
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMPLEXITY-SEPARATED SCHEMES FOR ADDRESS-
ING STRUCTURED HETEROGENEITY IN FEDERATED
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning faces challenges due to heterogeneity in local training sets.
Existing methods typically treat this as a monolithic challenge, leading to com-
munication overhead. In this work, we suggest examining the structure of data
heterogeneity in more detail. We identify two forms of this phenomenon: mode-
based, where clients differ in the presence of common versus unique data modes;
and coordinate-based, where groups of model parameters vary in statistical sim-
ilarity. We develop algorithms that decouple communication complexity along
these structural dimensions and consequently achieve reduced synchronization
frequency without deterioration in convergence. Our analysis establishes the opti-
mality of the proposed schemes. Extensive experiments on image and multimodal
classification tasks demonstrate improvements in communication efficiency over
state-of-the-art methods.

1 INTRODUCTION

Machine learning drives modern technological progress, from pattern recognition to complex pre-
dictive models (Shinde and Shah, 2018). In particular, advances in this field owe to the emergence
of efficient optimization techniques that allow rapid adjustment of model parameters (Sun et al.,
2019). Although initial successes were achieved in single-device settings, the scale of today’s data
have increasingly surpassed the limits of individual machines, prompting the need for distributed
training (Verbraeken et al., 2020). It is typically organized in a server-worker architecture, where
a powerful coordination hub (server) aggregates updates and maintains global model weights, and
devices/clients/workers/nodes/machines perform local computations. In this paradigm, a shared
dataset D is manually partitioned into |M | disjoint subsets D1, . . . ,D|M | distributed across ma-
chines. Each m-th one accesses only samples from Dm and calculates

hm(x) =
1

|Dm|
∑

(a,b)∈Dm

ℓ(u(x, a), b),

where x is the parameters of the model u; a, b are the vector representation and the label of the
object from Dm, respectively; and ℓ is the loss function. Minimizing the global objective is written
down as

min
x∈Rd

h(x) = 1

|M |

|M |∑
m=1

hm(x)

 . (1)

Distributed paradigm enables parallel computation to accelerate training. However, transmitting
updates over the network becomes the primary constraint on learning speed, often exceeding com-
putation time, particularly for large-scale models (Kairouz et al., 2021). The key performance metric
of a numerical scheme is henceforth its communication efficiency in terms of the number of com-
munication rounds (Kovalev et al., 2022), the total number of server-client vector exchanges (Lin
et al., 2024), or the amount of transmitted bits (Beznosikov and Gasnikov, 2022), rather than the
iterations count.
Various strategies have been developed to address the mentioned limitation (Seide et al., 2014; Al-
istarh et al., 2017; Stich, 2018). One of the possible ideas for overcoming the communication bot-
tleneck is the use of statistical homogeneity. Since every Dm is the set of IID samples from the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

global data distribution, each pair of devices has mutually aligned optimization landscapes. This
phenomenon is commonly formalized via the bounded Hessian divergence condition (Shamir et al.,
2014):

∥∇2hi(x)−∇2hj(x)∥ ≤ δh, ∀x ∈ Rd. (2)
Smaller δh indicates higher data similarity, meaning local losses are consistent across the network.
Crucially, it is known that δh typically decreases with growing data volume, as larger datasets better
approximate the underlying distribution (Hendrikx et al., 2020). The stated property promotes the
idea of utilizing local steps. Instead of synchronizing after every iteration, each worker performs an
epoch of optimization and then transmits final parameters to the server to make the global update.
Since δh in distributed networks is usually small, local gradients remain reliable estimators of global
descent directions, ensuring communicative efficiency while preserving solution quality. To reduce
computational overhead of devices, some papers use only the server to perform local steps, thus
offloading devices (Hendrikx et al., 2020; Kovalev et al., 2022; Lin et al., 2024).
Despite the successes of the mentioned approach in distributed paradigm, some real-world scenar-
ios pose challenges. In federated learning (FL), objects are generated by devices, while the server
stores non-private data accumulated in public datasets (Konečný et al., 2016; Zhang et al., 2021).
Therefore, the alignment of optimization landscapes is violated, and performing too many local
updates steer the model toward inappropriate direction (Karimireddy et al., 2020, Table 3). To main-
tain convergence, algorithms must increase synchronization frequency, exacerbating communication
bottleneck. However, there is an observation that helps to address this issue. A key idea underlying
this work is that even heterogeneous networks exhibit structured patterns, manifesting in two distinct
ways: how distribution modes are shared across clients, and how diverse are components of model
parameters.
Mixed heterogeneity in distribution patterns. Focusing on distribution patterns, we find out that
the training set can be divided into two parts. First one consists of ordinary objects similar to those
contained in public datasets. Server-side and average losses computed on samples related to such
modes express a high degree of statistical similarity. The second part is made up of unique data, that
is poorly represented by the server storing little or none of corresponding modes. A vivid example
is training a federated medical diagnostic model. The server may possess a large amount of scans
showing widespread diseases, such as pneumonia or fractures, and many hospitals also have data
on these pathologies. However, a small amount of specialized clinics may additionally store unique
images of rare genetic syndromes, which are absent from the server. Similar structures arise in other
federated learning domains (Kairouz et al., 2021). A natural mathematical model to describe such
scenarios is a composite minimization problem

min
x∈Rd

[h(x) = f(x) + g(x)] ,

with f(x) =
1

|Mf |
∑

m∈Mf

fm(x),

g(x) =
1

|Mg|
∑

m∈Mg

gm(x),

(3)

where fm, gm are the local losses calculated over data from frequent and rare modes, respectively;
Mf , Mg are the sets of clients containing non-zero fm, gm, respectively; |Mf |, |Mg| are the
cardinalities of these sets. We point out that |Mg| ≪ |Mf | in many practical applications (Li et al.,
2022, Section 4). Thus, it is the interaction with Mf that creates the bottleneck. Consequently, there
is a potential for gain by communicating with nodes from Mf and Mg at different frequencies.

Mixed heterogeneity in model parameters. Returning to the example of medical federated learn-
ing, suppose that patient’s metadata (for example, blood tests) is also available. For such tasks, a
common approach is to train a network responsible for feature extraction from images, then con-
catenating its output with tabular data, and feeding the combined representation into a shared layer
(Gao et al., 2020). Formally, hm from equation 1 takes the form

hm(x, y) =
1

|Dm|
∑

(a1,a2,b)∈Dm

ℓ(u(Fm(a1, x), a2, y), b),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where the object consists of two modalities a1, a2; Fm, u are the encoder and the head, respectively;
x, y are the weights of corresponding models. It is established in literature that images have consid-
erably more homogeneous embeddings than tabular inputs (Liang et al., 2022; Rabbani et al., 2024).
This fact creates potential for less frequent updates of statistics within x than within y. Additionally,
processing structured metadata typically involves far fewer parameters compared to those used for
extracting features from scans. Consequently, updating x is significantly more expensive in terms
of communicated information. Expanding this observation, we obtain the second formulation of
interest:

min
(x,y)∈Rdx×Rdy

h(x, y)= 1

|M |

|M |∑
m=1

hm(x, y)

 , (4)

where the second derivatives of local objectives within x exhibit more statistical similarity with the
server than the ones within y. This setting promises efficiency gains through asymmetric update
frequencies. In the case where dx ≫ dy , the proposed setting offers potential to reduce the amount
of information transferred from devices to the server in comparison to existing techniques that ig-
nore this feature. The high-dimensional x tolerate infrequent synchronization due to stable Hessian
characteristics, while compact y require regular but lightweight exchanges.

2 NOTATION

When analyzing the communication efficiency of federated learning schemes, it is important to
choose an appropriate complexity measure. In this paper, we use three definitions emerging in
literature to reach the full potential of proposed approaches.
• Number of communication rounds. In several works, the complexity of federated learning
algorithms is analyzed without reference to the number of machines involved in each round of com-
munication (Shamir et al., 2014; Kovalev et al., 2022). This metric suits for synchronous networks,
where it only matters how many times the server accesses clients data during the training process.
• Number of client-server communications. For asynchronous networks, the number of rounds
is inadequate. In such case, each server-client vector exchange should be counted as a complexity
unit. This definition is well-established in the optimization community (Khaled and Jin, 2022; Lin
et al., 2024). In our paper, we utilize it to analyze the distribution-based structured heterogeneity.
• Number of communicated coordinates. In addition to mentioned approaches, it is also common
to analyze the complexity in terms of the number of communicated coordinates. Originally, this
metric was designed for emphasizing the advantage of methods that reduce the size of transmitted
vectors, e.g. for schemes with compression (Beznosikov and Gasnikov, 2022). In our work, we use
it to derive results in the case of structured heterogeneity in model parameters.
Our study assumes the presence of independently accessible oracles either for aggregating over a
group of nodes or for computing statistics within a block of parameters. Since the main goal of
this paper is to obtain theoretical guarantees of acceleration for complex-structured objectives, the
notion of complexity is applied to each of them individually.

3 OUR CONTRIBUTION

While existing federated learning methods treat heterogeneity as a monolithic challenge requiring
uniform communication strategies, we develop techniques that decouple optimization complexity by
accounting the structure of the objective in greater detail. We specifically focus on the non-convex
setting, which remains under-explored in the works on data similarity despite its critical importance
for modern applications. We formulate the list of our contribution as follows:
• First method for distribution-based heterogeneity. For the non-convex problem 3, we design a
method that theoretically dominates existing techniques both in terms of communication rounds and
client-server vector exchanges.
• First method for coordinate-based heterogeneity. For the non-convex problem 4, we propose
a scheme that theoretically outperforms state-of-the-art heterogeneity-accounted techniques in the
sense of communicated coordinates.
• Optimality. For the non-convex problem 3 with separate oracles ∇f , ∇g, we show the optimality
of our method in terms of synchronizations count.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

• Empirical validation. To support the theory, we compare our approach to modern methods for
combating heterogeneity and state-of-the-art optimizer Adam. Numerical experiments include clas-
sification on CIFAR-10 with ResNet-18, and searching for duplicate ads in Avito multimodal dataset
with BERT and ResNet-18. The results show promising advantage over chosen baselines.

4 RELATED WORKS

4.1 COMPLEXITY SEPARATION

Classic works on numerical methods considered a single-machine minimization without assuming
any additional structure of the objective (Polyak, 1987). For now, there are a lot of works devoted to
the problem of oracle complexity separation when minimizing complex-structured functions. Below
we provide a detailed review on this issue.

Composite-sum case. This setup considers h(x) = f(x) + g(x) as the objective with separate
oracles accessible for the components. Initial research in this direction was motivated by machine
learning applications, where the empirical loss f is usually regularized by a non-smooth function
g with easily computable statistics to avoid unbounded growth of model parameters. Thus, ba-
sic schemes are designed to handle the case where any optimization problem on g has negligible
complexity (Parikh et al., 2014). However, in many practical tasks, the mentioned property is not
satisfied (Colson et al., 2007), and calls of the oracle corresponding to g must not be unboundedly
frequent, as in naive proximal schemes. To address this issue, Juditsky et al. (2011) applied an ex-
tragradient type algorithm to variational inequality reformulation of the initial problem and derived
O
(
L/ε + M2

/ε2
)

of both oracles calls in the convex case. Here L, M are the Lipschitz constants
of ∇f , g, respectively, and ε is the accuracy of the numerical solution. This result was enhanced
to O

(√
L/ε + M2

/ε2
)

by utilizing Nesterov’s acceleration in (Lan, 2012). However, this rate is
optimal only if oracles associated with f and g are not accessible separately. Assuming that the
relevant statistics can be computed independently of each other, Lan (2016) obtained O

(√
Lf/ε

)
for ∇f and O

(√
Lf/ε + L2

g/ε2
)

for g′ ∈ ∂g. The proposed Gradient Sliding guarantees
that number of ∇f evaluations does not depend on the optimization landscape of g. To the best
of our knowledge, it is the first algorithm that has progressed to split oracle complexities. The ex-
act separation was also derived for smooth+smooth problems by Lan and Ouyang (2016). Their
method achieves O

(√
Lf/ε

)
, O
(√

Lg/ε
)

for convex objectives and Õ
(√

Lf/µ
)

, Õ
(√

Lg/µ
)

for
µ-strongly convex ones.
At the moment, complexity separation is an established area of optimization. There are many exotic
sliding-based schemes: for VIs (Lan and Ouyang, 2021; Emelyanov et al., 2024), saddle-points (Lan
and Zhou, 2018; Chen et al., 2020; Tominin et al., 2021; Kuruzov et al., 2022; Borodich et al., 2023;
Kovalev and Borodich, 2024), zero-order optimization problems (Beznosikov et al., 2020; Stepanov
et al., 2021; Ivanova et al., 2022), high-order minimization (Kamzolov et al., 2020; Gasnikov et al.,
2021; Grapiglia and Nesterov, 2023).

Block-coordinate case. Block-coordinate methods were also originally studied for minimizing
h(x, y) in isolation from the federated setting (Nesterov, 2012; Richtárik and Takáč, 2014; Nes-
terov and Stich, 2017). For small-scale problems, Gladin et al. (2021a) obtained Õ ((dx + dy)),

Õ
(
(dx + dy)

√
(Lx+Ly)/µ

)
of ∇xh, ∇yh calls, respectively. Here dx, dy are the dimensionalities

of x, y; Lx, Ly are the smoothness constants of h in x, y; µ is the strong convexity constant. The first
step to separation was made in (Gladin et al., 2021b). The complexities were Õ ((dx + dy)) for ∇xh

and Õ
(
dxdy

√
Ly/µ

)
for ∇yh. However, in the large-scale case this approach gives Õ

(√
Lx/µ

)
and Õ

(√
LxLy/µ2

)
, which is much worse than a desirable result for evaluations of ∇yh. This is-

sues was addressed in (Gasnikov et al., 2022), where the BAM algorithm achieved Õ
(√

Lx/µ
)

and

Õ
(√

Ly/µ
)

.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.2 HESSIAN SIMILARITY

Federated approaches that exploit data similarity rely on a simple but crucial trick. The objective h
defined in equation 1 is artificially rewritten as h(x) = h1(x) + (h − h1)(x). Here h1 belongs to
the server and therefore computation of its statistics does not require exchanging information, and
(h− h1) is related to clients. The idea of saving iterations by using a proximal friendly regularizer
can be transferred to the federated setting to communicate less by utilizing local steps on the server.
The main challenge in this direction is that theory for handling composite structure were initially
developed for convex+convex case, while this setting is convex+non-convex.

The first approach addressing similarity was the Newton-type method, DANE, achieving Õ
(
δ2h/µ2

)
communication rounds for quadratic µ-strongly convex objectives (Shamir et al., 2014). For the
class of problems under consideration, Arjevani and Shamir (2015) established a lower bound
Ω̃
(√

δh/µ
)

. This prompted the question of how to bridge the gap in complexities. Numerous
papers explored this issue but either fell short of meeting the exact bound or required specific cases
and unnatural assumptions (Zhang and Lin, 2015; Lu et al., 2018; Yuan and Li, 2020; Beznosikov
et al., 2021; Tian et al., 2022). Recently, optimal rate in terms of rounds count was achieved by Ko-
valev et al. (2022). Most numerical schemes for the data similarity scenario were developed under
fairly strong assumptions of the (strong) convexity of the objective. Non-convex problems were in-
vestigated in (Woodworth et al., 2023) that, however, failed to establish convergence to an arbitrary
ε-solution.

5 SETUP

Machine learning applications, particularly deep neural networks, operate in fundamentally non-
convex scenario (Cybenko, 1989; Nguyen and Hein, 2018). To address the contemporary challenges,
we keep our theoretical restrictions minimal. Throughout this work, we rely on the following mild
assumption.

Assumption 1. The function h : Rd → R attains its minimum, i.e. there exists such x∗ ∈ Rd that
h(x∗) = inf

x∈Rd
h(x) > −∞.

This requirement is satisfied by most practical loss functions and is widely used in literature (Malit-
sky and Mishchenko, 2019; Li et al., 2021; Zhao et al., 2021). Further, based on the standard notion
of data similarity, we formalize the intuition from Section 1 by quantifying structured heterogeneity
through the gap between the server-side and the mean Hessians.

Assumption 2. The functions h, h1 in the problem 3 are (δf , δg)-related, i.e. for every x ∈ Rd

∥∇2f1(x)−∇2f(x)∥ ≤ δf , ∥∇2g1(x)−∇2g(x)∥ ≤ δg.

Assumption 3. The functions h, h1 in equation 4 are (δx, δy, δxy)-related, i.e. for every (x1, x2) ∈
Rd1 × Rd2

∥∇2
xxh1(x, y)−∇2

xxh(x, y)∥ ≤ δx, ∥∇2
yyh1(x, y)−∇2

yyh(x, y)∥ ≤ δy,

∥∇2
xyh1(x, y)−∇2

xyh(x, y)∥ ≤ δxy.

Without loss of generality, we consider δf ≤ δg and δx ≤ δy . In the case where there is no shift
in modes distribution or in coincidence of loss landscapes in groups of parameters, Assumptions 2,
3 are equivalent to the standard bounded heterogeneity. This does not narrow the generality with
respect to works that deal with L-smooth objectives, since δh ∼ L/|D1| (Hendrikx et al., 2020).

6 ALGORITHMS AND ANALYSIS

6.1 MODE-BASED STRUCTURED HETEROGENEITY

To develop the idea proposed in Section 1, we present Heterogeneity-Aware Skipped Client
Aggregation (HASCA for the non-convex problem 3. Algorithm 1 can be viewed as a natural de-
velopment of Proximal Descent (Hendrikx et al., 2020; Woodworth et al., 2023), which un-
derlies most state-of-the-art schemes leveraging data similarity in the (strongly) convex case. As
discussed in Section 4, the key idea behind this approach is to artificially rearrange the objective as
h(x) = (h − h1)(x) + h1(x). Here, h1 serves as a proximal friendly regularizer in the sense that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

any optimization problem involving h1 can be solved without interaction with the devices. Thus,
the server can perform several steps of local optimization after each interaction with the clients,
significantly reducing the bottleneck. This yields the update based on the minimization of

Ãt
θ(x) = ⟨∇(h− h1)(x

t), x⟩+ 1

2θ
∥x− xt∥2 + h1(x),

where forming the surrogate Ãt
θ and solving the resulting subproblem happen entirely on the server.

Our method is built upon the same intuition (see Line 3). However, the goal of our work is to
construct a first-order scheme that accounts for δf < δg . To satisfy this requirement, Algorithm 1
reuses the most recent values of ∇f , while ∇g is called at each iteration (Line 2). We emphasize
that the use of h1 in Line 3 does not increase the communication complexity within Mf , since
the statistics of this function are computed on the server. To balance the quality of approximation
with the cost of expensive synchronization, we introduce a reference point wt that is refreshed with
some probability p (Line 4). When δf/δg = 1, Algorithm 1 should reduce to standard Proximal
Descent, i.e. p = 1. As this ratio decreases, the probability p should decrease accordingly.

Algorithm 1 HASCA
Input: initial points x0, w0 ∈ Rd, number of iterations T
Hyperparameters: step size θ > 0, probability of full aggregation p ∈ (0, 1)

1: for t = 0, 1, . . . , T − 1 do
2: et = ∇(f − f1)(w

t) +∇(g − g1)(x
t)

3: xt+1 = argminx∈Rd [At
θ(x)], where

At
θ(x) = ⟨et, x⟩+ 1

2θ
∥x− xt∥2 + h1(x)

4: ωt+1 =

{
xt+1 with probability p

ωt with probability 1− p
5: end for
6: Output: xT

The update of et (see Line 2 of Algorithm 1) enables an asymmetric interaction with Mf and Mg ,
but also introduces obstacles that prevent a direct adaptation of known stochastic schemes to our
setting. Before proceeding to the main results, we propose the following bound.
Lemma 1. Suppose Assumptions 1, 2 hold. Then, for Algorithm 1 it implies

Eet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]
≤
(
1− p

2

)
∥et −∇(h− h1)(x

t)∥2 + 2

p
δ2f∥xt+1 − xt∥2.

In Lemma 1, the deteriorating factor 1/p can be compensated by the relative smallness of δf com-
pared to δg . Designing an appropriate update rule for et that yields the recurrence of this form is one
of the main theoretical challenges of this work. Indeed, if et is chosen improperly, the second term
of the inequality becomes too large to ensure the desired convergence rate. Now that the intuition
behind Algorithm 1 is clear, we move on to its iterative complexity.
Theorem 1. Suppose Assumptions 1, 2 hold. Consider θ ≤ min {1/8(δf+δg), p/8

√
2δf}. Then, Algo-

rithm 1 requires

O
(
δf + δg

ε2
+

δf
pε2

)
iterations

to achieve an arbitrary ε-solution, where ε2 = E
[∥∥∥ 1

T

∑T
t=1 ∇h (xt)

∥∥∥2].

In particular, this result shows that if the update of et were implemented with three options, in-
cluding the separate call of ∇f , achieving a comparable result would not be feasible. Since ∇f is
communicated with probability p, it is possible to provide a corollary of Theorem 1.
Corollary 1. Consider the conditions of Theorem 1. Algorithm 1 with p = δf/(δf+δg) requires

O
(
δf
ε2

)
, O

(
δg
ε2

)
calls of ∇f, ∇g

to reach an arbitrary ε-solution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 outperforms existing approaches. Its closest competitor, ProxyProx (Woodworth
et al., 2023), requires O ((δf+δg)/ε2) calls of both oracles. Thus, in this method, ∇f is communi-
cated O (δg/δf) times more frequent than necessary under the structured heterogeneity regime. This
overhead may be significantly large in practice, as some modes of distribution are poorly represented
(or entirely absent) on the server side due to the local nature of data sources, leading to δg/δf ≫ 1.
Moreover, the improvement in terms of server–client exchanges may also be substantial, amounting
to O ((1 + |Mg|/|Mf |) δg/δf) times.

6.1.1 LOWER BOUNDS

To obtain upper bounds, the convergence of a specific method is derived for an arbitrary function
without strengthening the assumptions. In contrast, establishing lower bounds is more challenging,
as it requires constructing a specific example on which any algorithm from the considered class can-
not perform better than a certain complexity threshold. To specify the schemes under consideration,
we utilize the Proximal Incremental First-Order Oracle (Woodworth and Srebro, 2016), which is de-
fined as rPf1(x, θ) = [h1(x),∇h1(x), proxθh1

(x)] with θ > 0. Assuming that the server has access
to rPh1, we determine the following class of algorithms.

Definition 1. Consider a randomized algorithm A to solve the problem 3. In a synchronization
round t, the server has two options. It can communicate all the clients and aggregate ∇(h−h1)(x

t),
or interact with devices from Mg only and compute ∇(g − g1)(x

t). Afterwards, it updates the
information set based on the linear span operation and its local oracle rPh1

.

Our analysis of lower bounds is based on techniques typically utilized for non-convex (Carmon et al.,
2017) and homogeneous (Arjevani and Shamir, 2015) scenarios. To construct the hard instance of
the problem 3, we rely on the concept of zero-chain functions, i.e. such ones that a single gradient
evaluation makes accessible at most one non-zero coordinate of x. By carefully decomposing an
appropriate zero-chain function into four components, corresponding to (f − f1), (g − g1), f1, g1,
and rescaling them to satisfy Assumption 2, we arrive at the following result.

Theorem 2. There exists such h, satisfying Assumptions 1, 2, that any algorithm A (see Definition
1) requires

Ω

(
δf
ε2

)
, Ω

(
δg
ε2

)
calls of ∇f, ∇g

to reach an arbitrary ε-solution.

This result matches the one obtained in Corollary 1. Thus, Algorithm 1 appropriately separates the
oracle complexities and enjoys optimal theoretical guarantees.

6.2 COORDINATE-BASED STRUCTURED HETEROGENEITY

Algorithm 2 C-HASCA
Input: initial points x0, w0 ∈ Rd, number of iterations T
Hyperparameters: step size θ > 0, probability of full aggregation p ∈ (0, 1)

1: for t = 0, 1, . . . , T − 1 do
2: et =

[
∇x(h− h1)

⊤(wt),∇y(h− h1)
⊤(xt, yt)

]⊤
3: (xt+1, yt+1)=argminz∈Rdx×Rdy [Bt

θ(z)], where

Bt
θ(z) = ⟨et, z⟩+ 1

2θ
∥z − (xt, yt)∥2 + h1(z)

4: ωt+1 =

{
(xt+1, yt+1) with probability p

ωt with probability 1− p
5: end for
6: Output: (xT , yT)

In this section, we consider the non-convex problem 4 under Assumption 3. C-HASCA (Algorithm
2) is based on the same idea as Algorithm 1. The key difference lies in the approach to approximation
of ∇(h − h1) (Line 2). Since a block-coordinate formulation with δx < δy is explored, we utilize

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

the reference point wt (Line 4) to reduce the frequency of exchanging statistics within the block of
parameters x.
Unlike the previous setting, coordinate-based structured heterogeneity poses no potential for im-
provement in the sense of rounds or client-server vector exchanges. Indeed, calling one of the
oracles less frequently does not reduce the number of clients involved in synchronization. However,
there is a change in amount of bits transmitted from devices to the server. In this regard, we exploit
the information-based metric to analyze efficiency of Algorithm 2.

Corollary 2. Suppose Assumptions 1, 3. Consider θ ≤ min {1/8(δx+δy+2δxy), p/16
√
2max{δx,δxy}}.

Algorithm 2 with p = (δx+δxy)/(δx+δy+δxy) requires

O
(
dxδx
ε2

+
dyδy
ε2

+
(dx + dy)δxy

ε2

)
coordinates

to reach an arbitrary ε-solution.

As mentioned earlier, the main competitor of our methods is ProxyProx (Woodworth et al.,
2023). Under coordinate-based structured heterogeneity, this scheme requires communicating
O ((dx+dy)(δx+δy+δxy)/ε2) bits to converge. Taking δx < δy and dy < dx into account, one can
note that such a rate is O (1 + dxδy/(dyδx+dyδxy)) times worse than the result of C-HASCA. The
greater the imbalance between blocks of parameters and the larger the homogeneous component,
the more pronounced the advantage of our method becomes.

6.2.1 LOWER BOUNDS

Same as for previous case, we present lower bounds for the non-convex problem 4. We use similar
set of techniques to construct the worst function. Below, we present the corresponding result.

Theorem 3. There exists such h, satisfying Assumptions 1, 2, that any algorithm A (see Definition
1) requires to transmit

Ω

(
dxδx
ε2

+
dyδy
ε2

+
(dx + dy)δxy

ε2

)
coordinates

to reach an arbitrary ε-solution when δxy < δx.

7 NUMERICAL EXPERIMENTS

To support theoretical findings, we evaluate the efficiency of HASCA (Algorithm 1) and C-HASCA
(Algorithm 2) in terms of oracle complexity. To provide a comparison, we run several optimizers:
ProxyProx (Woodworth et al., 2023), a standard method commonly used as a basis for develop-
ing new algorithms handling data similarity; Accelerated ExtraGradient (Kovalev et al.,
2022), a scheme enjoying optimal dependence on δh (see equation 2) for convex objectives; Adam
(Kingma and Ba, 2014), an algorithm that performs as a strongest baseline while training complex
neural networks; FedProx (Li et al., 2020) and SCAFFOLD (Karimireddy et al., 2020), traditional
federated learning methods that are conceptually close to the proposed approach.
One of the possible concerns regarding Algorithms 1, 2 is inability to exactly solve the subprob-
lem (Line 3). However, in our experiments, ∥∇h0

1∥/∥∇hk
1∥ ≈ 0.1 was usually enough to achieve

convergence.

7.1 EXPERIMENTS WITH ALGORITHM 1

In this subsection, we use ResNet-18 (Meng et al., 2019) to classify CIFAR-10 (Krizhevsky et al.,
2009). This is a 10-class dataset containing 50, 000 training and 10, 000 test samples.

Experimental setup. The server holds 15, 000 training samples, while the remaining 35, 000 are
distributed across 70 clients. We solve the problem 3 with the cross-entropy loss function. The
training data is split into two groups: some amount of classes belongs to one, and the remaining ones
to another. To simulate a scenario with both rare and common data modes, we manually introduce
a class distribution shift via a constant κ. It is defined as the ratio of group-one samples stored on
the server to the total size of its local dataset. We include a comprehensive study on robustness to κ
values. We also note that the first convolution in ResNet-18 is modified, since the input images have
sizes of 32× 32 (see the attached code).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA (ours)

Adam
AEG
Mirror
FedProx
Scaffold

Figure 1: Comparison of HASCA to competitors.
5 classes are represented on server with κ = 0.8.
Initial step size θ0 is set to 0.3. Number of calls
of clients from Mf is taken as a criterion.

Tuning of Algorithm 1. To effectively navi-
gate the complex loss landscape of a neural net-
work, we design a practical version of Algo-
rithm 1. To maintain computational efficiency,
each local device processes only a batch of its
samples per iteration. To align with the theory
and approximate full gradients on average, we
smooth et with its history as a running average.
Moreover, obsolescence of the reference wt

(see Line 2 of Algorithm 1) becomes increas-
ingly significant as the optimization approaches
the optimum, limiting accuracy to around 60%.
Thus, another crucial modification involves in-
troducing a parameter αt to control the influ-
ence of server’s descent directions. To achieve
competitive performance, we decrease αt from
1 to 0.2 during training. To sum up, At

θ from Line 3 is modified as follows:

At
θ(x) = ⟨αtmt, x⟩+ 1

2θt
∥x− xt∥2 + h1(x),

where mt = βmt−1 + (1− β)et, θt decreases 30% of the initial value, β is set to 0.9.

Missing classes 50% 60% 70% 80%
Test accuracy 86.5% 85.8% 83.7% 84.3%

Table 1: Test accuracies depending on the proportion of
classes poor represented on server. HASCA is used as an
optimizer. κ is set to 0.8.

Discussion of the results. Figure 1
illustrates that incomplete coverage of
training data by the server does not harm
the quality of approximation. When half
of the classes are poorly represented on
the server, classic distributed methods
experience degradation caused by the
presence of a poorly conditioned loss component (the numbers of ∇f and ∇g coincide). Our
method is free of this drawback and can maintain performance even if the server does not have
much knowledge. Moreover, the ablation study demonstrates robustness to further reduction in the
number of classes represented on the server. Table 1 shows that acceptable quality is maintained
even when 80% of the data modes are represented only on clients. Additional experiments can be
found in Appendix.

7.2 EXPERIMENTS WITH ALGORITHM 2

0 100 200 300 400 500 600 700
xhi calls

50

55

60

65

70

75

80

Ac
cu

ra
cy HASCA(ours)

Adam
MirrorProx
ExtraGrad
FedProx
Scaffold

Figure 2: Comparison of C-HASCA to mentioned
competitors. Number of ∇xhi is taken as a crite-
rion. θ0 is set to 0.001 without scheduling.

Here, we solve the binary classification prob-
lem on Avito1 text+image multi-modal dataset.

Experimental setup. The server holds 60000
samples, while the remaining 140000 are inde-
pendently shared between 70 clients. We feed
the outputs of ResNet-18 (Meng et al., 2019)
and BERT (Devlin et al., 2019) into a train-
able classification layer. We numerically ob-
serve δx ≈ 500 and δy ≈ 250000.

Tuning of Algorithm 2. To make a single run
faster, we choose p = 0.04. Algorithm 2 is
modified with Adam-like momentum and adap-
tive stepsize with default parameters β1 = 0.9,
β2 = 0.999. We do not use any scheduler in this experiment.

Discussion of the results. Figure 2 demonstrates the number of evaluations of a well-conditioned
oracle ∇xh. The communication efficiency of competing methods suffers due to image processing.
At the same time, it is possible to evaluate the gradient based on parameters corresponding to textual
modality much less frequently by using C-HASCA.

1https://www.kaggle.com/datasets/antonoof/avito-data

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. Advances in neural in-
formation processing systems, 30, 2017.

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in neural information processing systems, 28, 2015.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1):165–
214, 2023.

Aleksandr Beznosikov and Alexander Gasnikov. Compression and data similarity: Combination
of two techniques for communication-efficient solving of distributed variational inequalities. In
International Conference on Optimization and Applications, pages 151–162. Springer, 2022.

Aleksandr Beznosikov, Eduard Gorbunov, and Alexander Gasnikov. Derivative-free method for
composite optimization with applications to decentralized distributed optimization. IFAC-
PapersOnLine, 53(2):4038–4043, 2020.

Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov. Distributed
saddle-point problems under data similarity. Advances in Neural Information Processing Systems,
34:8172–8184, 2021.

Ekaterina Borodich, Georgiy Kormakov, Dmitry Kovalev, Aleksandr Beznosikov, and Alexander
Gasnikov. Optimal algorithm with complexity separation for strongly convex-strongly concave
composite saddle point problems. arXiv preprint arXiv:2307.12946, 2023.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
ponents with random forests. In European Conference on Computer Vision, 2014.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. arXiv preprint arXiv:1710.11606, 2017.

Cheng Chen, Luo Luo, Weinan Zhang, and Yong Yu. Efficient projection-free algorithms for saddle
point problems. Advances in Neural Information Processing Systems, 33:10799–10808, 2020.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 153(1):235–256, 2007.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171–4186, 2019.

Roman Emelyanov, Andrey Tikhomirov, Aleksandr Beznosikov, and Alexander Gasnikov. Ex-
tragradient sliding for composite non-monotone variational inequalities. arXiv preprint
arXiv:2403.14981, 2024.

Jing Gao, Peng Li, Zhikui Chen, and Jianing Zhang. A survey on deep learning for multimodal data
fusion. Neural computation, 32(5):829–864, 2020.

Alexander Gasnikov, Dmitry Kovalev, and Grigory Malinovsky. An optimal algorithm for strongly
convex min-min optimization. arXiv preprint arXiv:2212.14439, 2022.

Alexander Vladimirovich Gasnikov, Darina Mikhailovna Dvinskikh, Pavel Evgenievich Dvurechen-
sky, Dmitry Igorevich Kamzolov, Vladislav Vyacheslavovich Matyukhin, Dmitry Arkadievich
Pasechnyuk, Nazarii Konstantinovich Tupitsa, and Aleksey Vladimirovich Chernov. Accelerated
meta-algorithm for convex optimization problems. Computational Mathematics and Mathemati-
cal Physics, 61:17–28, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Egor Gladin, M Alkousa, and A Gasnikov. Solving convex min-min problems with smoothness
and strong convexity in one group of variables and low dimension in the other. Automation and
Remote Control, 82(10):1679–1691, 2021a.

Egor Gladin, Abdurakhmon Sadiev, Alexander Gasnikov, Pavel Dvurechensky, Aleksandr
Beznosikov, and Mohammad Alkousa. Solving smooth min-min and min-max problems by mixed
oracle algorithms. In International Conference on Mathematical Optimization Theory and Oper-
ations Research, pages 19–40. Springer, 2021b.

Geovani Nunes Grapiglia and Yu Nesterov. Adaptive third-order methods for composite convex
optimization. SIAM Journal on Optimization, 33(3):1855–1883, 2023.

Ali Hatamizadeh, Greg Heinrich, Hongxu Yin, Andrew Tao, Jose M Alvarez, Jan Kautz, and
Pavlo Molchanov. Fastervit: Fast vision transformers with hierarchical attention. arXiv preprint
arXiv:2306.06189, 2023.

Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statisti-
cally preconditioned accelerated gradient method for distributed optimization. In International
conference on machine learning, pages 4203–4227. PMLR, 2020.

Anastasiya Ivanova, Pavel Dvurechensky, Evgeniya Vorontsova, Dmitry Pasechnyuk, Alexander
Gasnikov, Darina Dvinskikh, and Alexander Tyurin. Oracle complexity separation in convex
optimization. Journal of Optimization Theory and Applications, 193(1):462–490, 2022.

Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities with
stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and trends® in machine learning,
14(1–2):1–210, 2021.

Dmitry Kamzolov, Alexander Gasnikov, and Pavel Dvurechensky. Optimal combination of tensor
optimization methods. In International Conference on Optimization and Applications, pages
166–183. Springer, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pages 5132–5143. PMLR, 2020.

Ahmed Khaled and Chi Jin. Faster federated optimization under second-order similarity. arXiv
preprint arXiv:2209.02257, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International conference on machine learning, pages 2698–2707. PMLR, 2018.

Jakub Konečný, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016.

Dmitry Kovalev and Ekaterina Borodich. On linear convergence in smooth convex-concave
bilinearly-coupled saddle-point optimization: Lower bounds and optimal algorithms. arXiv
preprint arXiv:2411.14601, 2024.

Dmitry Kovalev, Aleksandr Beznosikov, Ekaterina Borodich, Alexander Gasnikov, and Gesualdo
Scutari. Optimal gradient sliding and its application to optimal distributed optimization under
similarity. Advances in Neural Information Processing Systems, 35:33494–33507, 2022.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Kuruzov, Alexander Rogozin, Demyan Yarmoshik, and Alexander Gasnikov. The mirror-
prox sliding method for non-smooth decentralized saddle-point problems. arXiv preprint
arXiv:2210.06086, 2022.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical Program-
ming, 133(1):365–397, 2012.

Guanghui Lan. Gradient sliding for composite optimization. Mathematical Programming, 159:
201–235, 2016.

Guanghui Lan and Yuyuan Ouyang. Accelerated gradient sliding for structured convex optimization.
arXiv preprint arXiv:1609.04905, 2016.

Guanghui Lan and Yuyuan Ouyang. Mirror-prox sliding methods for solving a class of monotone
variational inequalities. arXiv preprint arXiv:2111.00996, 2021.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
programming, 171(1):167–215, 2018.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos:
An experimental study. In 2022 IEEE 38th international conference on data engineering (ICDE),
pages 965–978. IEEE, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. Page: A simple and optimal prob-
abilistic gradient estimator for nonconvex optimization. In International conference on machine
learning, pages 6286–6295. PMLR, 2021.

Victor Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Yeung, and James Y Zou. Mind the
gap: Understanding the modality gap in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:17612–17625, 2022.

Dachao Lin, Yuze Han, Haishan Ye, and Zhihua Zhang. Stochastic distributed optimization un-
der average second-order similarity: Algorithms and analysis. Advances in Neural Information
Processing Systems, 36, 2024.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 59:85–116, 2022.

Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by first-
order methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent. arXiv
preprint arXiv:1910.09529, 2019.

Debin Meng, Xiaojiang Peng, Kai Wang, and Yu Qiao. Frame attention networks for facial expres-
sion recognition in videos. In 2019 IEEE international conference on image processing (ICIP),
pages 3866–3870. IEEE, 2019.

Dmitry Metelev, Savelii Chezhegov, Alexander Rogozin, Aleksandr Beznosikov, Alexander
Sholokhov, Alexander Gasnikov, and Dmitry Kovalev. Decentralized finite-sum optimization
over time-varying networks. arXiv preprint arXiv:2402.02490, 2024.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Yurii Nesterov and Sebastian U Stich. Efficiency of the accelerated coordinate descent method on
structured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

Quynh Nguyen and Matthias Hein. Optimization landscape and expressivity of deep cnns. In
International conference on machine learning, pages 3730–3739. PMLR, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization,
1(3):127–239, 2014.

Boris T Polyak. Introduction to optimization. 1987.

Shourav B Rabbani, Ivan V Medri, and Manar D Samad. Attention versus contrastive learning of
tabular data: a data-centric benchmarking. International Journal of Data Science and Analytics,
pages 1–23, 2024.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Interspeech, volume 2014,
pages 1058–1062. Singapore, 2014.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization using
an approximate newton-type method. In International conference on machine learning, pages
1000–1008. PMLR, 2014.

Pramila P Shinde and Seema Shah. A review of machine learning and deep learning applications.
In 2018 Fourth international conference on computing communication control and automation
(ICCUBEA), pages 1–6. IEEE, 2018.

Ivan Stepanov, Artyom Voronov, Aleksandr Beznosikov, and Alexander Gasnikov. One-point
gradient-free methods for composite optimization with applications to distributed optimization.
arXiv preprint arXiv:2107.05951, 2021.

Sebastian U Stich. Local sgd converges fast and communicates little. arXiv preprint
arXiv:1805.09767, 2018.

Shiliang Sun, Zehui Cao, Han Zhu, and Jing Zhao. A survey of optimization methods from a
machine learning perspective. IEEE transactions on cybernetics, 50(8):3668–3681, 2019.

Ye Tian, Gesualdo Scutari, Tianyu Cao, and Alexander Gasnikov. Acceleration in distributed op-
timization under similarity. In International Conference on Artificial Intelligence and Statistics,
pages 5721–5756. PMLR, 2022.

Vladislav Tominin, Yaroslav Tominin, Ekaterina Borodich, Dmitry Kovalev, Alexander Gasnikov,
and Pavel Dvurechensky. On accelerated methods for saddle-point problems with composite
structure. arXiv preprint arXiv:2103.09344, 2021.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S
Rellermeyer. A survey on distributed machine learning. Acm computing surveys (csur), 53(2):
1–33, 2020.

Blake Woodworth, Konstantin Mishchenko, and Francis Bach. Two losses are better than one:
Faster optimization using a cheaper proxy. In International Conference on Machine Learning,
pages 37273–37292. PMLR, 2023.

Blake E Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives.
Advances in neural information processing systems, 29, 2016.

Xiao-Tong Yuan and Ping Li. On convergence of distributed approximate newton methods: Glob-
alization, sharper bounds and beyond. Journal of Machine Learning Research, 21(206):1–51,
2020.

Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. A survey on federated learning.
Knowledge-Based Systems, 216:106775, 2021.

Yuchen Zhang and Xiao Lin. Disco: Distributed optimization for self-concordant empirical loss. In
International conference on machine learning, pages 362–370. PMLR, 2015.

Haoyu Zhao, Zhize Li, and Peter Richtárik. Fedpage: A fast local stochastic gradient method for
communication-efficient federated learning. arXiv preprint arXiv:2108.04755, 2021.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global
minimum in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

CONTENTS

1 Introduction 1

2 Notation 3

3 Our Contribution 3

4 Related Works 4
4.1 Complexity Separation . 4
4.2 Hessian Similarity . 5

5 Setup 5

6 Algorithms and Analysis 5
6.1 Mode-Based Structured Heterogeneity . 5

6.1.1 Lower Bounds . 7
6.2 Coordinate-Based Structured Heterogeneity . 7

6.2.1 Lower Bounds . 8

7 Numerical Experiments 8
7.1 Experiments with Algorithm 1 . 8
7.2 Experiments with Algorithm 2 . 9

A Additional Experiments 16
A.1 Algorithm 1, κ = 0.8 . 16
A.2 Algorithm 1, Additional κ’s . 16
A.3 Algorithm 1, Robustness to p . 17
A.4 Algorithm 1, robustness to class imbalance . 18
A.5 Algorithm 1, Runtime . 18
A.6 Scalability of Algorithm 1 . 19

B Proof of Lemma 1 19

C Proof of Theorem 1 20

D Proof of Corollary 1 23

E Proof of Theorem 2 23

F Proof of Corollary 2 25

G Proof of Theorem 3 28

H Inexact Inner Minimization 29

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To ensure reproducibility, we attach the code: https://anonymous.4open.science/r/
hasca-031F/README.md

A ADDITIONAL EXPERIMENTS

A.1 ALGORITHM 1, κ = 0.8

Recall that δf < δg . In this experiment, the server holds only 20% (12000) of the samples associated
with g, which makes the heterogeneity bound δg approximately 4 times more than for f . For existing
similarity-aware techniques, this leads to an increased number of oracle calls for both components
(see Figure 3). In contrast, our approach accounts for this shift in mode heterogeneity and allows
one of the gradients to be evaluated less frequently than the other while maintaining training quality.
Notably, our method not only demonstrates faster loss decrease on the training set but also achieves
superior accuracy. This highlights its potential for practical extensions that adapt well to the highly
non-convex landscape of neural networks. In terms of the number of evaluations of the g component,
which the server approximates poorly, our method remains competitive, which meets our theoretical
guarantees, mentioned in the Corollary 1.

0 250 500 750 1000 1250 1500 1750 2000
fi calls

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
ss

HASCA (ours)
Adam
AEG
Mirror
FedProx
Scaffold

0 250 500 750 1000 1250 1500 1750 2000
gi calls

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Lo
ss

HASCA (ours)
Adam
AEG
Mirror
FedProx
Scaffold

(a) Dynamics of cross-entropy loss on the training
set.

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA (ours)

Adam
AEG
Mirror
FedProx
Scaffold

0 250 500 750 1000 1250 1500 1750 2000
gi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA (ours)

Adam
AEG
Mirror
FedProx
Scaffold

(b) Dynamics of accuracy on the test set.

Figure 3: Comparison of HASCA to mentioned competitors. Number of synchronizations with
clients from Mf is taken as a criterion. κ is set to 0.8, and initial step size θ0 is set to 0.3

A.2 ALGORITHM 1, ADDITIONAL κ’S

In the main part of our work, we focus on moderate setting, which best captures the essence of the
proposed approach. Indeed, for κ = 0.8, Adam still maintains strong performance, while the gap
between classic similarity-accounted schemes and our approach becomes noticeable. Nevertheless,
for the sake of methodological completeness, we also conduct experiments in two extreme cases.

Experiments with κ = 0.6. This setup assumes that the class imbalance on the server is minimal.
We test this scenario to ensure that the method does not become ineffective as κ decreases. Figure
4a shows that with low values of κ ≈ 0.5 HASCA (Algorithm 1) and Mirror Prox share the same
quality.

Experiments with κ = 0.95. This extremely heterogeneous scenario is designed to demonstrate
the method’s robustness to increasing distribution shift and to explore its full potential advantage

16

https://anonymous.4open.science/r/hasca-031F/README.md
https://anonymous.4open.science/r/hasca-031F/README.md

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 250 500 750 1000 1250 1500 1750 2000
fi calls

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

HASCA (ours)
Adam
AEG
Mirror
FedProx
Scaffold

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA (ours)

Adam
AEG
Mirror
FedProx
Scaffold

(a) Dynamics of train cross-entropy loss and test ac-
curacy, κ = 0.6.

0 200 400 600 800 1000 1200 1400
fi calls

0
1
2
3
4
5
6
7
8

Lo
ss

HASCA (ours)
Adam
AEG
Mirror
FedProx
Scaffold

0 200 400 600 800 1000 1200 1400
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA (ours)

Adam
AEG
Mirror
FedProx
Scaffold

(b) Dynamics of train cross-entropy loss and test
accuracy, κ = 0.95.

Figure 4: Comparison of HASCA to mentioned competitors. Number of synchronizations with
clients from Mf is taken as a criterion. Initial θ0 is set above 0.5 and quickly decreased to 0.05
and 0.001, respectively

over current state-of-the-art approaches. Figure 4b shows that with extreme κ = 0.95 only HASCA
(Algorithm 1) has the ability to achieve ResNet-18’s accuracy limits.

A.3 ALGORITHM 1, ROBUSTNESS TO p

0 250 500 750 1000 1250 1500 1750 2000
fi calls

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

p=0.5
p=0.3
p=0.4
p=0.6
p=0.7

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

p=0.5
p=0.3
p=0.4
p=0.6
p=0.7

Figure 5: Robustness of HASCA to changes in p. κ is set to 0.8, and initial step size θ0 is set to 0.3

In this section, we study the robustness of our schemes to variations in the probability of full aggre-
gation p. Theorem 1 provides the optimal value p = δf/(δf+δg). Although this quantity cannot be
computed exactly in practice, it can be evaluated via approximations δf ∼ 1/

√
Nf and δg ∼ 1/

√
Ng

(Hendrikx et al., 2020). Here, Nf and Ng denote the number of samples in the server’s dataset asso-
ciated with f and g, respectively. Hence, the initialization p0 for tuning should be chosen according
to p0 =

√
Ng/(

√
Nf+

√
Ng).

If κ is set to 0.8, the optimal choice is p = 0.5. Figure 5 shows that even under substantial devi-
ations from the tuned value of p, the performance of Algorithm 1 does not deteriorate drastically.
The degradations shown in Figure 5 can be explained by the fact that when p is too small, the server
communicates with Mg less frequently than would be appropriate given the similarity of optimiza-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

tion landscapes. As a result, although Algorithm 1 with p = 0.3 converges faster in the initial
iterations, it slows down once the server’s knowledge becomes insufficient for the model to continue
successfully learning the underlying dependencies. Conversely, when p is too large, we observe a
slowdown caused by overly frequent full aggregations.

A.4 ALGORITHM 1, ROBUSTNESS TO CLASS IMBALANCE

In the main part of this work, we considered that server’s data represents the half of all classes well.
Such a setup is fairly mild. In this section, we examine how the quality of learning changes when
less than 50% of classes can be well approximated by the server. We conduct the ablation study with
κ = 0.8.
As mentioned earlier, our algorithm shows strong robustness to the decreasing number of well-
known classes stored by the server. Actually, such cases are even more heterogeneous than κ = 0.95
case. Moreover, even with q = 20%, when each server batch contains only 2.5% of each client class,
no quality drops are observed.

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA(ours)

Adam
ExtraGrad
MirrorProx
FedProx
Scaffold

(a) q = 40%

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA(ours)

Adam
ExtraGrad
MirrorProx
FedProx
Scaffold

(b) q = 30%

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy HASCA(ours)

Adam
ExtraGrad
MirrorProx
FedProx
Scaffold

(c) q = 20%

Figure 6: Performance of HASCA with different proportion q of well-approximated classes. Number
of synchronizations with clients from Mf is taken as a criterion. κ is set to 0.8

A.5 ALGORITHM 1, RUNTIME

Since Algorithms 1, 2 involve inner minimization, there is the question of their runtime compared
to competitors. In this section, we conduct a numerical study of execution time in federated net-
works consisting of 10 devices with κ = {0.6, 0.8, 0.95}. The network bandwidth for client-server
communication is approximately 25Mbps. The inner minimization is solved by the server in 8–14
seconds.

Time (Sec) 1250 2500 5000 7500 10000 12500 15000
ExtraGrad 32.77% 40.75% 48.92% 55.53% 57.68% 58.67% 61.30%
MirrorProx 53.26% 64.4% 75.33% 78.58% 81.59% 81.91% 82.17%

Adam 53.92% 62.18% 69.36% 73.44% 73.94% 74.77% 79.69%
FedProx 70.91% 72.56% 76.22% 77.02% 77.35% 77.85% 78.62%
SCAFFOLD 68.91% 70.26% 74.42% 75.06% 75.84% 77.22% 76.45%
HASCA 59.94% 68.53% 76.76% 80.16% 82.21% 82.96% 83.33%

Table 2: Comparison of HASCA with competitors in terms of runtime. κ is set to 0.6. At each
timestamp, we highlight the best test accuracy.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Time (Sec) 1250 2500 5000 7500 10000 12500 15000
ExtraGrad 30.45% 34.42% 40.13% 43.10% 45.47% 45.70% 46.20%
MirrorProx 37.27% 47.84% 57.79% 65.86% 69.26% 71.17% 72.04%

Adam 50.54% 60.83% 66.71% 70.61% 71.61% 73.42% 79.54%
FedProx 64.66% 67.16% 73.62% 75.54% 76.71% 76.98% 77.71%
SCAFFOLD 61.86% 65.62% 71.82% 71.85% 72.98% 73.91% 74.24%
HASCA 42.93% 55.39% 69.43% 73.60% 77.22% 79.02% 81.02%

Table 3: Comparison of HASCA with competitors in terms of runtime. κ is set to 0.8. At each
timestamp, we highlight the best test accuracy.

Time (Sec) 1250 2500 5000 7500 10000 12500 15000
ExtraGrad 26.95% 28.54% 30.79% 33.08 33.82% 34.94% 33.44%
MirrorProx 33.2% 37.63% 45.89% 55.25% 65.94% 68.43% 69.71%

Adam 40.75% 52.85% 56.59% 62.53% 68.99% 69.08% 75.68%
FedProx 57.26% 61.67% 68.05% 71.92% 73.65% 74.82% 75.53%
SCAFFOLD 54.06% 58.51% 65.25% 68.50% 71.38% 72.41% 72.93%
HASCA 42.80% 58.44% 66.10% 63.19% 71.13% 75.90% 75.69%

Table 4: Comparison of HASCA with competitors in terms of runtime. κ is set to 0.95. At each
timestamp, we highlight the best test accuracy.

Tables 2-4 reveal several observations. First, as κ → 0.5, similarity-based methods (MirrorProx,
ExtraGrad) tend to outperform Adam, SCAFFOLD and FedProx. Moreover, the performance
of MirrorProx becomes close to Algorithm 1, since δf + δg decreases while δf increases. This
is consistent with the fact that Algorithm 1 coincides with MirrorProx when κ = 0.5. Second,
as κ → 1, the gap between Algorithm 1 and other Mirror-like schemes increases, since the sum
δf + δg grows while δf decreases. This behavior is also consistent with the analysis and explains
the superior performance of our method in heterogeneous federated learning scenarios.
A.6 SCALABILITY OF ALGORITHM 1

In this section, we discuss the scalability of our approach. We use FOOD101 Bossard et al. (2014)
with FASTERVIT (Hatamizadeh et al., 2023) for fine-tuning, providing a complex benchmark for
comparing Algorithm 1.

of ∇f calls 500 1000 1500 2000 2250
Adam 46.53% 62.46% 68.72% 73.90% 74.43%
HASCA 47.40% 63.74% 71.26% 74.85% 75.40%

Table 5: Comparison of HASCA with Adam. κ is set to 0.8. At each stamp, we highlight the best
test accuracy.

Table 5 demonstrates that our method retains its properties when transitioning from training a fairly
simple model with 11.5M parameters to fine-tuning the complex ViT-270M model.

B PROOF OF LEMMA 1

Lemma 2 (Lemma 1). Suppose Assumptions 1, 2 hold. Then, for Algorithm 1 it implies

Eet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]
≤
(
1− p

2

)
∥et −∇(h− h1)(x

t)∥2 + 2

p
δ2f∥xt+1 − xt∥2.

Proof. Let us note that the update of et (see Line 2 of Algorithm 1) can be rewritten as

et =

{
∇(h− h1)(x

t), with probability p

et−1 +∇(g − g1)(x
t)−∇(g − g1)(x

t−1), with probability 1− p
.

In this proof, we exploit this equivalent representation of et. We take
∇(g − g1)−∇(h− h1) = ∇(f − f1)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

into account and write
Eet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]
=(1− p)∥et −∇(g − g1)(x

t)−∇(f − f1)(x
t+1)∥2.

Adding and subtracting ∇(h− h1)(x
t), we derive

Eet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]
≤(1− p)(1 + c)∥et −∇(h− h1)(x

t)∥2

+

(
1 +

1

c

)
∥∇(f − f1)(x

t)−∇(f − f1)(x
t+1)∥2.

Appplying Assumption 2 to the right hand of this inequality, we get
Eet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]
≤(1− p)(1 + c)∥et −∇(h− h1)(x

t)∥2

+

(
1 +

1

c

)
δ2f∥xt+1 − xt∥2.

To obtain a linear decrease in approximation drift, we choose c = p
2 and arrive at

Eet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]
≤
(
1− p

2

)
∥et −∇(h− h1)(x

t)∥2 + 2

p
δ2f∥xt+1 − xt∥2.

This concludes the proof of Lemma 1.

C PROOF OF THEOREM 1

Theorem 4 (Theorem 1). Suppose Assumptions 1, 2 hold. Consider θ ≤ min {1/8(δf+δg), p/8
√
2δf}.

Then, Algorithm 1 requires

O
(
δf + δg

ε2
+

δf
pε2

)
iterations

to achieve an arbitrary ε-solution, where ε2 = E
[∥∥∥ 1

T

∑T
t=1 ∇h (xt)

∥∥∥2].

Proof. Since our goal is to provide a heterogeneity-accounted analysis, we can not rely on the
smoothness of the objective, which serves as the basic descent lemma in nonconvex analysis. In-
stead, we derive its analogue. Let us start with

h(xt+1)− h(xt) =

∫ 1

0

dh(xt + τ(xt+1 − xt))dτ =

∫ 1

0

⟨∇h(xt + τ(xt+1 − xt)), xt+1 − xt⟩

and the same

h1(x
t+1)− h1(x

t) =

∫ 1

0

⟨∇h1(x
t + τ(xt+1 − xt)), xt+1 − xt⟩.

Summing up this inequalities, we obtain

h(xt+1)− h(xt) =

∫ 1

0

⟨∇(h− h1)(x
t + τ(xt+1 − xt)), xt+1 − xt⟩dτ

+ h1(x
t+1)− h1(x

t).

(5)

Since xt+1 is the minimum of At
θ defined in Line 3, we have

h1(x
t+1)− h(xt) ≤ −⟨et, xt+1 − xt⟩ − 1

2θ
∥xt+1 − xt∥2.

Substituting it into equation 5 and applying ∇(h− h1)(x
t) as a smart zero, we get

h(xt+1)− h1(x
t) ≤− 1

2θ
∥xt+1 − xt∥2

+

∫ 1

0

⟨∇(h− h1)(x
t + τ(xt+1 − xt))−∇(h− h1)(x

t), xt+1 − xt⟩dτ

+ ⟨∇(h− h1)(x
t)− et, xt+1 − xt⟩.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

After applying Young’s inequality, this turns into

h(xt+1)− h(xt) ≤− 1

2θ
∥xt+1 − xt∥2

+

∫ 1

0

⟨∇(h− h1)(x
t + τ(xt+1 − xt))−∇(h− h1)(x

t), xt+1 − xt⟩dτ

+
α

2
∥∇(h− h1)(x

t)− et∥2 + 1

2α
∥xt+1 − xt∥2.

(6)

Let us consider the integral separately. We have∫ 1

0

⟨∇(h− h1)(x
t + τ(xt+1 − xt))−∇(h− h1)(x

t), xt+1 − xt⟩dτ

≤
∫ 1

0

∥∇(h− h1)(x
t + τ(xt+1 − xt))−∇(h− h1)(x

t)∥∥xt+1 − xt∥dτ

≤
∫ 1

0

(δf + δg)∥xt + τ(xt+1 − xt)− xt∥∥xt+1 − xt∥dτ

=

∫ 1

0

τ(δf + δg)∥xt+1 − xt∥2dτ

=(δf + δg)∥xt+1 − xt∥2.
We substitute this into equation 6 with α = 2θ and derive

h(xt+1)− h(xt) ≤
(
− 1

4θ
+ δf + δg

)
∥xt+1 − xt∥2 + θ∥et −∇(h− h1)(x

t)∥2. (7)

Let us consider Φt = h(xt)− h(x∗) +A∥et −∇(h− h1)(x
t)∥2 as a potential function. We begin

with writing a recursion
Φt+1 =[h(xt)− h(x∗)] + [h(xt+1)− h(xt)] +A∥et+1 −∇(h− h1)(x

t+1)∥2

≤[h(xt)− h(x∗)] + θ∥et −∇(h− h1)(x
t)∥2 +

(
− 1

4θ
+ δf + δg

)
∥xt+1 − xt∥2

+A∥et+1 −∇(h− h1)(x
t+1)∥2,

where the last transition exploits equation 7. Next, we apply Lemma 1 and derive
Eet+1

[
Φt+1

]
=[h(xt)− h(x∗)] + [h(xt+1)− h(xt)] +AEet+1

[
∥et+1 −∇(h− h1)(x

t+1)∥2
]

≤[h(xt)− h(x∗)] + θ∥et −∇(h− h1)(x
t)∥2 +

(
− 1

4θ
+ δf + δg

)
∥xt+1 − xt∥2

+A
(
1− p

2

)
∥et −∇(h− h1)(x

t)∥+ 2A

p
δ2f∥xt+1 − xt∥2.

After grouping terms, we arrive at

Eet+1

[
Φt+1

]
≤Φt +

(
− 1

4θ
+ δf + δg +

2A

p
δ2f

)
∥xt+1 − xt∥2

+

(
θ − Ap

2

)
∥et −∇(h− h1)(x

t)∥.
(8)

Let us deal with the first term of equation 8. First, let us note that Line 3 of Algorithm 1 implies

0 =et +∇(h1 − h)(xt+1) +∇h(xt+1) +
xt+1 − xt

θ

=[et −∇(h− h1)(x
t)] + [∇(h− h1)(x

t+1)−∇(h− h1)(x
t)] +∇h(xt+1) +

xt+1 − xt

θ
.

This implies
∥xt+1 − xt∥2 =θ2∥[et −∇(h− h1)(x

t)] + [∇(h− h1)(x
t+1)−∇(h− h1)(x

t)] +∇h(xt+1)∥2.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Next, we employ the trick. We write
∥∇h(xt+1)∥2 =∥∇h(xt+1) + [et −∇(h− h1)(x

t)] + [∇(h− h1)(x
t+1)−∇(h− h1)(x

t)]

− [et −∇(h− h1)(x
t)]− [∇(h− h1)(x

t+1)−∇(h− h1)(x
t)]∥2

≤3∥∇h(xt+1) + [et −∇(h− h1)(x
t)] + [∇(h− h1)(x

t+1)−∇(h− h1)(x
t)]∥2

+ 3∥et −∇(h− h1)(x
t)∥2 + 3∥∇(h− h1)(x

t+1)−∇(h− h1)(x
t)∥2.

This implies
∥∇h(xt+1) + [et −∇(h− h1)(x

t)] + [∇(h− h1)(x
t+1)−∇(h− h1)(x

t)]∥2

≥1

3
∥∇h(xt+1)∥2 − ∥et −∇(h− h1)(x

t)∥2 − ∥∇(h− h1)(x
t+1)−∇(h− h1)(x

t)∥2

≥1

3
∥∇h(xt+1)∥2 − ∥et −∇(h− h1)(x

t)∥2 − (δf + δg)
2∥xt+1 − xt∥2.

Thus, there is a lower bound on the update:

∥xt+1 − xt∥2 ≥θ2

3
∥∇h(xt+1)∥2 − θ2∥et −∇(h− h1)(x

t)∥2 − θ2(δf + δg)
2∥xt+1 − xt∥2.

After rearranging terms, we get(
1− θ2(δf + δg)

2
)
∥xt+1 − xt∥2 ≥θ2

3
∥∇h(xt+1)∥2 − θ2∥et −∇(h− h1)(x

t)∥2.

Due to the choice of parameters outlined in Theorem 1, we have θ ≤ 1/2(δf+δg) which implies

1− θ2(δf + δg)
2 ≥ 1− 1

4
=

3

4
.

Thus, we have

∥xt+1 − xt∥2 ≥4θ2

9
∥∇h(xt+1)∥2 − 4θ2

3
∥et −∇(h− h1)(x

t)∥2. (9)

Comparing equation 8 and equation 9, we observe that the variance could be included in the resulting
inequality with negative sign only if A < 2θ/p. We choose A = 4θ/p. This means that equation 8
transforms into

Eet+1

[
Φt+1

]
≤Φt +

(
− 1

4θ
+ δf + δg +

8θδ2f
p2

)
∥xt+1 − xt∥2 − θ∥et −∇(h− h1)(x

t)∥.

To substitute equation 9, the first term of this inequality should be negative. Let us show that it is
actually negative because of choice of θ (see Theorem 1). On the one hand, θ ≤ 1/8(δf+δg), which
implies (δf + δg) ≤ 1/8θ. On the other hand, θ ≤ p/8

√
2δf , which implies 8θδ2f/p2 ≤ 1/16θ. Thus, we

have

− 1

4θ
+ δf + δg +

8θδ2f
p2

≤ − 1

16θ
< 0.

Thus, we can apply equation 9 and deduce

Eet+1

[
Φt+1

]
≤ Φt − θ

36
∥∇h(xt+1)∥2 +

(
1

12
− 1

)
θ∥et −∇(h− h1)(x

t)∥2,

which implies

Eet+1

[
∥∇h(xt+1)∥2

]
≤ 36

θ
[Φt − Φt+1].

Taking full expectation and accounting for e0 = ∇(h− h1)(x
0), we obtain

E

∥∥∥∥∥ 1T
T∑

t=1

∇h(xt)

∥∥∥∥∥
2
 ≤ 36[h(x0)− h(x∗)]

θ
= O

((
δf + δg

T
+

δf
pT

)
[h(x0)− h(x∗)]

)
.

This concludes the proof of Theorem 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D PROOF OF COROLLARY 1

Corollary 3 (Corollary 1). Consider the conditions of Theorem 1. Algorithm 1 with p = δf/(δf+δg)

requires

O
(
δf
ε2

)
, O

(
δg
ε2

)
calls

of ∇f , ∇g, respectively, to reach an arbitrary ε-solution

Proof. In Theorem 1 we have established that Algorithm 1 requires O ((δf+δg)/ε2 + δf/pε2) itera-
tions to converge. Since ∇g is called at every iteration, its oracle complexity is the same. However,
∇f is evaluated with probability p, i.e. 1/p times more rarely on average. Thus, its oracle complexity
is O (p(δf+δg)/ε2 + δf/ε2). The choice p = δf/(δf+δg) leads to the desired statement.

E PROOF OF THEOREM 2

To derive lower bounds for the nonconvex problem 3, we rely on the concept of zero-chain function.

Definition 2. Let us define

prog(x) =
{
0, if x = 0

max1≤j≤d{j : [x]j ̸= 0}, else
.

The function l is called zero-chain, if
prog(∇l(x)) ≤ prog(x) + 1.

This means that if the process starts at the point x = 0, then after a gradient estimation one can earn
at most one non-zero coordinate of x. In this section, we work zero-chain functions of the form

l(x) = −Ψ(1)Φ([x]1) +

d∑
j=2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) ,

where

Ψ(z) =

{
0, z ≤ 1

2

exp
{
1− 1

(2z−1)2

}
, z > 1

2

,

Φ(z) =
√
e

∫ z

−∞
exp

{
− t2

2

}
dt.

It has already been shown by Arjevani et al. (2023) that l satisfies the following properties.

1. l(x)− infx∈Rd l(x) ≤ ∆0d with ∆0 = 12 for every x ∈ Rd;

2. l(x) is L0-smooth with L0 = 152;

3. ∥∇l(x)∥∞ ≤ G0 with G0 = 23;

4. ∀x ∈ Rd : [x]d = 0 → ∥∇l(x)∥ ≥ 1.

Moreover, let us define lj as follows:

lj(x) = lj([x]j−1, [x]j) =

{
−Ψ(1)Φ([x]1), j = 1

Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j), j > 1
.

It was shown in (Metelev et al., 2024) that lj is also L0-smooth for every j. Now that the set of
functions has been introduced and their properties described, we proceed to the proof of Theorem 1.

Theorem 5 (Theorem 2). There exists such h, satisfying Assumptions 1, 2, that any algorithm A
(see Definition 1) requires

Ω

(
δf
ε2

)
, Ω

(
δg
ε2

)
calls

of ∇f , ∇g, respectively.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. Let us represent x ∈ Rd as x ∈ Rd1 × Rd2 , where d1 is the odd number. Based on this, we
define two sets:

S1 = {i ∈ [1, . . . , d1 + d2] : i mod 2 = 1},
S2 = [1, . . . , d1 + d2] \ S1.

Now, we further divide each of these two sets into two more subsets:
S11 = {i ∈ S1 : i ≤ d1}, S12 = {i ∈ S1 : i ∈ (d1, d1 + d2]}
S21 = {i ∈ S2 : i ≤ d1}, S22 = {i ∈ S2 : i ∈ (d1, d1 + d2]}.

Based on these sets of indices, we define f̃ and g̃:

f̃(x) = −Ψ(1)Φ([x]1) +

d1∑
j=2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) ,

g̃(x) = −Ψ(1)Φ([x]d1+1) +

d1+d2∑
j=d1+2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) .

We share these functions between clients and the server according to index sets in the following
way:

f̃1(x) = Ψ(1)Φ([x]1) +

d1∑
j∈S11,j≥2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) ,

(f̃ − f̃1)(x) =

d1∑
j∈S21,j≥2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) ,

g̃1(x) = −Ψ(1)Φ([x]d1+1) +

d1+d2∑
j∈S12,j≥d1+2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) ,

(g̃ − g̃1)(x) =

d1+d2∑
j∈S22,j≥d1+2

(Ψ(−[x]j−1)Φ(−[x]j)−Ψ([x]j−1)Φ([x]j)) .

These functions are L0-smooth, and we must re-scale them to move into the class of interest. Let us
define

f1(x) =
δ2fC

2
f

L0
f̃1

(
x

Cf

)
, (f − f1)(x) =

δ2fC
2
f

L0
f̃1

(
x

Cf

)
,

g1(x) =
δ2gC

2
g

L0
g̃1

(
x

Cg

)
, (g − g1)(x) =

δ2gC
2
g

L0
g̃1

(
x

Cg

)
.

where Cf and Cg are defined below. One can easily ensure that

∥∇2(f − f1)∥ ≤ δf , ∥∇2(g − g1)∥ ≤ δg.

Note that since f̃ , g̃ do not share any coordinates, the properties mentioned at the beginning of this
section hold for each of them separately. Therefore, we have

h(0)− inf
x∈Rd

h(x) = [f(0)− inf
x∈Rd

f(x)] + [g(0)− inf
x∈Rd

g(x)] ≤
δ2fC

2
f

L0
∆f̃d1 +

δ2gC
2
g

L0
∆g̃d2.

Consider the oracle that computes ∇f with probability p and ∇h with probability 1 (see Definition
1). Consider the number of iterations to be fixed and equal to T . Then, on average, the algorithm
can not make accessible more than ⌊pT ⌋ + 1 and T + 1 coordinates corresponding to f and g,
respectively. Considering pT ≥ 2, we define

d1 = 1 + ⌊pT ⌋ < 2pT, d2 = 1 + T ≤ 2T.

Next, let us specify the values Cf , Cg . We choose them as

C2
f =

L0∆h

δf∆f̃pT
, C2

g =
L0∆h

δg∆g̃T
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Now we use the properties mentioned in the beginning of this section and derive
E
[
∥∇h(x̂)∥2

]
≥ min

[x]d1=0,[x]d1+d2
=0

∥∇h(x)∥2 = min
[x]d1=0

∥∇f(x)∥2 + min
[x]d1+d2

=0
∥∇g(x)∥2

≥
δ2fC

2
f

L2
0

min
[x]d1=0

∥∇f̃(x)∥2 +
δ2gC

2
g

L2
0

min
[x]d1+d2

=0
∥∇g̃(x)∥2 ≥ ∆h

T

(
δf
p

+ δg

)
.

In terms of convergence to ε-solution, this means Ω (δf/pε2 + δg/ε2) and implies
Ω (δf/ε2 + pδg/ε2) , Ω (δf/pε2 + δg/ε2) evaluations of ∇f , ∇g, respectively. One can note
that the oracle complexity of ∇f calls can not be better than Ω (δf/ε2). Thus, values of p that
are less than p = δf/δg have no sense. At the same time, p ≥ δf/δg makes the estimate on ∇g
calls worse than Ω (δg/ε2). Thus, the choice of p = δf/δg leads to optimal rates for both oracles
simultaneously.

F PROOF OF COROLLARY 2

Before proceeding to the proof of Corollary 2, we first introduce omitted lemma and theorem.

Lemma 3. Suppose Assumptions 1, 3 hold. Then, for Algorithm 1 it implies

Eet+1

[
∥et+1 −∇(h− h1)(x

t+1, yt+1)∥2
]
≤
(
1− p

2

)
∥et −∇(h− h1)(x

t, yt)∥2

+
12

p
δ2f∥xt+1 − xt∥2

+
12

p
δ2xy∥yt+1 − yt∥2.

Proof. Firstly, note that
∇(h− h1)(x1, y1)−∇(h− h1)(x2, y2)

=

∫ 1

0

∇2(h− h1)(x2 + τ(x1 − x2), y2 + τ(y1 − y2)) · {x1 − x2, y1 − y2}dτ.

Further, we isolate partial derivatives in x:
∇x(h− h1)(x1, y1)−∇x(h− h1)(x2, y2)

=

∫ 1

0

∇2
xx(h− h1)(x2 + τ(x1 − x2), y2 + τ(y1 − y2)) · (x1 − x2)dτ

+

∫ 1

0

∇2
xy(h− h1)(x2 + τ(x1 − x2), y2 + τ(y1 − y2)) · (y1 − y2)dτ.

Applying Assumption 3 to this equality, we obtain
∥∇x(h− h1)(x1, y1)−∇x(h− h1)(x2, y2)∥ ≤δx∥x1 − x2∥+ δxy∥y1 − y2∥.

Now let us move to the main part of proof. We start writing out the drift term same as in Lemma 1.
We get
Eet+1

[
∥et+1 −∇(h− h1)(x

t+1, yt+1)∥2
]

=(1− p)∥et + {0,∇y(h− h1)(x
t+1, yt+1)} − {0,∇y(h− h1)(x

t, yt)} − ∇(h− h1)(x
t+1, yt+1)∥2.

Next, we add and subtract ∇(h− h1)(x
t, yt) in combination with Young’s inequality (c = p/2) and

obtain
Eet+1

[
∥et+1 −∇(h− h1)(x

t+1, yt+1)∥2
]

≤
(
1− p

2

)
∥et −∇(h− h1)(x

t, yt)∥2 + 2

p
∥∇x(h− h1)(x

t+1, yt+1)−∇x(h− h1)(x
t, yt)∥2

≤
(
1− p

2

)
∥et −∇(h− h1)(x

t, yt)∥2 + 4

p
δ2x∥xt+1 − xt∥2 + 4

p
δ2xy∥yt+1 − yt∥2.

This concludes the proof.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Theorem 6. Suppose Assumptions 1, 2 hold. Consider θ ≤
min {1/8(δx+δy+2δxy), p/16

√
2max{δx,δxy}}. Then, Algorithm 1 requires

O
(
δx + δy + δxy

ε2
+

δx + δxy
pε2

)
iterations

to achieve an arbitrary ε-solution, where ε2 = E
[∥∥∥ 1

T

∑T
t=1 ∇h (xt, yt)

∥∥∥2].

Proof. Let us denote zt = {xt, yt}. Same as in Theorem 1 we derive the analogue of smoothness-
based descent lemma. Let us start with

h(zt+1)− h(zt) =

∫ 1

0

dh(zt + τ(zt+1 − zt))dτ

=

∫ 1

0

⟨∇h(zt + τ(zt+1 − zt)), zt+1 − zt⟩

and

h1(z
t+1)− h1(z

t) =

∫ 1

0

dh1(z
t + τ(zt+1 − zt))dτ =

∫ 1

0

⟨∇h1(z
t + τ(zt+1 − zt)), zt+1 − zt⟩.

Summing up this inequalities, we obtain

h(zt+1)− h(zt) =

∫ 1

0

⟨∇(h− h1)(z
t + τ(zt+1 − zt)), zt+1 − zt⟩dτ

+ h1(z
t+1)− h1(z

t).

(10)

Since zt+1 is the minimum of Bt
θ defined in Line 3, we have

h1(z
t+1)− h(zt) ≤ −⟨et, zt+1 − zt⟩ − 1

2θ
∥zt+1 − zt∥2.

Substituting it into equation 10 and applying ∇(h− h1)(z
t) as a smart zero, we get

h(zt+1)− h(zt) ≤− 1

2θ
∥zt+1 − zt∥2

+

∫ 1

0

⟨∇(h− h1)(z
t + τ(zt+1 − zt))−∇(h− h1)(z

t), zt+1 − zt⟩dτ

+ ⟨∇(h− h1)(z
t)− et, zt+1 − zt⟩.

After applying Young’s inequality, this turns into

h(zt+1)− h(zt) ≤− 1

2θ
∥zt+1 − zt∥2

+

∫ 1

0

⟨∇(h− h1)(z
t + τ(zt+1 − zt))−∇(h− h1)(z

t), zt+1 − zt⟩dτ

+
α

2
∥∇(h− h1)(z

t)− et∥2 + 1

2α
∥zt+1 − zt∥2.

(11)

Let us consider the integral separately. We have∫ 1

0

⟨∇(h− h1)(z
t + τ(zt+1 − zt))−∇(h− h1)(z

t), zt+1 − zt⟩dτ

≤
∫ 1

0

∥∇(h− h1)(z
t + τ(zt+1 − zt))−∇(h− h1)(z

t)∥∥zt+1 − zt∥dτ

≤
∫ 1

0

(δx + δy + 2δxy)∥zt + τ(zt+1 − zt)− zt∥∥zt+1 − zt∥dτ

=

∫ 1

0

τ(δx + δy + 2δxy)∥zt+1 − zt∥2dτ = (δx + δy + 2δxy)∥zt+1 − zt∥2.

We substitute this into equation 11 with α = 2θ and derive

h(zt+1)− h(zt) ≤
(
− 1

4θ
+ δx + δy + 2δxy

)
∥zt+1 − zt∥2 + θ∥et −∇(h− h1)(z

t)∥2. (12)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Let us consider Φt = h(zt)− h(z∗) + A∥et −∇(h− h1)(z
t)∥2 as a potential function. We begin

with writing a recursion
Φt+1 =[h(zt)− h(z∗)] + [h(zt+1)− h(zt)] +A∥et+1 −∇(h− h1)(z

t+1)∥2

≤[h(zt)− h(z∗)] + θ∥et −∇(h− h1)(z
t)∥2 +

(
− 1

4θ
+ δx + δy + 2δxy

)
∥zt+1 − zt∥2

+A∥et+1 −∇(h− h1)(z
t+1)∥2,

where the last transition exploits equation 12. Next, we apply Lemma 3 and derive
Eet+1

[
Φt+1

]
=[h(zt)− h(z∗)] + [h(zt+1)− h(zt)] +AEet+1

[
∥et+1 −∇(h− h1)(z

t+1)∥2
]

≤[h(zt)− h(z∗)] + θ∥et −∇(h− h1)(z
t)∥2

+

(
− 1

4θ
+ δx + δy + 2δxy

)
∥zt+1 − zt∥2 +A

(
1− p

2

)
∥et −∇(h− h1)(z

t)∥

+
4A

p
δ2x∥xt+1 − xt∥2 + 4A

p
δ2xy∥yt+1 − yt∥2

≤[h(zt)− h(z∗)] + θ∥et −∇(h− h1)(z
t)∥2

+

(
− 1

4θ
+ δx + δy + 2δxy

)
∥zt+1 − zt∥2 + 8A

p
max{δ2x, δ2xy}∥zt+1 − zt∥2.

After grouping terms, we arrive at

Eet+1

[
Φt+1

]
≤Φt +

(
− 1

4θ
+ δx + δy + 2δxy +

8A

p
max{δ2x, δ2xy}

)
∥zt+1 − zt∥2

+

(
θ − Ap

2

)
∥et −∇(h− h1)(z

t)∥.
(13)

Let us deal with the first term of equation 13. First, let us note that Line 3 of Algorithm 2 implies

0 =et +∇(h1 − h)(zt+1) +∇h(zt+1) +
zt+1 − zt

θ

=[et −∇(h− h1)(z
t)] + [∇(h− h1)(z

t+1)−∇(h− h1)(z
t)] +∇h(zt+1) +

zt+1 − zt

θ
.

This implies
∥zt+1 − zt∥2 = θ2∥[et −∇(h− h1)(z

t)] + [∇(h− h1)(z
t+1)−∇(h− h1)(z

t)] +∇h(zt+1)∥2.
Next, we employ the trick. We write
∥∇h(zt+1)∥2 =∥∇h(zt+1) + [et −∇(h− h1)(z

t)] + [∇(h− h1)(z
t+1)−∇(h− h1)(z

t)]

− [et −∇(h− h1)(z
t)]− [∇(h− h1)(z

t+1)−∇(h− h1)(z
t)]∥2

≤3∥∇h(zt+1) + [et −∇(h− h1)(z
t)] + [∇(h− h1)(z

t+1)−∇(h− h1)(z
t)]∥2

+ 3∥et −∇(h− h1)(z
t)∥2 + 3∥∇(h− h1)(z

t+1)−∇(h− h1)(z
t)∥2.

This implies
∥∇h(zt+1) + [et −∇(h− h1)(z

t)] + [∇(h− h1)(z
t+1)−∇(h− h1)(z

t)]∥2

≥1

3
∥∇h(zt+1)∥2 − ∥et −∇(h− h1)(z

t)∥2 − ∥∇(h− h1)(z
t+1)−∇(h− h1)(z

t)∥2

≥1

3
∥∇h(zt+1)∥2 − ∥et −∇(h− h1)(z

t)∥2 − (δx + δy + 2δxy)
2∥zt+1 − zt∥2.

Thus, there is a lower estimate on the update:

∥zt+1 − zt∥2 ≥θ2

3
∥∇h(zt+1)∥2 − θ2∥et −∇(h− h1)(z

t)∥2

− θ2(δx + δy + 2δxy)
2∥zt+1 − zt∥2.

After rearranging terms, we get(
1− θ2(δx + δy + 2δxy)

2
)
∥zt+1 − zt∥2 ≥θ2

3
∥∇h(zt+1)∥2 − θ2∥et −∇(h− h1)(z

t)∥2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Due to the choice of parameters outlined in Theorem 6, we have θ ≤ 1/2(δx+δy+2δxy) which implies

1− θ2(δx + δy + 3δxy)
2 ≥ 1− 1

4
=

3

4
.

Thus, we have

∥zt+1 − zt∥2 ≥4θ2

9
∥∇h(zt+1)∥2 − 4θ2

3
∥et −∇(h− h1)(z

t)∥2. (14)

Comparing equation 13 and equation 14, we observe that the variance could be included in the
resulting inequality with negative sign only if A < 2θ/p. We choose A = 4θ/p. This means that
equation 13 transforms into

Eet+1

[
Φt+1

]
≤Φt +

(
− 1

4θ
+ δx + δy + 2δxy +

32θmax{δ2x, δ2xy}
p2

)
∥zt+1 − zt∥2

− θ∥et −∇(h− h1)(z
t)∥.

To substitute equation 14, the first term of this inequality should be negative. Let us show that it is
actually negative because of choice of θ (see Theorem 6). On the one hand, θ ≤ 1/8(δx+δy+2δxy),
which implies (δx + δy + 2δxy) ≤ 1/8θ. On the other hand, θ ≤ p/16

√
2max{δx,δxy}, which implies

32θmax{δ2x,δ
2
xy}/p2 ≤ 1/16θ. Thus, we have

− 1

4θ
+ δx + δy + 2δxy +

32θmax{δ2x, δ2xy}
p2

≤ − 1

16θ
< 0.

Thus, we can apply equation 14 and deduce

Eet+1

[
Φt+1

]
≤ Φt − θ

36
∥∇h(zt+1)∥2 +

(
1

12
− 1

)
θ∥et −∇(h− h1)(z

t)∥2,

which implies

Eet+1

[
∥∇h(zt+1)∥2

]
≤ 36

θ
[Φt − Φt+1].

Taking full expectation and accounting for e0 = ∇(h− h1)(z
0), we obtain

E

∥∥∥∥∥ 1T
T∑

t=1

∇h(zt)

∥∥∥∥∥
2
 ≤36[h(z0)− h(z∗)]

θ

=O
((

δx + δy + δxy
T

+
δx + δxy

pT

)
[h(z0)− h(z∗)]

)
.

This concludes the proof of Theorem 6.

Now we are ready to move on to the corollary.

Corollary 4 (Corollary 2). Suppose Assumptions 1, 3. Consider θ ≤
min {1/8(δx+δy+2δxy), p/16

√
2max{δx,δxy}}. Algorithm 2 with p = (δx+δxy)/(δx+δy+δxy) requires

O
(
dxδx
ε2

+
dyδy
ε2

+
(dx + dy)δxy

ε2

)
bits

to reach an arbitrary ε-solution.

Proof. Theorem 6 implies that ∇xh is called O (p(δx+δy+δxy)/ε2 + (δx+δxy)/ε2) times and ∇yh
is evaluated O ((δx+δy+δxy)/ε2 + (δx+δxy)/pε2). The choice of p results in O ((δx+δxy)/ε2) and
O ((δy+δxy)/ε2). Every evaluation of ∇xh requires communicating dx units of information, and
∇yh requires dy . This implies the result of Corollary 2.

G PROOF OF THEOREM 3

Theorem 7. (Theorem 3) There exists such h, satisfying Assumptions 1, 2, that any algorithm A
(see Definition 1) requires to transmit

Ω

(
dxδx
ε2

+
dyδy
ε2

+
(dx + dy)δxy

ε2

)
bits

to reach an arbitrary ε-solution when δxy < δx.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Proof. The proof of this theorem is equivalent to the proof of Theorem 2. By considering the same
function as in Theorem 2, where function f depends only on x, and function g depends only on y,
we obtain that the effective δ̂xy (i.e., the minimal possible one) equals zero. This implies that we
obtain lower bounds on the oracle complexity:

Ω

(
δx
ε2

)
and Ω

(
δy
ε2

)
oracle calls. Moreover, in the case δxy < δx < δy , we have that

Ω

(
δx + δxy

ε2

)
= Ω

(
δx
ε2

)
and

Ω

(
δy + δxy

ε2

)
= Ω

(
δy
ε2

)
.

Therefore, we get that the lower bound on bit complexities for each block of coordinates can be
expressed as

Ω

(
dx(δx + δxy)

ε2

)
and Ω

(
dy(δy + δxy)

ε2

)
.

Summing up, we obtain the final bound.

H INEXACT INNER MINIMIZATION

Algorithms 1, 2 require access to Proximal Incremental First-Order Oracle defined in Section 6.1.1.
This is impractical, because the minimization of Aθt and Bθt cannot be performed in negligible
time, since h1 is not merely a regularizer but an empirical risk constructed from the model’s output.
Nevertheless, in our experiments we observe that performing three epochs of Adam on the server’s
side are sufficient to obtain a stable optimization trajectory despite the inexact solution of the sub-
problem. Below, we present the results of a numerical study of robustness to inexact minimization.

0 250 500 750 1000 1250 1500 1750 2000
fi calls

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Argmin=3
Argmin=2
Argmin=4

0 250 500 750 1000 1250 1500 1750 2000
fi calls

10
20
30
40
50
60
70
80
90

Ac
cu

ra
cy

Argmin=3
Argmin=2
Argmin=4

Figure 7: Dynamics of HASCA with various number of epochs to solve the inner minimization.
Adam is used as an optimizer.

Figure 7 shows the existence of an optimal number of Adam epochs for solving the inner minimiza-
tion. We attribute this to the fact that too few epochs yield an overly inaccurate solution, whereas an
excessively large number leads to overfitting to the server’s data.
To investigate the observed phenomenon, we introduce an additional assumption on h1.
Assumption 4. The function h1 is convex, i.e. for every x, y ∈ Rd

h1(x)− h1(y) ≥ ⟨∇h1(y), x− y⟩.
Although neural networks are inherently non-convex, theoretical analysis under convexity of the
server remains relevant. Recent studies suggest that deep neural networks often exhibit properties
similar to convexity in certain regions, making insights from convex analysis applicable (Kleinberg
et al., 2018; Zhou et al., 2019; Liu et al., 2022). Moreover, convex optimization serves as a theoret-
ical foundation for the design of optimization algorithms.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Now, let us prove the convergence of Algorithm 1 with inexact inner minimzation.

Theorem 8. Suppose Assumptions 1, 2, 4 hold. Consider θ ≤ min {1/8(δf+δg), p/8
√
2δf}. Let the

subproblem in Line 3 be solved with precision

∥∇At
θ(x

t+1)∥2 ≤ 3

14θ2
∥xt − argminAt

θ(x)∥2.

Then, Algorithm 1 requires

O
(
δf + δg

ε2
+

δf
pε2

)
iterations

to achieve an arbitrary ε-solution, where ε2 = E
[∥∥∥ 1

T

∑T
t=1 ∇h (xt)

∥∥∥2].

Proof. Note that the inequality At
θ(x

t+1) ≤ At
θ(x

t) holds even when the inner minimization is
solved with a large error. In fact, a single gradient descent step is sufficient to guarantee its satisfac-
tion. Therefore, the proof of Theorem 1 remains unchanged up to the point where we obtain

Eet+1

[
Φt+1

]
≤Φt +

(
− 1

4θ
+ δf + δg +

2A

p
δ2f

)
∥xt+1 − xt∥2

+

(
θ − Ap

2

)
∥et −∇(h− h1)(x

t)∥.
(15)

Let us note that Line 3 of Algorithm 1 implies

∇At
θ(x

t+1) =et +∇(h1 − h)(xt+1) +∇h(xt+1) +
xt+1 − xt

θ

=[et −∇(h− h1)(x
t)] + [∇(h− h1)(x

t+1)−∇(h− h1)(x
t)] +∇h(xt+1)

+
xt+1 − xt

θ
.

Next, we write
∥∇h(xt+1)∥2 =∥∇h(xt+1) + [et −∇(h− h1)(x

t)] + [∇(h− h1)(x
t+1)−∇(h− h1)(x

t)]

−∇At
θ(x

t+1)− [et −∇(h− h1)(x
t)]

− [∇(h− h1)(x
t+1)−∇(h− h1)(x

t)]∥2

≤4∥∇h(xt+1) + [et −∇(h− h1)(x
t)] + [∇(h− h1)(x

t+1)−∇(h− h1)(x
t)]

−∇At
θ(x

t+1)∥2

+ 4∥et −∇(h− h1)(x
t)∥2 + 4∥∇(h− h1)(x

t+1)−∇(h− h1)(x
t)∥2

+ 4∥∇At
θ(x

t+1)∥2.
This implies

∥∇h(xt+1) + [et −∇(h− h1)(x
t)] + [∇(h− h1)(x

t+1)−∇(h− h1)(x
t)]−∇At

θ(x
t+1)∥2

≥1

3
∥∇h(xt+1)∥2 − ∥et −∇(h− h1)(x

t)∥2 − (δf + δg)
2∥xt+1 − xt∥2 − θ2∥∇At

θ(x
t+1)∥2.

Thus, there is a lower bound on the update:

∥xt+1 − xt∥2 ≥θ2

4
∥∇h(xt+1)∥2 − θ2∥et −∇(h− h1)(x

t)∥2 − θ2(δf + δg)
2∥xt+1 − xt∥2

− θ2∥∇At
θ(x

t+1)∥2.
After rearranging terms, we get(

1− θ2(δf + δg)
2
)
∥xt+1 − xt∥2 ≥θ2

4
∥∇h(xt+1)∥2 − θ2∥et −∇(h− h1)(x

t)∥2

− θ2∥∇At
θ(x

t+1)∥2.
Due to the choice of parameters outlined in Theorem 8, we have θ ≤ 1/2(δf+δg) which implies

1− θ2(δf + δg)
2 ≥ 1− 1

4
=

3

4
.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Thus, we have

∥xt+1 − xt∥2 ≥θ2

3
∥∇h(xt+1)∥2 − 4θ2

3
∥et −∇(h− h1)(x

t)∥2 − 4θ2

3
∥∇At

θ(x
t+1)∥2. (16)

Comparing equation 15 and equation 16, we observe that the variance could be included in the
resulting inequality with negative sign only if A > 2θ/p. We choose A = 4θ/p. This means that
equation 8 transforms into

Eet+1

[
Φt+1

]
≤Φt +

(
− 1

4θ
+ δf + δg +

8θδ2f
p2

)
∥xt+1 − xt∥2 − θ∥et −∇(h− h1)(x

t)∥.

To substitute equation 9, the first term of this inequality should be negative. Let us show that it is
actually negative because of choice of θ (see Theorem 8). On the one hand, θ ≤ 1/8(δf+δg), which
implies (δf + δg) ≤ 1/8θ. On the other hand, θ ≤ p/8

√
2δf , which implies 8θδ2f/p2 ≤ 1/16θ. Thus, we

have

− 1

4θ
+ δf + δg +

8θδ2f
p2

≤ − 1

16θ
< 0,

which implies

Eet+1

[
Φt+1

]
≤Φt − 1

32θ
∥xt+1 − xt∥2 − 1

32θ
∥xt+1 − xt∥2 − θ∥et −∇(h− h1)(x

t)∥.

We can apply equation 9 and deduce

Eet+1

[
Φt+1

]
≤Φt − θ

96
∥∇h(xt+1)∥2 +

(
1

24
− 1

)
θ∥et −∇(h− h1)(x

t)∥2 − 1

32θ
∥xt+1 − xt∥

+
θ

24
∥∇At

θ(x
t+1)∥

≤Φt − θ

96
∥∇h(xt+1)∥2 − 1

32θ
∥xt+1 − xt∥+ θ

24
∥∇At

θ(x
t+1)∥2.

Next, we consider the last two terms separately.

− 1

32θ
∥xt+1 − xt∥2 + θ

24
∥∇A(xt+1)∥2 ≤− 1

64θ
∥xt − argminAt

θ(x)∥2

+
1

32θ
∥xt+1 − argminAt

θ(x)∥2 +
θ

24
∥∇At

θ(x)∥2.

Let us take into account the 1/θ-strong convexity of At
θ and write

− 1

32θ
∥xt+1 − xt∥2 + θ

24
∥∇A(xt+1)∥2 ≤− 1

64θ
∥xt − argminAt

θ(x)∥2 +
7θ

96
∥∇At

θ(x
t+1)∥2

=
7θ

96

[
∥∇At

θ(x
t+1)∥2 − 3

14θ2
∥xt − argminAt

θ(x)∥2
]
.

Using precision of the inner minimization (Theorem 8), we obtain

Eet+1

[
∥∇h(xt+1)∥2

]
≤ 36

θ
[Φt − Φt+1].

Taking full expectation and accounting for e0 = ∇(h− h1)(x
0), we obtain

E

∥∥∥∥∥ 1T
T∑

t=1

∇h(xt)

∥∥∥∥∥
2
 ≤ 96[h(x0)− h(x∗)]

θ
= O

((
δf + δg

T
+

δf
pT

)
[h(x0)− h(x∗)]

)
.

This concludes the proof of Theorem 8.

Since the proof in the coordinate setup is conceptually analogous, the result for inexact minimization
in Algorithm 2 can be obtained analogously.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

Language models were used to improve text quality (mostly to correct grammatical errors). LLMs
were not used to obtain theoretical results or write code.

31

	Introduction
	Notation
	Our Contribution
	Related Works
	Complexity Separation
	Hessian Similarity

	Setup
	Algorithms and Analysis
	Mode-Based Structured Heterogeneity
	Lower Bounds

	Coordinate-Based Structured Heterogeneity
	Lower Bounds

	Numerical Experiments
	Experiments with Algorithm 1
	Experiments with Algorithm 2

	Additional Experiments
	Algorithm 1, =0.8
	Algorithm 1, Additional 's
	Algorithm 1, Robustness to p
	Algorithm 1, robustness to class imbalance
	Algorithm 1, Runtime
	Scalability of Algorithm 1

	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Corollary 1
	Proof of Theorem 2
	Proof of Corollary ??
	Proof of Theorem 3
	Inexact Inner Minimization

