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ABSTRACT

Federated learning faces challenges due to heterogeneity in local training sets.
Existing methods typically treat this as a monolithic challenge, leading to com-
munication overhead. In this work, we suggest examining the structure of data
heterogeneity in more detail. We identify two forms of this phenomenon: mode-
based, where clients differ in the presence of common versus unique data modes;
and coordinate-based, where groups of model parameters vary in statistical sim-
ilarity. We develop algorithms that decouple communication complexity along
these structural dimensions and consequently achieve reduced synchronization
frequency without deterioration in convergence. Our analysis establishes the opti-
mality of the proposed schemes. Extensive experiments on image and multimodal
classification tasks demonstrate improvements in communication efficiency over
state-of-the-art methods.

1 INTRODUCTION

Machine learning drives modern technological progress, from pattern recognition to complex pre-
dictive models (Shinde and Shah, |2018). In particular, advances in this field owe to the emergence
of efficient optimization techniques that allow rapid adjustment of model parameters (Sun et al.,
2019). Although initial successes were achieved in single-device settings, the scale of today’s data
have increasingly surpassed the limits of individual machines, prompting the need for distributed
training (Verbraeken et al.l [2020). It is typically organized in a server-worker architecture, where
a powerful coordination hub (server) aggregates updates and maintains global model weights, and
devices/clients/workers/nodes/machines perform local computations. In this paradigm, a shared
dataset D is manually partitioned into |M| disjoint subsets Dy, ..., D)y distributed across ma-
chines. Each m-th one accesses only samples from D,,, and calculates

B (2) = \Dl | > t(u(z,a),b),

™1 (a,b)€Dym
where x is the parameters of the model u; a, b are the vector representation and the label of the
object from D,,, respectively; and £ is the loss function. Minimizing the global objective is written
down as

M|
, B
min h(x)—mmzlhm(x) : )

Distributed paradigm enables parallel computation to accelerate training. However, transmitting
updates over the network becomes the primary constraint on learning speed, often exceeding com-
putation time, particularly for large-scale models (Kairouz et al.,[2021)). The key performance metric
of a numerical scheme is henceforth its communication efficiency in terms of the number of com-
munication rounds (Kovalev et al., [2022), the total number of server-client vector exchanges (Lin
et al., [2024), or the amount of transmitted bits (Beznosikov and Gasnikov, 2022), rather than the
iterations count.

Various strategies have been developed to address the mentioned limitation (Seide et al., [2014; |Al-
istarh et al., |2017; [Stich} [2018)). One of the possible ideas for overcoming the communication bot-
tleneck is the use of statistical homogeneity. Since every D,, is the set of IID samples from the
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global data distribution, each pair of devices has mutually aligned optimization landscapes. This
phenomenon is commonly formalized via the bounded Hessian divergence condition (Shamir et al.,
2014):

IV2hi(x) — Vhy ()] < 4, Vo € RY. @)
Smaller Jy, indicates higher data similarity, meaning local losses are consistent across the network.
Crucially, it is known that dy, typically decreases with growing data volume, as larger datasets better
approximate the underlying distribution (Hendrikx et al.| [2020). The stated property promotes the
idea of utilizing local steps. Instead of synchronizing after every iteration, each worker performs an
epoch of optimization and then transmits final parameters to the server to make the global update.
Since dy, in distributed networks is usually small, local gradients remain reliable estimators of global
descent directions, ensuring communicative efficiency while preserving solution quality. To reduce
computational overhead of devices, some papers use only the server to perform local steps, thus
offloading devices (Hendrikx et al.l 2020} [Kovalev et al., 2022} [Lin et al.|[2024).

Despite the successes of the mentioned approach in distributed paradigm, some real-world scenar-
ios pose challenges. In federated learning (FL), objects are generated by devices, while the server
stores non-private data accumulated in public datasets (Konecny et al., 2016; Zhang et al., |2021)).
Therefore, the alignment of optimization landscapes is violated, and performing too many local
updates steer the model toward inappropriate direction (Karimireddy et al., 2020, Table 3). To main-
tain convergence, algorithms must increase synchronization frequency, exacerbating communication
bottleneck. However, there is an observation that helps to address this issue. A key idea underlying
this work is that even heterogeneous networks exhibit structured patterns, manifesting in two distinct
ways: how distribution modes are shared across clients, and how diverse are components of model
parameters.

Mixed heterogeneity in distribution patterns. Focusing on distribution patterns, we find out that
the training set can be divided into two parts. First one consists of ordinary objects similar to those
contained in public datasets. Server-side and average losses computed on samples related to such
modes express a high degree of statistical similarity. The second part is made up of unique data, that
is poorly represented by the server storing little or none of corresponding modes. A vivid example
is training a federated medical diagnostic model. The server may possess a large amount of scans
showing widespread diseases, such as pneumonia or fractures, and many hospitals also have data
on these pathologies. However, a small amount of specialized clinics may additionally store unique
images of rare genetic syndromes, which are absent from the server. Similar structures arise in other
federated learning domains (Kairouz et al., |2021). A natural mathematical model to describe such
scenarios is a composite minimization problem

min [h(z) = f(x)+ g(r)] ;

with f(z Jm(x
mGZM (3)
1
9(@) = = Y gm(x),
| g|m€1\/fg

where f,,, g, are the local losses calculated over data from frequent and rare modes, respectively;
My, M, are the sets of clients containing non-zero f,, gm, respectively; |My|, |M,| are the
cardlnalmes of these sets. We point out that |M,| < |M[| in many practical applications (Li et al.,
2022, Section 4). Thus, it is the interaction with M that creates the bottleneck. Consequently, there
is a potential for gain by communicating with nodes from M and M, at different frequencies.

Mixed heterogeneity in model parameters. Returning to the example of medical federated learn-
ing, suppose that patient’s metadata (for example, blood tests) is also available. For such tasks, a
common approach is to train a network responsible for feature extraction from images, then con-
catenating its output with tabular data, and feeding the combined representation into a shared layer
(Gao et al., 2020). Formally, h.,,, from equation takes the form

h(@y) = o Y Cu(Fu(ar, ), 02,9),b),

|Dm| (a1,a2,b)€EDm
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where the object consists of two modalities a1, as; F),, v are the encoder and the head, respectively;
x, y are the weights of corresponding models. It is established in literature that images have consid-
erably more homogeneous embeddings than tabular inputs (Liang et al., 2022} Rabbani et al.,[2024).
This fact creates potential for less frequent updates of statistics within = than within y. Additionally,
processing structured metadata typically involves far fewer parameters compared to those used for
extracting features from scans. Consequently, updating x is significantly more expensive in terms
of communicated information. Expanding this observation, we obtain the second formulation of
interest:
1 |M]

min h(z,y)=—— hm (2, ) 4)
(@,y)€Re xRy @) \M|m2£1 v (

where the second derivatives of local objectives within = exhibit more statistical similarity with the
server than the ones within y. This setting promises efficiency gains through asymmetric update
frequencies. In the case where d, > d,, the proposed setting offers potential to reduce the amount
of information transferred from devices to the server in comparison to existing techniques that ig-
nore this feature. The high-dimensional x tolerate infrequent synchronization due to stable Hessian
characteristics, while compact y require regular but lightweight exchanges.

2 NOTATION

When analyzing the communication efficiency of federated learning schemes, it is important to
choose an appropriate complexity measure. In this paper, we use three definitions emerging in
literature to reach the full potential of proposed approaches.

e Number of communication rounds. In several works, the complexity of federated learning
algorithms is analyzed without reference to the number of machines involved in each round of com-
munication (Shamir et al., 2014; [Kovalev et al.||2022)). This metric suits for synchronous networks,
where it only matters how many times the server accesses clients data during the training process.

e Number of client-server communications. For asynchronous networks, the number of rounds
is inadequate. In such case, each server-client vector exchange should be counted as a complexity
unit. This definition is well-established in the optimization community (Khaled and Jinl 2022} |Lin
et al.| 2024)). In our paper, we utilize it to analyze the distribution-based structured heterogeneity.

o Number of communicated coordinates. In addition to mentioned approaches, it is also common
to analyze the complexity in terms of the number of communicated coordinates. Originally, this
metric was designed for emphasizing the advantage of methods that reduce the size of transmitted
vectors, e.g. for schemes with compression (Beznosikov and Gasnikov, |[2022). In our work, we use
it to derive results in the case of structured heterogeneity in model parameters.

Our study assumes the presence of independently accessible oracles either for aggregating over a
group of nodes or for computing statistics within a block of parameters. Since the main goal of
this paper is to obtain theoretical guarantees of acceleration for complex-structured objectives, the
notion of complexity is applied to each of them individually.

3 OUR CONTRIBUTION

While existing federated learning methods treat heterogeneity as a monolithic challenge requiring
uniform communication strategies, we develop techniques that decouple optimization complexity by
accounting the structure of the objective in greater detail. We specifically focus on the non-convex
setting, which remains under-explored in the works on data similarity despite its critical importance
for modern applications. We formulate the list of our contribution as follows:

o First method for distribution-based heterogeneity. For the non-convex problem [3] we design a
method that theoretically dominates existing techniques both in terms of communication rounds and
client-server vector exchanges.

o First method for coordinate-based heterogeneity. For the non-convex problem 4] we propose
a scheme that theoretically outperforms state-of-the-art heterogeneity-accounted techniques in the
sense of communicated coordinates.

o Optimality. For the non-convex problem [3| with separate oracles V f, Vg, we show the optimality
of our method in terms of synchronizations count.
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e Empirical validation. To support the theory, we compare our approach to modern methods for
combating heterogeneity and state-of-the-art optimizer Adam. Numerical experiments include clas-
sification on CIFAR-10 with ResNet-18, and searching for duplicate ads in Avifo multimodal dataset
with BERT and ResNet-18. The results show promising advantage over chosen baselines.

4 RELATED WORKS

4.1 COMPLEXITY SEPARATION

Classic works on numerical methods considered a single-machine minimization without assuming
any additional structure of the objective (Polyak,|1987). For now, there are a lot of works devoted to
the problem of oracle complexity separation when minimizing complex-structured functions. Below
we provide a detailed review on this issue.

Composite-sum case. This setup considers h(z) = f(x) + g(x) as the objective with separate
oracles accessible for the components. Initial research in this direction was motivated by machine
learning applications, where the empirical loss f is usually regularized by a non-smooth function
g with easily computable statistics to avoid unbounded growth of model parameters. Thus, ba-
sic schemes are designed to handle the case where any optimization problem on g has negligible
complexity (Parikh et al., 2014). However, in many practical tasks, the mentioned property is not
satisfied (Colson et al., [2007)), and calls of the oracle corresponding to g must not be unboundedly
frequent, as in naive proximal schemes. To address this issue, Juditsky et al.|(2011) applied an ex-
tragradient type algorithm to variational inequality reformulation of the initial problem and derived
@) (L/e + M 2/52) of both oracles calls in the convex case. Here L, M are the Lipschitz constants
of Vf, g, respectively, and ¢ is the accuracy of the numerical solution. This result was enhanced

to O (\/L/s + M 2/52) by utilizing Nesterov’s acceleration in (Lan, [2012). However, this rate is
optimal only if oracles associated with f and g are not accessible separately. Assuming that the
relevant statistics can be computed independently of each other, Lan (2016)) obtained O (\/ Lf/e)

for Vf and O (\/Lf/e + L§/62) for ¢ € 9g. The proposed Gradient Sliding guarantees

that number of V f evaluations does not depend on the optimization landscape of g. To the best
of our knowledge, it is the first algorithm that has progressed to split oracle complexities. The ex-
act separation was also derived for smooth+smooth problems by |Lan and Ouyang| (2016). Their

method achieves O (\/Lf/s) ,0 <\/L9/5> for convex objectives and O (\/Lf/;L), O (\ /Lg/u) for
p-strongly convex ones.

At the moment, complexity separation is an established area of optimization. There are many exotic
sliding-based schemes: for VIs (Lan and Ouyang} [2021; Emelyanov et al.,2024), saddle-points (Lan
and Zhou, 2018;|/Chen et al., [2020; Tominin et al.| 2021} [Kuruzov et al.,[2022; Borodich et al.| [2023;
Kovalev and Borodich} 2024), zero-order optimization problems (Beznosikov et al., [2020; |Stepanov
et al.,[2021} [Ivanova et al., [2022)), high-order minimization (Kamzolov et al., 2020; \Gasnikov et al.,
20215 Grapiglia and Nesterovl 2023)).

Block-coordinate case. Block-coordinate methods were also originally studied for minimizing
h(z,y) in isolation from the federated setting (Nesterov, 2012; Richtarik and Takac, 2014; Nes-

terov and Stich, 2017). For small-scale problems, |Gladin et al.[(2021a) obtained 1) ((de +dy)),
o ((dw +dy)/ (Lz+Ly)/u> of Vg h, V,h calls, respectively. Here d, d, are the dimensionalities
of z, y; L,, L, are the smoothness constants of h in z, y; 1 is the strong conve)N(ity constant. The first
step to separation was made in (Gladin et al.,2021b). The complexities were O ((d, + d,)) for V,h

and O (dmdy«/ Ly/ u) for V,h. However, in the large-scale case this approach gives @) (N/Lz/ u)
and O (\/ LwLy/;ﬁ), which is much worse than a desirable result for evaluations of V,h. This is-
sues was addressed in (Gasnikov et al.,|2022), where the BAM algorithm achieved @) (\ /Lz/ ;L) and

O (Vi)
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4.2 HESSIAN SIMILARITY

Federated approaches that exploit data similarity rely on a simple but crucial trick. The objective h
defined in equation [1] is artificially rewritten as h(z) = hy(x) + (h — hy)(x). Here hy belongs to
the server and therefore computation of its statistics does not require exchanging information, and
(h — hy) is related to clients. The idea of saving iterations by using a proximal friendly regularizer
can be transferred to the federated setting to communicate less by utilizing local steps on the server.
The main challenge in this direction is that theory for handling composite structure were initially
developed for convex+convex case, while this setting is convex+non-convex.

The first approach addressing similarity was the Newton-type method, DANE, achieving O (55,/”2)
communication rounds for quadratic p-strongly convex objectives (Shamir et al.l 2014). For the
class of problems under consideration, |Arjevani and Shamir (2015) established a lower bound

Q (\/5}1/“). This prompted the question of how to bridge the gap in complexities. Numerous

papers explored this issue but either fell short of meeting the exact bound or required specific cases
and unnatural assumptions (Zhang and Lin|, 2015} |Lu et al.l 2018}; ['Yuan and Li, 20205 [Beznosikov
et al.,[2021; Tian et al., 2022). Recently, optimal rate in terms of rounds count was achieved by [Ko-
valev et al|(2022). Most numerical schemes for the data similarity scenario were developed under
fairly strong assumptions of the (strong) convexity of the objective. Non-convex problems were in-
vestigated in (Woodworth et al., 2023) that, however, failed to establish convergence to an arbitrary
e-solution.

5 SETUP

Machine learning applications, particularly deep neural networks, operate in fundamentally non-
convex scenario (Cybenko,|1989; Nguyen and Hein,[2018). To address the contemporary challenges,
we keep our theoretical restrictions minimal. Throughout this work, we rely on the following mild
assumption.

Assumption 1. The function h : R% — R attains its minimum, i.e. there exists such x* € R? that

h(z*) = inf h(z) > —oo.
(o) = inf hiz) > —o0

This requirement is satisfied by most practical loss functions and is widely used in literature (Malit-
sky and Mishchenko, |2019; |L1 et al., 2021; [Zhao et al.,2021). Further, based on the standard notion
of data similarity, we formalize the intuition from Section|I|by quantifying structured heterogeneity
through the gap between the server-side and the mean Hessians.

Assumption 2. The functions h, hy in the problemare (0f,04)-related, i.e. for every x € R¢
IV2fr(z) = V2 f()]| < op,  [IV2gr(2) — V2g(2)] < &y

Assumption 3. The functions h, hy in equationare (02, 0y, Ozy)-related, i.e. for every (x1,x2) €

R% x R

IV3ahi(z,y) = Vih(z,y)ll < 60y [IVy,ha(e,y) — Vi h(z,y)] < 4y,
IV2yh(z,y) = Vi, bz, y)]| < 8ay.

Without loss of generality, we consider 6y < d4 and §, < §,. In the case where there is no shift
in modes distribution or in coincidence of loss landscapes in groups of parameters, Assumptions [2}
are equivalent to the standard bounded heterogeneity. This does not narrow the generality with
respect to works that deal with L-smooth objectives, since d;, ~ L/|p, | (Hendrikx et al.,|[2020).

6 ALGORITHMS AND ANALYSIS

6.1 MODE-BASED STRUCTURED HETEROGENEITY

To develop the idea proposed in Section [Ij we present Heterogeneity-Aware Skipped Client
Aggregation (HASCA for the non-convex problem |3} Algorithm [I| can be viewed as a natural de-
velopment of Proximal Descent (Hendrikx et al., |2020; Woodworth et al., 2023)), which un-
derlies most state-of-the-art schemes leveraging data similarity in the (strongly) convex case. As
discussed in Section[d] the key idea behind this approach is to artificially rearrange the objective as
h(z) = (h — h1)(x) + hi(x). Here, hy serves as a proximal friendly regularizer in the sense that
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any optimization problem involving h; can be solved without interaction with the devices. Thus,
the server can perform several steps of local optimization after each interaction with the clients,
significantly reducing the bottleneck. This yields the update based on the minimization of

Abw) = (V(h =~ )(a), ) + o5 lw — P + b (a),

where forming the surrogate A}, and solving the resulting subproblem happen entirely on the server.
Our method is built upon the same intuition (see Line . However, the goal of our work is to
construct a first-order scheme that accounts for y < §,. To satisfy this requirement, Algorithm E]
reuses the most recent values of V f, while Vg is called at each iteration (Line [2). We emphasize
that the use of hy in Line [3| does not increase the communication complexity within My, since
the statistics of this function are computed on the server. To balance the quality of approximation
with the cost of expensive synchronization, we introduce a reference point w? that is refreshed with
some probability p (Line E]) When 97/5, = 1, Algorithm 1| should reduce to standard Proximal
Descent,i.e. p = 1. As this ratio decreases, the probability p should decrease accordingly.

Algorithm 1 HASCA

Input: initial points 29, w0 € R<, number of iterations T
Hyperparameters: step size 6 > 0, probability of full aggregation p € (0,1)
1: fort=0,1,..., 7 —1do
2 e =V(f- fi)w')+ V(g —g1)(a")
3: 2 = argmin,cra [AY(z)], where

1
Ap() = (¢ @) + ggllz = 2'|* + ha (=)

t

S o™ with probability p
| w with probability 1 — p

bl

end for
: Output: 27

[*))

The update of e’ (see Line of Algorithm enables an asymmetric interaction with My and M,
but also introduces obstacles that prevent a direct adaptation of known stochastic schemes to our
setting. Before proceeding to the main results, we propose the following bound.

Lemma 1. Suppose Assumptions|[I| 2| hold. Then, for Algorithml[l)it implies
2
Eeves [ = V0= h) I < (1= F) e = V=)@ + - 63lla+ = ']

In Lemma 1] the deteriorating factor 1/p can be compensated by the relative smallness of §; com-
pared to d,. Designing an appropriate update rule for e’ that yields the recurrence of this form is one
of the main theoretical challenges of this work. Indeed, if e? is chosen improperly, the second term
of the inequality becomes too large to ensure the desired convergence rate. Now that the intuition
behind Algorithm([I]is clear, we move on to its iterative complexity.

Theorem 1. Suppose Assumptions hold. Consider 8 < min {1/8(s,+5,),?/8v25; }. Then, Algo-

rithm[I|requires
0+ 9, )
O (f—zg + ];) iterations
€ pe

. . . 2 1 T t
to achieve an arbitrary e-solution, where ¢ = E {H 72 =1 Vh(2")

ﬂ
In particular, this result shows that if the update of e’ were implemented with three options, in-

cluding the separate call of V f, achieving a comparable result would not be feasible. Since V f is
communicated with probability p, it is possible to provide a corollary of Theorem|[I]

Corollary 1. Consider the conditions of Theorem Algorithmwith D = 97/(5;+3,) requires
) )
@) <£> , O <g> calls of Vf, Vg
€ €

to reach an arbitrary e-solution.
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Algorithm [T] outperforms existing approaches. Its closest competitor, ProxyProx (Woodworth
et al.| 2023)), requires O ((95+39,)/<?) calls of both oracles. Thus, in this method, V f is communi-
cated O (94/5;) times more frequent than necessary under the structured heterogeneity regime. This
overhead may be significantly large in practice, as some modes of distribution are poorly represented
(or entirely absent) on the server side due to the local nature of data sources, leading to 9s/s; > 1.
Moreover, the improvement in terms of server—client exchanges may also be substantial, amounting
to O ((1 + 1Mgl/|a15)) 99/5;) times.

6.1.1 LOWER BOUNDS

To obtain upper bounds, the convergence of a specific method is derived for an arbitrary function
without strengthening the assumptions. In contrast, establishing lower bounds is more challenging,
as it requires constructing a specific example on which any algorithm from the considered class can-
not perform better than a certain complexity threshold. To specify the schemes under consideration,
we utilize the Proximal Incremental First-Order Oracle (Woodworth and Srebro, [2016J), which is de-
fined as rfl (z,0) = [h1(x), Vhi(x), proxy,, (v)] with & > 0. Assuming that the server has access

to r’’}, we determine the following class of algorithms.

Definition 1. Consider a randomized algorithm A to solve the problem Bl In a synchronization
round t, the server has two options. It can communicate all the clients and aggregate V(h—hy)(z?),
or interact with devices from M, only and compute V(g — g1)(z'). Afterwards, it updates the
information set based on the linear span operation and its local oracle 7‘,1;.

Our analysis of lower bounds is based on techniques typically utilized for non-convex (Carmon et al.,
2017) and homogeneous (Arjevani and Shamir, 2015)) scenarios. To construct the hard instance of
the problem |3} we rely on the concept of zero-chain functions, i.e. such ones that a single gradient
evaluation makes accessible at most one non-zero coordinate of x. By carefully decomposing an
appropriate zero-chain function into four components, corresponding to (f — f1), (9 — ¢1), f1, 91,
and rescaling them to satisfy Assumption [2| we arrive at the following result.

Theorem 2. There exists such h, satisfying Assumptions[I} [2| that any algorithm A (see Definition

[Z) requires
] dg
Q= ), Q| =) callsof Vf, Vg
€ €

to reach an arbitrary e-solution.

This result matches the one obtained in Corollary 1| Thus, Algorithm |l|{appropriately separates the
oracle complexities and enjoys optimal theoretical guarantees.

6.2 COORDINATE-BASED STRUCTURED HETEROGENEITY

Algorithm 2 C-HASCA

Input: initial points 2°, w® € RY, number of iterations 7'

Hyperparameters: step size 6 > 0, probability of full aggregation p € (0,1)
1: fort =0,1,..., T — 1do
2: e = [Va(h—hy) T (w'), Vy(h — k1) T (af,y")
3: (a1 y!t ) =arg min, cpa,  gay [Bg(2)], where

]T

BY(z) = (e,2) + 5llz — (') + ()

er1 J (@ ytth) with probability p

4: =

@ wt with probability 1 — p
5: end for
6: Output: (27, yT)

In this section, we consider the non-convex problem @ under Assumption[3] C-HASCA (Algorithm
[2) is based on the same idea as Algorithm[I] The key difference lies in the approach to approximation
of V(h — hy) (Line . Since a block-coordinate formulation with ¢, < J, is explored, we utilize
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the reference point w? (Line to reduce the frequency of exchanging statistics within the block of
parameters .

Unlike the previous setting, coordinate-based structured heterogeneity poses no potential for im-
provement in the sense of rounds or client-server vector exchanges. Indeed, calling one of the
oracles less frequently does not reduce the number of clients involved in synchronization. However,
there is a change in amount of bits transmitted from devices to the server. In this regard, we exploit
the information-based metric to analyze efficiency of Algorithm 2]

Corollary 2. Suppose Assumptions Consider 0 < min {1/8(6,+6,4264y), P/16v2 max{ss,50y} }-
Algorithmwith p = O2402y)/(5,+5,+5.,) Tequires

3 3

) coordinates

to reach an arbitrary e-solution.

As mentioned earlier, the main competitor of our methods is ProxyProx (Woodworth et al.,
2023). Under coordinate-based structured heterogeneity, this scheme requires communicating
O ((datdy) (6246, +82y)/:2) bits to converge. Taking d, < J, and d;, < d into account, one can
note that such a rate is O (1 + d=9y/(d,5,+d,6.,)) times worse than the result of C-HASCA. The
greater the imbalance between blocks of parameters and the larger the homogeneous component,
the more pronounced the advantage of our method becomes.

6.2.1 LOWER BOUNDS

Same as for previous case, we present lower bounds for the non-convex problemd We use similar
set of techniques to construct the worst function. Below, we present the corresponding result.

Theorem 3. There exists such h, satisfying Assumptions|I| 2] that any algorithm A (see Definition
[Z) requires to transmit

dy0,  d,o dy +dy)oy .
Q) < 5+ yzy + (ds + 2y) y) coordinates
€ 5 5

to reach an arbitrary e-solution when 6,y < 6.

7 NUMERICAL EXPERIMENTS

To support theoretical findings, we evaluate the efficiency of HASCA (Algorithm (1) and C-HASCA
(Algorithm [2)) in terms of oracle complexity. To provide a comparison, we run several optimizers:
ProxyProx (Woodworth et al.| 2023), a standard method commonly used as a basis for develop-
ing new algorithms handling data similarity; Accelerated ExtraGradient (Kovalev et al.,
2022), a scheme enjoying optimal dependence on dj, (see equation [2)) for convex objectives; Adam
(Kingma and Ba, 2014), an algorithm that performs as a strongest baseline while training complex
neural networks; FedProx (Li et al.}[2020) and SCAFFOLD (Karimireddy et al.,[2020)), traditional
federated learning methods that are conceptually close to the proposed approach.

One of the possible concerns regarding Algorithms is inability to exactly solve the subprob-
lem (Line . However, in our experiments, [IVAYll/|vr*| = 0.1 was usually enough to achieve
convergence.

7.1 EXPERIMENTS WITH ALGORITHM[I]

In this subsection, we use ResNet-18 (Meng et al., 2019) to classify CIFAR-10 (Krizhevsky et al.,
2009)). This is a 10-class dataset containing 50, 000 training and 10, 000 test samples.

Experimental setup. The server holds 15, 000 training samples, while the remaining 35, 000 are
distributed across 70 clients. We solve the problem [3| with the cross-entropy loss function. The
training data is split into two groups: some amount of classes belongs to one, and the remaining ones
to another. To simulate a scenario with both rare and common data modes, we manually introduce
a class distribution shift via a constant «. It is defined as the ratio of group-one samples stored on
the server to the total size of its local dataset. We include a comprehensive study on robustness to x
values. We also note that the first convolution in ResNet-18 is modified, since the input images have
sizes of 32 x 32 (see the attached code).
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Tuning of Algorithm To effectively navi-
gate the complex loss landscape of a neural net-
work, we design a practical version of Algo-
rithm [T} To maintain computational efficiency,
each local device processes only a batch of its
samples per iteration. To align with the theory
and approximate full gradients on average, we
smooth ¢! with its history as a running average.
Moreover, obsolescence of the reference w?
(see Line [2] of Algorithm [I)) becomes increas-
ingly significant as the optimization approaches
the optimum, limiting accuracy to around 60%.
Thus, another crucial modification involves in-
troducing a parameter o to control the influ-
ence of server’s descent directions. To achieve
competitive performance, we decrease o from
1 to 0.2 during training. To sum up, A} from Lineis modified as follows:

1
20t
where m! = fm!~1 + (1 — B)et, 0! decreases 30% of the initial value, /3 is set to 0.9.

—o— HASCA (ours)
» —a— Adam

«— AEG

—— Mirror

—e— FedProx
o Scaffold

750 1000 1250 1500 1750 2000
Vf; calls

Figure 1: Comparison of HASCA to competitors.
5 classes are represented on server with x = 0.8.
Initial step size #° is set to 0.3. Number of calls
of clients from M is taken as a criterion.

Ah(z) = (a'm!, @) + oo — 2" |* + ha (2),

Discussion of the results. Figure Missing classes 50% 60% 70% 30%

illustrates that incomplete coverage of Test accuracy | 86.5% | 85.8% | 83.7% | 84.3%

training data by the server does not harm
the quality of approximation. When half  Table 1: Test accuracies depending on the proportion of

of the classes are poorly represented on  classes poor represented on server. HASCA is used as an
the server, classic distributed methods optimizer. x is set to 0.8.

experience degradation caused by the

presence of a poorly conditioned loss component (the numbers of V f and Vg coincide). Our
method is free of this drawback and can maintain performance even if the server does not have
much knowledge. Moreover, the ablation study demonstrates robustness to further reduction in the
number of classes represented on the server. Table |l|shows that acceptable quality is maintained
even when 80% of the data modes are represented only on clients. Additional experiments can be
found in Appendix.

7.2 EXPERIMENTS WITH ALGORITHM 2]

Here, we solve the binary classification prob- 80 ,

lem on Avit(ﬂ text+image multi-modal dataset. :

Experimental setup. The server holds 60000 . 70
samples, while the remaining 140000 are inde- § o / / o 2::§1A(°urs)
pendently shared between 70 clients. We feed gsc / MirrorProx

the outputs of ResNet-18 (Meng et al., [2019) —— ExtraGrad
and BERT (Devlin et al) [2019) into a train- FedProx
able classification layer. We numerically ob- Scaffold
serve 0, ~ 500 and &, ~ 250000.

[§]
%]
T

ul
o
o

o

100 200 300 400 500 600 700
Vih;j calls

Tuning of Algorithm[2} To make a single run

faster, we choose p = 0.04. Algorithm [2]is Figure 2: Comparison of C-HASCA to mentioned
modified with Adam-like momentum and adap- competitors. Number of V h; is taken as a crite-
tive stepsize with default parameters 5; = 0.9, rion. 69 is set to 0.001 without scheduling.

B2 = 0.999. We do not use any scheduler in this experiment.

Discussion of the results. Figure[2]demonstrates the number of evaluations of a well-conditioned
oracle V h. The communication efficiency of competing methods suffers due to image processing.
At the same time, it is possible to evaluate the gradient based on parameters corresponding to textual
modality much less frequently by using C-HASCA.

"https://www.kaggle.com/datasets/antonoof/avito-data
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To ensure reproducibility, we attach the code: https://anonymous.4open.science/r/
hasca-031F/README .md

A  ADDITIONAL EXPERIMENTS

A.1 ALGORITHM[I] x = 0.8

Recall that ; < d,. In this experiment, the server holds only 20% (12000) of the samples associated
with g, which makes the heterogeneity bound d, approximately 4 times more than for f. For existing
similarity-aware techniques, this leads to an increased number of oracle calls for both components
(see Figure [3). In contrast, our approach accounts for this shift in mode heterogeneity and allows
one of the gradients to be evaluated less frequently than the other while maintaining training quality.
Notably, our method not only demonstrates faster loss decrease on the training set but also achieves
superior accuracy. This highlights its potential for practical extensions that adapt well to the highly
non-convex landscape of neural networks. In terms of the number of evaluations of the g component,
which the server approximates poorly, our method remains competitive, which meets our theoretical
guarantees, mentioned in the Corollary
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—a— Adam
+— AEG
—— Mirror
—e— FedProx

—e— HASCA (ours)
e —— Adam

o Scaffold «
= — AEG
—— Mirror
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SR o Scaffold
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Vf calls 0 250 500 750 1000 1250 1500 1750 2000
!
Vf; calls
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+— AEG
—— Mirror «
—e— FedProx o —e— HASCA (ours)
o Scaffold o i
T el + AEG
2 . 30{f —— Mirror
%ﬁimb:marm%ac;@sq{;w 20 | —e— FedProx
005250 500 750 1000 1250 1500 1750 2000 10 Sl caiicd
Vg; calls 0 250 500 750 1000 1250 1500 1750 2000
. .. Vg; calls
(a) Dynamics of cross-entropy loss on the training
set. (b) Dynamics of accuracy on the test set.

Figure 3: Comparison of HASCA to mentioned competitors. Number of synchronizations with
clients from M is taken as a criterion.  is set to 0.8, and initial step size 70 is set to 0.3

A.2  ALGORITHM[I], ADDITIONAL k’S

In the main part of our work, we focus on moderate setting, which best captures the essence of the
proposed approach. Indeed, for x = 0.8, Adam still maintains strong performance, while the gap
between classic similarity-accounted schemes and our approach becomes noticeable. Nevertheless,
for the sake of methodological completeness, we also conduct experiments in two extreme cases.

Experiments with x = 0.6. This setup assumes that the class imbalance on the server is minimal.
We test this scenario to ensure that the method does not become ineffective as « decreases. Figure
[a]shows that with low values of x ~ 0.5 HASCA (Algorithm[I)) and Mirror Prox share the same
quality.

Experiments with « = 0.95. This extremely heterogeneous scenario is designed to demonstrate
the method’s robustness to increasing distribution shift and to explore its full potential advantage
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(b) Dynamics of train cross-entropy loss and test
accuracy, k = 0.95.

Figure 4: Comparison of HASCA to mentioned competitors. Number of synchronizations with
clients from M is taken as a criterion. Initial 6 is set above 0.5 and quickly decreased to 0.05
and 0.001, respectively

over current state-of-the-art approaches. Figure #b] shows that with extreme £ = 0.95 only HASCA
(Algorithm [T has the ability to achieve ResNet-18’s accuracy limits.

A.3 ALGORITHM[I] ROBUSTNESS TO p

3.0 =
p=0.5 80 ) G K o
25 p=0.3 70| AP
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Figure 5: Robustness of HASCA to changes in p.  is set to 0.8, and initial step size 6° is set to 0.3

In this section, we study the robustness of our schemes to variations in the probability of full aggre-
gation p. Theorem provides the optimal value p = 97/(s5;+5,). Although this quantity cannot be
computed exactly in practice, it can be evaluated via approximations 6 ~ 1/,/N; and 6, ~ 1/\/N,
(Hendrikx et al,[2020). Here, N and N, denote the number of samples in the server’s dataset asso-

ciated with f and g, respectively. Hence, the initialization p° for tuning should be chosen according
to p° = V/No/ (/N7 +y/No).

If k is set to 0.8, the optimal choice is p = 0.5. Figure [5| shows that even under substantial devi-
ations from the tuned value of p, the performance of Algorithm [T] does not deteriorate drastically.
The degradations shown in Figure[5]can be explained by the fact that when p is too small, the server
communicates with M, less frequently than would be appropriate given the similarity of optimiza-
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tion landscapes. As a result, although Algorithm [I] with p = 0.3 converges faster in the initial
iterations, it slows down once the server’s knowledge becomes insufficient for the model to continue
successfully learning the underlying dependencies. Conversely, when p is too large, we observe a
slowdown caused by overly frequent full aggregations.

A.4 ALGORITHM[I] ROBUSTNESS TO CLASS IMBALANCE

In the main part of this work, we considered that server’s data represents the half of all classes well.
Such a setup is fairly mild. In this section, we examine how the quality of learning changes when
less than 50% of classes can be well approximated by the server. We conduct the ablation study with
K =0.8.

As mentioned earlier, our algorithm shows strong robustness to the decreasing number of well-
known classes stored by the server. Actually, such cases are even more heterogeneous than x = 0.95
case. Moreover, even with ¢ = 20%, when each server batch contains only 2.5% of each client class,
no quality drops are observed.
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Figure 6: Performance of HASCA with different proportion g of well-approximated classes. Number
of synchronizations with clients from M is taken as a criterion. « is set to 0.8

A.5 ALGORITHM[I} RUNTIME

Since Algorithms [T} [2] involve inner minimization, there is the question of their runtime compared
to competitors. In this section, we conduct a numerical study of execution time in federated net-
works consisting of 10 devices with x = {0.6,0.8,0.95}. The network bandwidth for client-server
communication is approximately 25Mbps. The inner minimization is solved by the server in 8-14
seconds.

Time (Sec) 1250 2500 5000 7500 10000 12500 15000
ExtraGrad | 32.77% | 40.75% | 48.92% | 55.53% | 57.68% | 58.67% | 61.30%
MirrorProx | 53.26% | 64.4% | 75.33% | 78.58% | 81.59% | 81.91% | 82.17%

Adam 53.92% | 62.18% | 69.36% | 73.44% | 73.94% | 74.77% | 79.69%
FedProx 7091% | 72.56% | 76.22% | 77.02% | 77.35% | 77.85% | 78.62%
SCAFFOLD 68.91% | 70.26% | 74.42% | 75.06% | 75.84% | 77.22% | 76.45%

HASCA 59.94% | 68.53% | 76.76% | 80.16% | 82.21% | 82.96% | 83.33%

Table 2: Comparison of HASCA with competitors in terms of runtime. & is set to 0.6. At each
timestamp, we highlight the best test accuracy.
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Time (Sec) 1250 2500 5000 7500 10000 12500 15000
ExtraGrad | 30.45% | 34.42% | 40.13% | 43.10% | 45.47% | 45.710% | 46.20%
MirrorProx | 37.27% | 47.84% | 57.79% | 65.86% | 69.26% | 71.17% | 72.04%

Adam 50.54% | 60.83% | 66.71% | 70.61% | 71.61% | 73.42% | 79.54%
FedProx 64.66% | 67.16% | 73.62% | 75.54% | 76.711% | 76.98% | 77.71%
SCAFFOLD 61.86% | 65.62% | 71.82% | 71.85% | 72.98% | 73.91% | 74.24%

HASCA 42.93% | 55.39% | 69.43% | 73.60% | 77.22% | 79.02% | 81.02%

Table 3: Comparison of HASCA with competitors in terms of runtime. & is set to 0.8. At each
timestamp, we highlight the best test accuracy.

Time (Sec) 1250 2500 5000 7500 10000 12500 15000
ExtraGrad | 26.95% | 28.54% | 30.79% 33.08 33.82% | 34.94% | 33.44%
MirrorProx | 33.2% | 37.63% | 45.89% | 55.25% | 65.94% | 68.43% | 69.71%

Adam 40.75% | 52.85% | 56.59% | 62.53% | 68.99% | 69.08% | 75.68%
FedProx 57.26% | 61.67% | 68.05% | 71.92% | 73.65% | 74.82% | 75.53%
SCAFFOLD 54.06% | 58.51% | 65.25% | 68.50% | 71.38% | 72.41% | 72.93%

HASCA 42.80% | 58.44% | 66.10% | 63.19% | 71.13% | 75.90% | 75.69%

Table 4: Comparison of HASCA with competitors in terms of runtime. & is set to 0.95. At each
timestamp, we highlight the best test accuracy.

Tables|Z|-E|reveal several observations. First, as k — 0.5, similarity-based methods (MirrorProx,
ExtraGrad) tend to outperform Adam, SCAFFOLD and FedProx. Moreover, the performance
of MirrorProx becomes close to Algorithm|I} since d; + &, decreases while 7 increases. This
is consistent with the fact that Algorithm [l|coincides with MirrorProx when x = 0.5. Second,
as k — 1, the gap between Algorithm [I| and other Mirror-like schemes increases, since the sum
0f + 04 grows while ¢ decreases. This behavior is also consistent with the analysis and explains
the superior performance of our method in heterogeneous federated learning scenarios.

A.6  SCALABILITY OF ALGORITHM[I]
In this section, we discuss the scalability of our approach. We use FOOD101 [Bossard et al.| (2014

with FASTERVIT (Hatamizadeh et al., 2023) for fine-tuning, providing a complex benchmark for
comparing Algorithm|I]

#of V f calls 500 1000 1500 2000 2250
Adam 46.53% | 62.46% | 68.72% | 73.90% | 74.43%
HASCA 47.40% | 63.74% | 71.26% | 74.85% | 75.40%

Table 5: Comparison of HASCA with Adam. & is set to 0.8. At each stamp, we highlight the best
test accuracy.

Table 5] demonstrates that our method retains its properties when transitioning from training a fairly
simple model with 11.5M parameters to fine-tuning the complex ViT-270M model.

B PROOF OF LEMMA (1]

Lemma 2 (Lemmal(l). Suppose Assumptions[I} 2 hold. Then, for Algorithm|[I]it implies
2
oo [[lett — V(b — hy)(a*1)]?] < (1 - g) et — V(h — hy)(@")])? + ];5]%||xt+1 — a2

Proof. Let us note that the update of e (see Line 2] of Algorithm[T)) can be rewritten as
ot {V(h — hy)(z?), with probability p .
e+ V(g —g1)(zt) — V(g — g1)(2'~1), with probability 1 — p
In this proof, we exploit this equivalent representation of et. We take
V(g—g1) = V(h=h1)=V(f - f1)
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into account and write

Eeern [[le = V(h = hi) (@™ )|P] =(1 = p)lle’ = V(g — g1)(z") = V(f = fu) (=)
Adding and subtracting V(h — hy)(z"), we derive

Eeerr e = 9(h — ha) @+ )IF] (1= p)(1+ ) e’ — (A — hy)(")]]

¥ (1 - 1) IV = f)at) = V(= )]

Appplying Assumption [2]to the right hand of this inequality, we get
Eeeer [l = V(b = ha) (@ HP] <(1 = p)(1 + )l = V(h = ha)(2")||?

1
+ (1 + > 5?||xt+1 — 2t)2.
c
To obtain a linear decrease in approximation drift, we choose ¢ = £ and arrive at
2
B [[lettt = V(b — hy)(a"*)]?] < (1 - g) et — V(h — hy) ()| + Eaj%nxt“ — 2t

This concludes the proof of Lemma [I] O

C PROOF OF THEOREM ]

Theorem 4 (Theorem . Suppose Assumptions @hold. Consider 6 < min {1/8(5;+3,),P/8v26; }.
Then, Algorithm[I| requires

1) 0 0
O <f+29 + f2) iterations
€ pe

2
to achieve an arbitrary e-solution, where > = {H x Zthl Vh (zt) H }

Proof. Since our goal is to provide a heterogeneity-accounted analysis, we can not rely on the
smoothness of the objective, which serves as the basic descent lemma in nonconvex analysis. In-
stead, we derive its analogue. Let us start with

1 1
h(zth) — h(z?) = / dh(z® + (2t — 2t))dr = / (Vh(z® + 7(z' — 2h)), 2 — 2f)
0 0

and the same

hy(x'Y) — hy(2h) = /1(Vh1(mt +7(z = 2h)), 2 — 2,
Summing up this inequalities, we obtain ’
h(z'*h) — h(a') = /01<V(h = hy)(a" + (@™ —ah)), 2 —at)dr (5)
+ hy (2 — hy(a).

Since z**! is the minimum of A, defined in Line we have

1
M@t = hia) < {6t —at) - llatt —at|?
Substituting it into equation and applying V(h — hy)(x") as a smart zero, we get

1
W) —(a') < = o

+ / (V(h - h)(@! + (@ — 2%) — V(h — h) (@), 2+ — 2t)dr
0

H$t+1 _ xtH2

+(V(h — hy)(z") — €', 2t — 2y,
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After applying Young’s inequality, this turns into

1
B = hat) < - Soflat - a2

+ /1<V(h —hy) (2t + (2" — 2%)) = V(h — hy)(2), 2 — 2t)dr (6)
0

& _ o2 Ll a2
20 () - ot

Let us consider the integral separately. We have

1
/ (V(h—hy)(z" + 7(a" = 2Y) = V(h — hy)(2"), 2" — 2h)dr
0
1
é/ IV(h = hy)(at + (@1 — 2%) = V(h — hy) (@)l — atdr
0
1
< / (67 + 8,) 2t + 7(at+! — at) — ot |+t — 2t dr
0

1
:/ (85 + 6,2 — ot|2dr
0

=(87 + ) =" — 2",
We substitute this into equation[6|with o = 26 and derive
1
h(z'*h) = h(a') < (‘49 +op+ 59) 2t = 2?4+ 0lle’ = V(A= b)) @)

Let us consider ' = h(z') — h(z*) + Alle! — V(h — h1)(z?)||? as a potential function. We begin
with writing a recursion

@1 =[h(a") — h(a")] + (") = B + Al = V(= b))

<Th(a®) — h(a")] + O]}’ — V(h— h)@)P + ( L, +ég) 2t — a2

49
+ Al = V(h = hy) (=],

where the last transition exploits equation[7] Next, we apply Lemma|[I]and derive
Eerr [@7F1] =[h(a) — h(a")] + [A(z"!) = h(z')] + ABerr [l = V(h — hy)(a"+)|?]
1
<[h(a) = h(z")] + Blle’ — V(b — ha)(a)|* + (‘49

2A

Jllet =V (= b))+ =31+

+ 47 + 6g> [t — )2

+A(1—§

After grouping terms, we arrive at

B [0901] <004 (=g 07 48, + 2003 ) 41 = 0P
(3

+ (9 - “;p) et — Y (h — hy)(a")].

Let us deal with the first term of equation 8] First, let us note that Line 3] of Algorithm[T]implies

t+1 gt

0
=le" = V(h = h)(@")] + [V(h = ha) (") = V(7 = h1)(a")] + VR(z") +

This implies
Iz = 212 =0|[[e" = V(h = ha)(@")] + [V (h = ha) (@) = V(b = ha)(2")] + VAT

T

0 =e' + V(hy — ) (z") + Vh(z!™) +
ot gt

0
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Next, we employ the trick. We write
VA" =[IVA() + [ef = V(h = ha)(@")] + [V(h = ha) (@) = V(h = h1)(2")]
—[e" = V(h = h1)(@")] = [V(h = h1) (@) = V(h = hy) (2")]||?
<3| Vh(z") + [¢" = V(h = ha)(@")] + [V(h = hy) (™) = V(h = ha) ()]
+3]le" = V(h = ha)(@")I]* + 3]V (h = ha) (") = V(h = ha) ()%
This implies
IVA(z") + [e" = V(h = ha)(@")] + [V (h = ha) (@) = V(b — 1) (2")]]]?

Z%HVh(wt“)H2 —lle" = V(h = h)@)? = IV (h = 1) (=) = V(b = ha) ()]

1
>2lIVA@E )2 = [lef = Tk = ) @)? = (5 + 5,2+ — o2
Thus, there is a lower bound on the update:
02
12 — 2t [* =2 [ VAE? = 0%le" = V(h = ha)(@)[[* = 6%(3y + 89)[|l2" " — 2[|*.
After rearranging terms, we get
02
(1= 6207 +69)°) |2 = 2'|* =2 [ VA("T* = 0% ]le" = V(A — ha) (@)

Due to the choice of parameters outlined in Theorem we have 6 < 1/2(5;+5,) which implies
1 3
L—0%0;+0,)°>1—~ =",
Thus, we have
, 467, 12
2 = S llet = V(= ha) (&) 2 ©
Comparing equation|[8|and equation[9] we observe that the variance could be included in the resulting

inequality with negative sign only if A < 26/p. We choose A = 46/p. This means that equation
transforms into

Epen [@F!] <@ + (

462
o+t = o | 2= [ Vh(a)

1 5os 895?
TR R

To substitute equation [0} the first term of this inequality should be negative. Let us show that it is
actually negative because of choice of 8 (see Theorem . On the one hand, 6 < 1/8(s;+5,), which
implies (67 + d4) < 1/ss. On the other hand, § < p/8v/25,, which implies 8067 /p2 < 1/169. Thus, we
have

) lz % — 2|2 = Olle’ — V(b — ha) (2")]]-

8062 1
<~ <o

1
4+ 4+, + —=
/ g p2 — 160

40
Thus, we can apply equation[9]and deduce

0 1
o [0°01) < @ = ZIVAG P + (15 - 1) ot = V(= )|
which implies
Ees [[VAG ] < 5[0t — at+7]

Taking full expectation and accounting for ¢® = V(h — hy)(2°), we obtain
2

T
1 ¢ 36[h(z°) — h(z")] 0y +9g , Oy 0 )
E T ;:1 Vh(z") < 7 o T + T [h(z”) — h(z")]
This concludes the proof of Theorem [T} O
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D PROOF OF COROLLARY
Corollary 3 (Corollary . Consider the conditions of Theorem Algorithmwith D =97/(5;464)

requires
Of 1)
O <52) , O <€‘g) calls

of V f, Vg, respectively, to reach an arbitrary e-solution

Proof. In Theorem |1| we have established that Algorithm [I| requires O ((95+9)/* + d7/pe?) itera-
tions to converge. Since Vg is called at every iteration, its oracle complexity is the same. However,
V f is evaluated with probability p, i.e. 1/p times more rarely on average. Thus, its oracle complexity
is O (p(05+64)/e2 4 65 /<2). The choice p = 97/(5;+5,) leads to the desired statement. O

E PROOF OF THEOREM 2]

To derive lower bounds for the nonconvex problem [3] we rely on the concept of zero-chain function.

Definition 2. Let us define

st - |

The function | is called zero-chain, if
prog(Vi(z)) < prog(xz) + 1.

0, ifr=0
maxi<;<a{j: [z]; # 0}, else

This means that if the process starts at the point x = 0, then after a gradient estimation one can earn
at most one non-zero coordinate of x. In this section, we work zero-chain functions of the form

d
l(z) = =¥(1)®([z]) + Z (W(=[z]j-1)@(=[z];) — U([]j-1)®([2]5)) ,

0, z <
U(z) = {

exp{l—ﬁ}, z >

D(z) = \/é/; exp{—t;}dt.

It has already been shown by |Arjevani et al.|(2023) that [ satisfies the following properties.

where

SIS

1. I(x) — inf epa l(z) < Aod with Ag = 12 for every z € R%;
2. l(x) is Lo-smooth with Ly = 152;

3. IVI(2)]|oo < Go with Gy = 23;

4. Yz e R?: [z]; =0 — | Vi(z)]| > 1.

Moreover, let us define /; as follows:

@) =l o) = {w—[zb_l)@(—[ﬂj) S W(aly_)®(al,), > 1

It was shown in (Metelev et al., 2024) that [; is also Lg-smooth for every j. Now that the set of
functions has been introduced and their properties described, we proceed to the proof of Theorem |}

Theorem 5 (Theorem [2). There exists such h, satisfying Assumptions that any algorithm A

(see Definition[l) requires
é )
0 (812“) , Q (Eg) calls
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Proof. Let us represent € R% as & € R x R%, where d; is the odd number. Based on this, we
define two sets:

Sy={ie€l,...,di+ds]:i mod2=1},
Sy =11,...,d1 +ds] \ S1.
Now, we further divide each of these two sets into two more subsets:
Sn={i€S1:i<d1}, Si2e={i€S:i€(d,d+da]}
Sor={i€8S9:i<d1}, Sea={i€Sy:ié€(d,dr+ds]}.

Based on these sets of indices, we define f and g:

dq
flz) = v (1)@ ([z])) + Z (W (=[z]j-1)@(=[x];) — ¥([z];-1)®([x];)) ,

di+da
§@) = =P W@([elayr1) + D (W(=lalm1)@(=[];) — U ([];-1)@([2];).
j=d1+2
We share these functions between clients and the server according to index sets in the following
way:

dy
fl)=v@(xh) + Y (U(=[2]-)®(=[z];) — U([z];-1)@([x];)),
JE€S11,5=>2
d
(=)@ = Y (@(=lal—)®(=[xl;) — ¥([z];-1)®([z];)) ,
j€S21,j>2

d1+d2
Gi(@) = —V()([2la, )+ Y (U(=[aly)@(=[al;) — U([z];-1)@([];)),
jE€S12,j>d1+2
di+d2
G-g0@) = > (W(=lal)®(=[a];) — V([x];—1)®([z],))
JjE€S22,j>d1+2
These functions are Lg-smooth, and we must re-scale them to move into the class of interest. Let us

define
RN 5, (e
ho =LA (&) U-nw =Lk (),
52C? x 5202 x
00 =220 (&) - =220 (5.

where C'y and Cj, are defined below. One can easily ensure that
IV2(f = f)l <05, V(g = g)ll < 6

Note that since f, § do not share any coordinates, the properties mentioned at the beginning of this
section hold for each of them separately. Therefore, we have

8202 5202
_ 3 — _ 3 _ 3 < LT A 99 A-ds.
h(0) — inf h(z) = [£(0) — inf f(2)]+[9(0) — inf g(x)] < R

Consider the oracle that computes V f with probability p and Vh with probability 1 (see Definition
. Consider the number of iterations to be fixed and equal to T'. Then, on average, the algorithm
can not make accessible more than |pT'| + 1 and T + 1 coordinates corresponding to f and g,
respectively. Considering pI' > 2, we define
dy =14 |pT| < 2pT, do=14+T <2T.
Next, let us specify the values Cy, Cy. We choose them as
2 LoAy,

Ci=—"—-, C2= :
oA T’ 79 §,A5T
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Now we use the properties mentioned in the beginning of this section and derive
E(VA@IP] > _min V@)= min V@4 min_ Vo)
zla, =

z]day =0,[x]dy +dy= T)dq ddy=

5202 - 52C? A (6

ff : 2 9-g : ~ 2 h f
> min [|Vf(2)||* + min V()| > = —+dq |-
LL min V@I + %ot min_ Vi@ > 22 (% +4,)

In terms of convergence to e-solution, this means € (9f/pe? +95/?) and implies
Q (95/e2 +pdg/c?),  Q(05/pe? + 94/<*) evaluations of Vf, Vg, respectively. One can note
that the oracle complexity of V f calls can not be better than 2 (9s/c2). Thus, values of p that
are less than p = 9r/5, have no sense. At the same time, p > 97/5, makes the estimate on Vg
calls worse than € (9s/c?). Thus, the choice of p = 97/5, leads to optimal rates for both oracles
simultaneously. O

F PROOF OF COROLLARY [2]

Before proceeding to the proof of Corollary 2] we first introduce omitted lemma and theorem.
Lemma 3. Suppose Assumptions[I)[3|hold. Then, for Algorithm|[I]it implies
Eeers [le! = V(h = ha) @+ y™ 2] < (1= 5) e = V(b = ha) (@', )|

12
bttt

12
+ ;fﬁyllyt“ —y'|I%.

Proof. Firstly, note that
V(h —h1)(z1,y1) — V(h — h1)(z2,92)

1
=/ V2(h = hi) (w2 + (21 — 22), 92 + 7(y1 — y2)) - {21 — 2,91 — ya}dr,
0
Further, we isolate partial derivatives in x:
Va(h = h1)(w1,y1) — Va(h — hy)(22,92)

1
- / V2, (h — hy) (o + 7(21 — 22)y + Ty — 92)) - (21 — 22)dr

1
4 [ V= )+ 7l = 2, = 12)) - — )
0
Applying Assumption [3]to this equality, we obtain

Ve(h —hi)(w1,91) — Va(h — hi)(z2,y2)|| <Ozll1 — @2l + duyllyr — y2|-

Now let us move to the main part of proof. We start writing out the drift term same as in Lemmal[T}
We get

Eesr [[eh = V(h = ha) (@1 y 7]
=1 =p)lle’ +{0,Vy(h = ha) (@, y" ")} = {0,Vy(h — ha)(a",y")} = V(h = ha) (@1 y 2.

Next, we add and subtract V(h — hq)(z¢, %) in combination with Young’s inequality (¢ = »/2) and
obtain

g [l = V(h — hy) (@5 )]

2
< (1= )" = Vb= )Gy + 9= ) = Tl - ) )]

p 4 4
L N e R VA

zy

This concludes the proof. O
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Theorem 6. Suppose  Assumptions hold. Consider 0
min {1/8(8,+6,+264y), P/16v2 max{5,,5.,} }. Then, Algorithm|l|requires

g2 pe2

IA

) iterations

2
to achieve an arbitrary e-solution, where > = {H S Vh(at, yt)H ]

Proof. Let us denote 2! = {z*,y*}. Same as in Theorem|I| we derive the analogue of smoothness-
based descent lemma. Let us start with

h(z"Y) — h(2h) :/0 dh(z' 4+ 72" — 2h))dr

1
:/ (Vh(2! + 7(21 = 2%)), 2 — 2
0
and

1 1
ha (1) — hy(24) = / dhy (28 + 7(271 = 2t))dr = / (Vha (2 4 721 = 21)), 21+ — 2hy,
0 0
Summing up this inequalities, we obtain

1
h(z'Th) — h(2h) :/0 (V(h —hy) (2" + 72" = 21), 2T — 2hdr (10)

+ h1(2t+1) — hl(zt).
Since z!*1 is the minimum of B} defined in Line[3] we have

1
hl(zt-i-l) _ h(zt) < _<€t7zt+1 _ Zt> _ %HZH_I _ thQ.
Substituting it into equationand applying V(h — h1)(2%) as a smart zero, we get

1
R = B2t < = ot — P

+ / (V(h —hy)(z" + 7(2"T = 21) = V(h — hy)(2Y), 2! — 2D)dr
0

+ (V(h — hy)(2) — €, 21T — 21).
After applying Young’s inequality, this turns into

1
tH1y By« St 2
B = () < = ol = 2

+ /1<V(h —h) (2T = 2Y) = V(b — h)(2Y), 2T = 2hdr (1)
0

o 1
+ DIV (= h)() = € + o2+ = 212
Let us consider the integral separately. We have

1
/ (V(h = hn)(2t 4 7(2 = 21Y) = V(= hy)(21), 211 = 2)dr
0
1
S/ IV(h = h) (2" +7(z"" = 2%) = V(h = b))z = 2 ldr
0
1
< [ty 2Bl 7 = ) = 2t
0

1
:/ T(8p + 8y + 205) |27 — 28 )12d7 = (0 + 0y + 20, 25T — 21|12
0
We substitute this into equation[IT] with o = 26 and derive

1
- <_49 0: 49, +25w) [ = 22+ 0lle’ = V(b = h) (% (12)

h(z't) — h(2") <

26
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Let us consider &' = h(z%) — h(z*) + Alle! — V(h — h1)(z")||? as a potential function. We begin
with writing a recursion

O =[h(2") — h(z")] + [h(z") = h(z")] + Alle™ = V(h — ha) (")
1
<O(E") = ] Bl = T = )OI+ (= g 4,420, ) 541 = 1P
+ Al = V(h = hy)(2"HP,
where the last transition exploits equation[I2] Next, we apply Lemma 3|and derive
Eett1 [(I)t“] =[h(z") — h(z")] + [A(z"T) — h(2")] + AE 11 [||e’”r1 - V(h— hl)(z”l)HQ}
<[A(2") = h(z")] + Olle" — V(7 — ha)(z")||?

1 1 2 b t _ t
+( 40+5$+5y+25w>||z A +A(1 2)||e V(h - hy)(2)]

4A 4A
xtH2 4

+ — 02" — —az, Iyt =P
p p Y

<[A(2") = h(z")] + Olle" — V(7 — ha)(z")[|?

4
After grouping terms, we arrive at

1
Eoe+1 [q)t+1] Sq)t + (—40

1 8A
+ ( + 6, + 0y + 25xy> |25 — 2t)12 + N max {67, 05, |z — 2>

8A
+ 0y 4 0y + 204y + n max {62, 5§y}> |20 — 2t
(13)
A
+ (0 F) et = ¥k - )L
Let us deal with the first term of equation[I3] First, let us note that Line [3]of Algorithm [2]implies
L1 _ ot
0
=[e" = V(h = h) ()] + [V(h = h1)(z"") = V(b — ha)(2")] + VA(z"T) +
This implies
2% = 2112 = 62|l — V(h — ha)(2")] + [V(h — ha)(z"") = V(h — h1) (2")] + VA2
Next, we employ the trick. We write
IVAGTH? = VA + [6f = V(b = hi)(2)] + [V (h — ha) (") = V(b = h1) (2)]
—[e" = V(h = h)(")] = [V(h = h)(z"*) = V(h = h)(2)]]]?
<3|V + [ef = V(h — ha) ()] + [V(h = hn)(z"F) = V(h — ha) (2")]|?
+3lle’ = V(b = ha) (") + 3|V (h = ha)(z"") = V(h = h) (")

0 =e' + V(hy — h)(z"T1) + VA(z") +

—z

0

Zt-i—l t

This implies
IVA(ET) + [e" = V(h = h)(2")] + [V (h = ha)("F) = V(h = ha) ()]

1
2§||Vh(zt+1)ll2 —le* = V(h = h)(2)? = [V(h = h1)(z"*1) = V(b = hy)(2")|1?
1
ZgIIVh(Zt“)II2 —le" = V(h = h)(2))1? = (80 + 8y + 200, [| 2 = 2"
Thus, there is a lower estimate on the update:
92
200 = 2| ZgIIVh(Zt“)H2 — 0?le" = V(h —hy)(2")|?

—0%(6, + dy + 2(5331,)2”,2“rl — 2
After rearranging terms, we get

92
(1= 6%(0 + 8y +200y)°) 12771 = 2'* 22 [ VAGTD|? — 6%l = V(R = ) ().
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Due to the choice of parameters outlined in Theorem@ we have 0 < 1/2(6,+6,+26,,) wWhich implies

1
1—92(5w+5y+35$y)221_122.
Thus, we have
t+1_t2>@v}1 t+1 2_4;02 t_Vh_h ty]|2 14
B 2|17 2= IVAGETOI" = -l ( D))" (14)

Comparing equation [3] and equation [T4] we observe that the variance could be included in the
resulting inequality with negative sign only if A < 20/,. We choose A = 40/p. This means that
equation I3 transforms into

40

—0lle" = V(h— h1) ()]
To substitute equation [T4] the first term of this inequality should be negative. Let us show that it is
actually negative because of choice of 8 (see Theorem |§|) On the one hand, 6 < 1/8(5,+8,+25.y),
which implies (§; + &, + 2d4,) < 1/s6. On the other hand, 6 < P/16v2max{é,,6.,}, Which implies
320 max{87,67,}/p* < 1/160. Thus, we have

1 320 max{42, 52
Ecenn [@7F1] <0 + (— 0+ Oy 4+ 20, + 2 22 0sy) |20+ — 2|2

1 320 max{62,52,} 1
—— + 0, + 0y + 26, < — <.
49—1— + 0y + 205y + 2 < 169<
Thus, we can apply equation [T4]and deduce
0 1
s [0°71] < 8= LITRGEIP + (15 1) ol = T - R

which implies

B (|97 < Dot - o4,

Taking full expectation and accounting for € = V(h — h1)(z"), we obtain

T 2
1 + 36[h(2Y) — h(z*)]
E T ZVh(z ) < 7
t=1
— Ox + 0y + 0y | Oz 4 day 0 *
=0 (( T + T [h(z") = h(z")] | .
This concludes the proof of Theorem [6] O

Now we are ready to move on to the corollary.

Corollary 4 (Corollary [2). Suppose Assumptions []] Consider 0 <
min {1/8(8,46y+264y), P/16v2 max{65,52y} }- Algorithm@with p = (Bat0uy)/(5,46,+5.,) requires

@) (dwfx + dyfy + (do + d”)dw) bits
£ 19

o2
to reach an arbitrary e-solution.

Proof. Theoremg implies that Vh is called O (P(0e+6y+dzy)/c? 4 (6o+02y)/c?) times and V,h
is evaluated O ((0s+8y+9zy)/e? + (62+02y)/pe?). The choice of p results in O ((62+92y)/c?) and
O ((6y+9z4)/?). Every evaluation of V,h requires communicating d,, units of information, and
Vyh requires d,,. This implies the result of Corollary @ O

G PROOF OF THEOREM 3]

Theorem 7. (Theorem [3) There exists such h, satisfying Assumptions [I} 2] that any algorithm A
(see Definition[l) requires to transmit

0 (dgl g Gl | (et fy)%’) bits
& e 3

to reach an arbitrary e-solution when 65y < 0.
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Proof. The proof of this theorem is equivalent to the proof of Theorem 2} By considering the same
function as in Theorem 2] where function f depends only on z, and function g depends only on y,
we obtain that the effective Smy (i.e., the minimal possible one) equals zero. This implies that we
obtain lower bounds on the oracle complexity:

O 1)
Q (82> and Q (;)

oracle calls. Moreover, in the case 0,y < d; < dy, we have that

5y + 6o 5,
o(*5) =0 (%)
5y + 6. 5
o) =0 (%)

Therefore, we get that the lower bound on bit complexities for each block of coordinates can be

expressed as

and

€
Summing up, we obtain the final bound. O

H INEXACT INNER MINIMIZATION

Algorithms [T] [2] require access to Proximal Incremental First-Order Oracle defined in Section[6.1.1]
This is impractical, because the minimization of Ay: and By: cannot be performed in negligible
time, since hj is not merely a regularizer but an empirical risk constructed from the model’s output.
Nevertheless, in our experiments we observe that performing three epochs of Adam on the server’s
side are sufficient to obtain a stable optimization trajectory despite the inexact solution of the sub-
problem. Below, we present the results of a numerical study of robustness to inexact minimization.

90

—— Argmin=3 = e
30 rgmin= 80 e e e
—— Argmin=2 i <
2.5 ) 70
Argmin=4
20 §60 /
%]
g \ 550
415 840
\ <oF
1.0 s, 30 —— Argmin=3
W .............. —— Argmin=2
05 TR .’k“n!-.f ~ AL‘MW' - 20 :
S —— 10 ~— Argmin=4
0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Vf; calls Vf; calls

Figure 7: Dynamics of HASCA with various number of epochs to solve the inner minimization.
Adam is used as an optimizer.

Figure|7|shows the existence of an optimal number of Adam epochs for solving the inner minimiza-
tion. We attribute this to the fact that too few epochs yield an overly inaccurate solution, whereas an
excessively large number leads to overfitting to the server’s data.

To investigate the observed phenomenon, we introduce an additional assumption on h;.
Assumption 4. The function hy is convex, i.e. for every x,y € R?

hi(z) = hi(y) > (Vhi(y),z — y).

Although neural networks are inherently non-convex, theoretical analysis under convexity of the
server remains relevant. Recent studies suggest that deep neural networks often exhibit properties
similar to convexity in certain regions, making insights from convex analysis applicable (Kleinberg|
let all 2018}, [Zhou et al., 2019} [Liu et al} [2022). Moreover, convex optimization serves as a theoret-
ical foundation for the design of optimization algorithms.
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Now, let us prove the convergence of Algorithm[I] with inexact inner minimzation.

Theorem 8. Suppose Assumptions 1} [2} l 4| hold. Consider < min{1/8(s,;+6,),P/8v25;}. Let the
subproblem in Line 3| be solved with preczszon

VAL DI? < <o llat — argmin Ap )]
Then, Algorithm|[I| requires

0 0 0
O (Jv_;g + ];) iterations
€ pe

to achieve an arbitrary e-solution, where £? = {H = Zt 1 Vh(z H }

Proof. Note that the inequality A%(z'™!) < Af(z") holds even when the inner minimization is
solved with a large error. In fact, a single gradient descent step is sufficient to guarantee its satisfac-
tion. Therefore, the proof of Theorem [T]remains unchanged up to the point where we obtain

1 24
Eeess [07F1] <0 + (—49 + 05+ 0y + p(ﬁf) " — 2t

A
+ (0= et = V- )0
Let us note that Line [3]of Algorithm [I]implies

(15)

1 gt

VA (a'*) =e' + V(1 = h)(a'!) + Vh(a' ) +
=[e" = V(h = h1)(@")] + [V(h = h1)(a") = V(h = ) (@")] + VA(z")

e
+ 0
Next, we write
VA DI =VR(2™) + [e' = V(b = ha)(@")] + [V(h = ha)(a"F) = V(h = hy)(2")]
= VA (") — [e" = V(h = h1)(2")]
—[V(h = )(z t“) V(h = h1)(z")]|*
<4|Vh(z"™) + [¢" = V(h = hi)(@")] + [V(h = hy) (@) = V(h = h1)(2")]
= VA= H?
+dlle’ = V(b —h)(@)|? + 4V (h — h)(@F) = V(h = hy)(2")||?
+4[VAG (=",

I+

This implies
[VA(™) + [e" = V(h = ha)(@")] + [V(h = ha)(z"™) = V(h — hy)(2")] = VA (")

Z§||Vh(96t“)||2 —le" = V(h = ha)(@")|* = (37 + 85)* [+ — 2||* — 0|V AG (") 1%
Thus, there is a lower bound on the update:
2
e+ — a2 2T TRG P — 62t — V(b — b)) — 02(65 + 8, a* — |
— 02|V AL (=12
After rearranging terms, we get
2
(1=0°(57 +65)%) =" — a*|? Z%IIVh(fEt“)II2 — 0?[le" = V(h — hy)(a")]?

— 02|V AG ("
Due to the choice of parameters outlined in Theorem we have 6 < 1/2(5;+5,) which implies
1 3
— 025, +0,)2>1—- =",
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Thus, we have
t+1 2 < 0 t+14(12 49° w2 407 totH1y)12
ot — a2 2 [V = Sl = V(b= h)@)|P - - [V AH I (16)
Comparing equation [I3] and equation [I6] we observe that the variance could be included in the
resulting inequality with negative sign only if A > 20/p. We choose A = 46/p. This means that
equation [§] transforms into

2
Eqet1 [q)tJrl] S(I)t + (

1 800% 1 )
1 +r+64+ = |zt — 2|? — 0)|et — V(h — hy)(2h)]].
To substitute equation [0} the first term of this inequality should be negative. Let us show that it is
actually negative because of choice of 6 (see Theorem . On the one hand, 6 < 1/8(5;+3,), which
implies (67 + d,) < 1/s6. On the other hand, 6 < »/sv25,, which implies 807 /p> < 1/160. Thus, we

have

1 8667 1
—@+5f+5g+p72§—7<0,

which implies

1
Eers1 [@7F1] <@ — @\\xtﬂ —zt|? - @thﬂ — 2| =0t — V(h — h1) ("]
We can apply equation 9] and deduce
0 1 1
Eoon [@tH1] <t — 2 t4+1y(2 = 9 t _ N2t ol
o [O71] <08 — VAP + (57 = 1) Blle’ = V(= )@ = o5 lle — |
0
TV AL (gt
+ 574 )|
0 1 0
<®t — VA2t 12 — |t gt TV AL (212
<0f = SIVAE | - et - o+ o VA
Next, we consider the last two terms separately.
1 0 1
gt = P+ S IVAGH? < - e’ — argmin Aj(x) |2
1 ) 0
+ ggllattt — argmin A5(@)|? + 2 |V Aj(@) 2
Let us take into account the 1/¢-strong convexity of A}, and write
1 0 1 . 70
—5ag 7 =@+ G IVAGETDIP < - ol — argmin Aj (@) [* + 5oV A (1
70 3 .
e T

Using precision of the inner minimization (Theorem [, we obtain
36
Eervr [[[VR(z"H)|?] < 5 - .
Taking full expectation and accounting for ¢® = V(h — hy)(z?), we obtain
2

T
1 96[h(x°) — h(z*)] df+9 oy
E — t < — g 0y _ * )
- ;:1 Vhh)| | < . O ( (7 + o7 ) (o) — h(a)]
This concludes the proof of Theorem [§] O

Since the proof in the coordinate setup is conceptually analogous, the result for inexact minimization
in Algorithm [2]can be obtained analogously.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Language models were used to improve text quality (mostly to correct grammatical errors). LLMs
were not used to obtain theoretical results or write code.
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