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“The way we extract gait features depends a lot on how we understand a gait.”
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Figure 1: Vocabulary-guided gait recognition aims to explore gait concepts through human vo-
cabularies with VLMs where the vocabulary features enable to guide the gait network learning.
Specifically, the universal vocabulary space (e.g., initial contact) can guide the gait network to derive
the corresponding semantic gait features, thereby yielding a more universal gait space for practicality.

Abstract

What is a gait? Appearance-based gait networks consider a gait as the human shape
and motion information from images. Model-based gait networks treat a gait as the
human inherent structure from points. However, the considerations remain vague
for humans to comprehend truly. In this work, we introduce a novel paradigm
Vocabulary-Guided Gait Recognition, dubbed Gait-World, which attempts to
explore gait concepts through human vocabularies with Vision-Language Models
(VLMs). Although VLMs have achieved the remarkable progress in various
vision tasks, the cognitive capability regarding gait modalities remains limited.
The success element in Gait-World is the proper vocabulary prompt where this
paradigm carefully selects gait cycle actions as Vocabulary Base, bridging the
gait and vocabulary feature spaces and further promoting human understanding
for the gait. How to extract gait features? Although previous gait networks
have made significant progress, learning solely from gait modalities on limited
gait databases makes it difficult to learn universal gait features for practicality.
Therefore, we propose the first Gait-World model, dubbed a-Gait, which guides
the gait network learning with vocabulary knowledge from VLMs. However, due
to the heterogeneity of the modalities, directly integrating vocabulary and gait
features is highly challenging as they reside in different embedding spaces. To
address the issues, a-Gait designs Vocabulary Relation Mapper and Gait Fine-
grained Detector to map and establish vocabulary relations in the gait space for
detecting corresponding gait features. Extensive experiments on CASIA-B, CCPG,
SUSTechlK, Gait3D and GREW reveal the potential value and research directions
of vocabulary information from VLM:s in the gait field.

1 Introduction

Gait recognition aims to identify individuals based on walking patterns across complex covariates,
e.g., cross-view and cross-clothing scenarios [[1]]. As fundamental paradigms, appearance-based
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Figure 2: Up: In the silhouette modality, VLMs struggle to identify fine-grained details (e.g.,
localizing the right leg), yet remain sensitive to basic walking patterns, which rely on overall structure.
Down: The success element of Gait-World lies in leveraging gait cycle actions as the vocabularies to
bridge the gap between VLMs and gait modality.

Question: What gait phase is the person in the silhouette?
@ Options: (A) initial Contact (B) loading Response
[ (C) mid stance (D) terminal stance (E) pre-swing

(F) initial swing (G) mid swing (H) terminal swing

Answer: (E) pre-swing. This phase occurs when the
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the toes still in contact. 7
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gait networks [2} 13} 14, 5, 16, [7}, 18 19, [10} [11], which treat a gait as human shape and motion infor-
mation, typically take images as input (e.g., silhouettes, parsing and optical flow) and use CNNs
or Transformers to capture local and global spatio-temporal information. Model-based gait net-
works [12} 13,144 (15,16} 17, [18] treat a gait as the human inherent structure. These methods take
points as input (e.g., keypoints, meshes, and heatmaps), and typically apply GCNs or Transformers to
extract local and global relations among points and edges.

Despite the significant progress made by these paradigms due to their efficiency, the gait research still
faces two main problems: (i) Ambiguous gait concepts (e.g., shape, motion and structure) cause that
researchers either possess advanced knowledge yet cannot fully apply it due to underdeveloped gait
networks, or have feasible insights but cannot verify whether the network truly works as intended. (ii)
Constrained gait networks rely solely on the gait modality and the limited gait databases, struggling
to learn universal features for the real-world scenarios. For example, appearance-based methods
suffer from drastic appearance variations under cross-clothing conditions, model-based methods
heavily depend on the accuracy of upstream pose estimators, and gait databases often encounter
sparse-view [19] and cloth-imbalance [20] problems. Therefore, we naturally ask: What is a gait and
how to extract gait features? Considering that human vocabulary inherently possesses interpretability
and semantic guidance, we introduce a new gait paradigm and network to answer:

Vocabulary-guided gait recognition. The primary goal is to harness human-defined vocabulary
with Vision-Language Models (VLMs) to explore gait concepts, thereby promoting gait networks
and providing researchers more informative feedback. Inspired by “The limits of my language mean
the limits of my world.” from Ludwig Wittgenstein, we name the paradigm Gait-World shown in
Figure E} Gait-World consists of Vocabulary Base, VLMs, and Gait Network. Researchers provide
basic knowledge as the Vocabulary Base, from which VLMs extract the vocabulary features to serve
as priors that guide the gait network in learning corresponding gait features. However, integrating
human vocabulary knowledge into gait modalities via VLMs is non-trivial because publicly available
training data for VLMs rarely include gait samples. As shown in Figure VLMs (i.e., GPT—4(ﬂ) often
struggle to identify fine-grained details (e.g., hands or legs) in silhouettes. Nevertheless, we observe a
phenomenon where VLMs remain sensitive to basic walking patterns. We adopt the clinically defined
eight-phase gait cycle as a minimal, complete set [21} 22], and VLMs accurately recognize gait
cycles from silhouettes, aligning with “Gait serves as a walking descriptor.” Therefore, the success
element in Gait-World is the proper vocabulary prompt where this paradigm carefully selects gait
cycle actions as Vocabulary Base, bridging the gait and VLM spaces and further promoting human
understanding for the gaits.

a-Gait. Towards vocabulary-guided gait recognition, we introduce the first Gait-World model, a-Gait,
which leverages vocabulary knowledge from VLMs to guide gait representation learning. Specifically,
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due to the modality heterogeneity, directly integrating vocabulary and gait features poses a challenge,
as they reside in distinct embedding spaces. To address this, a-Gait firstly employs the Vocabulary
Relation Mapper that maps the vocabulary feature into the gait space and establishes vocabulary
relations. Then, the Gait Fine-grained Detector queries the gait features with the vocabulary guidance,
extracting corresponding semantic gait features for recognition.

Our main contributions can be summarized as follows:

e We introduce a novel paradigm Vocabulary-Guided Gait Recognition, dubbed Gait-World, which
applies human vocabularies with Vision-Language Models to effectively explore gait concepts,
revealing the vocabulary value for the gait field.

e We propose a-Gait in pursuit of the Gait-World, which designs Vocabulary Relation Mapper and
Gait Fine-grained Detector to map and establish vocabulary relations into the gait space, effectively
tackling modality heterogeneity and refining gait features.

o We evaluate a-Gait on CASIA-B, CCPG, SUSTech1K, Gait3D and GREW, achieving superior
performance and providing valuable insights.

2 Related Work

2.1 Gait Recognition

Model-Based Gait Recognition. PoseGait [12] lifts 2D images to 3D poses and learns spatio-
temporal cues with a multi-loss scheme for robustness. GaitGraph/GaitGraph2 [13} 23] use GCNs
on 2D pose sequences to model motion while reducing appearance sensitivity. GaitTR [14] couples
spatial transformers with temporal convolutions. GaitMixer [24] mixes spatial self-attention with
large-kernel temporal convolutions. GPGait [15] improves generalization via a unified pose represen-
tation. SMPLGait [16] encodes shape and motion with dense 3D body models. SkeletonGait [17],
HiH [25]], and GaitHeat [18]] use Gaussian-style maps to strengthen structural cues.

Appearance-Based Gait Recognition. GaitSet [2]] views silhouettes as an unordered set. GaitPart [3]]
exploits part-wise signals. GaitGL [4] combines local and global 3D convolutions. GaitBase [3] is
a simple, strong foundation for in-the-wild use. DANet [[6], DyGait [26]], HSTL [27], VPNet [7],
GLGait [28], and GaitMoE [[10] emphasize dynamic modeling. GaitGCI [29], GaitCSV [19],
CLTD [30], and GaitC®I [31] apply causal inference to curb covariate effects. Origins [32] leverages
generative diffusion to mitigate semantic inconsistency and uniformity. Beyond silhouettes, parsing-
based inputs (GaitParsing [33]], LandmarkGait [34], ParsingGait [35]]) capture fine-grained parts. RGB
pipelines (GaitEdge [36]], BigGait [|37]]) enable end-to-end learning. point clouds (LidarGait [38]])
address occlusion. multi-modal designs (MMGaitFormer [39], CL-Gait [40]) enrich cues. and
Gait-X [41]] builds an X-modality via patch-wise DCT for stronger in-/cross-domain performance.

2.2 Vision-Language Models

Gait-World derives its vocabulary space from a Text Encoder built on either Vision-Language Models
(VLMs) or purely textual Large Language Models (LLMs).

VLMs. (i) CLIP [42]]: contrastive image-text embeddings enabling broad zero-shot transfer and
prompt-based retrieval/classification. (ii) LLaVA [43]: a CLIP-style visual encoder connected to an
LLM via a lightweight adapter for instruction-following multimodality. (iii) Qwen [44]: Qwen-VL
supports multi-image, high-resolution inputs with strong captioning and grounding for fine-grained
semantics. (iv) GPT [45]: GPT-4V (and 40) accepts images for VQA and multi-step reasoning over
visual content.

LLMs. (i) LLaMA [46]: a widely used 7B-65B base family for downstream NLP adapters and
tools. (ii) GPT [45]: GPT-3/4 exhibit in-context learning, instruction following, and strong general
reasoning in text-only settings. (iii) DeepSeek [47]: V3/R1 emphasize efficiency and explicit
reasoning with MoE and RL-style training, improving coding and mathematical tasks.



2.3 Vocabulary-Guided Learning

Using an explicit vocabulary links visual evidence to linguistic semantics. We outline two representa-
tive directions: Open-Vocabulary Learning and Text-Guided Learning.

Open-Vocabulary Object Detection. The goal is to detect objects beyond a fixed training label set
by transferring language-aware knowledge. ViLD [48] distills a VLM teacher into a region-based
detector to generalize to unseen categories. Detic [49] adds image-level supervision from large-scale
VLM pretraining so one model handles both in- and out-of-vocabulary classes. OV-DETR [350]
couples a transformer detector with vision-language pretraining, predicting categories directly from
text embeddings.

Text-Guided Face Recognition. Text serves as guidance or supervision to refine identity features
across granularities. CFAM [51]] aligns images and captions at multiple resolutions. CaptionFace [52]
combines a GPTFace component with a multi-scale feature alignment module. TGFR [53]] uses
cross-modal contrastive learning over global-local face-caption pairs.

Discussion. Vocabulary-Guided Gait Recognition instead uses vocabulary as priors to query identity-
relevant gait cues. Unlike open-vocabulary detectors that treat words as labels, and text-guided
face recognition where VLMs plug in directly, current VLMs are not yet sensitive to gait, requiring
additional alignment.

3 Methodology

In this section, we first present the formulation of vocabulary-guided gait recognition in Sec. [3.1}
then offer a comprehensive description of a-Gait in Sec. [3.2] followed by the training and inference
details in Sec. [3.3] Finally, we discuss various aspects of this work in Sec.[3.4]

3.1 Vocabulary-Guided Gait Recognition

We begin with the gait silhouette modality and appearance-based gait network for the simplicity and
efficiency. A vanilla gait framework typically takes a silhouette sequence X as input, then extracts
gait features using a Gait Encoder £. Next, Horizontal Partitioning P is applied to obtain fine-grained
gait part features O, which are finally mapped to F for recognition through a Gait Head G. This
process can be as follows:

0 =P(E(X)) ()
F=G(0) )

where X € RSX"W 0 € RC*P F € RC*P and Cq,S,H, W, P represent channel, consecutive
S frames, height, width and the number of horizontal parts. This process relies on learning solely
from gait modalities on limited gait databases, which makes it difficult to learn universal gait features.

To address this, we introduce Vocabulary-Guided Gait Recognition, dubbed Gait-World, which
leverages vocabulary information from VLMs for better human understanding and gait semantic
guidance. Gait-World comprises Vocabulary Base V, VLMs 7, and Gait Network. Because VLMs
are insufficiently sensitive to gait silhouette modality, we prepend the qualifier "human gait silhouette"
to all vocabularies, which provides more precise descriptions for VLMs (e.g., “human gait silhouette
initial contact™). For convenience, this qualifier is omitted in subsequent discussions. Next, we
provide more details for Gait-World, which mainly consists of three components:

Vocabulary Base. We predefine Vocabulary Base consisting of {“initial contact”, “loading response”,
“mid stance”, “terminal stance”, “pre-swing”, “initial swing”, “mid swing”, “terminal swing”}. As
Figure 2] shows, the selection is motivated by the observation that VLMs are sensitive to the gait cycle
actions that depend on the global details of gait silhouettes, but less sensitive to local details (e.g.,
distinguishing legs from the silhouettes). Therefore, VLMs can accurately determine the phase of the
gait cycle, which is crucial for gait recognition. In practice, Gait-World uses the Vocabulary Base to

bridge the gap between the VLM and the gait spaces.

VLMs. Gait-World aims to harness the capacity of Vision-Language Models (e.g., CLIP) or Large
Language Models (e.g., DeepSeek R1), which embody rich and universal knowledge. Specifically,
the Text Encoder trained on large-scale public data develops a vocabulary space that generalizes well
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Figure 3: a-Gait employs the vocabulary features from Text Encoder to guide the gait feature
learning. HP denotes Horizontal Partition. Gait Encoder consists of several convolution blocks, and
Gait Head includes Separate FCs and BNNeck. After the gait sequence passes through Gait Encoder
and HP, the gait part features are fed into the Vocabulary Relation Mapper and Gait Fine-grained
Detector, which guide them with vocabulary information for identification.

to real-world scenarios, which enables to guide the feature learning in the Gait Network. This process
can be as follows:

Vi=T() 3

where Vy € REXLXM and C;, £ and M denote channel, the number of tokens and the number
of vocabulary. Note that the number of tokens assigned to each vocabulary feature can vary due to
the differences in lexical length and tokenizer segmentation. For example, “pre-swing” and “initial
contact” are tokenized into 1 and 2 tokens, respectively. Therefore, we employ the simple yet effective
Mean Pooling (MP) to aggregate multiple tokens within a sentence into one token, i.e., V; € REXM,

Gait Network. The vocabulary features from VLMs serves as external information for guiding gait
network learning. Therefore, the Gait-World paradigm is not constrained by current gait modalities
or networks where vocabulary information solely guides gait representation learning.

3.2 Model Architecture

Towards Vocabulary-Guided Gait Recognition, we propose the first-generation model a-Gait in this
series, which primarily incorporates vocabulary information after the Gait Encoder and Horizontal
Partitioning (i.e., gait part features) due to the Vocabulary Base with temporal information and gait
recognition with the fine-grained problem. Based on Gait-World, a-Gait introduces the Vocabulary
Relation Mapper (VRM) and the Gait Fine-grained Detector (GFD), addressing the discrepancies
between the vocabulary and gait feature spaces, as well as the lack of universality of gait features.

Vocabulary Instruction. As shown in Figure [3] «-Gait firstly obtains the vocabulary features
Vr € RC XM from Text Encoder. Note that gait cycle actions are an inherent attribute shared by all
individuals and rely on the overall structure in silhouettes. Therefore, vocabulary features are shared
across the body parts of all gait samples.

a-Gait extracts the gait part feature O € R *S*P from Gait Encoder £ and Horizontal Partitioning
P, preserving the temporal information for vocabulary guidance. Note that each gait part feature
contains the distinct walking pattern. Therefore, both Vocabulary Relation Mapper and Gait Fine-
grained Detector are independent for each gait part feature, and we omit the part index for simplicity.
Given the vocabulary features V; € R¢*M and one gait part feature O € R *S, the VRM and
GFD are as follows:

Vocabulary Relation Mapper. Although Gait-World carefully selects Vocabulary Base that is highly
relevant to gait, there remains a significant feature distribution discrepancy between the Text Encoder
and Gait Encoder. This discrepancy arises mainly for two reasons. Firstly, the Text Encoder modeling
paradigm is based on sequential processing of the text modality. Secondly, the Text Encoder learning
framework primarily relies on autoregressive Next-Token Prediction or Contrastive Learning from
RGB Image-Text pairs. To address these issues, VRM firstly introduces Transition module to align
vocabulary features into the gait space, and then Relational Query Qp with the attention mechanism
to establish associations among vocabularies, which enables the gait network to understand the



vocabularies in a more fine-grained manner. The process is as follows:

V} = ReLU(LN(Linear(Vy))) )
Qr=Qr, Kr=V;, Vr=V; (&)
Qv = Softmax(Qr ® Kr) ® Vg (6)

where Linear € R¢*Cs, Qp € RS> Kp € RCo*M VY ¢ RCG*M Q9 ¢ RS>l VRM
eliminates the linear mapping in the attention mechanism to preserve the original vocabulary feature
distribution as much as possible. Moreover, VRM normalizes the aligned vocabulary feature Qy for
guiding gait feature learning.

Gait Fine-grained Detector. Within the Gait-World paradigm, GFD primarily achieves that the
vocabulary feature Qy, guides the gait feature learning with the corresponding semantic information
for the complex real-world scenarios. To this end, GFD treats the process from an object detection
perspective where the vocabulary feature detects gait features with the corresponding semantics.
Similar to the DETR [54], GFD presents Qy as the object query and the gait part feature O as the
regions of interest. The process is as follows:

Qv =0y, Ky=0, VW=0 (7
F = Softmax(Qy ® Ky) @ Vy 8)

where Qy € RC*1 [C,, € RCs*S Y, € RCo*S F e RC*1 GFD also normalizes the detected
gait feature F for the following Gait Head, easing the training process.

3.3 Training Details

Training Stage. a-Gait aims to recognize the individual identity where vocabulary information
from VLMs solely guides the gait feature extraction. Consequently, a-Gait remains consistent with
conventional gait recognition, including two types of identity loss. Triplet Loss [55] £, and Cross
Entropy Loss L., constraining each part independently.

L=2Lyp+ Lee ©)

Inference Stage. After training, a strong relation is established between the Vocabulary Base space
from VLMs and the gait space. At the inference stage, a-Gait remains the Vocabulary Base to refine
gait features for real-world scenarios.

3.4 Discussion

To facilitate a clear grasp and significance of Vocabulary-Guided Gait Recognition, we further explain
and clarify Gait-World, a-Gait and the scope of this work:

Gait-World aims to provide a better human understanding of gaits, and a new paradigm to com-
plement existing paradigms (i.e., appearance-based and model-based methods). It serves as an
intuitive and efficient tool for researchers to refine their understanding of gait patterns, providing
new directions for gait research. Researchers only need to design better vocabulary prompts and
share their embeddings with the gait community, without the burden of computational and memory
overhead introduced by large models or the need for complex gait model architectures.

a-Gait serves as an initial attempt, which aims to provide an intuitive demonstration of the vocabu-
lary’s effectiveness for gait recognition. Hence, we propose a simple yet effective architecture, rather
than relying on complex frameworks for incremental performance gains.

The relationships with multimodals. Multimodal approaches typically require each input to be
paired with the corresponding several modalities, which, despite offering information gains, also
introduces challenges in data collection and computational overhead. a-Gait serves as an initial
attempt with only eight universal vocabulary embeddings shared across all inputs, and admittedly
does not yet constitute a multimodal paradigm.

4 Experiments

The mainstream public gait databases and the implementation details are shown in Appendix [A]and
the evaluations on our method are introduced in the next sections.



Table 1: The evaluation on CCPG with clothing-changing conditions.

Paradigm | Method | Venue |  Gait Evaluation Protocol |  RelD Evaluation Protocol

| | | CL UP DN BG Mean| CL UP DN BG Mean
GaitGraph2 [13] | CVPRW22 | 50 53 58 6.2 5.1 50 57 73 88 6.7

Model Gait-TR [14] ES23 157 183 185 17.5 17,5 [243 287 31.1 28.1 28.1
MSGG [56] MTA23 |29.0 345 37.1 333 335 |43.1 529 574 499 5038

SkeletonGait [17] | AAAI24 | 404 485 53.0 61.7 509 |524 654 728 809 679

GaitSet [2] AAAII9 |60.2 652 65.1 685 648 |77.5 85.0 829 875 832

GaitPart 3] CVPR20 | 643 678 68.6 71.7 68.1 |79.2 853 86.5 83.0 84.8
Appearance OGBase [57] CVPR23 |52.1 573 60.1 633 582 |702 769 804 834 77.7

GaitBase [5] CVPR23 |71.6 750 76.8 78.6 755 |885 927 934 932 92.0
DeepGaitV2 [58] | TPAMI2S | 78.6 84.8 80.7 89.2 833 |90.5 963 914 96.7 93.7

Gait-World | a-Gait-S (ours) | NeurIPS25 | 82.8 89.0 84.6 92.7 87.3 |92.0 98.1 934 969 95.1

Table 2: The evaluation on SUSTech1K with different attributes (abbrev.: NM=Normal, BG=Bag,
CL=Clothing, CRY=Carrying, UMB=Umbrella, UNI=Uniform, OCC=Occlusion, NT=Night).

Paradigm ‘ Method ‘ Venue \ Probe Sequence ‘ Overall

| | [NM BG CL CRY UMB UNI OCC NT |Rank-1 Rank-5

GaitGraph2 [13] |CVPRW22 222 182 6.8 18.6 134 19.2 273 164| 18.6 40.2
Gait-TR [14] ES23 333 315 21.0 304 227 34.6 449 235| 30.8 56.0
MSGG [56] MTA23 |67.1 66.2 359 633 61.6 58.1 66.6 17.9| 33.8 -

SkeletonGait [17] | AAAI24 |679 635 365 61.6 58.1 672 79.1 50.1| 63.0 83.5

GaitSet [2] AAAII9 |69.1 682 374 650 63.1 61.0 67.2 23.0| 650 8438
GaitPart 3] CVPR20 [62.2 62.8 33.1 59.5 572 548 572 21.7| 592  80.8
Appearance GaitGL [4] ICCV21 |67.1 66.2 359 633 61.6 58.1 66.6 17.9| 63.1 82.8

GaitBase [5] CVPR23 |81.5 77.5 49.6 758 755 76.7 81.4 259| 76.1 89.4
DeepGaitV2 [58] | TPAMI25 |87.4 84.1 534 81.3 86.1 84.8 885 28.8| 823 92.5

Gait-World | a-Gait-S (ours) | NeurIPS25 |91.1 87.2 64.0 853 89.5 88.8 92.7 282| 86.3 93.9

Model

4.1 Results on Constrained Scenario

CASIA-B. As shown in Table[3] a-Gait-T achieves competitive performance under all conditions,
with an average accuracy of 94.8%, proving the universality of gait cycle action under NM, BG, and
CL scenarios. Specifically, a-Gait-T approaches the SOTA on NM (98.9 %) and BG (96.8%).

CCPG. As shown in Table[I] a-Gait-S significantly outperforms appearance-based and model-based
methods in the more challenging full-body clothing change scenarios. For instance, it exceeds
DeepGaitV2 by 4% in mean accuracy, demonstrating that textual information can better guide the
model in learning covariate-independent features.

4.2 Results on In-the-wild Scenario

SUSTech1K. In real-world scenarios, such as occlusions, umbrella usage, and varying lighting
conditions, a-Gait-T significantly surpasses previous SOTA methods shown in Table[2] For example,
it outperforms DeepGaitV2 by 4% in Rank-1 accuracy, demonstrating the feature robustness of the
text-guided gait cycle actions.

Gait3D. In larger-scale scenarios, although silhouette-based methods are approaching saturation due
to the impact of covariates on upstream segmentation algorithms, a-Gait-M is still able to improve
performance shown in Table ] For instance, it surpasses GaitMoE by 2.6% in Rank-1 accuracy,
indicating that the Gait-World paradigm can serve as a valuable complement to existing approaches.

GREW. Similarly, GREW is also significantly affected by upstream gait modal extraction algorithms,
with silhouette-based methods approaching the limitations. As shown in Table ] a-Gait-L achieves
competitive results, surpassing VPNet [7]] by 1.2%. a-Gait-L adopts Free Lunch [61] (i.e., logits as
gait features) to achieve more stable results without introducing additional computational complexity.



Table 3: The evaluation on CASIA-B under different conditions with Rank-1 accuracy (%).

Paradigm | Method | Venue | NM | BG | CL | Mean
GaitGraph? [23] CVPRW22 80.3 71.4 63.8 71.8

Model GaitTR [14] ES23 94.7 89.3 86.7 90.2
GPGait [13] ICCV23 93.6 80.2 69.3 81.0

GaitSet [2] AAAII9 95.0 87.2 70.4 84.2

GaitPart [3] CVPR20 96.2 91.5 78.7 88.8

GLN [59] ECCV20 96.9 94.0 71.5 89.5

GaitGL [4] ICCV21 97.4 94.5 83.6 91.8

QAGait [60] AAADR4 97.9 94.6 78.2 90.2

GaitBase [3) CVPR23 97.6 94.0 77.4 89.8

A DANet [6] CVPR23 98.0 95.9 89.9 94.6
ppearance GaitGCI [29] CVPR23 97.9 95.0 86.4 93.1
DyGait [26] ICCV23 98.4 96.2 87.8 94.1

HSTL [27] ICCV23 98.1 95.9 88.9 94.3

VPNet [7] CVPR24 98.3 96.3 90.0 94.9

DeepGaitV?2 [58) TPAMI25 - - - 89.6

CLTD [30] ECCV24 98.6 96.4 89.3 94.8

Free Lunch [61] ECCV24 98.1 94.1 77.9 90.0

Gait-World |  a-Gait-T (ours) | NeurlPS25 | 989 | 968 | 886 | 9438

Table 4: The evaluation on Gait3D and GREW.

Paradigm Method Venue Gait3D GREW
Rank-1 Rank-5 mAP | Rank-1 Rank-5 Rank-10
GaitGraph2 [23] | CVPRW22 11.2 - - 64.8 - -
Model GaitTR [14] ES23 7.2 - - 48.6 - -
GPGait [15] ICCV23 22.4 - - 57.0 - -
GaitSet [2] AAAI19 36.7 58.3 30.0 46.3 63.6 70.3
GaitPart [3] CVPR20 28.2 47.6 47.6 44.0 60.7 67.3
GaitGL [4] ICCV21 29.7 48.5 22.3 47.3 63.6 -
MTSGait [62] MM22 48.7 67.1 37.6 55.3 71.3 76.9
QAGait [60] AAAI24 67.0 81.5 56.5 59.1 74.0 79.2
GaitBase [3] CVPR23 64.6 - - 60.1 - -
GaitGCI [29] CVPR23 50.3 68.5 39.5 68.5 80.8 84.9
Appearance . ;
DyGait [26] ICCV23 66.3 80.8 56.4 71.4 83.2 86.8
HSTL [27] ICCV23 61.3 76.3 55.5 62.7 76.6 81.3
VPNet 7] CVPR24 75.4 87.1 - 80.0 89.4 -
DeepGaitV2 [58] | TPAMI25 74.4 88.0 65.8 71.7 88.9 91.8
CLTD [30] ECCV24 69.7 85.2 - 78.0 87.8 -
GaitMoE [10] ECCV24 73.7 - 66.2 79.6 89.1 -
Free Lunch [61] ECCV24 70.1 - 61.9 65.5 78.7 83.3

Gait-World ‘ a-Gait-M/L (ours) ‘ NeurIPS25 | 76.3 87.7 67.8 81.2 90.2 92.7

4.3 Ablation Study

In this section, we validate the universality of the Gait-World with different Text Encoder, and
illustrate the modality and vocabulary expansions. Additionally, we visualize the mechanism of
vocabulary guidance, and analyze the trade-off of a-Gait between accuracy and efficiency.

The effectiveness of Gait-World. As shown in Table[5] although Gait Network relying solely on
gait silhouettes and adaptive learning achieves competitive results, under the Gait-World paradigm,
a-Gait further improves Rank-1 accuracy by 2.6% on Gait3D. This indicates that the vocabulary
space distribution derived from Large Language Models possesses greater universality.



Table 5: The ablation study on Gait3D and CCPG.

Method | Gait3D | CCPG
| Rank-1 mAP | CL UP DN BG Mean
a-Gait 76.2 67.8 82.8 89.0 84.6 92.7 87.3
Gait Encoder 73.6 65.1 80.1 86.4 83.9 91.4 85.5

The analysis on Text Encoder

Initial Random 71.8 63.3 71.7 84.2 77.6 86.2 81.4
Learnable Query 74.1 66.8 82.3 89.0 83.9 92.5 86.9
CLIP 75.2 67.7 82.2 88.9 85.0 92.8 87.2
LlaMa 74.8 66.9 825 89.3 843 93.0 87.3
DeepSeekR 1-Distill 76.2 67.8 82.8 89.0 84.6 92.7 87.3

Table 6: Ablations on modality and vocabulary expansions on Gait3D

Paradigm | Variant | Vocabulary Base | Rank-1 mAP
Appearance Gait Encoder — 73.6 65.1
PP Gait Encoder w/ a-Gait (8 phases] 76.2 67.8
Model SkeletonGait — 37.9 29.6
SkeletonGait w/ a-Gait [8 phases] 40.3 31.3

Multimodel SkeletonGait++ — 76.0 69.2
u SkeletonGait++ w/ «-Gait [8 phases] 78.1 71.5

. a-Gait [8 phases] 76.3 67.8
Gait-World a-Gait w/ More vocabularies [8 phases + view, bag, clothing inv.] 76.8 68.4

The analysis on Text Encoder. To analyze the importance of vocabulary features, we first replace
them with Initial Random features. As shown in Table[5] the results show that non-relational features
disrupt gait learning, thereby validating the effectiveness of «-Gait from the benefits of strongly
associated vocabulary features rather than the architectures (i.e., VRM and GFD). Additionally, we
replace with Learnable Query, which starts from normal distribution but adapts through VRM and
GFD to learn relevant information from the gait features, confirming the architecture’s efficiency.
Furthermore, we substituted different Text Encoders, leading to different improvements. DeepSeek-
R1-Distill, with its universal vocabulary reasoning capabilities, produced superior vocabulary features,
while CLIP, leveraging image-text pairs for alignment, excelled in capturing visual features.

The modality and vocabulary expansions. As shown in Table [6] vocabulary guidance brings
consistent gains. For the Appearance-based method, adding a-Gait lifts Rank-1/mAP from 73.6/65.1
to 76.2/67.8 (+2.6/+2.7), indicating that phase-aware cues complement generic silhouette features.
For Model-based method, SkeletonGait improves from 37.9/29.6 to 40.3/31.3 (+2.4/+1.7), showing
larger benefits when the baseline is weaker. In Multimodel-based method, SkeletonGait++ also
increases from 76.0/69.2 to 78.1/71.5 (+2.1/42.3), meaning the guidance remains effective with
stronger backbones. Within Gait-World, expanding beyond the eight phases with view-angle, bag,
and clothing invariants brings a further rise from 76.3/67.8 to 76.8/68.4 (+0.5/+0.6), consistent with
the goal of suppressing appearance confounders.

The visualization of vocabulary guidance. We provide qualitative analysis to validate that a-Gait
extracts gait features related to vocabulary information and provide meaningful feedback for humans.
As shown in Figure [4] given the eight gait cycle vocabularies, we visualize the silhouettes with
the highest Softmax response in the attention mechanism. It can be observed that GFD accurately
captures gait cycle actions under various covariates, revealing that the a-Gait indeed understands the
human vocabulary. Meanwhile, it also inspires researchers to better understand gait.

The efficiency-accuracy trade-off. As shown in Figure[5] a-Gait (59.1 M params, 85.6 G FLOPs)
reaches 76.3% accuracy, sitting on the frontier of this cohort. Versus DeepGaitV2 (25.5M /853G /
74.4%), it uses nearly the same compute (+0.3 G FLOPs) yet improves accuracy by 1.9% by steering
attention to phase-specific, identity-bearing cues via vocabulary-guided detection. Relative to DyGait
(133.1M/239.0G / 66.3%), it is lighter by 74.0 M parameters and 153.4 G FLOPs while improving
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Figure 4: The gray box represents the complete gait sequence. Give the eight gait cycle vocabularies,
GFD detects the eight silhouettes with the highest Softmax response in the attention mechanism,
shown in the dash boxes.
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Figure 5: Model comparison on Gait3D: Rank-1 (%) vs. parameters (M) and FLOPs (G).

accuracy by 10.0%, as VRM-based alignment injects human-understandable gait terms that suppress
clothing/view confounders and reduce the search space. At training and inference stages, the text
encoder is frozen and word embeddings are cached offline, adding negligible runtime overhead.

5 Conclusion and Limitations

In this work, we introduce the vocabulary to the gait field due to the inherent interpretability and
semantic guidance. Specifically, we propose a novel paradigm Gait-World, which aims to explore gait
concepts with human vocabulary and VLMs. Gait-World integrates vocabulary information into the
Gait Network by leveraging gait cycle action vocabularies, thereby enhancing human understanding
of gaits. Furthermore, we introduce a-Gait, the first model under the Gait-World paradigm, which
utilizes VRM and GFD to more precisely guide gait feature learning with corresponding vocabulary
features. Extensive experiments on multiple complex gait databases prove the universality.

Limitations and Future Works. a-Gait serves as an initial attempt with eight universal vocabulary
embeddings preliminarily validates the value of vocabulary information for gait recognition, whereas
the more comprehensive exploitation of vocabulary information yields richer benefits, such as gait
attribute learning with the vocabulary labels. In future work, it can be extended to be a multimodal
paradigm, providing each input with a unique language description, enabling richer gait features.
Additionally, a detailed discussion of risks and safeguards is provided in Appendix B} In conclusion,
Gait-World provides a better human understanding of gaits, and a new paradigm to complement
existing paradigms.
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A Databases and Implementation Details

Table 7: Id. and Seq. denote the number of identities and sequences. CV, BG and CL refer to
cross-view and carrying bags and cross-clothing conditions. D and C denote the number of conv
blocks and the channels in each visual stage.

Environment Dataset T Tramseq. T Tebtseq_ Condition D1 DSthggd Di] [CI,CES?E?,SQ] Strides
Constrained CASIA-B [63] 74 8,140 | 50 | 5,500 [CV,BG, CL [1,1,1,-] [64, 128,256, -] [[1,2,1,-]
CCPG [37] 100 | 8,187 | 100 | 8,095 [CV, BG, CL [1, 1,1, 1] [64, 128, 256, 512]][1, 2,2, 1]
SUSTech1K [38]] 200 | 5988 | 850 |19,228| Real-world [1,1,1,1] [64, 128, 256, 512]|[1, 2,2, 1]
In-the-wild Gait3D [16] 3,000 | 18,940 [1,000] 6,369 | Real-world [1,4,4,1] [64, 128,256, 512]|[1, 2,2, 1]
GREW [64] [20,000]102,887(6,00024,000| Real-world 2,4,4,2] [64, 128, 256, 512]|[1, 2,2, 1]

A.1 Databases

Gait databases are commonly categorized into two groups: Constrained and In-the-wild scenarios. As
shown in Table |7} CASIA-B[63], CCPG [57] generally include fewer individuals but provide explicit
condition types. In-the-wild databases SUSTech1K [38], Gait3D [16] and GREW [64] contain a
larger number of identities and more challenging scenarios (e.g., occlusions).

CASIA-B [63] includes 124 subjects recorded from 11 view angles, which contains Normal Walking
(NM), Carrying Bags (BG) and Clothing-Changing (CL) conditions.

CCPG [57] concentrates on the effects of clothing variations, including 200 individuals with more
than 16,000 sequences. By providing fine-grained clothing variations and realistic challenges, CCPG
helps researchers investigate how to handle cloth-changing issues more effectively.

SUSTech1K [38§]] is a large-scale, multimodal gait dataset collected by a LiDAR sensor and an
RGB camera. It comprises 1,050 subjects, including diverse real-world conditions (e.g., clothing,
night-time, and view angles scenarios).

Gait3D [16] is a large-scale gait database collected from 39 cameras in a supermarket with factors
like occlusions and view angles. It includes 3,000 subjects, divided into a training subset of 2,000
and a testing subset of 1,000.

GREW [64] is a large-scale in-the-wild database comprising 26,345 subjects and 128,671 sequences
collected from 882 cameras. Each sequence provides rich modalities, silhouettes, optical flow, and
2D/3D pose, enabling both appearance-based and model-based gait studies. The 20,000 subjects are
designated for training and 6,000 for testing, and each test subject contributes two gallery sequences
and two probe sequences.

A.2 Implementation Details

We describe the training process below in detail:

Inputs. The silhouettes on all databases are transformed into 64 x 44, and each sequence consists of
30 consecutive frames. We adopt the mini-batch [Z, 7] is consistent with [S]], and Z, J denote the
number of subjects and the number of sequences, respectively.

Networks. We provide four model types: a-Gait-T, a-Gait-S, a-Gait-M, a-Gait-L, improving the
optimization on different-scale databases. All models employ the Stem module and 2D ResBlock in
the first Stage, which is consistent with DeepGaitV2[38]. «a-Gait-T consists of 3 Stages with block
numbers [1, 1, 1], channels [64, 128, 256], where the Bottleneck blocks place in the last 2 Stages.
a-Gait-S consists of 4 Stages with block numbers [1, 1, 1, 1], channels [64, 128, 256, 512], where
the Bottleneck blocks place in the last 3 Stages. a-Gait-M consists of 4 Stages with block numbers
[1, 4, 4, 1], channels [64, 128, 256, 512], where the P3D blocks place in the last 3 Stages. a-Gait-L
consists of 4 Stages with block numbers [2, 4, 4, 2], channels [64, 128, 256, 512], where the P3D
blocks place in the last 3 Stages.

Optimization. We employ SGD with an initial learning rate of 0.1, which is reduced by 0.1 at specific
iteration milestones where CASIA-B, CCPG, SUSTech1K, Gait3D and GREW are [20K, 40K, 50K],
[20K,40K,50K], [20K, 30K, 40K], [20K,40K,50K] and [80K, 120K, 150K, respectively. The
total training iterations of CASIA-B, CCPG, SUSTechlK, Gait3D and GREW are 60K, 60K,
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50K, 60K, 180K, respectively. Text Encoder. We select CLIP, LlaMa3-8B, and DeepSeek-R1-
Distill-Llama-8B as representative Vision-Language Models (VLMs) to validate the effectiveness of
Gait-World.

B Responsible Use, Risks, and Safeguards

Scope. This work studies vocabulary-guided gait recognition under a research-only setting. All
experiments use public datasets approved for academic use and silhouette/skeleton representations
(no RGB/audio).

Risks. (1) Covert or indiscriminate surveillance; (2) use without informed consent; (3) unfair errors
across sub-populations; (4) function creep beyond the stated research scope.

Technical safeguards.

* Release silhouettes/skeletons only; prohibit identity recovery and real-time CCTV deploy-
ment without explicit, informed consent.

* Freeze the text encoder and cache vocabulary embeddings at inference, keeping guidance
overhead minimal and auditable.

* Provide subgroup reporting (e.g., gender/age/assistive devices); if disparity exceeds a preset
threshold, retrain with re-weighting/fairness regularizers and document the outcome in the
model card.

Process and access controls.
* Non-commercial, research-only license forbidding surveillance use; usage must document

consent or a clear legal mandate.

» Gated access with per-request approval; logged usage; immediate revocation and public
disclosure upon policy breach.

* Incident response: if any identity is recoverable, notify within 48 h and irreversibly delete
the recovered data/models.

Scope limitation. The system is intended for academic benchmarking and analysis; deployment in
operational surveillance or identification systems is out of scope.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We claim the contributions and scope in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Conclusion and Limitations.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix A Databases and Implementation Details.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18



Answer: [Yes]
Justification: All datasets are public data, and the code will be open-access if accepted.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix A Databases and Implementation Details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We provide the results followed by the standard benchmarks in this gait field
without error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Existing methods in this field generally do not report such information, and no
comparison was conducted.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We read NeurIPS Code of Ethics carefully and make sure that our study meets
the standards.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: See Appendix B Responsible Use, Risks, and Safeguards.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20


https://neurips.cc/public/EthicsGuidelines

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: See Appendix B Responsible Use, Risks, and Safeguards.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All assets in the paper are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not include research with crowdsourcing or human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: See Method and Appendix A Databases and Implementation Details.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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