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Abstract

Although many deep learning models exist for nodule detection, characterization, and
other related tasks, their widespread clinical adoption is hindered by substantial variability
in computed tomography (CT) acquisitions. Differences in scanner hardware, reconstruction
methods, dose levels, and patient demographics cause domain shifts, often leading models
trained on one dataset to underperform on another. This highlights the need for harmo-
nization and adaptation strategies to ensure consistent performance across diverse clinical
settings. To address this challenge, we propose a training scheme in which knowledge of
the downstream model’s training distribution is incorporated into the training process of
the harmonization model. The goal is to guide the harmonization model to transform input
images so that their distribution closely aligns with that of the downstream model. We
demonstrate that the proposed approach, Cycle-CTFlow, leads to improvements in nodule
detection performance: a 5.2% increase in sensitivity and a 2.6% increase in CPM compared
to no harmonization on the MiniDeepLesion dataset, and a 1.9% increase in sensitivity and
an 8.5% increase in CPM on the UCLA in-house dataset.
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1. Introduction

Computed tomography (CT) is widely recognized for its pivotal role in the detection and
management of various diseases such as lung cancer, where early and accurate identifica-
tion of pulmonary nodules can significantly improve patient outcomes (Aberle et al., 2011).
The rapid growth of CT datasets has fueled a surge in AI-driven diagnostic tools (Hosny
et al., 2018); however, deploying these models in real-world clinical settings remains chal-
lenging due to limited generalizability. Substantial variability in CT images—due to dif-
ferences in scanner hardware, acquisition settings, and patient populations—can lead to
domain shifts that degrade the performance of deep learning models when applied to un-
seen data (Emaminejad et al., 2018).

We propose a framework that incorporates knowledge of the downstream model’s target
distribution into the harmonization process. We select an open-source nodule detection
model from MONAI as our downstream model, which is trained on the publicly available
Lung Nodule Analysis 2016 (LUNA16) dataset, and aim to improve its generalizability
on external datasets. We train a normalizing flow–based harmonization model using our
in-house low-dose CT (LDCT) dataset, which includes paired high-dose reconstructions,
and introduce a cycleGAN that transforms the texture of the reference high-dose images
to resemble that of the LUNA16 dataset. We hypothesize that the flow model will learn
to map low-dose images to their texture-transformed high-dose counterparts, resulting in
improved performance on the downstream task (i.e., nodule detection).

2. Methods
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Figure 1: Training scheme of the Cycle-CTFlow model.

We used two datasets for training. The first was an in-house dataset of 100 LDCT
exams (31,308 slices), acquired on a Siemens Definition AS64 scanner with 1mm slices using
the B45 kernel (i.e., reference condition). To simulate a lower-dose setting, Poisson noise
equivalent to 25% of the original dose was added to the raw projection data—referred to
as the Medium/25% condition. The second dataset was LUNA16, from which we extracted
an equal number of slices to match the in-house LDCT dataset.
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Table 1: Performance comparison of harmonization methods across two datasets. CPM
represents the average sensitivity at seven predefined false positive rates, as defined
by the LUNA16 evaluation criteria.

Datasets Model TP FP FN Sensitivity CPM

MiniDeepLesion
No Harmonization 76 442 12 0.8636 0.5633

CTFlow-Base 77 1447 11 0.8750 0.5649
Cycle-CTFlow 80 454 8 0.9090 0.5779

UCLA in-house No Harmonization 104 445 8 0.9285 0.6011
CTFlow-Base 103 509 9 0.9196 0.6172
Cycle-CTFlow 106 534 6 0.9464 0.6525

Using 30% of the 31,308 slices, we first trained a previously published CycleGAN model
with a CBAM module (You et al., 2019) to transform the texture of reference images to re-
semble those from the LUNA16 dataset. The authors had previously shown that integrating
CBAM into CycleGAN improves both PSNR and SSIM compared to the standard Cycle-
GAN. We evaluated this model on 10% of the data, obtaining a mean PSNR of 30.9083 and
SSIM of 0.8757. Next, using 70% of the data, we trained a normalizing flow model called
CTFlow (Wei et al., 2023), which we previously demonstrated to produce more consistent
predictions across varying CT reconstructions compared to a baseline generative network.
In this model, the latent variable z serves as an invertible representation of the input CT,
enabling the reconstruction of a distribution of plausible harmonized images rather than a
single deterministic output.

We applied two training schemes: in the first, CTFlow was trained to map Medium/25%
images to the reference images (i.e., CTFlow-Base); in the second, it was trained to map
Medium/25% images to the texture-transformed reference images generated by CycleGAN
(i.e., Cycle-CTFlow). We evaluated the methods on two datasets. The first is the publicly
available MiniDeepLesion dataset from Kaggle, which contains 88 lung nodule cases derived
from the NIH DeepLesion dataset (Yan et al., 2018). The second dataset comprises our
in-house collection of CT scans from never-smokers (< 100 lifetime cigarettes) and ever-
smokers, referred to as the UCLA in-house dataset, and includes 112 lung nodule cases.

3. Results and Discussion

Table 1 shows that Cycle-CTFlow consistently outperforms the baseline model across both
datasets, achieving the highest sensitivity and CPM scores. It yields fewer false negatives,
which is crucial in medical imaging where missing a true nodule can lead to serious clinical
consequences. Although Cycle-CTFlow results in more false positives than No Harmoniza-
tion, its reduction in false negatives is a critical advantage. This trade-off is often preferred
in diagnostic settings, where maximizing true positive detections outweighs the cost of ad-
ditional false alarms. We demonstrate that the texture-transformed training scheme is a
more effective approach to harmonization, and our future efforts will focus on improving
this module, extending beyond the current reliance on CycleGAN.
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