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Abstract

Open Information Extraction (OpenIE) repre-001
sents a crucial NLP task aimed at deriving struc-002
tured information from unstructured text, unre-003
stricted by relation type or domain. This survey004
paper provides an overview of OpenIE tech-005
nologies spanning from 2007 to 2024, empha-006
sizing a chronological perspective absent in007
prior surveys. It examines the evolution of task008
settings in OpenIE to align with the advances009
in recent technologies. The paper categorizes010
OpenIE approaches into rule-based, neural, and011
pre-trained large language models, discussing012
each within a chronological framework. Ad-013
ditionally, it highlights prevalent datasets and014
evaluation metrics currently in use. Building015
on this extensive review, the paper outlines po-016
tential future directions in terms of datasets,017
information sources, output formats, method-018
ologies, and evaluation metrics.019

1 Introduction020

Open Information Extraction (OpenIE) aims to ex-021

tract structured information from unstructured text022

sources (Niklaus et al., 2018), typically outputting023

relationships as triplets (arg1, rel, arg2). Unlike024

traditional IE, which relies on predefined categories025

to identify relationships, OpenIE operates without026

such constraints, as illustrated in Figure 1, enabling027

the extraction of diverse and unforeseen relations.028

This flexibility makes OpenIE especially valuable029

for rapidly evolving Natural Language Processing030

(NLP) tasks such as question answering, search031

engines, and knowledge graph completion (Han032

et al., 2020), as well as for handling large-scale and033

dynamic data sources like web data. Its capability034

to adapt to new contexts and extract a broader array035

of information without extensive manual input not036

only enhances scalability but also broadens the ap-037

plicative horizon, placing OpenIE at the forefront038

of NLP research and attracting significant interest039

for its potential.040

Figure 1: Comparison of OpenIE and traditional relation
extraction.

Since its inception in 2007, the field of OpenIE 041

has embodied the spirit of relentless innovation 042

within NLP. Initially utilizing basic linguistic tools, 043

OpenIE models have progressively integrated more 044

complex syntactic and semantic features, while pre- 045

serving the intuitive task of directly extracting rela- 046

tional triplets from text. The advent of neural mod- 047

els in 2019 marks a game-changer for OpenIE re- 048

search, with systems employing Transformer-based 049

architectures like BERT (Devlin et al., 2019) to sig- 050

nificantly enhance feature extraction capabilities. 051

To accommodate the technological shift, a variety 052

of methodologies and task settings have evolved 053

within diversified OpenIE approaches. 054

The emergence of Large Language Models 055

(LLMs) in 2023 has marked another revolutionary 056

phase, steering OpenIE toward a generative method 057

of information extraction. The robust generaliza- 058

tion abilities of these models not only advance the 059

technical prowess of OpenIE systems but also fa- 060

cilitate a convergence of methodologies and task 061

settings – revisiting the original, straightforward 062

text → relational triplet format. This transition 063

also fosters potential integration with traditional 064

IE tasks, pointing toward a promising future where 065
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Figure 2: Chronological overview of Open IE methods.

extraction tasks are tackled through a unified, multi-066

task approach. With these advancements, OpenIE067

is poised not only to adapt to evolving technologies068

but also to influence the trajectory of other NLP069

downstream tasks.070

The field of OpenIE has been marked by continu-071

ous innovation and evolution, yet there is a notable072

gap in the literature. Previous surveys largely fo-073

cus on pre-LLM era models or limit their scope to074

methodological insights (Gamallo, 2014; Vo and075

Bagheri, 2018; Zouaq et al., 2017; Glauber and076

Claro, 2018; Niklaus et al., 2018; Zhou et al., 2022).077

Moreover, while recent studies (Xu et al., 2023b)078

delve into information extraction in the LLM era,079

they largely bypass OpenIE, concentrating instead080

on traditional IE tasks. This oversight highlights081

the urgent need for a comprehensive, chronological082

review that captures the full trajectory of OpenIE’s083

development alongside advancements in broader084

NLP technologies. Undertaking such an in-depth085

exploration not only provide a macroscopic view086

of the field’s historical progression but also illumi-087

nate future possibilities and opportunities within088

OpenIE, giving scholars and researchers a clearer089

roadmap for advancing this crucial area of study.090

The remainder of this review paper is organized091

as follows. Section 2 details the primary OpenIE092

task setting and its variants. Section 3 and 4 cover093

popular datasets and evaluation metrics, respec-094

tively, followed by a chronological review of Ope-095

nIE models in Section 5, illustrated by Fig.2. The096

sources of information are thoroughly presented097

in Section 6.1, while Section 6.2 explores current098

limitations and future prospects of OpenIE.099

2 Task Settings100

We categorize OpenIE task settings into three101

groups: Open Relation Triplet Extraction (ORTE),102

Open Relation Span Extraction (ORSE) and Open 103

relation clustering (ORC). ORTE is the classic task 104

setting, while ORSE and ORC settings are varia- 105

tions developed to cater to diverse models with the 106

advancement of NLP techniques. For all three task 107

settings, the openness is shown in the absence of 108

restraints on relation types. Figure 2 illustrates an 109

overall review of the chronological development 110

of task settings. Figure 3 depicts the workflow for 111

each task setting. 112

ORTE Task: Text → Relational Triplet 113

Banko et al. (2007) initially defines open infor- 114

mation extraction as an unsupervised task that 115

automatically extracts (entity1, relation, entity2) 116

triplets from a vast corpus of unstructured web 117

text, where entity1, entity2 and relation consist 118

of selected words from input sentences. This task 119

setting, irrespective of the learning method or the 120

forms of input and output, represents the most ide- 121

alized configuration. 122

ORSE Task: Entities + Text → Relation Span 123

Different from the first setting, open relation span 124

extraction finds relational spans according to pre- 125

viously extracted predicates and entities, aiming 126

to partition complex tasks into easier ones to im- 127

prove model performance. However, it should be 128

clear that errors in entity extraction steps can accu- 129

mulate in two-stage pipelines. See Open Relation 130

Extraction (ORSE) in Fig.3 for an example. 131

ORC Task: Entities + Text→ Clustering without 132

Explicit Relation Span or Label 133

Open relation clustering (ORC), also widely known 134

as open relation extraction, clusters relation in- 135

stances (h, t, s), where h and t denote head entity 136

and tail entity respectively, and s denotes the sen- 137

tence corresponding to two entities. Different from 138

the ORTE, ORC does not extract entities from text 139

but uses the whole text to represent the relation 140
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Figure 3: An overview of workflow processes in OpenIE task settings.

between two entities. Clustering similar relations141

is a step forward in labeling specific relations to142

each relation instance. These task settings outlined143

above are distinctly characterized by era-specific144

traits and methodologies, further discussed in Sec-145

tion 5.146

3 Datasets147

Previous surveys (Niklaus et al., 2018; Ali et al.,148

2019) conclude with models of the first two gen-149

erations and the datasets they used. We exclude150

those small-scale datasets and some seldom-used151

datasets. Table 1 lists some popular and promising152

OpenIE datasets grouped by their creating meth-153

ods.154

Question Answering (QA) derived datasets155

are converted from other crowd-sourced QA156

datasets. OIE2016 (Stanovsky and Dagan, 2016)157

is one of the most popular OpenIE benchmarks,158

which leverages QA-SRL (He et al., 2015) anno-159

tations. Additional datasets extend from OIE2016,160

such as AW-OIE (Stanovsky et al., 2018), Re-161

OIE2016 (Zhan and Zhao, 2020) and CaRB (Bhard-162

waj et al., 2019). LSOIE (Solawetz and Larson,163

2021), is created by converting the QA-SRL 2.0164

dataset (FitzGerald et al., 2018) to a large-scale165

OpenIE dataset, which claims to be 20 times larger166

than the next largest human-annotated OpenIE167

dataset.168

Crowdsourced datasets are created from direct169

human annotation, including WiRe57 (Léchelle170

et al., 2019), SAOKE dataset (Sun et al., 2018),171

and BenchIE dataset (Gashteovski et al., 2021).172

Knowledge Base (KB) derived datasets are173

established by aligning triplets in KBs with text174

in the corpus. Several works (Mintz et al., 2009;175

Yao et al., 2011) have aligned the New York Times 176

corpus (Sandhaus, 2008) with Freebase (Bollacker 177

et al., 2008) triplets, resulting in several variations 178

of the same dataset, NYT-FB. Others are created 179

by aligning relations of given entity pairs(ElSahar 180

et al., 2018), such as TACRED(Zhang et al., 2017), 181

FewRel (Han et al., 2018), T-REx (ElSahar et al., 182

2018), T-REx SPO and T-REx DS (Hu et al., 2020). 183

COER (Jia et al., 2018), a large-scale Chinese KB 184

dataset, is automatically created by an unsuper- 185

vised open extractor. 186

Instruction-based datasets transform IE tasks 187

into tasks requiring instruction-following, thus har- 188

nessing the capabilities of LLMs. Strategies in- 189

clude integrating existing IE datasets into a unified- 190

format (Wang et al., 2023a; Lu et al., 2022), and de- 191

riving others from Wikidata and Wikipedia such as 192

INSTRUCTOPENWIKI (Lu et al., 2023), INSTRUC- 193

TIE (Gui et al., 2023), and Wikidata-OIE (Wang 194

et al., 2022b). 195

Overall, KB derived datasets are mostly used in 196

open relation clustering task settings, illustrated 197

in Section 5.4, whereas QA derived and crowd- 198

sourced datasets are usually used in open relational 199

triplet extraction (Section 5.2) and open relation 200

span extraction task settings (Section 5.3). We 201

provide more detailed descriptions in Appendix D. 202

4 Evaluation 203

Evaluation metrics for OpenIE models vary by 204

task setting. In the open relational triplet and re- 205

lation span extraction settings (Sections 5.2 and 206

5.3), models are assessed using precision, recall, 207

F1 score, and AUC, potentially employing various 208

scoring functions. In the open relation clustering 209

setting (Section 5.4), performance is evaluated us- 210
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Dataset #Tuple Domain

QA Derived
OIE2016 (2016) 10,359 Wiki, Newswire
Re-OIE2016 (2020) NR Wiki, Newswire
CaRB (2019) NR Wiki, Newswire
AW-OIE (2018) 17,165 Wiki, Wikinews
LSOIE-wiki (2021) 56,662 Wiki, Wikinews
LSOIE-sci (2021) 97,550 Science

Crowdsourced
WiRe57 (2019) 343 Wiki, Newswire
SAOKEzh (2018) NR Baidu Baike
BenchIEen (2021) 136,357 Wiki, Newswire
BenchIEde (2021) 82,260 Wiki, Newswire
BenchIEzh (2021) 5,318 Wiki, Newswire

KB Derived
NYT-FB (2008; 2008; 2009; 2011) 39,000 NYT, Freebase
TACRED (2017) 119,474 TAC KBP
FewRel (2018) 70,000 Wiki, Wikidata
T-REx (2018) 11M Wiki, Wikidata

COERzh (2018) 1M Baidu Baike,
Chinese news

Instruction-Based
INSTRUCTOPENWIKI (2023) 19M Wiki, Wikidata
Wikidata-OIE (2022b) 27M Wiki, Wikidata

Table 1: Statistics of popular OpenIE datasets. "NR"
stands for "Not Reported". Non-English datasets are
indicated with superscripts.

Task Setting Evaluation Metrics

ORTE Recall, AUC, F1
ORSE F1
ORC ARI, B3, V-measure

Table 2: Core evaluation metrics of each task setting.

ing B3 (Bagga and Baldwin, 1998), V-measure211

(Rosenberg and Hirschberg, 2007), and ARI (Hu-212

bert and Arabie, 1985).213

In addition to standard metrics, various methods214

employ additional metrics, typically categorized215

into token-level and fact-level scorers. Token-level216

scorers focus on individual tokens to ensure pre-217

cision and semantic accuracy, accommodating lin-218

guistic variability (Stanovsky and Dagan, 2016),219

enhancing conciseness (Léchelle et al., 2019), and220

adapting to complex model outputs like those from221

LLMs (Han et al., 2023). Fact-level scorers as-222

sess the informational faithfulness of extractions223

to ensure reliable knowledge extraction, validat-224

ing semantic and information integrity (Sun et al.,225

2018; Gashteovski et al., 2021; Li et al., 2023a)226

to enhance OpenIE evaluations comprehensively.227

Further details are discussed in Appendix E.228

5 Methodologies229

Research on OpenIE dates back to 2007, with the230

first generation of OpenIE models exemplified by231

TEXTRUNNER (Banko et al., 2007), WOE (Wu 232

and Weld, 2010) and REVERB (Fader et al., 2011), 233

which use shallow linguistic features such as part- 234

of-speech (POS) tags and noun phrase (NP) chunk 235

features. The second generation of OpenIE mod- 236

els, represented by OLLIE (Schmitz et al., 2012), 237

ClausIE (Del Corro and Gemulla, 2013), SRL-IE 238

(Christensen et al., 2010) and OPENIE4 (Mausam, 239

2016), incorporates deep linguistic features along- 240

side shallow syntactic features. The third gener- 241

ation of OpenIE models, to be discussed in de- 242

tail, benefits significantly from the advent of neural 243

models such as Transformers (Vaswani et al., 2017), 244

notably BERT (Devlin et al., 2019), and extensively 245

employ pre-training models for feature extraction. 246

The most recent, fourth-generation has emerged 247

with the advancements in Large Language Mod- 248

els (LLMs), such as GPT models (OpenAI, 2024, 249

2023) and Llama 2 (Touvron et al., 2023), leading 250

to generative IE methods. These innovations high- 251

light a shift toward universal formats and multi-task 252

models, indicating new trends in the future of Ope- 253

nIE. In Fig.2, we present OpenIE methodologies in 254

a chronological view and categorize them accord- 255

ing to task settings instead of the approaches. More 256

details about model implementation is provided in 257

Appendix.B 258

5.1 Pre-neural Model Era 259

ORTE Task: Text → Relational Triplet 260

In the beginning, Open IE systems were developed 261

to create a universal model capable of extracting 262

relation triplets through shallow features, such as 263

Part-of-Speech (POS) that do not have lexical infor- 264

mation, for instance, characterizing a verb based on 265

its context. Normally, traditional machine learning 266

models, such as Naive Bayes (Rish et al., 2001) and 267

Conditional Random Field (Sutton et al., 2012), are 268

used to train on shallow features(Yates et al., 2007; 269

Wu and Weld, 2010; Zhu et al., 2009). Using only 270

lexical features will lead to problems of incoher- 271

ent and uninformative relations. Therefore, lexical 272

features and syntactic features are used to miti- 273

gate such problems (Schmitz et al., 2012; Qiu and 274

Zhang, 2014; Mausam, 2016). Later, rule-based 275

models take advantage of hand-written patterns and 276

rules to match relations (Fader et al., 2011; Akbik 277

and Löser, 2012). To extract relations in a fine- 278

grained way, clause-based models determine the 279

set of clauses and identify clause types before ex- 280

tracting relations (Del Corro and Gemulla, 2013; 281

Schmidek and Barbosa, 2014; Angeli et al., 2015). 282
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OIE16 Re-OIE16 CaRB FewRel TACRED
OpenIE System F1 AUC F1 AUC F1 AUC ARI B3 V ARI B3 V

Pre-Neural (ORTE) OLLIE (Schmitz et al., 2012) 38.6 20.2 49.5 31.3 41.1 22.4 - - - - - -
ClausIE (Del Corro and Gemulla, 2013) 58.0 36.4 64.2 46.4 44.9 22.4 - - - - - -

Neural Era (ORTE) OpenIE6 (Kolluru et al., 2020a) - - - - 52.7 33.7 - - - - - -
IMoJIE (Kolluru et al., 2020b) - - - - 53.5 33.3 - - - - - -

Neural Era (ORSE) Multi2OIE (Ro et al., 2020) - - 83.9 74.6 52.3 32.6 - - - - - -
OIE@OIA (Wang et al., 2022e) 71.6 54.3 85.3 76.9 51.1 33.9 - - - - - -

Neural Era (ORC) SelfORE (Hu et al., 2020) - - - - - - 64.7 67.8 78.3 44.7 54.1 61.9
MatchPrompt (Wang et al., 2022c) - - - - - - 66.5 72.3 82.2 75.3 83.0 84.5

LLM Era IELM GPT-2XL (Wang et al., 2022b) - - 35.0 - 22.7 - - - - - - -
GPT-3.5-TURBO ICL (Ling et al., 2023) 65.1 - 67.9 - 52.1 - - - - - - -

Table 3: Performance of selected representative OpenIE models. Only report F1 scores for B3 and V. Complete
performance details in the Appendix A.

5.2 Neural Model Era: Open Relational283

Triplet Extraction284

ORTE Task: Text → Relational Triplet285

5.2.1 Labeling286

RnnOIE (Stanovsky et al., 2018) is the first neural287

method, which formulates the OpenIE task as a se-288

quence labeling problem. It uses a Bi-LSTM trans-289

ducer to process input features, including word em-290

beddings, part-of-speech tags, and indicated pred-291

icates. A Softmax classifier tags a BIO label for292

each token, after which triplets are constructed.293

Since one sentence usually contains more than one294

relation triplet, many approaches propose to avoid295

encoding and labeling the same input several times.296

OpenIE6 (Kolluru et al., 2020a) adopts a novel297

Iterative Grid Labeling (IGL) architecture to cap-298

ture dependencies among extractions without re-299

encoding. MacroIE(Bowen et al., 2021) reformu-300

lates the OpenIE as finding maximal cliques from301

the graph. DetIE (Vasilkovsky et al., 2022) casts302

the task as a direct set prediction problem. SMiLe-303

OIE (Dong et al., 2022) improves the model in an304

information-source view, using GCNs and multi-305

view learning to incorporate constituency and de-306

pendency information and aggregating semantic307

features and syntactic features by concatenating308

BERT embedding and graph embeddings.309

The sequence labeling paradigm is characterized310

by its efficiency, making it computationally advan-311

tageous for large-scale text processing. It yields312

readily interpretable output, as each token asso-313

ciates itself with a specific role, such as subject,314

relation, or object. A notable limitation of this315

approach is its lack of a holistic view, as it treats316

tokens in isolation, potentially failing to capture317

global context and complex relationships that ex-318

tend beyond single tokens. Additionally, its output319

format may not adequately represent the nuanced320

variability of natural language. 321

5.2.2 Sequence to Sequence Generation 322

Cui et al. (2018) casts OpenIE as a sequence-to- 323

sequence generation problem and proposes Neu- 324

ralOIE, which is an encoder-decoder model gen- 325

erating tuples with placeholders as a sequence 326

according to the given input sentence. To en- 327

large the vocabulary and reduce the proportion of 328

generated unknown tokens, NeuralOIE uses the 329

attention-based coping mechanism. Logician(Sun 330

et al., 2018), based on attention-based sequence-to- 331

sequence learning, transforms input sentences into 332

structured facts. It employs a restricted copy mech- 333

anism to decide between copying information from 334

input or selecting predefined keywords, enhancing 335

reliability. IMoJIE(Kolluru et al., 2020b) is a gen- 336

erative OpenIE model that produces variable and 337

diverse extractions for a sentence. It uses an itera- 338

tive memory, implemented with a BERT encoder, 339

to keep track of previous extractions. The model 340

employs an LSTM decoder to generate extractions 341

one word at a time until an "EndOfExtractions" 342

token is reached. 343

The sequence generation paradigm focuses on 344

generating sequences of text to represent extracted 345

information, affording a more expressive and 346

context-rich output. It excels in capturing global 347

context and complex relationships, as it consid- 348

ers the broader contextual information in the text. 349

This approach is adaptable to various languages 350

and domains, rendering it versatile in a range of 351

applications. Nevertheless, it entails complexity 352

in training, potentially demanding larger datasets 353

and longer training times. The generated sequences 354

may also exhibit noise or ambiguities, necessitating 355

post-processing for refinement. The output format 356

from sequence generation models can vary, which 357

poses challenges for downstream applications re- 358

quiring standardized output structures. 359
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5.3 Neural Model Era: Two-Stage Open360

Relation Extraction361

ORSE Task: Entities + Text → Relation Span362

Taking advantage of the remarkable representa-363

tion capability of PLMs such as BERT, many364

researchers refine the model architecture into365

two stages to achieve more effective extractions.366

Multi2OIE (Ro et al., 2020) is a two-stage label-367

ing method. Its first stage is to label all predi-368

cates upon BERT-embedded hidden states instead369

of locating predicates with syntactic features. The370

second stage is to extract the arguments associated371

with each identified predicate by using a multi-head372

attention mechanism. GEN2OIE (Kolluru et al.,373

2022) extends to a generative paradigm operating374

in two stages, generating all possible relational375

predicates and relation triplet sequentially. QuORE376

(Yang et al., 2022) is a framework to extract rela-377

tions and detect non-existent relationships based378

on the argument-context queries generated in the379

first stage.380

Some researchers in this modularized setting381

are exploring various intermediate representa-382

tions to enhance the performance of the pipeline.383

OIE@OIA (Wang et al., 2022e) is an adaptable384

OpenIE system that employs the methodology of385

Open Information eXpression (OIX) by parsing386

sentences into Open Information Annotation (OIA)387

Graphs. It consists of two components: an OIA388

generator that converts sentences into OIA graphs389

and a set of adaptors, each designed for a specific390

OpenIE task, allowing for efficient and versatile391

information extraction. By using different inter-392

mediate representations, Chunk-OIE (Dong et al.,393

2023) introduces the Chunk sequence (SaC) as an394

intermediate representation layer while Yu et al.395

(2022) introduce directed acyclic graph (DAG) as396

a minimalist intermediate expression.397

5.4 Neural Model Era: Open Relation398

Clustering399

ORC Task: Entities + Text→ Clustering without400

Explicit Relation Span or Label401

Representation by Defined Features. Early clus-402

tering methods represent relation instances in fea-403

ture space with the help of explicit features from404

various types of information. Ru et al. (2017) com-405

pares the contributions of different sequential pat-406

terns, syntactic information and the combination of407

the above to the representation of relation instances,408

which are clustered by a hierarchical clustering al-409

gorithm (Zhao et al., 2005). The result shows that 410

sequential patterns and syntactic information are 411

both beneficial to relation representation. With 412

more fine-grind features, Lechevrel et al. (2017) 413

select core dependency phrases to capture the se- 414

mantics of the relations between entities. Since 415

different relations in one sentence can be viewed 416

as noises when clustering a certain relation, Elsa- 417

har et al. (2017) propose a more resilient approach 418

based on the shortest dependency path instead of 419

directly cutting irrelevant information in sentences. 420

With the development of pre-trained language 421

models, contextualized semantics can be better 422

represented. Before the clustering step, recent 423

clustering-based approaches tend to optimize rela- 424

tion representations with different supervision sig- 425

nals instead of manually extracting features based 426

on different rules. 427

Semantic Representation by PLM– 428

unsupervised learning. Unlike the above 429

OpenIE systems that follow Banko et al. (2007) 430

to use unsupervised learning methods, RSN 431

(Wu et al., 2019) exploits existing labeled data 432

and relational facts in knowledge bases during 433

training. To narrow the representation gap between 434

pre-defined relations and novel relations, RSN 435

learns a relational similarity matrix that can 436

transfer relation knowledge from supervised 437

data to unsupervised data. Wang et al. (2022c) 438

and (Genest et al., 2022) introduce a similar 439

unsupervised prompt-based algorithm, Match- 440

Prompt, which clusters sentences by leveraging 441

representations from masked relation tokens within 442

a prompt template. Its superb performance against 443

traditional unsupervised methods indicates that 444

fully leveraging the semantic expressive power of 445

pre-trained models is very important. IRLC(Wang 446

et al., 2022d) presents a robust solution for relation 447

representation that employs data augmentation to 448

create additional examples. 449

Semantic Representation by PLM–semi- 450

supervised learning. Without taking advantage 451

of labeled datasets, SelfORE (Hu et al., 2020) pro- 452

poses a self-supervised learning method for learn- 453

ing better feature representations for clustering. 454

SelfORE is composed of three sections: (1) en- 455

code relation instances by leveraging BERT (De- 456

vlin et al., 2019) to obtain relation representations; 457

(2) apply adaptive clustering based on updated re- 458

lation representations from (1) to assign each in- 459

stance to a cluster with high confidence. In this 460

way, pseudo labels are generated. (3) pseudo labels 461
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from (2) are used as supervision signals to train462

the relation classifier and update the encoder in (1).463

Repeat (2). As mentioned above high-dimensional464

vectors need to be clustered in a more complex way;465

Zhao et al. (2021) argue that such high-dimensional466

vectors contain too much irrelevant information467

for relation clustering, such as complex linguis-468

tic information. They propose a relation-oriented469

model based on SelfORE with a similar unsuper-470

vised training part and a modified supervised part.471

Duan et al. (2022) also make use of the distance472

between labeled data with every cluster center as473

soft pseudo labels. (Zhao et al., 2023) have pro-474

posed a method of active learning, which allows475

the model to identify and present difficult data for476

manual annotation during the clustering process.477

This method not only reduces the amount of data478

that needs to be labeled but also achieves better479

experimental results.480

Hierarchical Information. Apart from labeled481

data, knowledge bases also benefit OpenIE by gen-482

erating positive and negative instances. Datasets483

generated from distant supervision bring in spu-484

rious correlations (Roth et al., 2013; Jiang et al.,485

2018; Chen et al., 2021a). Fangchao et al. (2021)486

conduct interventions derived by KB to entities and487

context separately to avoid spurious correlations488

of them to relation types. OHRE (Zhang et al.,489

2021a) proposes a top-down hierarchy expansion490

algorithm to cluster and label relation instances491

based on the distance between the KB hierarchical492

structure. In this way, clusters of existing rela-493

tions are labeled clearly, and novel relations can494

be labeled as children relations of existing relation495

labels.496

5.5 Large Language Models Era497

ORTE Task: Text → Relational Triplet498

The recent evolution and emergence of Large Lan-499

guage Models (LLMs), such as GPT-4 (OpenAI,500

2024), ChatGPT (OpenAI, 2023), and Llama 2501

(Touvron et al., 2023), have significantly advanced502

the field of NLP. Their remarkable capabilities in503

text understanding, generation, and generalization504

have led to a surge of interest in generative IE meth-505

ods (Qi et al., 2023b; Xu et al., 2023b). Recent506

studies have employed LLMs for OpenIE tasks by507

transforming input text through specific instruc-508

tions or schemas. This approach facilitates tasks509

such as triplet extraction and relation classification510

under the structured language generation frame-511

work. It allows for a versatile task configuration512

where diverse forms of input text can be processed 513

to generate structured relational triplets uniformly. 514

Zero-Shot. Wang et al. (2022b) propose IELM, 515

a benchmark for assessing the zero-shot perfor- 516

mance of GPT-2 (Radford et al., 2019) by encod- 517

ing entity pairs in the input and extracting relations 518

associated with each entity pair. On large-scale 519

evaluation on various OpenIE benchmark tasks, re- 520

search has shown that the zero-shot performance of 521

leading LLMs, such as ChatGPT, still falls short of 522

the state-of-the-art supervised methods (Han et al., 523

2023; Qi et al., 2023b), specifically on more chal- 524

lenging tasks (Li et al., 2023a). This shortfall is 525

partly because LLMs struggle to distinguish irrele- 526

vant context from long-tail target types and relevant 527

relations (Ling et al., 2023; Han et al., 2023). 528

Fine-Tuning and Few-Shot. Consequently, ef- 529

forts have been made to fine-tune pre-trained LLMs 530

or employ in-context learning prompting strategies 531

to utilize and enhance the instruction-following 532

ability of LLMs. For example, Lu et al. (2023) 533

addresses open-world information extraction, in- 534

cluding unrestricted entity and relation detection, 535

as an instruction-following generative task, and 536

develops PIVOINE, a fine-tuned information ex- 537

traction LLM that generates comprehensive entity 538

profiles in JSON format. To minimize the need for 539

extensive fine-tuning of LLMs, Ling et al. (2023) 540

proposes various in-context learning strategies for 541

performing relation triplet generation to improve 542

the instruction-following ability of LLMs, and in- 543

troduces an uncertainty quantification module to in- 544

crease the confidence in the generated answers. Qi 545

et al. (2023a) proposes an approach of constructing 546

a consistent reasoning environment by mitigating 547

the distributional discrepancy between test sam- 548

ples and LLMs. This strategy aims to improve the 549

few-shot reasoning capability of LLMs on specific 550

OpenIE tasks. 551

UIE and Applications. Besides reviewing the 552

work that utilizes LLMs to address OpenIE, we 553

then broaden our scope to 1. introduce some emerg- 554

ing trends and paradigms in universal information 555

extraction (UIE), 2. exploration of how LLMs are 556

applied to general IE tasks, and 3. the integration 557

of LLMs in IE system pipelines in Appendix C. 558

We believe that this broader perspective provides 559

readers with a comprehensive understanding of cur- 560

rent trends and future directions in OpenIE and 561

generic IE in the LLM era, enhancing their under- 562

standing of the field’s evolving dynamics, with the 563

impact further discussed in Section 6.2. 564
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6 Discussion565

This section reviews the diverse sources of informa-566

tion used by OpenIE models and discusses current567

limitations and future prospects, offering a compre-568

hensive overview of the field’s evolving trajectory.569

6.1 Historical Trends from an Information570

Source Perspective571

In this section, we trace the historical development572

of information sources utilized by OpenIE models,573

offering a clear temporal trajectory of their evolu-574

tion.575

Input-based information refers to features ex-576

plicitly or implicitly present in the input unstruc-577

tured text. Early OpenIE models extensively uti-578

lized explicit information such as shallow syntac-579

tic information, including part of speech (POS)580

tags and noun-phrase (NP) chunks (Banko et al.,581

2007; Wu and Weld, 2010; Fader et al., 2011). Al-582

though this approach is reliable, it does not capture583

all relation types (Stanovsky et al., 2018), leading584

to the increasing use of deep dependency infor-585

mation, which reveals word dependencies within586

sentences (Vo and Bagheri, 2018; Elsahar et al.,587

2017). Subsequent OpenIE models have empha-588

sized the use of semantic information to grasp589

literal meanings and linguistic structures, thereby590

enhancing the expression of relations despite the591

risk of over-specificity (Vashishth et al., 2018; Wu592

et al., 2018). Recent models, including pre-trained593

language models, combine syntactic and semantic594

information to improve accuracy (Hwang and Lee,595

2020; Ni et al., 2021). Further details are available596

in Appendix F.1.597

External information supplements OpenIE sys-598

tems to enhance model performance. Early sys-599

tems employ expert rules, including heuristic rules600

that integrate domain knowledge and assist in error601

tracing and resolution, based on syntactic analyses602

such as POS-tagging (Chiticariu et al., 2013; Fader603

et al., 2011). Following this, the integration of hier-604

archical information from knowledge bases (KBs)605

has advanced knowledge representation learning.606

This integration provides structured hierarchies and607

detailed factual knowledge, which support more or-608

ganized relation extraction and data augmentation609

(Xie et al., 2016; Zhang et al., 2021a; Fangchao610

et al., 2021). More recently, with the development611

of LLMs, the pre-trained knowledge within these612

models is utilized, encapsulating extensive rela-613

tional data (Jiang et al., 2020; Petroni et al., 2020)614

and enabling efficient retrieval with well-designed 615

instructions. Further details in Appendix F.2. 616

6.2 Future Directions 617

Chronologically, IE systems increasingly employ 618

diverse information sources and approaches, and 619

now begin to converge on utilizing universal for- 620

mats for various tasks (UIE). This shift is driven 621

by advances in NLP techniques, especially pre- 622

training models that enhance text extraction, and 623

by increased computing power over the last two 624

decades that enables more complex models. Re- 625

cently, the exceptional language understanding and 626

generalization capabilities of LLMs are promoting 627

a shift towards UIE, broadening applications across 628

different domains. More details are in Appendix C. 629

OpenIE datasets are growing but remain small 630

relative to web information. Currently, these 631

datasets are mostly confined to sources like Wiki, 632

Newswire, NYT, and Freebase, with limited mul- 633

tilingual and multi-source corpus. Future expan- 634

sions should include more languages and broader 635

sources. Additionally, there is a need for synthe- 636

sized datasets to improve both quality and quantity 637

in OpenIE, as discussed in Appendix D. This could 638

facilitate the creation of cross-domain datasets and 639

integration of existing datasets and tasks. 640

Overly-specific relation output and the lack of 641

a standard form for OpenIE output continue to 642

challenge current models. Over-specificity in Ope- 643

nIE arises from metrics focusing on token rather 644

than semantic similarity, leading to verbose and in- 645

complete outputs, while in ORC, sentences contain- 646

ing multiple relations introduce noise, complicat- 647

ing clustering and downstream tasks. Furthermore, 648

the absence of standardized outputs hinders model 649

comparison and canonicalization. Future research 650

should focus on developing semantic-level evalu- 651

ation metrics for OpenIE and establishing output 652

standards tailored to downstream task requirements, 653

alongside exploring text purification strategies for 654

ORC to isolate distinct relations. 655

Despite advances, most current LLM-based UIE 656

systems focus on traditional IE tasks and often 657

overlook OpenIE, a complex challenge within the 658

IE spectrum. LLMs are inherently suited for Ope- 659

nIE due to their extensive pre-trained knowledge, 660

unlike smaller models that require extensive train- 661

ing to learn relational information. The primary 662

challenge of LLMs lies not in extracting relational 663

information but in accurately interpreting and fol- 664

lowing task-specific instructions. 665
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Limitations666

Our survey primarily concentrates on the chrono-667

logical evolution of OpenIE technologies and their668

alignment with significant milestones in NLP de-669

velopment. Consequently, we have not covered670

multi-domain and multi-lingual datasets or method-671

ologies extensively. While we do address some672

non-English datasets, specifically Mandarin, and673

briefly mention multilingual models in Appendix B674

and model applications across various domains in675

Appendix C.3, these discussions are not the focal676

point of our analysis. This limitation is intentional677

in order to maintain a clear focus on the historical678

progression of the field rather than the breadth of679

dataset diversity or the adaptability of methodolo-680

gies across languages and domains.681

Another potential limitation is our survey’s em-682

phasis on the macro aspects of the OpenIE field683

rather than detailed, micro-level analysis of spe-684

cific methodologies. As outlined in Section 1,685

many existing surveys already cover methodolo-686

gies and models from the pre-LLM era, and we687

felt that redundant elaboration on these would not688

add significant value. Post-LLM, despite substan-689

tial research leveraging LLMs for traditional IE690

tasks, there is still a scarcity of studies specifically691

applying LLMs to OpenIE tasks. This scarcity692

has constrained our ability to conduct an in-depth693

survey focused exclusively on LLM methodolo-694

gies within OpenIE. Nonetheless, from the existing695

work on LLMs in traditional IE and UIE, detailed696

in Appendix C, we observe emerging trends that697

warrant a macro-level analysis. Our approach of698

integrating and reviewing the field through a his-699

torical lens is essential to provide a comprehensive700

view, enabling a clearer understanding of the task701

and aiding in the development of a more defined702

future roadmap.703
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A Table of OpenIE Models1352

The performances of up-to-date open IE models are1353

summarized in Table 4. The models are categorized1354

the same as that in Section 5 into five groups. For1355

models of pre-neural (ORTE), neural era (ORTE),1356

neural era (ORSE), and LLM era, the F1 scores and1357

accuracy on OIE16, Re-OIE16, and CaRB datasets1358

are reported. For models of neural era (ORC), the1359

ARI, F1 scores for B3, and F1 scores for V-measure1360

on FewRel and TACRED datasets are reported.1361

B Open IE Methodologies in Details1362

B.1 Open Relation Triplet Extraction1363

B.1.1 Labeling1364

OpenIE6 (Kolluru et al., 2020a) adopts a novel Iter-1365

ative Grid Labeling (IGL) architecture, with which1366

OpenIE is modeled as a 2-D grid labeling problem.1367

Each extraction corresponds to one row in the grid.1368

Iterative assignments of labels assist the model in1369

capturing dependencies among extractions without1370

re-encoding.1371

Owing to the outstanding performance of PLMs,1372

many researchers extend the sequence labeling task1373

to other problems. MacroIE(Bowen et al., 2021)1374

reformulates the OpenIE as a non-parametric pro-1375

cess of finding maximal cliques from the graph. It1376

uses a non-autoregressive framework to mitigate1377

the issue of enforced order and error accumula-1378

tion during extraction. DetIE (Vasilkovsky et al.,1379

2022) casts the task to a direct set prediction prob-1380

lem. This encoder-only model extracts a predefined1381

number of possible triplets (proposals) by gener-1382

ating multiple labeled sequences in parallel, and1383

its order-agnostic loss based on bipartite matching1384

ensures the predictions are unique.1385

B.2 Open Relation Span Extraction1386

GEN2OIE (Kolluru et al., 2022) extends to a gener-1387

ative paradigm operating in two stages. It first gen-1388

erates all possible relations from input sentences.1389

Then, it produces extractions for each generated1390

relation. This generative approach allows for over-1391

lapping relations and multiple extractions with the1392

same relation.1393

Jia et al. (2022) propose a hybrid neural net-1394

work model (HNN4ORT) for open relation tagging.1395

The model employs the Ordered Neurons LSTM1396

(Shen et al., 2019) to encode potential syntactic1397

information for capturing associations among ar-1398

guments and relations. It also adopts a novel Dual1399

Aware Mechanism, integrating Local-aware Atten- 1400

tion and Global-aware Convolution. QuORE (Yang 1401

et al., 2022) is a framework to extract single/multi- 1402

span relations and detect non-existent relationships, 1403

given an argument tuple and its context. The 1404

model uses a manually defined template to map 1405

the argument tuple into a query. It concatenates 1406

and encodes the query together with the context 1407

to generate sequence embedding, with which this 1408

framework dynamically determines a sub-module 1409

(Single-span Extraction or Query-based Sequence 1410

Labeling) to label the potential relation(s) in the 1411

context. 1412

Inspired by OIA, Chunk-OIE (Dong et al., 2023) 1413

introduces the concept of Sentence as Chunk se- 1414

quence (SaC) as an intermediate representation 1415

layer, utilizing chunking to divide sentences into 1416

related non-overlapping phrases. Yu et al. (2022) 1417

introduce directed acyclic graph (DAG) as a min- 1418

imalist expression of open fact in order to reduce 1419

the extraction complexity and improves the gener- 1420

alization behavior. They propose DragonIE which 1421

leverages the sequential priors to reduce the com- 1422

plexity of function space (edge number and type) 1423

in the previous graph-based model from quadratic 1424

to linear, while avoiding auto-regressive extraction 1425

in sequence-based models. 1426

B.3 Open Relation Clustering 1427

Lechevrel et al. (2017) select core dependency 1428

phrases to capture the semantics of the relations 1429

between entities. The design rules are based on the 1430

length of the dependency phrase in the dependency 1431

path, which sometimes contains more than one de- 1432

pendency phrase that uses all terms and brings in 1433

irrelevant information. Each relation instance is 1434

clustered on the basis of the semantics of core de- 1435

pendency phrases. Finally, clusters are named by 1436

the core dependency phrase most similar to the 1437

center vector of the cluster. 1438

Instead of directly cutting less irrelevant infor- 1439

mation, Elsahar et al. (2017) propose a more re- 1440

silient approach based on the shortest dependency 1441

path. The model generates representations of rela- 1442

tion instances by assigning a higher weight to word 1443

embedding of terms in the dependency path and 1444

then reduces feature dimensions by PCA (Shen, 1445

2009). Although the model ignores noisy terms 1446

in the dependency path, re-weighting is a forward- 1447

looking idea resembling the subsequent attention 1448

mechanism. 1449

The key idea of Fangchao et al. (2021) is based 1450
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OIE16 Re-OIE16 CaRB FewRel TACRED
OpenIE System F1 AUC F1 AUC F1 AUC ARI B3 V ARI B3 V

Pre-Neural (ORTE)

OLLIE (Schmitz et al., 2012) 38.6 20.2 49.5 31.3 41.1 22.4 - - - - - -
ClausIE (Del Corro and Gemulla, 2013) 58.0 36.4 64.2 46.4 44.9 22.4 - - - - - -
OPENIE4 (Mausam, 2016) 58.8 40.8 68.3 50.9 51.6 29.5 - - - - - -
PropS (Stanovsky and Dagan, 2016) 54.4 32.0 64.2 43.3 31.9 12.6 - - - - - -

Neural Era (ORTE)

RnnOIE (Stanovsky et al., 2018) 62.0 48.0 - - 49.0 26.1 - - - - - -
OpenIE6 (Kolluru et al., 2020a) - - - - 52.7 33.7 - - - - - -
SpanOIE (Zhan and Zhao, 2020) 69.4 49.1 77.0 65.8 48.5 - - - - - - -
IMoJIE (Kolluru et al., 2020b) - - - - 53.5 33.3 - - - - - -
MacroIE (Bowen et al., 2021) - - - - 54.8 36.3 - - - - - -
DetIELSOIE (Vasilkovsky et al., 2022) - - - - 43.0 27.2 - - - - - -
DetIEIMoJIE (Vasilkovsky et al., 2022) - - - - 52.1 36.7 - - - - - -
SMiLe-OIE (Dong et al., 2022) - - - - 53.8 34.9 - - - - - -

Neural Era (ORSE)

Multi2OIE (Ro et al., 2020) - - 83.9 74.6 52.3 32.6 - - - - - -
GEN2OIE (Kolluru et al., 2022) - - - - 54.4 32.3 - - - - - -
GEN2OIE (label-rescore) - - - - 54.5 38.9 - - - - - -
OIE@OIA (Wang et al., 2022e) 71.6 54.3 85.3 76.9 51.1 33.9 - - - - - -
DragonIE (Yu et al., 2022) - - - - 55.1 36.4 - - - - - -
ChunkOIE(SaC-OIA-SP) (Dong et al., 2023) - - - - 53.6 35.5 - - - - - -
ChunkOIE(SaC-CoNLL) - - - - 53.2 34.7 - - - - - -

Neural Era (ORC)

RSN (Wu et al., 2019) - - - - - - 45.3 58.9 70.8 45.9 63.1 64.3
RSN-CV (Wu et al., 2019) - - - - - - 54.2 63.8 72.4 - - -
SelfORE (Hu et al., 2020) - - - - - - 64.7 67.8 78.3 44.7 54.1 61.9
RSN-BERT (Zhao et al., 2021) - - - - - - 53.2 70.9 78.1 75.6 83.4 85.9
RoCORE (Zhao et al., 2021) - - - - - - 70.9 79.6 86 81.2 86 88.8
OHRE (Zhang et al., 2021b) - - - - - - 64.2 70.5 76.7 - - -
MatchPrompt (Wang et al., 2022c) - - - - - - 66.5 72.3 82.2 75.3 83.0 84.5
PromptORE (Genest et al., 2022) - - - - - - 43.4 48.8 71.8 - - -
CaPL (Duan et al., 2022) - - - - - - 79.4 81.9 88.9 82.9 87.3 89.8
ASCORE (Zhao et al., 2023) - - - - - - 67.6 73.5 83.5 78.1 78 83.1

LLM Era IELM GPT-2XL (Wang et al., 2022b) - - 35.0 - 22.7 - - - - - - -
GPT-3.5-TURBO ICL (Ling et al., 2023) 65.1 - 67.9 - 52.1 - - - - - - -
ChatGPT n-shot (Qi et al., 2023a) - - - - 55.3 - - - - - - -

Table 4: Performance of OpenIE models. Only report F1 scores for B3 and V.

on blocking backdoor paths from a causal view1451

(Pearl, 2000). The intervened context is generated1452

by a generative PLM, while entities are intervened1453

by placing them with three-level hierarchical en-1454

tities in KB. Model parameters are optimized by1455

those intervened instances via contrastive learning.1456

The learned model encodes each instance into its1457

representations, before using clustering algorithms.1458

B.4 Neural Model Era: Other Settings1459

Translation. Wang et al. (2021) cast information1460

extraction tasks into a text-to-triplet translation1461

problem. They introduce DEEPEX, a framework1462

that translates NP-chunked sentences to relational1463

triplets in a zero-shot setting. This translation pro-1464

cess consists of two steps: generating a set of can-1465

didate triplets and ranking them.1466

Multilingual. MILIE (Kotnis et al., 2022) is an1467

integrated model of a rule-based system and a neu-1468

ral system, which extracts triplet slots iteratively1469

from simple to complex, conditioning on preced-1470

ing extractions. The iterative nature guarantees the1471

model to perform well in a multilingual setting.1472

Multi2OIE (Ro et al., 2020) also has a multilingual1473

version based on multilingual-BERT, which makes1474

it able to deal with various languages. Differently,1475

LOREM (Harting et al., 2020) trains two types of1476

models, language-individual models, and language-1477

consistent models and incorporates multilingual, 1478

aligned word embeddings to enhance model perfor- 1479

mance. 1480

C LLMs for IE in general 1481

In Section 5.5, we begin by reviewing the work 1482

that utilizes LLMs to address OpenIE. Here, we 1483

1). broaden our scope to introduce some emerg- 1484

ing trends and paradigms in universal information 1485

extraction. For an in-depth exploration of how 1486

LLMs are applied to closed relation extraction and 1487

other IE tasks, we refer readers to the survey by 1488

Xu et al. (2023b) for comprehensive details. More- 1489

over, we 2). further expand our discussion to ex- 1490

plore research that integrates LLMs into IE system 1491

pipelines, beyond merely using them for direct IE 1492

task solution. We 3). also includes an discussion of 1493

current trends in IE dataset using LLMs that shed 1494

light on the future of datasets on openIE. 1495

We believe this broader perspective provides 1496

readers with a comprehensive understanding of cur- 1497

rent trends and future directions in OpenIE and 1498

generic IE in the LLM era, enhancing their grasp 1499

of the field’s evolving dynamics. 1500

C.1 Universal Information Extraction 1501

Recent advancements and the robust generalization 1502

capabilities of LLMs have led to the exploration 1503
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of universal frameworks designed to tackle all IE1504

tasks (UIE). These frameworks aim to harness the1505

shared capabilities inherent in IE, while also un-1506

covering and learning from the dependencies that1507

exist between various tasks (Xu et al., 2023b). This1508

approach marks a significant shift from focusing1509

on isolated subtasks such as OpenIE to a more in-1510

tegrated methodology that seeks to understand a1511

more integrated and comprehensive understanding1512

of the domain.1513

Natural Language-Based Schema. A prevail-1514

ing trend in developing universal IE frameworks is1515

to establish a unified, structured natural language1516

schema for diverse subtasks, designed for schema-1517

prompting LLMs. For instance, Wang et al. (2022a)1518

introduce DeepStruct, which reformulates various1519

IE tasks as triplet generation tasks, using general-1520

ized task-specific prefixes in prompts and pretrain-1521

ing LLMs to comprehend text structures. Lu et al.1522

(2022) propose UIE, encoding different extraction1523

structures uniformly through a structured extrac-1524

tion language and adaptively generating specific1525

extractions with a schema-based prompt strategy.1526

Similarly, Lou et al. (2023) present USM, encod-1527

ing different schemas and input texts together to1528

enable structuring and conceptualizing, aiming for1529

a single model that addresses all tasks. Building1530

on UIE and USM, Wang et al. (2023a) introduce1531

InstructUIE, which models various IE tasks uni-1532

formly with descriptive natural language instruc-1533

tions for instruction tuning, exploiting inter-task1534

dependencies.1535

Code-Based Schema. Despite their empirical1536

success, natural language-based approaches face1537

challenges in generating outputs for IE tasks due1538

to the distinct syntax and structure that differ from1539

the training data of LLMs (Bi et al., 2024). In re-1540

sponse to these limitations and leveraging recent1541

advancements in Code-LLMs (Chen et al., 2021b),1542

researchers have begun to utilize Code-LLMs for1543

structure generation tasks (Wang et al., 2022f), as1544

code, a formalized language, adeptly describes1545

structural knowledge across various schemas uni-1546

versally (Guo et al., 2023b). For instance, Li et al.1547

(2023d) present CodeIE, which translates struc-1548

tured prediction tasks such as NER and RE into1549

code generation, employing Python functions to1550

create task-specific schemas and using few-shot1551

learning to instruct Code-LLMs. Guo et al. (2023b)1552

introduce Code4UIE, utilizing Python classes to1553

define task-specific schemas for diverse structural1554

knowledge universally. Similarly, Sainz et al.1555

(2023) propose GoLLIE, which employs Python 1556

classes to encode IE tasks and, in addition, inte- 1557

grates task-specific guidelines as docstrings, en- 1558

hancing the robustness of fine-tuned Code-LLMs 1559

to schemas not encountered during training. 1560

C.2 Role of LLMs in IE System 1561

In addition to directly addressing IE tasks, LLMs 1562

have shown utility as specific components within 1563

IE system pipelines, including data synthesis for IE 1564

model training and knowledge retrieval for down- 1565

stream IE tasks. 1566

Data Synthesis. A prominent application of 1567

LLMs in IE systems is the synthesis of high-quality 1568

training data, as data curation through human anno- 1569

tation is time-consuming and labor-intensive. One 1570

approach employs LLMs as annotators within a 1571

learning loop (Zhang et al., 2023a), while another 1572

strategy involves using LLMs to inversely generate 1573

natural language text from structured data inputs 1574

(Josifoski et al., 2023; Ma et al., 2023), thereby 1575

producing large-scale, high-quality training data 1576

for IE tasks. 1577

Knowledge Retrieval. Another research direc- 1578

tion exploits the capability of LLMs, developed 1579

through pre-training, as implicit knowledge bases 1580

to generate or retrieve relevant context for down- 1581

stream IE tasks. For instance, Li et al. (2023b, 1582

2024) employ LLMs to generate auxiliary knowl- 1583

edge improving multimodal IE tasks. Amalvy et al. 1584

(2023) demonstrate that pre-trained LLMs possess 1585

inherent knowledge of the datasets they work on, 1586

and use these models to generate a context retrieval 1587

dataset, enhancing NER performance on long doc- 1588

uments. 1589

C.3 IE in Different Domains 1590

The development of Information Extraction (IE) 1591

has seen significant advancements across various 1592

domains, including Multimodal IE, Medical Infor- 1593

mation Extraction, and the application of Code 1594

Models for IE tasks. These developments have 1595

been particularly enhanced by the integration of 1596

Large Language Models (LLMs), which have im- 1597

proved downstream task performance through their 1598

use in model architecture and as tools for annota- 1599

tion and training guidance. 1600

Medical Information Extraction has greatly 1601

benefited from the use of LLMs as efficient tools 1602

for annotation, as highlighted in research by Goel 1603

et al. (2023); Meoni et al. (2023). These applica- 1604

tions enhance data quality and contribute to the 1605
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overall improvement of model performance.1606

Multimodal IE tasks, such as Multimodal1607

Named Entity Recognition (MNER) and Multi-1608

modal Relation Extraction (MRE), have advanced1609

through frameworks that capitalize on the capabil-1610

ities of LLMs in IE. Cai et al. (2023) propsed to1611

use in-context learning (ICL) ability in ChatGPT1612

to help Few-Shot MNER by employing in-context1613

learning to convert visual data into text and select1614

relevant examples for effective entity recognition.1615

Li et al. (2023c) tackles MNER on social media1616

by efficient usage of generated knowledge and im-1617

proved generalization, which utilizes ChatGPT as1618

an implicit knowledge base for generating auxiliary1619

knowledge to aid entity prediction. Chen and Feng1620

(2023) distill the reasoning ability of LLMs by us-1621

ing "chain of thought" (CoT) to elicit reasoning1622

capability from LLMs across multiple dimensions1623

to improve MNER and MRE.1624

Code generative LLMs have found application1625

in performing IE tasks such as Universal Infor-1626

mation Extraction (UIE) (Li et al., 2023d; Guo1627

et al., 2023a), Event Structure Prediction (Wang1628

et al., 2023b), and Generative Knowledge Graph1629

(Bi et al., 2024), where researchers convert the1630

structured output in the form of code instead of nat-1631

ural language, and utilize generative LLMs of code1632

(Code-LLMs) by designing code-style prompts and1633

formulating these IE tasks as code generation tasks.1634

Leveraging LLMs across different domains has1635

not only broadened the scope of IE applications but1636

also significantly improved the effectiveness and1637

efficiency of extraction tasks.1638

D Datasets1639

Question Answering (QA) derived datasets are1640

converted from other crowdsourced QA datasets.1641

OIE2016 (Stanovsky and Dagan, 2016) is one of1642

the most popular OpenIE benchmarks, which lever-1643

ages QA-SRL (He et al., 2015) annotations. AW-1644

OIE (Stanovsky et al., 2018) extends the OIE20161645

training set with extractions from QAMR dataset1646

(Michael et al., 2017). The OIE2016 and AW-OIE1647

datasets are the first datasets used for supervised1648

OpenIE. However, because of its coarse-grained1649

generation method, OIE2016 has some problem-1650

atic annotations and extractions. On the basis of1651

OIE2016, Re-OIE2016 (Zhan and Zhao, 2020)1652

and CaRB (Bhardwaj et al., 2019) re-annotate1653

part of the dataset. LSOIE (Solawetz and Larson,1654

2021) is created by converting QA-SRL 2.0 dataset1655

(FitzGerald et al., 2018) to a large-scale OpenIE 1656

dataset, which claims 20 times larger than the next 1657

largest human-annotated OpenIE dataset. 1658

Crowdsourced datasets are created from direct 1659

human annotation, including WiRe57 (Léchelle 1660

et al., 2019), SAOKE dataset (Sun et al., 2018), 1661

and BenchIE dataset (Gashteovski et al., 2021). 1662

WiRe57 is created based on a small corpus con- 1663

taining 57 sentences from 5 documents by two 1664

annotators following a pipeline. SAOKE dataset 1665

is generated from Baidu Baike, a free online Chi- 1666

nese encyclopedia, like Wikipedia, containing a 1667

single/multi-span relation and binary/polyadic ar- 1668

guments in a tuple. It is built in a predefined format, 1669

which assures its completeness, accurateness, atom- 1670

icity, and compactness. 1671

Knowledge Base (KB) derived datasets are 1672

established by aligning triplets in KBs with text 1673

in the corpus. Several works (Mintz et al., 2009; 1674

Yao et al., 2011) have aligned the New York Times 1675

corpus (Sandhaus, 2008) with Freebase (Bollacker 1676

et al., 2008) triplets, resulting in several variations 1677

of the same dataset, NYT-FB. FewRel (Han et al., 1678

2018) is created by aligning relations of given en- 1679

tity pairs in Wikipedia sentences with distant su- 1680

pervision, and then filtered by human annotators. 1681

ElSahar et al. (2018) propose a pipeline to align 1682

Wikipedia corpus with Wikidata (Vrandečić, 2012) 1683

and generate T-REx. By filtering triplets and select- 1684

ing sentences, Hu et al. (2020) create T-REx SPO 1685

and T-REx DS. In addition, COER (Jia et al., 2018), 1686

a large-scale Chinese knowledge base dataset, is 1687

automatically created by an unsupervised open ex- 1688

tractor from diverse and heterogeneous web text, 1689

including encyclopedia and news. Overall, KB 1690

derived datasets are mostly used in open relation 1691

clustering task setting, illustrated in Section 5.4, 1692

whereas QA derived and crowdsourced datasets are 1693

usually used in open relational triplet extraction 1694

(Section 5.2) and open relation span extraction task 1695

settings (Section 5.3). 1696

Instruction-based datasets transform IE tasks 1697

into tasks requiring instruction-following, thus har- 1698

nessing the capabilities of LLMs. One strategy 1699

involves integrating various existing IE datasets 1700

into a unified-format benchmark dataset with 1701

specifically designed instructions (Wang et al., 1702

2023a; Lu et al., 2022). Alternatively, instruction- 1703

based IE datasets such as INSTRUCTOPENWIKI 1704

(Lu et al., 2023) and INSTRUCTIE (Gui et al., 1705

2023), or structured IE datasets like Wikidata-OIE 1706

(Wang et al., 2022b)—derived from Wikidata and 1707
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Wikipedia—are created. The first method primarily1708

focuses on ClosedIE tasks, while the second offers1709

more flexibility in generating OpenIE datasets (Lu1710

et al., 2023; Wang et al., 2022b).1711

Synthesized datasets using LLMs on IE ex-1712

pands significantly compared to previous ones1713

in both the size of the datasets and data qual-1714

ities. While the methodologies for synthesiz-1715

ing these datasets have been extensively explored1716

within the domain of closed Information Extraction1717

(ClosedIE) (Zhang et al., 2023b; Xu et al., 2023a),1718

where researchers claims the proposed methods1719

can be adapted for OpenIE setting (Josifoski et al.,1720

2023), there remains a notable gap in the literature1721

regarding comprehensive studies on synthesized1722

datasets for OpenIE.1723

E Evaluation1724

Token-level Scorers. To allow some flexibility1725

(e.g., omissions of prepositions or auxiliaries), if1726

automated extraction of the model and the gold1727

triplet agree on the grammatical head of all of1728

their elements (predicate and arguments), OIE20161729

(Stanovsky and Dagan, 2016) takes it as matched.1730

Léchelle et al. (2019) penalize the verbosity of au-1731

tomated extractions as well as the omission of parts1732

of a gold triplet by computing precision and re-1733

call at token-level in WiRe57. Their precision is1734

the proportion of extracted words that are found1735

in the gold triplet, while recall is the proportion of1736

reference words found in extractions. To improve1737

token-level scorers, CaRB (Bhardwaj et al., 2019)1738

computes precision and recall pairwise by creating1739

an all-pair matching table, with each column as1740

extracted triplet and each row as gold triplet. When1741

assessing LLM extracted spans, Han et al. (2023)1742

report the ratio of invalid responses, which include1743

incorrect formats and content not aligned with task-1744

specific prompts. As generative models, LLMs aim1745

to mimic human-like responses and often generate1746

longer text than the gold standard annotations.1747

Fact-level Scorers. SAOKE (Sun et al., 2018)1748

measures to what extent gold triplets and extracted1749

triplets imply the same facts and then calculates1750

precision and recall. BenchIE (Gashteovski et al.,1751

2021) introduces fact synset: a set of all possi-1752

ble extractions (i.e., different surface forms) for a1753

given fact type (e.g., VP-mediated facts) that are1754

instances of the same fact. It takes the informa-1755

tional equivalence of extractions into account by1756

exactly matching extracted triplets with the gold1757

fact synsets. In assessing outputs from LLMs, Li 1758

et al. (2023a) have ChatGPT provide justifications 1759

for its predictions and use domain expert annota- 1760

tion to verify their faithfulness relative to the input. 1761

F Source of Information 1762

Section 6.1 provides a brief overview of the sources 1763

of information utilized in OpenIE models. This 1764

section offers a detailed discussion of each specific 1765

information source. 1766

F.1 Input-based Information 1767

Shallow syntactic information such as part of 1768

speech (POS) tags and noun-phrase (NP) chunks 1769

abstract input sentences into patterns. It is per- 1770

vasively used in the early work of OpenIE as an 1771

essential model feature (Banko et al., 2007; Wu and 1772

Weld, 2010; Fader et al., 2011). In rule-based mod- 1773

els, those patterns directly determine whether the 1774

input text contains certain relations or not (Xavier 1775

et al., 2013; A and A, 2013). Shallow syntactic 1776

information is reliable because there is a clear rela- 1777

tionship between the relation type and the syntactic 1778

information in English (Banko et al., 2007). How- 1779

ever, merely using shallow syntactic information 1780

can not discover all relation types. Subsequent 1781

work uses shallow syntactic information as part of 1782

the input and incorporates additional features to 1783

enhance the model performance (Stanovsky et al., 1784

2018). 1785

Deep dependency information shows the de- 1786

pendency between words in a sentence, which can 1787

be used directly to find relations (Vo and Bagheri, 1788

2018). But because dependency analysis is more 1789

complex and time-consuming than shallow syn- 1790

tactic analysis, such information source was not 1791

popular in early OpenIE studies. It was the second 1792

generation of OpenIE models that brought depen- 1793

dency parsing to great attention. Right now, depen- 1794

dency information is still used as part of the model 1795

input, though with less popularity and sometimes 1796

not directly. Elsahar et al. (2017) make use of the 1797

dependency path to give higher weight to words be- 1798

tween two named entities, in which way the model 1799

only uses dependency information as a supplement 1800

and relies more on the semantic meaning to extract 1801

information. 1802

Semantic information captures not only linguis- 1803

tic structures of sentences but literal meanings of 1804

phrases, which can express more diverse and fit- 1805

ting relations compared to syntactic patterns. How- 1806

20



ever, semantic information can also be too spe-1807

cific and hence lead to the canonicalizing problem1808

(Galárraga et al., 2014; Vashishth et al., 2018; Wu1809

et al., 2018). The second generation of OpenIE1810

models has tried to use semantic information via1811

semantic role labeling, for example EXAMPLAR1812

(Mesquita et al., 2013), or via dependency parsing,1813

for instance OLLIE (Schmitz et al., 2012). There1814

were also attempts to use WordNet output to com-1815

prise semantic information (Liu and Yang, 2012).1816

The third generation of OpenIE models typically1817

use the word and sentence representations obtained1818

from pre-trained language models (Kolluru et al.,1819

2020b; Hwang and Lee, 2020; Xinwei and Hui,1820

2020). These representations contain both syntac-1821

tic and semantic information (Jawahar et al., 2019).1822

Meanwhile, some OpenIE models use word embed-1823

dings from word embedders such as GloVe, ELMo,1824

and Word2Vec to capture semantic information (Ni1825

et al., 2021).1826

F.2 External Knowledge1827

Expert rules are knowledge imported in the form1828

of heuristic rules. It is easy for rule-based Ope-1829

nIE systems to incorporate domain knowledge as1830

well as to trace and fix errors (Chiticariu et al.,1831

2013). Heuristic rules can be employed to avoid1832

incoherent extractions (Fader et al., 2011). For ex-1833

ample, verb words between two entities are likely1834

to be the relation. Thus, to alleviate incoherence,1835

a rule can be defined: If there are multiple possi-1836

ble matches for a single verb, the shortest possible1837

match is chosen. Based on patterns generated from1838

POS-tagging, dependency parse, and other syntac-1839

tic analyses, different rules can be created.1840

Hierarchical information that implicitly exists1841

in languages, which can be explicitly exhibited1842

by knowledge bases, benefits knowledge repre-1843

sentation learning (Wang et al., 2014; Lin et al.,1844

2015; Hu et al., 2015; Xie et al., 2016). In addition,1845

KBs contain fine-grained factual knowledge that1846

provides background information and hierarchical1847

structures needed for relation extraction. Com-1848

pared to traditional clustering, KB can provide1849

hierarchical information that helps represent and1850

cluster relations in a more organized way (Zhang1851

et al., 2021a) and hierarchical factual knowl-1852

edge for data augmentation (Fangchao et al., 2021).1853

1854

Pre-trained knowledge of language models,1855

particularly LLMs, exhibit substantial potential1856

to encapsulate relational knowledge (Jiang et al.,1857

2020; Petroni et al., 2020). Unlike smaller mod- 1858

els, which require learning from input and external 1859

knowledge in a bottom-up manner, LLMs hold ex- 1860

tensive, ready-to-use knowledge from pre-training. 1861

Consequently, recent efforts aim to direct LLMs 1862

to concentrate solely on pertinent knowledge for 1863

specific IE tasks. 1864
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