterexamples exist in prior exits, it guarantees that all
inputs advance to the current exit, where the original winner consistently prevails. In such scenarios,
the algorithm can break the iteration on the loop on line 2 at Alg. 1 and soundly return SAFE without
further checks in next exits.

Algorithm 2 Verify DNNs with Early Exits - Break then Continue Optimizations
Input N , x, ϵp Output N is robust in Bx

ϵ , or counterexample
1: w, ee, last = argmax(N (x)), indices of layers with EEs, index of N ’s last layer
2: for k ∈ ee ∪ {last} do
3: if k ̸= last then
4: P := ∃x′ ∈ Bx

ϵ : N (x′)kw < T
5: else
6: P := ∃x′ ∈ Bx

ϵ ,∃i ∈ C \ {w} : N (x′)w < N (x′)i
7: end if
8: res, cex = Verify(N , Bx

ϵ ,P)
9: if res == SAFE then

10: return SAFE
11: end if
12: res, cex = Verify(N , Bx

ϵ ,∀x′ ∈ Bx
ϵ : N k

w(x
′) < 1− T )

13: if k == last ∨ res == UNSAFE then
14: res, cex = ExistsPrevCEX(N , x, ϵ, k)
15: if res == UNSAFE then
16: return UNSAFE, cex
17: end if
18: end if
19: end for
20: return SAFE

Theorem 3. If the underlying verification tool is sound and complete, Alg. 2 is sound and complete.

Theorem 4. Given a network N with EEs and ReLU activations, layer width bound k, input x, and
ϵ > 0, if τ(x) is stable in Bx

ϵ , then Alg. 2 runtime is O(2k·|τ(x)|) · poly(#neurons in N ).

To summarize this section, we formalized a robustness property for DNNs with EEs and proved
it is fixed-parameter tractable (Thm. 2) under trace-stability assumption. We presented a sound
and complete baseline algorithm (Alg. 1), then introduced break-and-continue heuristics (Alg. 2)
and showed they yield a tighter complexity bound (Thm. 4). Proofs of algorithm soundness and
completeness (Thms. 1 and 3) and of complexity analysis (Thms. 2 and 4) can be found in App. C.

4 EVALUATION

We evaluate our method across a diverse set of networks and datasets, focusing on several key aspects.
First, we demonstrate the practicality and limitations of our approach across different architectures.
Next, we analyze early prediction and early verification behaviors to uncover meaningful insights.
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Finally, we present ablation studies for each metric to support our conclusions and clarify the impact
of our contributions.

4.1 EXPERIMENTAL SETUP

We implemented our framework with PyTorch, and ran the experiments on a machine with macOS,
16 GB RAM, and an Apple M3 chip with an 8-core GPU. As an underlying verification tool, our
framework uses (but is not limited to) Alpha-Beta CROWN (28; 29; 8), a state-of-the-art method
for formally verifying adversarial robustness properties of DNNs. Alpha-Beta CROWN does not
currently support the encoding of nested AND operators, needed for our queries. We circumvent this
by encoding each query as a collection of smaller queries, one for each conjunct. Then, to enable
a fair comparison, we used a similar encoding also for the original queries, even though such an
encoding may not be optimal. We note that there does not seem to be any conceptual issue with
supporting nested ANDs (e.g., Marabou (30)); and once such support is added, our encoding could
be simplified.

4.2 BENCHMARKS AND MODEL TRAINING

To evaluate the effectiveness of our method, we conducted experiments on several widely recognized
datasets: MNIST (31), CIFAR-10 (32) and CIFAR-100 (32), with multiple common architectures:
Fully Connected, CNN (33), ResNet (34) and VGG (35). These were chosen to ensure a diverse and
representative assessment of our approach, covering various data complexities, neural architectures,
and classification challenges. The full details on the datasets and models used are given in App. D.

We adopt the training procedure from prior work (18; 36). A baseline model is first trained without
exits. Then, EEs – each a fully connected layer with SoftMax – are added and trained sequentially,
keeping the main model fixed. Each exit is optimized individually and frozen before proceeding. Full
details are provided in App. D.

4.3 EVALUATING THE PRACTICALITY OF VERIFYING EARLY EXIT NETWORKS

Fig. 1 presents the result distribution for our algorithm across various epsilon values and sam-
ples. We used 100 examples per benchmark, with fine-grained epsilon values in the range
ϵ ∈ {0.1, 0.05, 0.01, 0.005, 0.001}. Each column sums the number of SAFE, UNSAFE and
UNKNOWN for a given epsilon value. Note that UNKNOWN results typically from timeouts (30 minutes
per example) or assertion failures in the underlying verifier, often due to loose bounds reflecting the
query’s complexity, and are not directly produced by our algorithm.
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(c) ResNet-18 on CIFAR-10
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(d) VGG-16 on CIFAR-10

Figure 1: SAFE/UNSAFE/UNKNOWN counts per epsilon, across different networks and datasets.

The graphs highlight the diversity of local robustness queries (five columns each) and the challenging
regions, specifically ϵ values near the boundary between SAFE and UNSAFE outcomes. The eval-
uation approximates the smallest ϵ where robustness is quickly verified and the largest where it is
quickly refuted, adding additional intermediate ϵ values in between.

Table 1 compares the performance of Alg. 1 and Alg. 2, highlighting the improvements gained by
incorporating the break and continue optimizations. While the differences in UNSAFE cases are
minor – since counterexamples, when they exist, are typically found quickly – SAFE cases show
a significant improvement, with the optimized algorithm performing up to 10× faster. For a more
detailed ablation study of each optimization’s contribution, please refer to App. F. Note that in
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VGG16, Alg. 1 failed to prove SAFE cases before timing out, whereas Alg. 2 succeeded, further
showing its effectiveness.

Table 1: Verification runtime statistics (in seconds) per benchmark. For each benchmark, the first row
corresponds to Alg. 1 and the second row to Alg. 2.

Benchmark UNSAFE SAFE
Mean Std Median Mean Std Median

MNIST, FC6 0.527 1.903 0.068 13.037 3.185 13.032
0.600 2.739 0.201 1.143 1.205 0.397

CIFAR10, LeNet 2.250 6.670 0.320 56.927 9.516 58.628
2.279 4.556 0.688 7.255 10.550 6.185

CIFAR10, ResNet18 3.518 12.499 1.306 409.395 74.235 375.703
5.679 12.316 3.197 42.646 60.521 19.061

CIFAR10, VGG16 5.412 1.032 5.588 – – –
8.823 1.818 8.737 1532.418 348.150 1417.474

4.4 ADDING EARLY EXITS TO STANDARD MODELS

We next compare verification times for networks with and without EEs, to explore the potential of
adding EEs and use our technique as a method to improve verifiability of standard models. Fig. 2
illustrates that DNNs with EEs can be verified more efficiently. While verification time for simple
queries remains largely unchanged, harder queries are verified significantly faster.
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Figure 2: Comparison of verification times between the original model with the underlying verifier
(Vanilla Time) and the model with EEs, using Alg. 2.

We additionally verified a ResNet-18 model on CIFAR-100, a more challenging task due to the
larger class set. Both the baseline and models with EEs identified UNSAFE cases. However, the
model with EEs verified SAFE examples in about one hour, while the baseline hit a two-hour timeout.
For ϵ ∈ {0.1, 0.01, 0.001} (25 samples each), all samples at ϵ = 0.1 were UNSAFE; at ϵ = 0.01,
most were UNSAFE with a few UNKNOWN; and at ϵ = 0.001, 14 samples were SAFE, with the rest
UNKNOWN.

To better understand this phenomenon, we compare the exit layers of the inference with those of the
verification in Fig. 3. For example, the top-left cell in subfigure (a) indicates that out of 39 samples
that were exited in the first exit during ResNet-18 inference, the verification of 37 was improved
to exit in the first exit as well, and subfigure (d) indicates that all counterexamples in all UNSAFE
cases where found in the verification of the first exit, independently with the exit of the inference.
While no clear correlation is observed for UNSAFE cases (as expected, since the original sample and
counterexamples behave differently), a strong correlation emerges for SAFE cases in the first and last
exits. This finding suggests that the trace stability assumption holds, and the optimization allowing
verification to stop earlier is effective, demonstrating that adding EEs can enhance the verifiability of
DNNs. Additional results are provided in App. E.
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Figure 3: Heatmaps demonstrating the correlation between the inference and verification exit layers,
and the correctness of the trace stability assumption.

4.5 ROBUSTNESS ANALYSIS

Training networks with EEs entails a trade-off between predictive accuracy and inference latency.
Different hyperparameter settings yield distinct working points, and users must select the one that
best satisfies their performance or resource constraints.

Impact of the Early Stop Threshold. Adjusting the confidence threshold at each exit introduces a
trade-off between accuracy and latency. Fig. 4 (left) shows that higher thresholds improve accuracy
but also increase inference time. To quantify robustness, we measure it as the proportion of inputs
formally verified as SAFE, i.e. #SAFE / (#SAFE + #UNSAFE). With the EE architecture fixed and
only the confidence threshold varied, Fig. 4 (middle) shows that robustness closely follows accuracy –
higher thresholds boost both metrics. However, Fig. 4 (right) reveals that verification time also grows
with the threshold, mirroring the inference-accuracy trade-off. Consequently, selecting a threshold
requires balancing several important objectives: accuracy, latency, robustness and verifiability.
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Figure 4: Impact of threshold selection on accuracy vs. runtime (left), accuracy vs. robustness
(middle) and robustness vs. verification time (right) for CNN on CIFAR-10, with ϵ = 0.005.

To dissect the verification cost further, Fig. 5 breaks down verification times across several ϵ values.
Both the mean and variance of verification time grow with the threshold, reinforcing that more
conservative exit criteria – while safer – demand heavier verification effort. We also compare against
the vanilla network (without EEs), which is equivalent to threshold T = 1. As Figure 6 shows, the
vanilla model achieves the highest robustness but at the cost of the longest verification times – a
direct consequence of requiring the full network to be analyzed.
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Impact of the Exit Location. In a final set of experiments, we fixed the EE architecture and varied
the confidence threshold T . Here, we fix T and compare two ResNet-18 variants that differ only in
the position of the single exit: one after block 1 (RN_ee1) and the other after block 2 (RN_ee2).
Table 2 reports each model’s accuracy, average inference latency, and verification outcomes.

Table 2: Verification statistics for ResNet-18 variants with a single early exit.

Architecture Accuracy Inference Time #SAFE #UNSAFE #UNKNOWN Safe Ver Time Unsafe Ver Time

RN_ee1 0.8757 30.56ms 121 109 190 21.4s 11.7s
RN_ee2 0.8921 36.94ms 85 108 227 23.4s 14.2s

We find that placing the exit earlier (after block 1) raises the robustness – the share of inputs formally
verified as SAFE – while incurring only a small accuracy drop. By contrast, moving the exit deeper
(after block 2) yields a slight accuracy gain but lowers both verifiability (longer verification time,
more #UNKNOWN examples) and robustness. This shows that exit placement itself is an effective
design: EEs close to the input strengthen formal guarantees, whereas later exits preserve more of
the network’s full expressivity. These insights can help practitioners choose exit locations that best
balance accuracy, latency, robustnes and safety requirements.

5 RELATED WORK

This work lies at the intersection of improving DNN efficiency and ensuring robustness. The formal
verification of DNNs has received growing attention (9; 37; 38) due to their increasing use in safety-
critical domains. Early efforts primarily focused on verifying fully-connected and convolutional
networks (5; 39; 40; 41), while more recent work has expanded to specialized architectures such as
RNNs (42), LSTMs (43), transformers (44) and GNNs (45; 46; 47; 48).

Various techniques have been proposed to improve verification scalability, including symbolic
propagation, abstract interpretation, abstraction-refinement, adversarial pruning, and certified train-
ing (49; 50; 40; 51; 52; 8; 53; 54; 55; 29; 56; 57; 58; 59; 60). While these approaches enhance
verification efficiency, we focus on establishing a framework for optimized networks.

EE represents a dynamic inference strategy within the broader landscape of DNN optimization
methods, which also includes static approaches such as quantization (61), pruning (62), knowledge
distillation (63), and neural architecture search (64). Other dynamic approaches include selective
pruning (65; 66), spatial attention (67; 68), and temporal redundancy reduction (69; 70). Models
with EEs accelerate inference by allowing the network to terminate computation early for easy
inputs (21; 71; 16; 22). Common gating strategies include entropy (18) and SoftMax thresholds (72).
In this work, we adopt a threshold on the logits, though our framework supports other mechanisms.

Lastly, among the numerous methods that modify the training process to promote formal guaran-
tees (73; 74; 75; 76; 77; 78), some approaches that aim to make networks easier to verify, incorporate
regularization or architectural constraints (79; 80; 81; 82; 83). However, our work is, to our knowl-
edge, the first to explore how EEs themselves can support scalable verification.

6 FUTURE WORK AND CONCLUSION

Future Work. Our work leaves several opportunities for future research. First, extending the
verification framework to encompass other properties, such as safety and fairness, would broaden its
applicability. Second, using distributed computing to parallellize the verification and enhance the
scalability of our method, particularly for networks with numerous exit points. Third, we assume the
basic condition of max(y(j)) > Tj . Additional exit condition functions can be explored, and more
strategies for dynamic inference could be examined (21).

Conclusion. Our work lays the groundwork for the verification of DNNs with EEs, aiming to bridge
the gap between inference optimization and formal verification. By extending the scope of properties,
tools, and methods, future research can continue to advance the reliability and applicability of these
networks across diverse domains.
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Appendix
The appendix provides visualizations, complexity analysis, proofs, technical details, and additional
experiments that could not be included in the main paper.

A AN EXAMPLE OF NEURAL NETWORK WITH EARLY EXITS

Input #1

Input #2

Input #3

Exit 1 #1

Exit 1 #2

Exit 2 #1

Exit 2 #2

Output #1

Output #2

Figure 7: A fully connected DNN with two EEs placed at the first and third layers. The neuron values
at these exits are the results of applying SoftMax to the hidden values in the corresponding layers.

B COMPLEXITY ANALYSIS

B.1 ALG. 1’S COMPLEXITY

We analyze the complexity of the proposed verification algorithms. We remind that solving verification
queries is an NP-Hard problem (5), and current methods have exponential complexity in the network’s
number of neurons in a worst-case scenario. Hence, we denote the worst-case complexity of the
underlying verification tool used in our method by O(2N ) where N is the number of neurons in N .

Theorem 5. The worst-case complexity of Alg. 1 is O(2N ).

Proof. Alg. 1 applies E · (C−1)+1 verification queries, where E is the number of EEs and C is the
number of classes (+1 for the last query). Each query is O(2Ni) where Ni is the number of neurons
in the partial network until the i’th exit (including), resulting in (E · (C − 1)+ 1) calls to verification
problems of O(2m) complexity where m ≤ N , summing to an overall O(2N ) complexity.

B.2 ALG. 2’S COMPLEXITY

Alg. 4 performs break and continue heuristic optimizations, which are not necessarily take place, and
hence its worst case complexity is similar to that of Alg. 1. However, its complexity decreases under
the trace stability assumption. We prove Theorem 4:

Theorem. Given a network N with EEs and ReLU activations, layer width bound k, input x, and
ϵ > 0, if τ(x) is stable in Bx

ϵ , then Alg. 2 runtime is O(2k·|τ(x)|) · poly(#neurons in N ).

Proof. We denote the index of the early exit where the output of x is returned by Ex. In Alg. 2, line
8 checks if the winner always wins in the current exit. If the trace of each input in Bx

ϵ is equal to τ(x)
and the result is SAFE, it must be returned in line 8 in the Ex’th iteration: it can’t be returned before
since x itself constitutes a counterexample (as its propagation does not finish before), and it is returned
in iteration Ex since the trace of all inputs are equal to τ(x), and a sound and complete underlying
verifier will return SAFE in that case. If the answer is UNSAFE, the counterexample must be found
until the Ex’th iteration; in each iteration, line 14 launches ExistsPrevCEX(N , x, ϵ, k), which
checks all possible counterexamples until the Ex’th exit. Because τ(x′) = τ(x) for all inputs, all
possible behaviors are examined after reaching line 14 at the Ex’th iteration, and the counterexample
must be found, given that the underlying verification tool is sound and complete.
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This means that Alg. 2 will not proceed to iterations that run verification queries on partial networks
bigger than the partial network that x was propagated through. The number of neurons in each partial
network is no more than k · |τ(x)|, and solving verification queries with that size can be done in
2k·|τ(x)| ·poly(#neurons in N ), since there are 2k·|τ(x)| options to the activation state – active (y = x)
or inactive (y = 0) – and in each option, solving the linear constraints is poly(#neurons in N ) (84).
Therefore, the complexity of each verification query is not greater than 2k·|τ(x)| ·poly(#neurons in N ).
As a result, the running time of Alg. 2 is bounded by O(2k·|τ(x)|) · poly(#neurons in N ).

Lastly, we mention that using our training method, the trace of inputs in the network with EEs is
significantly smaller than in the same network without exits, with high probability (18), significantly
decreasing complexity from the number of neurons in the network to a much smaller number.

C THEOREMS’ PROOFS

In this appendix we provide the detailed proofs for the algorithms along the paper.

C.1 THEOREM 1’S PROOF

Theorem. If the underlying verification tool is sound and complete, Alg. 1 is sound and complete.

Proof. We split the proof for soundness into 3 parts:

1. There is a satisfying example to Pee if and only if there are exit k ∈ ee ∪ {last} and
runner-up i ∈ C \ {w} such that the runner-up wins in the exit of the k’th layer and there is
no preceding layer where the winner wins. In the other direction, there is no counterexample
if and only if the negation of the above is true: for every input, either the runner-up does not
win or the winner has already won in one of the preceding exits. The negation is encoded in
line 5 (for early exit) and in line 7 (for the last exit) in Alg. 1.

2. If Alg. 1 returns UNSAFE result, one of the properties in lines 5 or 7 is UNSAFE. It means
that Alg. 1 UNSAFE is sound if the underlying verification tool is sound.

3. Otherwise, if Alg. 1 does not return UNSAFE, it returns SAFE at the last line. Since the
algorithm iterates over all exits and in each exit goes through all runner-ups, we can derive
from the completeness of the underlying verification tool that if there is no counterexample
then Pee is not satisfiable. Therefore, Alg. 1 SAFE answer is sound if the underlying
verification tool is complete.

We can conclude that if the underlying verification tool is sound and complete, Alg. 1 is sound and
complete too: if UNSAFE is returned, the result is sound, and if SAFE is returned, it is also sound.

Regarding completeness, from the completeness of the underlying verification tool, every query in
lines 5 or 7 is guaranteed to be finished in finite time, and there is a finite number of queries, so the
whole algorithm is guaranteed to always return either SAFE or UNSAFE in finite time, therefore it is
complete.

C.2 THEOREM 2 PROOF

We again define the complexity class FPT and give an example.

Definition C.1 ( (27, Def. 1)). A problem is fixed-parameter tractable (FPT) with respect to a
parameter p if it can be solved in time f(p) · poly(n), where f is a computable function of p, and n
is the input size.

For example, solving local robustness in a neural network with ReLU activations only is FPT(k · d),
where k is an upper bound on the number of neurons in every layer, and d is the number of layers in
the network. This is due to the fact that each ReLU activation can be assessed as the active or inactive
case, resulting in 2k·d options to define the linear constraints of the ReLUs, and each combination
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can be solved with linear programming methods in poly(#neurons in N ). Therefore if we fix the
parameters k, d the problem is poly(#neurons in N ).

Theorem. Given a network N with EEs and ReLU activations, layer width bound k, input x, and
ϵ > 0, if τ(x) is stable in Bx

ϵ , then solving Pee with (N , x, ϵ) is FPT(k · |τ(x)|), where |τ(x)| is the
number of layers in τ(x).

Proof. Given that τ(x) is stable in Bx
ϵ , the output of every input in Bx

ϵ is obtained at the same exit as
the exit of N (x). In that case, the verification process can avoid checking all the following layers,
and instead check only the layers until the exit where x was obtained. The number of neurons until
this exit is limited by k · |τ(x)|. Solving the query can be done by splitting each ReLU into two cases
– active (y = x) and inactive (y = 0) – and the complexity of solving a set of linear constraints which
is polynomial in the number of neurons in N is poly(#neurons in N ). The number of choices for the
activations of the neurons is 2k·|τ(x)|. Therefore, the problem is in FPT(k · |τ(x)|).

C.3 THEOREM 3’S PROOF

We separate the two independent optimizations break and continue applied in Alg. 2 one after the
other into two algorithms: Alg. 4 (which include only the orange lines in Alg. 2) and Alg. 3
(which include only the blue lines in Alg. 2). We prove soundness and completeness for each of the
algorithms (by proving the equivalence of each of them to Alg. 1), and then derive the correctness of
Theorem 3 from both.

Algorithm 3 Verify DNNs with Early Exits - Break Optimization
Input N , x, ϵp Output N is robust in Bϵ(x), or counterexample

1: w = argmax(N (x))
2: ee := indices of layers with early exits in N
3: last := index of last layer in N
4: for k ∈ ee ∪ {last} do
5: if k ̸= last then
6: P := ∃x′ ∈ Bx

ϵ : N (x′)kw < T
7: else
8: P := ∃x′ ∈ Bx

ϵ ,∃i ∈ C \ {w} : N (x′)w < N (x′)i
9: end if

10: res, cex = Verify(N , Bx
ϵ ,P)

11: if res == SAFE then
12: return SAFE
13: end if
14: res, cex = ExistsPrevCEX(N , x, ϵ, k)
15: if res == UNSAFE then
16: return UNSAFE, cex
17: end if
18: end for
19: return SAFE

Theorem 6. Alg. 4 is equivalent to Alg. 1.

Proof. The additional logic in Alg. 4, highlighted in orange, is introduced in line 5. It checks whether
the winner’s value might be smaller than 1− T . If this condition is not satisfied, no runner-up can
exceed T , given that the sum of all class values equals 1. Consequently, no counterexample exists, so
the result of ExistsPrevCEX(N , x, ϵ, k) must be SAFE, and we can skip it and continue to the
next iteration of the for loop in line 4, which correspond to skipping on one itereation of the for loop
in lines 3-13 in Alg. 1).

If the condition is satisfied, or in the case of the last layer (where the winner is the maximum value,
providing no assurance that a runner-up does not win even if the winner always exceeds 1 − T ),
the loop cannot be skipped. In these scenarios, the verification process proceeds equivalently to the
processes in Alg. 1 and Alg. 3.
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Algorithm 4 Verify DNNs with Early Exits - Continue Optimization
Input N , x, ϵp Output N is robust in Bϵ(x), or counterexample

1: w = argmax(N (x))
2: ee := indices of layers with early exits in N
3: last := index of last layer in N
4: for k ∈ ee ∪ {last} do
5: res, cex = Verify(N , Bx

ϵ ,∃x′ ∈ Bx
ϵ : N k

w(x
′) < 1− T )

6: if k == last ∨ res == UNSAFE then
7: res, cex = ExistsPrevCEX(N , x, ϵ, k)
8: if res == UNSAFE then
9: return UNSAFE, cex

10: end if
11: end if
12: end for
13: return SAFE

Overall, in both cases where the condition is met or not, the result is equal to the result obtained by
Alg. 1, as required.

Theorem 7. Alg. 3 is equivalent to Alg. 1.

Proof. Alg. 3 introduces an additional condition in each iteration to check whether the original
winner might not win in the current exit. If this condition cannot be satisfied (SAFE is returned and
the condition in line 11 holds), the verification process halts, and SAFE is returned. This is valid
because, for all subsequent exits, neither line 5 nor line 7 of Alg. 1 would hold, as there exists a
previous exit (the current one) where the winner wins for every example. Consequently, Alg. 1 would
also return SAFE in this scenario.

If the condition is satisfiable, the condition in line 11 does not hold and Alg. 3 continues to line 14 to
check if there is a counterexample where a runner-ups wins, just as Alg. 1 does in the for loop in
lines 3-13. If such an example is found and UNSAFE is returned, both algorithms return UNSAFE
(line 16 in Alg. 3 and line 13 in Alg. 1). If no counterexample was found for any runner-up in any
exit, SAFE is returned in both algorithms (last line), ensuring they are equivalent in their results.

We can now prove the correctness of Theorem 3.
Theorem. Alg. 2 is equivalent to Alg. 1.

Proof. Alg. 2 sequentially incorporates the optimizations in both Alg. 4 and Alg. 3. Consequently,
and based on Theorem 6 and Theorem 7, Alg. 2 is equivalent to Alg. 1.

D DATASETS AND MODELS TECHNICAL DETAILS

Below, we provide a brief description of each dataset and architecture, summarize their key character-
istics in Tab. 3 and Tab. 4, and present the full training protocol used in our experiments.

We used three common datasets:

• MNIST (31): A dataset of handwritten digits consisting of grayscale images. This dataset
is widely used for evaluating classification methods due to its simplicity and accessibility,
featuring 10 classes (digits 0-9).

• CIFAR-10 (32): A dataset comprising color images, categorized into classes such as
airplanes, cats, and trucks. It is a standard benchmark for formal verification of image
classification tasks.

• CIFAR-100 (32): A more challenging extension of CIFAR-10, featuring more classes with
fewer samples per class, increasing the complexity of the classification.
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Table 3: Metadata for datasets used in the evaluation.

Dataset Train Size Test Size #Classes Input Shape

MNIST 60,000 10,000 10 1× 28× 28
CIFAR-10 50,000 10,000 10 3× 32× 32
CIFAR-100 50,000 10,000 100 3× 32× 32

For each dataset, we trained models that incorporate EEs to enable intermediate predictions and
verification:

• Fully Connected (FC-6): A fully connected architecture with 6 layers, where the first three
layers are equipped with EEs. This model was trained on the MNIST dataset.

• LeNet-5 (CNN) (33): A well known architectrue that contains 2 convolutional layers
forllowed by 3 linear layers. We trained it on CIFAR-10 and added EEs after the first and
second convolutional layers.

• Modified ResNet-18 (34): A ResNet-18 architecture, adapted by replacing MaxPool opera-
tions with AveragePool operations. This model was trained on the CIFAR-10 dataset, and
early exist where added after the first and second blocks.

• VGG-16 (35): A standard VGG-16 architecture of 13 convolutional layers, partially sepa-
rated with Adaptive Average pool layers (and not Maxpool layers, for the reason explained in
the last clause), and followed by 3 linear layers. We trained it on CIFAR-10, and incorporated
EEs after the 6th and 10th convolutional layers.

Table 4: Characteristics and Evaluation Metrics of Different Models.

Model Dataset Size # Layers Accuracy EE Accuracy Exit Distribution

FC-6 MNIST 1,519,720 6 98.18 98.2 [9772, 152, 46, 30]
CNN CIFAR-10 596,178 5 70.02 69.93 [5924, 2066, 2010]

ResNet-18 CIFAR-10 11,243,102 18 86.43 86.11 [6656, 1899, 1445]
VGG-16 CIFAR-10 33,769,566 13 93.45 93.14 [8268, 1278, 454]

Training Protocol All models are trained using standard supervised learning on their respective
datasets. For CIFAR-10 and CIFAR-100, we apply data augmentation (random cropping and
horizontal flipping) and normalize using dataset-specific statistics. MNIST models are trained for
10 epochs using SGD, with the learning rate reduced by a factor of 10 every 4 epochs. CIFAR-10
models (ResNet-18, VGG, and LeNet variants) are trained for 200 epochs (30 for LeNet). ResNet
and VGG use SGD with momentum 0.9, weight decay 5 × 10−4, and a step-based learning rate
schedule that reduces the learning rate by a factor of 0.1 at epochs 100 and 150. LeNet uses the Adam
optimizer with an initial learning rate of 0.001, decayed by 0.1 at epochs 10 and 20. CIFAR-100
models use the Adam optimizer with an initial learning rate of 0.001 and cosine annealing over
200 epochs. For the early-exit heads, we add an extra fine-tuning phase: we freeze all backbone
parameters and train each exit sequentially for a small number of epochs (20 for larger models, 10 for
FC and LeNet), using the same optimizer and initial learning rate as the base model. The learning
rate is decayed twice by a factor of 0.1 during this phase.

Technical Contribution and Non-Triviality. While our method is conceptually simple, we view
this as an advantage rather than a limitation. Importantly, two technical aspects highlight its non-
triviality. First, our approach introduces many additional verification queries in the worst case, and its
effectiveness depends on whether early exits succeed in verification. Networks augmented with early
exits often achieve faster inference but may sacrifice robustness, which directly impacts verification
performance. Thus, our method entails a risk/value tradeoff – performance gains are not guaranteed
and are validated only empirically. Second, each partial verification query is not merely a smaller
subproblem of the original one; it verifies a more complex property involving the robustness of the
exit condition, including Softmax. This distinction makes the problem strictly harder, and the benefit
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of our approach is not obvious a priori. In fact, it fails in tools that lack proper Softmax support. The
novelty of our contribution lies in showing that, when combined with a state-of-the-art verifier that
supports Softmax(29; 8), this strategy does indeed yield improved performance.

Relation to Certified Training Unlike certified training methods, which modifies the training
process to improve robustness, our method preserves standard training and instead augments the
model with early exits to accelerate verification. This design focuses on reducing verification time
rather than altering the robustness–accuracy trade-off. These differences make the two approaches
orthogonal: certified training and early exits can be applied independently or even combined within
the same network to obtain complementary benefits.

Nevertheless, we provide a comparison to illustrate the performance of our method relative to certified
training. Results reported in (85) show that CNN-7 with ϵ = 2/255 ≈ 0.0078 achieves accuracy
78.82% and robustness 64.41%. In contrast, our early-exit CNN-5 with ϵ = 0.005 and threshold
T = 0.9 attains accuracy 71.34% and robustness 60.61%, despite relying on a significantly smaller
network. These results demonstrate that our fine-tuning preserves robustness while still providing
efficiency gains.

E VERIFICATION EXIT VERSUS INFERENCE EXIT: RESULTS FOR MNIST &
FC-6

The details of FC-6 and MNIST are added in Fig. 8. Here, too, there is a high correlation between the
verification exit and the inference exit when the result is SAFE, and most of the queries are resolved
in the first exit when the result is UNSAFE.
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Figure 8: Heatmaps demonstrating the correlation between the inference and verification exit layers
for FC-6 and MNIST.

F COMPARING THE ALGORITHMS AND THE OPTIMIZATIONS

In this section we compare Alg. 1 and Alg. 2 with all or part of the optimizations (in blue and orange
lines) as an ablation study. Following App. C, we denote the variant with the break optimization
only (the blue lines) with Alg. 3, and the variant with the continue optimization only (the orange
lines) with Alg. 4. Fig. 9 compares the evaluation results of algorithm pairs across benchmarks,
where the x-axis and y-axis represent the runtime (in seconds) of the respective algorithms. Points
are color-coded based on the experiment results.

Subfigures (a)-(c) in Fig. 9 compare algorithms 1 through 4 on MNIST, showing that (a) Alg. 3
outperforms Alg. 1, (b) Alg. 4 outperforms Alg. 3, and (c) Alg. 2 outperforms Alg. 4. While
(b) highlights that no single heuristic consistently outperforms the other, (c) demonstrates that the
combined method always excels in SAFE cases, with negligible additional runtime in simpler cases.
After establishing that the combined algorithm is the optimal choice, subfigures (d)-(f) compare
Alg. 1 and Alg. 2 on three additional benchmarks: CNN, ResNet-18, and VGG-16, all trained on
CIFAR-10. These results highlight the superiority of the improved algorithm in SAFE cases while
maintaining equal runtimes for UNSAFE cases. Note that in the VGG-16 case, the original network
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failed to produce SAFE results, whereas the modified network with EEs succeeded. This discrepancy
explains why (f) compares only the UNSAFE results.
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(e) ResNet-18 CIFAR-10 1 vs 2 (f) VGG-16 CIFAR-10 1 vs 2

Figure 9: Comparing algorithms 1, 2, 3, 4 over various benchmarks. Graphs (a-c) demonstrates the
ablation study on the optimization: the break optimization (Alg. 4) improves the basic algorithm (a),
and the continue optimization improves it even further for MNIST with FC-6 (b), but applying both
optimization is the best option (c). In graphs (d-f) we compare Alg. 1 and Alg. 2 on other datasets.

G DISCLOSURE: USE OF LARGE LANGUAGE MODELS (LLMS)

The authors were solely responsible for developing the research questions, designing the methodology,
performing the analysis, and interpreting the findings. A large language model (LLM) was employed
only to assist with improving the clarity and style of the writing, without influencing any substantive
aspects of the research.
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